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Population splitting, trapping, and non-ergodicity in
heterogeneous diffusion processes

Andrey G. Cherstvya and Ralf Metzler*abc

We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such

heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic

dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with

stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient

and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In

all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared

displacements is observed. We also demonstrate a population splitting of the time averaged traces into

fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping

in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the

space coverage, the diffusive spreading of the probability density, as well as the survival probability.

I. Introduction

Anomalous diffusion of the power-law form1,2

hx2(t)i C tb (1)

of the mean squared displacement (MSD) has been observed in
a wide variety of systems. Depending on the value of the
anomalous diffusion exponent b we distinguish subdiffusion
(0 o b o 1) and superdiffusion (b 4 1). The special cases are
that of normal Brownian motion (b = 1) and wave-like, ballistic
motion (b = 2).

Examples for subdiffusion include the anomalous motion of
charge carriers in amorphous semiconductors,3 the motion of
tracer beads in polymer melts4 and actin networks,5 the dynamics
of sticky particles along a surface,6 or the spreading of tracer
chemicals in subsurface hydrology.7 Superdiffusion is observed in
weakly chaotic systems,8 in bulk-surface exchange controlled
dynamics in porous glasses,9 or in the motion of tracer beads in
wormlike micellar solutions.10

In particular, numerous cases of anomalous diffusion have
been reported for the motion of endogenous and artificial
submicron tracers in living biological cells, following substantial
advances in single particle tracking and spectroscopic tools over
the last decade or so.11–14 Thus, methods such as video tracking,

tracking by optical tweezers, or fluorescence correlation spectro-
scopy have become routine tools to explore the motion of tracers
such as larger biomolecules or microbeads in vivo. The anomalous
diffusion of submicron-sized tracers is of interest for the under-
standing of biochemical processes in the cell, but also offers
insight into the mechanical properties of the intracellular fluid
and cellular mechanical structures as the passive or active tracer
motion represents the basis for microrheology.15

Examples for in vivo subdiffusion include the motion of
endogenous granules (lipids or insulin),16–18 of fluorescently
labelled RNA molecules,19,20 of the tips (telomeres) of eukaryotic
DNA and loci of bacterial DNA,20,21 microbeads,22,23 viruses,24,25

pigment organelles,26 or of small proteins.27 Potassium channels
resident in the plasma membranes of living cells were shown to
subdiffuse,28 as also observed for the motion of membrane
proteins in the Golgi membrane.29 In simulations, subdiffusion
of lipid and protein molecules in bilayers and monolayers was
observed.30–32 Superdiffusion in living cells is observed in the
case of motor-driven transport of viruses,24 microbeads,23 as well
as magnetic endosomes.33

These experimental observations of anomalous diffusion
have been modelled theoretically in terms of different generalised
stochastic processes.11–14,34–36 The most popular models include
obstructed (corralled) diffusion12 that leads to a turnover between
free diffusion and a thermal plateau value. Transiently, this
process can be fitted with the law (1). Continuous time random
walks3,37 are based on random walk processes, in which the
pausing time between successive jumps is power-law distributed
such that no characteristic time scale exists, leading to anomalous
diffusion of the form (1). In an external potential or in the presence
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of non-trivial boundary conditions, this continuous time random
walk process is conveniently described in terms of the fractional
Fokker–Planck equation.2,38 The resulting motion of subdiffusive
continuous time random walks in intrinsically noisy environments
was recently studied.39 Fractional Brownian motion40 and the closely
related fractional Langevin equation41 are driven by Gaussian noise,
which is long-range correlated in time, again leading to behaviour
(1). In the subdiffusive regime these two correlated Gaussian
processes are intimately connected with a viscoelastic environ-
ment.36,42 Some of their properties are shared with scaled
Brownian motion.43 The law (1) is also effected by the geometrical
constraints imposed on a particle diffusing on a support with a
fractal dimension.44,45 Superdiffusion is modelled in terms of
fractional Brownian motion or Lévy walks,46–49 a class of continuous
time random walks with spatiotemporal coupling.

The above theoretical approaches are based on the assumption
that the environment is homogeneous and isotropic, or that over
the relevant time and length scales of the measurement spatial
variations of the environment in some sense are averaged out. Yet
there are clear indications that in biological cells the environment
effects strong variations of the local diffusion constant. Thus, maps
of the local cytoplasmic diffusion coefficient in bacterial50 and
eukaryotic51 cells indeed demonstrate substantial spatial variations,
as shown in Fig. 1. This map demonstrates that the local variation
of the diffusivity is quite monotonic (see for instance, the path from
the left extremity of the cell towards the nucleus). Such situations
we have in mind in this work. We note that significant changes of
the diffusivity along the trajectory of single tracer particles in cells
may also be affected by transient binding as well as the abundance
of biochemical energy supply and transcription activity in different
compartments of eukaryotic nuclei.52

Descriptions in terms of space-dependent diffusion coefficients
D(x) are in fact widely used in hydrological applications to
mesoscopically describe diffusion in heterogeneous porous
media.53 In particular, inhomogeneous versions of continuous
time random walk models for water permeation in porous
ground layers were developed recently.54

Mathematically, spatially and temporally varying diffusivities
give rise to anomalous sub- and superdiffusion in a range of
stochastic models (compare ref. 43 and 55–58). In particular,
Richardson type diffusion in turbulent media was modelled in

terms of heterogeneous diffusion processes (HDPs).59 Power-law
forms for D(x) were proposed to capture the diffusion of a particle
on a fractal support;60 yet, as shown below, this approach gives
rise to weakly non-ergodic motion and is inherently different from
the ergodic motion on fractals.34,61 The weakly non-ergodic
properties of HDPs were studied recently.43,62

Here we analyse in detail the motion of a diffusing particle
subjected to a space-dependent diffusion coefficient D(x), for the
cases of exponential, power-law, and logarithmic x-dependencies.
We demonstrate that these processes effect anomalous diffusion
of the form (1) of both sub- and superdiffusive forms as well as an
ultraslow, logarithmic time dependence of the MSD. Moreover, we
show that despite their description in terms of a time local
diffusion equation, these processes exhibit a weak ergodicity
breaking in the sense that the time and ensemble averaged MSDs
do not converge, even in the long time limit, as shown below. Our
study reveals that the dynamics of the diffusing particle may
crucially depend on its initial position, and that the time averaged
MSD may exhibit a splitting of the entire population of diffusing
particles into faster and slower fractions.

In the following section we briefly review the properties of weak
ergodicity violation of stochastic processes. Section III introduces the
HDP process in detail. In Sections IV to VI we investigate the power-
law, exponential, and logarithmic dependence of D(x). Finally, in
Section VII we draw our conclusions and present a brief outlook.

II. Weak ergodicity breaking

Commonly we characterise a one-dimensional stochastic process
in terms of the ensemble averaged MSD (1) defined through the
spatial average of x2,

x2ðtÞ
� �

¼
ð
x2Pðx; tÞdx; (2)

over the probability density function (PDF) P(x,t) to find the
particle at position x at time t. An alternative way to calculate the
MSD is via the time average

d2ðDÞ ¼ 1

T � D

ðT�D
0

ðxðtþ DÞ � xðtÞÞ2dt (3)

over the time series x(t), whose length is T. In the time averaged

MSD d2ðDÞ the differences in the particle positions as separated by
the lag time D are evaluated along the trajectory x(t). For a Brownian
process, it can be shown that in the limit of long T both definitions

of the MSD agree, x2ðDÞ
� �

¼ d2ðDÞ,11,35 a manifestation of ergodi-
city in the Boltzmann sense. Even when T remains finite, a similar
equivalence is obtained between the ensemble averaged MSD (1)

and the time averaged MSD d2ðDÞ, once we additionally average
over a sufficiently large number of individual trajectories,11,35

d2ðDÞ
D E

¼ 1

N

XN
i¼1

di 2ðDÞ: (4)

Once the process is non-stationary, the integral kernel
[x(t + D)� x(t)]2 will depend on both D and t, and the equivalence

Fig. 1 Map of the local cytoplasm and nucleoplasm diffusion coefficients in a
cross section of a fibroblast-like Norden Laboratory Feline Kidney cell as measured
by FRAP. The scale bar is 10 mm. Red to blue colours denote high to low values of
the local diffusivities. Figure from ref. 51, courtesy Jörg Langowski.
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between ensemble and time averaged MSDs will break down, a
phenomenon called weak ergodicity breaking.63 In particular,
subdiffusive continuous time random walk processes exhibit a

linear lag time dependence d2ðDÞ
D E

’ D, contrasting the power-

law form (1) of the corresponding ensemble average.11,35,64,65

Under confinement, hx2(t)i converges to a plateau, whose value
is defined in terms of the second moment of the corresponding
Boltzmann distribution, while the time average scales with D as

d2ðDÞ ’ D1�b.11,35,66 Concurrently, subdiffusive continuous time
random walk processes age in the sense that physical observables
described by this process explicitly depend on the time separation
between initial system preparation and start of the measure-
ment.67 The linear scaling of the time averaged MSD is also
observed for correlated68 and ageing69 continuous time random
walks, while their respective ensemble averaged MSDs scale like
eqn (1) or logarithmically in time. Superdiffusive continuous time
random walk processes of the Lévy walk type exhibit an ultraweak
violation of ergodicity in the sense that time and ensemble
averaged MSDs only differ by a constant factor.48,49

Below we show a new variant of weak ergodicity breaking,
namely, that under certain initial conditions the time averaged
MSD may scale like the square root of the lag time,

d2ðDÞ ’ D1=2, while the ensemble average exhibits the ultraslow
scaling hx2(t)i C log2(t).

Do all anomalous diffusion processes give rise to weakly
ergodic behaviour? In fact, there exists ergodic subdiffusive
motion. One example is the motion on a fractal support.61

Another example is that of unbiased fractional Brownian motion
and the motion described by the fractional Langevin equation,
both reaching algebraically the ergodic behaviour.35,70 However,
when a particle described by fractional Brownian or fractional
Langevin equation motion is confined, transiently non-ergodic
behaviour is observed, and the exponential relaxation to the
thermal value of the ensemble averaged MSD is replaced by an
algebraically slow relaxation in the time averaged MSD.71

How can different anomalous stochastic processes be identi-
fied based on recorded single particle tracking data? During the
recent years several complementary methods have been pre-
sented.11,12,34,35,61,64,72–76 The use of multiple, complementary
diagnosis tools simultaneously is of particular importance. For
instance, when we analyse the velocity autocorrelation function,
its shape appears almost identical for fractional Brownian motion
and confined subdiffusive continuous time random walks.35

Among the applied methods are the first passage behaviour,72

the mean maximal excursion method,73 analysis of the fractal
dimension of the trajectory,61,73 ratios of higher order moments,73

the distribution function of amplitude scatter between different
trajectories,64 p-variation methods,74 and others.12,76

III. The HDP model and its analysis

We now turn to the HDP model for anomalous diffusion. We
explicitly define the process and briefly introduce the quantities
used to analyse the special cases for the spatial variation of the

diffusion coefficient D(x) investigated in the following sections,
namely, power-law, exponential, and logarithmic dependencies on x.

We start with the stochastic Langevin equation for the
displacement x(t) of a particle diffusing in the absence of an
external potential in a medium with the position-dependent
diffusivity D(x), namely

dxðtÞ
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
zðtÞ: (5)

Here, z(t) represents a Gaussian white (d-correlated) noise with
unit norm hz(t)z(t0)i = d(t � t0) and zero mean hz(t)i = 0. We
interpret the nonlinear stochastic equation (5) with multiplicative
noise in the Stratonovich sense,77 both in our theoretical analyses
and in the simulations. After averaging over the noise z(t), the
diffusion equation for the PDF P(x,t) has the symmetric form62

@Pðx; tÞ
@t

¼ @

@x

ffiffiffiffiffiffiffiffiffiffiffi
DðxÞ

p @

@x

ffiffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
Pðx; tÞ

� �� �
: (6)

For this Markovian process with multiplicative noise, the
different cases for D(x) we study in the following are depicted in
Fig. 2. Thus we consider the power-law shape

D(x) = D0|x|a, (7)

where the scaling exponent a may assume negative and positive
values, effecting sub- and superdiffusion respectively (see
below). While the form (7) turns out to be convenient for the
analytical calculations, in the simulations we employ regu-
larised forms. Thus, for positive a, the modified form

Dsuper = D0(1 + |x|a) (8)

prevents the particle from getting trapped at the origin (x = 0),
while for negative a the choice

Dsub ¼
aD0

aþ jxja (9)

avoids the divergence of D(x) at the origin. The power-law form
(7) along with the regularisations for sub- and superdiffusion is
shown in the top panel of Fig. 2.

Fig. 2 Functional dependencies on the position variable x of the diffusion
coefficients studied. The exact functional dependencies are represented by the
dashed lines, while the blue curves depict the regularised forms for D(x) that were
used in the simulations (see text).
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In addition, we analyse the behaviour of the HDP for the
exponential dependence

DexpðxÞ ¼
A2

2
e�2ax; (10)

such that on the left semi-axis the diffusivity increases exponentially
with |x|, while on the positive semi-axis D(x) decreases quickly.
Finally, we consider the logarithmic shape

DlogðxÞ ¼
A2

2

1

2
log

x

x

� �2
þ1

� �
; (11)

such that a trapping region of slow diffusion is created at small x
where Dlog(x) assumes a parabolic shape, while at |x| c 1 the
diffusivity grows logarithmically like

DlogðxÞ �
A2

2
log
jxj
x

� �
: (12)

In both cases the constants A and a have the dimensions cm
per sec1/2 and cm�1, respectively, and we set the scaling factor %x = 1
below. We assume that local thermal equilibrium is established on
the length-scales of spatial D(x) variations. In eqn (11) the addition
of unity in the logarithm prevents the divergence to minus infinity
at the origin. The exponential and logarithmic shapes for D(x) are
depicted in the bottom panel of Fig. 2.

Numerically, following the Stratonovich interpretation the
solution of eqn (5) requires an implicit mid-point iterative
scheme for the particle displacement xi. At the simulation step
i + 1 we thus have

xiþ1 � xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D xiþ1 þ xi½ �=2ð Þ

p
yiþ1 � yið Þ; (13)

where the increments of the Wiener process ( yi+1 � yi) represent
a centred, d-correlated Gaussian noise with unit variance. Unit
time intervals Dt separate consecutive iteration steps in the
simulations. From a set of stochastic trajectories x(t) generated
for an initial particle position x(0) = x0, the ensemble and time
averaged MSDs are computed. This numerical scheme has
recently been implemented for HDPs with a power-law form.62

In what follows we evaluate the simulated time series x(t) in
terms of the ensemble averaged MSD (2), revealing different
forms of sub- and superdiffusion. To analyse the ergodic
properties of the HDPs, the time averaged MSD (3) is evaluated
along the trajectories as a function of the lag time D. We also
evaluate the additional average (4) over multiple trajectories.

For finite trajectories the time averaged MSD (3) between
different trajectories will always vary. When the length T of the
time series reaches very large values (ideally, it is taken to
infinity), the ergodicity breaking parameter64,78

EB ¼ lim
T=D!1

dðDÞ2
� �2	 


� dðDÞ2
D E2

dðDÞ2
D E2 (14)

quantifies how reproducible individual realisations of the
process are. At some lag time D, a vanishing ergodicity breaking
parameter is a sufficient condition for the ergodicity of a given
stochastic process. A necessary condition is that the ratio of the

time and ensemble averaged MSDs is unity. As such a ratio
involves only the second moments, an additional ergodicity
breaking parameter can be defined as

EB ¼
d2ðD;TÞ
D E

x2ðDÞh i : (15)

Although this parameter is easier to compute analytically, it
may strongly depend on the initial conditions and is therefore
not a universal feature of a stochastic process.

The scatter distribution for the amplitude d2 of individual

trajectories around the mean hd2i is quantified by the distribution

fðxÞ ¼ f
d2

d2
D E

0
@

1
A (16)

in terms of the dimensionless variable x. It characterises the
randomness of individual time averaged MSDs and yields
additional information on how far the diffusion process deviates
from the ergodic behaviour.

For Brownian motion the finite-time scaling reads64

EBBM ¼
4

3

D
T

(17)

for the ergodicity breaking parameter, and

fBM(x) - d(x � 1) (18)

for the amplitude scatter distribution at T/D - N. Both limiting
behaviours are in excellent agreement with simulations of Brownian
motion (not shown).

IV. Power-law varying diffusivity

Inserting the power-law form (7) of the diffusion coefficient D(x)
into the diffusion equation (6), we recover the PDF62

Pðx; tÞ ¼ jxj
�a=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p exp � jxj2�a

ð2� aÞ2D0t

 !
(19)

for the initial condition P(x,0) = d(x). This equation, in turn,
provides the ensemble averaged MSD

x2ðtÞ
� �

¼ G
6� a

2ð2� aÞ

� �
2� að Þ4=ð2�aÞ

p1=2
D0tð Þ2=ð2�aÞ: (20)

According to eqn (20), for a o 0 the process is subdiffusive,
while superdiffusion emerges for a 4 0. The limiting cases of
Brownian motion with hx2(t)i = 2D0t correspond to a = 0, and
that of ballistic motion to a = 1. The diffusion becomes increas-
ingly fast when a increases towards the limiting value 2. The PDF
(19) corresponds to a compressed Gaussian in the subdiffusive
case (a o 0), i.e., we obtain an exponential distribution in which
the exponent of x is larger than 2. In the superdiffusive case (0 o
a o 2) the PDF (19) becomes a stretched Gaussian. Excellent
agreement is observed between the theoretical PDF (19) and the
numerical solution of the diffusion equation (6), as demon-
strated in Fig. 3.
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Further analysis of the correlation function of consecutive
increments of the HDP process reveals the anti-persistent
nature for the subdiffusion case, while persistent correlations
accompany the superdiffusive case.62 The analytical result for the
velocity–velocity correlation function can be shown to resemble the
correlation function of fractional Brownian motion.62

The trajectory-to-trajectory averaged time averaged MSD (4)
of the HDP process with power-law form (7) of the diffusion
coefficient takes on a linear dependence on the lag time D,62

d2ðDÞ
D E

¼ G
6� a

2ð2� aÞ

� �
ð2� aÞ4=ð2�aÞ

p1=2
�D0

2=ð2�aÞDTa=ð2�aÞ:

(21)

This result can be rewritten in the form

d2ðDÞ
D E

¼ x2ðDÞ
� � D

T

� ��a=ð2�aÞ
; (22)

introducing the strong ageing dependence on the measure-
ment time T: as a function of the lag time the motion slows
down. We can alternatively express this statement in the form

hd2ðDÞi ’ DeffðTÞD, such that this effective diffusion coefficient
has the scaling

DeffðTÞ ’ Ta=ð2�aÞ: (23)

The functional relation (22) between ensemble and time averaged
MSDs is identical to the one observed for subdiffusive continuous
time random walk processes64 as well as continuous time random
walk processes with correlated waiting times.68

The scatter distribution f d2ðDÞ= d2ðDÞ
D E� �

in the sub- and
superdiffusive cases, respectively, follows a Rayleigh-like and a

generalised Gamma distribution.62 Moreover for a fixed length
T of the underlying time series x(t), the scatter distribution f(x)
stays nearly constant for varying lag times D. In other words, the

degree of fluctuations around the mean d2ðDÞ
D E

is approximately

invariant along the HDP trajectories.
For subdiffusion with a o 0 we see from eqn (22) that the

time averaged MSD is much smaller than the ensemble averaged

MSD, d2ðDÞ
D E

� x2ðDÞ
� �

, as long as D { T. In contrast

d2ðDÞ
D E

� x2ðDÞ
� �

for superdiffusion with a 4 1. Because of

the larger amplitude spread quantified by the scatter distribution f
and its strongly asymmetric shape, the EB parameter for the case of
superdiffusion is systematically larger than the one for subdiffu-
sion: EBsuper E 1.4 compared to EBsub E 0.4 for a = 1 and a = �2,
respectively. This observation as well as the D-dependence of the
second EB parameter

EB ¼ D
T

� ��a=ð2�aÞ
(24)

is supported by computer simulations performed according to the
Stratonovich scheme (not shown).

V. Exponentially varying diffusivity

We now turn to the exponentially varying diffusion coefficient
(10). We characterise the stochastic properties of this process
with the same quantities studied above, i.e., the PDF, the time
and ensemble averaged MSDs, the scatter distribution, and the
ergodicity breaking parameters. In addition, we explore the
initial position-induced population splitting into fast and slow
walkers, the diffusion fronts, and the effective exploration
of space.

Exponential distributions of the diffusion coefficient have been
used to describe the motion dynamics of parasitic nematodes,79 or
the irradiation-enhanced diffusion of impurities where the expo-
nential variation is effected by the decay of the radiation when it
penetrates an absorbing medium.80 Finally, an exponential rate of
morphogen degradation was applied in a reaction-subdiffusion
model for cell development.81

A. PDF and ensemble averaged MSD

To obtain the PDF for the HDP with the exponential x-dependence
(10), following the same steps as for the power-law form for D(x)
analysed in ref. 62, we employ the standard transformation of
variables82

yðxÞ ¼
ðx dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dexpðx0Þ
p ¼ expðaxÞ

aA
: (25)

Here y(t) in the Stratonovich sense corresponds to the Wiener
process, whose PDF is the standard Gaussian

pðy; tÞ ¼ 1ffiffiffiffiffiffiffi
2pt
p exp �y

2

2t

� �
: (26)

Together with the normalisation condition
Ð1
�1Pðx; tÞdx ¼ 1, and

the probability conservation law, from eqn (26) the normalised PDF

Fig. 3 The PDF for sub- and superdiffusive HDPs with power-law diffusivity (7),
computed for the parameters a = 0.01 and D0 = 1. We show the analytical result
(19) for different trajectory lengths T (coloured lines) and the numerical solution
of the dynamic equation (6), represented by the dashed lines.
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of the HDP with exponentially varying diffusivity assumes the
unimodal double-exponential form

Pðx; tÞ ¼ 2

A

expðaxÞffiffiffiffiffiffiffi
2pt
p exp � 1

2t

eax � eax0

Aa

� �2 !
; (27)

for the arbitrary initial value x0. In the limit x -�N the PDF of
the particle after time t features the exponential tail,

Pðx; tÞ � 2

A

expðaxÞffiffiffiffiffiffiffi
2pt
p exp �expð2ax0Þ

2tA2a2

� �
� 2

A

expðaxÞffiffiffiffiffiffiffi
2pt
p ; (28)

where in the second approximation we also took the long time
limit. At large values of x the PDF decays sharply in a double-
exponential fashion.

For further analysis we assume that the initial condition has
a sufficiently large modulus on the left semi-axis, that is, |x0| {
(2a)�1. In this case the PDF becomes

Pðx; tÞ ¼ 2

A

expðaxÞffiffiffiffiffiffiffi
2pt
p exp �expð2axÞ

2tA2a2

� �
: (29)

Its maximum is located at

xmax ¼
logða2A2tÞ

2a
; (30)

where the PDF has the value

P xmaxð Þ ¼

ffiffiffiffiffiffiffi
2a2

pe

s
: (31)

Interestingly, the temporal shift of the maximum position is
logarithmic in time, while the value of the PDF at this max-
imum remains constant. We compare the functional forms (29)
of the PDF with simulation results in Fig. 4, observing very
favourable agreement. For the non-zero initial position x0, the
PDF is shown in Fig. 5, also exhibiting good agreement with the
analytical form (27).

For initial conditions in the region of fast diffusivity the
system reaches the universal PDF form relatively fast, while for
slowly-starting particles at x0 c 1 much longer traces are
required for this. Also note that the average position of diffus-
ing particles, hxi =

Ð
x P(x,t) dx follows the maximum of the PDF,

with particles accumulating in the low diffusivity domain. In
general hxi is nonzero thus indicating a drift in the system.
Similar effects of particles drift and infiltration were analyzed
in ref. 93 for two space-separated continuous time random
walks with different values of the waiting time exponent.

The MSD may now be obtained from the PDF (29) simply by
integration. The exact result reads

x2ðtÞ
� �

¼ 1

4a2
A1 þ A2 log½a2A2t� þ log2½a2A2t�
 �

; (32)

where gE 0.57721 is the Euler–Mascheroni constant (or Euler’s
constant), and we also define

A1 = p2/2 + log2[2] + g2 + 2g log[2] E 6.55 (33)

and

A2 = �(2g + 2log 2)E �2.54. (34)

Thus, at long times t c (a2A2)�1 we observe the logarithmic
behaviour

x2ðtÞ
� �

� 1

4a2
log2 a2A2t

� �
: (35)

Formula (32) could also be obtained directly from the stochastic
equation (5) in the following way. With the transformation (25)
and the distribution (26) of the Wiener process, the MSD (32)
results from the averaging

Ð1
�1pðy; tÞx2ðyÞdy. We note that for

the general initial condition x0 we could not find an analytical
result for the MSD. Numerical analysis confirms that the MSD
shows the logarithmic time dependence (32), and in the long
time limit exactly converges to this form.

The logarithmic scaling of the ensemble averaged MSD (32)
resembles that of other ultraslow processes. For instance,
continuous time random walks with a logarithmic distribution
of waiting times exhibit a slow logarithmic growth of the MSD83

similar to ageing continuous time random walks.69 The most
prominent example for logarithmic time evolution is that of

Fig. 4 The universal PDF shape for HDPs with Dexp(x), obtained from simulations
with the initial condition x0 = 0. The results are compared with the theoretical
result (29). The trace lengths T are indicated, and we chose a = 1 and A = 1. The
data were averaged over N = 400 trajectories. After averaging, the PDF for short
traces still contains a small spike at the initial position.

Fig. 5 PDF of the HDP with D = Dexp(x) for various initial positions x0 of the
process. The smooth curves represent the theoretical result (eqn (27)). The
parameters were chosen as T = 105, a = 1, and A = 1, and N = 400 traces were
analysed for each of the shown profiles.
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Sinai diffusion, the motion of a random walker in a random
force field, where the ensemble averaged MSD follows the law
hxSinai

2(t)iB log4t.84,85 Remarkably, our PDF (29) is identical to
that in the Sinai model with ageing in the limit when the height
of the barriers for consecutive jumps of a particle varies linearly
with position. This leads to an exponential dependence of the
effective diffusion coefficient and also to a hx2(t)i B log2t
scaling for the ensemble averaged MSD.86

To further quantify the dynamics of the diffusing particles,
we performed stochastic simulations according to the scheme (13).
From the generated trajectories x(t) of the walker the PDFs were
computed for different starting positions x0 and trace lengths T. For
negative x0 the particles start in the domain of fast diffusion [large
D(x), compare Fig. 2] and rapidly escape the negative semi-axis.
Typically, they become trapped on the positive semi-axis, where
D(x) is smaller. For large positive values of the initial position,
x0 c 1, the PDF is sharply peaked as the particles on average
remain trapped in the region of extremely low (exponentially small)
diffusivity. This peak slowly spreads for longer traces.

When x0 becomes smaller than some ‘critical’ value, the
PDF follows a universal asymmetric shape with an exponential
tail at x o 0. On the positive semi-axis, a sharp double-
exponential drop-off of the PDF is observed, with a T-dependent
location. These trends are in agreement with eqn (28) and (29),
whose functional form is compared with the simulation results
in Fig. 5. For longer T, the maximum of the PDF shifts to
larger x values, in agreement with the theoretical prediction
(30) (compare Fig. 4). The ensemble averaged MSD obtained
from the generated trajectories closely follows the Blog2[t]
asymptote given by eqn (32). At x0 c 1 the ensemble averaged
MSD relaxes to this asymptote at later times because the
particles are initially trapped in the exponentially slow diffusion
region, resulting in an x0

2-plateau in the MSD at short times
(see Fig. 6).

B. Time averaged MSD

To calculate the time averaged MSD we need to obtain the position
auto-correlation function, hx(t1)x(t2)i. Using the two-point probability

Fig. 6 Ensemble averaged MSD hx2(t)i (upper blue curves in each panel), time averaged MSD d2 of individual trajectories (red curves), and mean time averaged MSD

hd2i (lower blue curves in each panel). The starting positions x0 for each panel are indicated. The dashed black curves represent eqn (32) for the ensemble averaged

MSD and eqn (41) and (43) for the two populations, respectively. The d2 are shown with log-sampled points along the D-axis. At x0 = 5 a splitting of d2 into a slow

d2 ’ D1=2
� �

and a fast d2 ’ D
� �

fraction is most pronounced. Parameters: T = 105, a = 1, and A = 1. N = 400 trajectories were simulated to produce the trajectory-

average.

PCCP Paper

Pu
bl

is
he

d 
on

 0
9 

Se
pt

em
be

r 
20

13
. D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
SB

IB
L

IO
T

H
E

K
 P

O
T

SD
A

M
 o

n 
22

/1
1/

20
13

 1
5:

36
:5

8.
 

View Article Online

http://dx.doi.org/10.1039/c3cp53056f


This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 20220--20235 20227

density function for the Wiener process (without loss of gen-
erality, t2 4 t1),

p y2; t2jy1; t1ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt2 � t1Þ

p exp �ðy2 � y1Þ2

2ðt2 � t1Þ

 !
; (36)

one obtains for the positional correlation that

xðtÞxðtþ DÞh i ¼ 1

4a2

ð1
�1

dy1

ð1
�1

dy2

� log½ðaAy1Þ2� log½ðaAy2Þ2�

� pðy2; tþ Djy1; tÞpðy1; tÞ;

(37)

where we again use the trick of choosing a sufficiently negative
initial condition for convenience. After integration we arrive at
(D o t)

xðtÞxðtþ DÞh i ¼ 1

4a2
A1 �

1

2
arctan2

2
ffiffiffiffiffi
Dt
p

t� D

� ��

� 4 arccot
ffiffiffiffiffiffiffiffi
D=t

ph i
arctan

ffiffiffiffiffiffiffiffi
D=t

ph i

þ A2

2
log a2A2t
� �

þ log a2A2ðtþ DÞ
� � �

þ log a2A2t
� �

log a2A2ðtþ DÞ
� ��

:

(38)

For D = 0 this expression coincides with the regular ensemble
averaged MSD (32), as it should. The functional dependence of
the positional correlations is shown in Fig. 7. In the limit Dc t
the position autocorrelation function (38) approaches

xðtÞxðtþ DÞh i �
1

2
A2 þ log a2A2t

 �
A1 þ A2 log a2A2tð Þ þ log2 a2A2tð Þ
� �1=2: (39)

For the time averaged MSD (3) a simple scaling argument
can be established in the limit of short lag times, D{ T. To this
end, we notice that the time averaged MSD

d2ðDÞ
D E

¼ 1

T � D

ðT�D
0

x2ðtþ DÞ
� �

þ x2ðtÞ
� �

� 2 xðtþ DÞxðtÞh i
� �

dt

(40)

contains three correlators in the integrand. Expanding both the
MSD (32) and the two-point correlator (38) in D, in the limit
D { T we find that

d2ðDÞ
D E

� 1

T � D

ðT�D
0

p
a2

ffiffiffiffi
D
t

r
dt � 2p

a2
D
T

� �1=2

: (41)

The square-root scaling hd2ðDÞi ’ D1=2 is very distinct from the
linear scaling observed for subdiffusive continuous time random
walk processes11,35,64 as well as for time correlated continuous
time random walks,68 for ageing continuous time random
walks,69 and for HDPs with power-law distributed diffusivities62

presented in the previous section. For initial conditions x0 that are
far away from zero on the negative semi-axis, i.e., particles starting
in the high-diffusivity region, the approximate scaling (41) agrees
pretty nicely with simulation results, as shown in Fig. 6.

In Fig. 6 we show the entire range of the time averaged MSD
trajectories, up to D = T. Statistically meaningful properties can

however be extracted from the region of
D
T
� 1, neglecting the

last 1–3 decades of the time averaged MSD where statistical
errors and the spread become substantial.

In the opposite case of large positive x0, the integration of
eqn (5) yields (at ax0 { 1)

x(y) E x0 + e�ax0Ay(t), (42)

and after elementary averaging we find

d2ðDÞ
D E

� 2Dexp x0ð ÞD: (43)

Therefore, the time averaged MSD in this limit displays the
linear behaviour that we observe for both Brownian processes
and the above mentioned anomalous diffusion processes. The
effective diffusivity naturally depends on the initial position x0

of the particle. Eqn (41) and (43) reveal the exponents 1
2 and 1 of

the time averaged MSDs for these two extreme choices of x0 that
appear clearly distinguished in Fig. 6. We note already here that
when the initial position x0 is shifted towards more positive
values, individual time averaged trajectories become more
reproducible (Fig. 6), as detailed more quantitatively now.

C. Amplitude scatter and ergodicity breaking parameter

As shown in Fig. 6 and 8, the time averaged MSD exhibits a
pronounced amplitude scatter. This effect becomes stronger when
the initial position is more negative, i.e., when the particle is initially
placed in the high diffusivity region. For increasingly positive values

of the initial position the scatter of individual d2ðDÞ is reduced; in
the panel for x0 = 9 the trajectories are almost perfectly reproducible
for shorter lag times. Generally, ensemble and time averaged MSDs
do not coincide (Fig. 6), a feature that clearly indicates a weak
ergodicity breaking. This is further detailed in terms of the ergodi-
city breaking parameter in Fig. 9. The non-ergodic behaviour is due
to the strong non-uniformity of the environment over the typical
length scales of the diffusive motion. The scaling of the time
averaged MSD follows eqn (41) and (43) for negative and positive
values of the initial positions x0 with a large modulus |x0|, respec-
tively (Fig. 6). For smaller modulus of the initial position x0, the

Fig. 7 The normalised position correlations (37) for exponentially distributed
diffusion coefficients. Parameters: a = 1 and A = 1. The dashed lines indicate
eqn (39).
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amplitude scatter of individual traces d2 becomes reduced at longer
lag times D, i.e., the width of the scatter distribution f for the longer
D decreases, as confirmed in Fig. 8. This phenomenon is due to the
fact that when the initial condition is further left on the axis the
PDFs tend to converge (Fig. 5). Thus at later stages of the trajectories
the particles’ most probable location increasingly localises, thus
effecting smaller scatter between individual amplitudes, i.e., smaller
differences in the particle positions.

When the particle initial position is in a slow-diffusion
region, x0 c 1, the HDP turns nearly ergodic and the amplitude
scatter increases only when D becomes comparable to the
overall length T of the time series. Using expression (42), one
can show that the ergodicity breaking parameter (14) in the
limit D { T vanishes to first order as

EBexp �
4

3

D
T
; (44)

in agreement with computer simulations, which coincides with the
result for regular Brownian motion (eqn (17)). Note, however, that
despite the lack of amplitude scatter and the Brownian-style
behaviour of the ergodicity breaking parameter, this process
remains weakly non-ergodic due to the disparity between ensemble
and time averaged MSDs. Note that for D/T { 1 the HDP
approaches the ergodicity differently depending on the trace
length T. Namely, for nearly ergodic starting positions x0 c 1,
for shorter T the EB value is much closer to the Brownian
asymptote (compare Fig. 9 and Fig. 21 (left) in the Appendix).

D. Population splitting and exploration of space

Computer simulations show that at intermediate x0 a popula-
tion splitting occurs between a slow fraction following the
square-root scaling of the time averaged MSD

d2ðDÞ ’ D1=2 (45)

and an apparently ergodic fraction with the standard linear

scaling d2 � D. This is one of the main features of the d2 traces
for the case of exponential variation of the diffusion coefficient
as a function of the initial position of the particle. Such a two-
phase dynamics is observed due to the fast particles starting at
x0 o 0 and the nearly ergodic, slow walkers starting at x0 c 1.
With the increase of x0 the scaling exponent b for the initial
region D c T of the trajectories,

d2ðD� TÞ ’ DbDb; (46)

changes from b = 1/2 to b = 1, as predicted by eqn (41) and
(43),87 splitting the time averaged MSD traces into two distinct
populations (see Fig. 6 and 10). The diffusion coefficient Db for

the initial part of the d2ðDÞ traces is also split for intermediate

x0 (see Fig. 11). Relatively large d2 amplitudes with a D1/2 scaling
emerge due to fast excursions into the left semi-axis with large

values of Dexp(x). For larger x0 the fraction of d2 � D1 traces
increases. Around x0 = 5 the population splitting of temporal
MSD is most prominent. As shown in Fig. 6, due to the presence

Fig. 9 Ergodicity breaking parameter as a function of the lag time for varying
initial particle positions x0 for HDPs with exponentially distributed diffusion
coefficients. The parameters are the same as in Fig. 6.

Fig. 10 Evolution of the scaling exponent b of the time averaged MSD d2 at
short times for different initial positions x0 for HDPs with exponentially varying
diffusivity. A clear population splitting is observed for x0 = 5, with maxima centred
around the predicted values 1

2 and 2 (blue bars). The parameters are the same as
in Fig. 6 and the bins in the histograms do not overlap.

Fig. 8 Amplitude scatter distribution f of individual time averaged MSDs d2 for
different initial positions x0 for HDPs with exponentially distributed diffusion
coefficients. In each panel, the colours of the stacked histograms correspond to

different lag times D along the d2ðDÞ traces (the bins do not overlap). In the x0 = 5

panel, the d2 traces at short lag times D clearly split into two sub-populations (red
bars), while at large D these two distributions merge (orange bars). The para-
meters are the same as in Fig. 6.
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of small-amplitude d2 traces linear in D, the mean hd2i in the
simulations is slightly lower than the theoretical D1/2-asymptote
(41). Note that smaller diffusivity magnitudes A have a similar
effect as a larger x0, namely, the value of the exponent b tends to
change from 1/2 to 1 as A decreases (not shown).

This dramatic effect of the initial position x0 affects the
spreading of a packet of particles diffusing in such a medium
as well as the propagation of diffusion fronts. Walkers that are
initially distributed normally according to

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pw2
p exp � x2

2w2

� �
(47)

escape the region of fast diffusivity after relatively few simulation
steps, due to the occurrence of relatively long jumps; that is, we
observe a superdiffusive front propagation. Because of this, a
peak in the normalised profiles develops at x 4 0, resembling
the peak in the PDF (Fig. 12). Slow particles starting at x0 c 1
remain trapped in the slow-diffusion region for long times,
corresponding to the nearly unaltered right wing of the distribu-
tion. Later on, the diffusion front exhibits a slow propagation
reminiscent of the slow MSD scaling (32). Clearly, the traces
initiated at different x0 values will have different ergodic

characteristics and the ergodic properties of the packet of
diffusive particles will change upon spatial spreading.

One final dynamic characteristic of HDPs is the exploration
of space. This property is relevant, for instance, for the random
localisation of ‘targets’ by diffusing particles. The first-passage
dynamics to such a target will be strongly affected by the target
position in our strongly non-homogeneous scenario for the
exponentially distributed diffusivities. The results of our simu-
lations show that for large initial particle positions, x0 c 1, the
space exploration is nearly symmetric and the diffusivity is
small (small spread around the initial position x0). For moder-
ate x0 4 0 excursions into the high diffusivity left semi-axis
occur more frequently and earlier during the time evolution, as
underlined in Fig. 13. For x0 = 0 the exploration of both half-
spaces is nearly equally fast. For negative x0 with a large
modulus the particles quickly escape from the region of high
diffusivity and the positive half-space is explored faster. The
boundary of this exploration front in the positive semi-axis
appears to approach a universal curve for x0 t 3.

VI. Logarithmically varying diffusivity

To complete our analysis of diffusion processes with spatially
varying diffusion coefficients, to contrast the previous cases of
power-law and exponential variation, we now turn to the case of
slowly varying diffusivity. More concretely we study the HDP
process with logarithmic x dependence (11) of the diffusion
coefficient and perform a similar analysis as pursued in the
previous two sections.

A. PDF and ensemble averaged MSD

Using the same change of variables for the concrete form (12) of
D(x) we find that (%x = 1)

yðxÞ ¼
ðx
x0

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dlogðx0Þ

p
¼ 2

A
xðtÞF

ffiffiffiffiffiffiffiffiffiffi
logx

p� �
� x0F

ffiffiffiffiffiffiffiffiffiffiffiffi
log x0

p� �h i
;

(48)

Fig. 11 Population splitting of apparent diffusion coefficients for HDPs with
exponentially varying diffusion coefficients, computed for the same parameters
as in Fig. 6.

Fig. 12 Focusing and propagation of a diffusing front for a packet of particles
with initial normal distribution (47). We chose the parameters w = 5 and T = 104,
and the results results are averaged over N = 5000 traces. The diffusion time t is
indicated in the graph.

Fig. 13 Space exploration by particles diffusing in a medium with exponentially
distributed diffusion coefficients, shown for various initial conditions, x0 = 7, 5, 3,
1, and �1. The trajectories are of length T = 104.
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where we introduce Dawson’s integral

FðzÞ ¼ e�z
2

ðz
0

ey
2
dy: (49)

The PDF obtained from the PDF (26) of the Wiener process then
assumes the form

Pðx; t; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ptA2 logx
p

� exp �
2 xF

ffiffiffiffiffiffiffiffiffiffi
log x

p �
� x0F

ffiffiffiffiffiffiffiffiffiffiffiffi
logx0

p �� �2
A2t

 !
:

(50)

We simulated discretised HDPs with logarithmically varying
diffusion coefficients (eqn (11)). This process features a region
of low diffusivity around the origin x = 0. This region tends to
trap particles diffusing in from higher diffusivity regions, and
particles initially positioned close to the origin will escape this
region only very slowly. The PDF thus features two maxima, as
shown in Fig. 14. The first maximum is due to the initial
particle position at x = x0, while the second one at x = 0

represents particles in the low diffusivity zone around the
origin. The initial spreading can be captured by a shifted
Gaussian bell curve with a renormalised diffusivity. For longer
trajectories the particles accumulate progressively at x = 0 and
the PDF develops a tail at x c x0 (compare also Fig. 15).

These features can be quantitatively understood from the
analytical shape (50) of the PDF. With increasing x0, the
gradient of the diffusivity Dlog(x) on the length scale covered
by the diffusing particle decreases and the HDP approaches
regular Brownian motion (see below and Fig. 16). The trapping
effect at x = 0 becomes amplified for larger magnitudes of A (not
shown).

The direct numerical solution of eqn (6) for the logarithmic
form of the diffusion coefficient, eqn (11), was obtained for
moderate lengths T of the time series.88 Eqn (50) describes the
numerical results quite well and also agrees well with the
results of our stochastic simulations, as shown in Fig. 15.

Numerical integration of the analytical expression (50)
shows that the particle’s ensemble averaged MSD follows the
linear Brownian time dependence, with a renormalised diffu-
sivity and the initial value x0

2,

hx2(t)i E x0
2 + 2Dlog(x0)t. (51)

This finding is in good agreement with our stochastic simula-
tions (see the black dashed curves in Fig. 16).

B. Time averaged MSD, amplitude scatter, and ergodicity
breaking

The particle displacement x(y) for the logarithmic dependence
of the diffusion coefficient is a non-trivial function of the
Wiener process y(t), as demonstrated by eqn (48), and it is

hard to get a general expression for d2ðDÞ. In the short time
limit t - 0, however, expanding Dawson’s integral for |x–x0| { 1,
one finds a linear relation of x(y), namely,

x(t) E x0 + log1/2[x0] Ay(t). (52)

This relation resembles eqn (42) for the case of exponentially
varying diffusivity. Then, using eqn (37), the position
correlations become

hx(t)x(t + D)i = hx2(t)i E x0
2 + log[x0] A2D. (53)

In this limit, the time averaged MSD is a linear function of the
lag time D with an effective diffusivity depending on the initial
particle position,

d2ðDÞ
D E

� 2Dlog x0ð ÞD: (54)

This linear scaling is identical with the result (43) for exponen-
tially varying diffusivity. It is also in agreement with computer
simulations for x0 c 1, as shown in Fig. 16. In this regime, the
ergodicity breaking parameter vanishes in the limit D/T - 0.

In contrast to the initial plateau x0
2 of the ensemble aver-

aged MSD (51), the time averaged MSD d2 starts linearly in the
lag time D and in fact stays linear for those particles that do not
become trapped. The particles that eventually do become
trapped in the low-diffusivity zone give rise to a stalling of the

Fig. 14 PDF of the HDP with logarithmically varying diffusion coefficients,
computed for different initial conditions. The parameters are T = 105, A = 1,
and %x = 1.

Fig. 15 PDF of the HDP with logarithmic space dependence of the diffusivity,
obtained from simulations with different T. The dashed black curves represent
eqn (50), and the coloured curves correspond to numerical solution of eqn (6).
The two sets of curves agree well for short T. Parameters: x0 = 30 and A = 1.
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time averaged MSD d2 so that we observe a population splitting
between mobile and immobile fractions with local scaling
exponents b E 1 and b E 0, respectively. Trapping is obviously
strongest for small x0, for which the spread of the temporal
MSD is also the largest. Due to these immobile particles, the

analytical value (54) is higher than the actual value hd2i from
the simulations (Fig. 16). Such particle immobilisation and its

effect on hd2i are similar to those observed for continuous time
random walks with ageing67 (see discussion in Section VII).

For more remote initial particle positions, with x0 c 1, the
‘diffusion trap’ at x = 0 is not strong enough, the fraction of

normal traces d2 � D grows, and hd2i is nicely described
by eqn (54) (compare the dashed black line in Fig. 16).
At smaller A, the trapping propensity of the trap is impeded
(not shown).

The amplitude scatter distribution of individual traces d2 is
broad for small values of the initial position x0, as demon-
strated in Fig. 17. The distribution in fact also exhibits a certain
bi-modality due to the population splitting into mobile and
immobile particles. For longer lag times D the fraction of
trapped particles increases and the peak of the scatter distribu-

tion around d2ðDÞ ¼ 0 becomes more pronounced. The local
scaling exponent b, however, is predominantly unimodal and
centred around unity for larger values of x0 (compare the
histograms in Fig. 18).

Fig. 19 illustrates the non-ergodic nature of HDPs with
logarithmic x-dependence of the diffusivity. We observe that
for small modulus of the initial position x0 a substantial
fraction of particles is trapped at x = 0 and the ergodicity
breaking parameter (14) is relatively large, namely, EB c 1.89

For x0 c 1 the HDP is nearly ergodic, recovering the self-averaging

property of normal diffusion. Note that as the length T of the
time series grows, the HDP approaches the ergodic behaviour at
considerably larger x0 values (compare Fig. 19 as well as Fig. 21
(right) in the Appendix).

We conclude this section with the analysis of the survival
probability S(t), which measures the fraction of particles
remaining mobile as a function of the diffusion time t. This
survival probability is thus a dynamic characteristic for the
immobilisation of particles over time in the trapping potential
effected by the form (11) of the diffusion coefficient. As dis-
cussed above, at small initial distances x0 from the capturing
well, the fraction of stalled walkers grows. For larger x0, a larger

Fig. 16 Ensemble and time averaged MSDs of individual trajectories for the HDP with logarithmically varying diffusion coefficients. The black dashed lines represent
eqn (51) for hx2i and eqn (54) for hd2i. The parameters are the same as in Fig. 14 and N = 400 traces were generated to compute the averages.

Fig. 17 Amplitude scatter of the time averaged MSD d2 for different initial
positions x0 for the HDP with logarithmically varying diffusion coefficients. In this
plot, bins of stacked histograms do not overlap. The fraction of traces with small

magnitudes of d2 grows as x0 decreases. The parameters are the same as in
Fig. 14.
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fraction of particles remains mobile, corresponding to a larger
value of S(t) at the same time t. This behaviour is shown in
Fig. 20. Computer simulations show that, independent of the

starting position, the survival probability decreases for long
times as

SðtÞ � 1ffiffi
t
p ; (55)

as shown by the dashed line in Fig. 20 representing the inverse
square root scaling. For particles starting at larger x0 the onset
of this scaling is naturally delayed to longer times t.

VII. Conclusions and outlook

We analysed a model for HDPs with distance-dependent diffu-
sivities that exhibit sub-, super-, and ultra-slow diffusion as well
as weak ergodicity breaking. Power-law, exponential and loga-
rithmic variations of the diffusion coefficient were examined.
This framework can be applied to other variants of the spatial
dependence D(x) of the diffusion coefficient.90 Our results may
find applications in a wide variety of spatially heterogeneous
media and complement different approaches to anomalous
diffusion such as continuous time random walks or diffusion
in viscoelastic environments. A particular example is the viral
infection dynamics, as a mathematical rationale to discrimi-
nate nearly Brownian and anomalous populations of diffusing
viral particles, which was observed by single particle tracking in
living bacteria.24 For this purpose, an extension of the analy-
tical and computational schemes for HDPs in higher dimen-
sions is currently in progress.91

In particular, for an exponentially varying diffusivity we
showed that the initial condition of the system has a vital
impact on the time dependence of the process. Specifically,
depending on the gradient of the particle diffusivity over the
first steps of a trajectory, the scaling of the temporal MSD may

become anomalous d2ðDÞ ’ D1=2
h i

and thus lead to a popula-

tion splitting compared with the traces with linear scaling

d2ðDÞ ’ D
h i

. The time averaged traces with this anomalous

scaling d2ðDÞ � D1=2 progressively drive the system toward
stronger deviations from ergodicity. We also examined the
asymmetry in the spatial exploration patterns, which will affect
the efficiency of diffusion limited processes in such a medium.

For the case of a logarithmically varying diffusion coefficient
with an associated trap of vanishing diffusivity at the origin, we
also observed weakly non-ergodic behaviour with split populations

with respect to the time averaged MSD d2. Here, stalled traces

with d2ðDÞ � const: are separated from mobile ones. For particles
starting far from the trap at the origin, however, the ensemble
and time averaged characteristics can be captured in terms of a
Brownian-style motion with renormalised diffusivity D(x0).

What about periodically varying diffusivities? In this case
the amplitude of D(x) is either so high that within the experi-
mentally relevant time scales the diffusing particle would move
around a single maximum of D(x), a situation captured quali-
tatively by the power-law form for D(x) considered in Section IV,
or alternatively, the amplitude of D(x) would be sufficiently low
to allow the particle to move along several periods of D(x)

Fig. 20 Survival probability of non-trapped particles for D = Dlog(x). Starting
positions x0 are indicated. The length of the trajectories is T = 105. Walkers with
an amplitude smaller than the cutoff x = 10�5 are considered trapped.

Fig. 18 Apparent scaling exponent of the initial behaviour of the time averaged
MSD d2 revealing a greater spread at small x0, for which the fraction of trapped
trajectories is larger. The parameters are the same as in Fig. 14 and the bins do
not overlap.

Fig. 19 Ergodicity breaking parameter EB for logarithmically varying diffusion
coefficients. It approaches the Brownian behaviour (17) for large values of the
initial position x0. The parameters are the same as in Fig. 14.
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during the experiment. In this case, however, the effective
motion is captured by normal diffusion, with a rescaled diffu-
sion constant.

Let us contrast above observations with the results of the
subdiffusive continuous time random walk model (compare
ref. 35). Due to the underlying long tailed distribution of
trapping times t, c(t) B t�(1+a) with 0 o a o 1, the character-
istic waiting time hti for this system diverges. The ergodicity
breaking then occurs naturally because the lack of a finite
microscopic time scale hti negates the existence of a long
measurement time T limit and thus the system remains non-
stationary. For the HDPs considered here, the violation of
ergodicity is solely due to the spatial variation of the diffusion
process, and the anomalous diffusion is due to the multi-
plicative nature of the noise.

Regarding the population splitting in terms of the time

averaged MSD d2, we note that a similar effect was recently
analysed for continuous time random walks in the presence of
strong ageing.67 In that case the proportion of immobile versus
trapped walkers was shown to grow with the age ta of the
process. Concurrently, the ergodicity breaking parameter for
such strong ageing diverges for ta c T in the form EB B
(ta/T)�(1+a), while for the population of exclusively mobile
particles one finds 0 o EBm r 1 in the same limit.67 For HDPs
with exponential variation of the diffusivity we similarly observe
that the trapped particles contribute large values to the EB
parameter, while slowly but normally diffusing particles far
from the trap remain nearly ergodic.

Experimentally, coexistence of ergodic and non-ergodic diffu-
sion pathways was observed for the motion of ion channels in
plasma membranes and of insulin granules in the cytosol of living
cells.28 Similarly, direct tracking of proteins and Cajal bodies
diffusing in the cell nucleus revealed the existence of two particle
populations with distinct mobilities.52,92 Strongly restricted diffu-
sion in the crowded nucleus environment, with normal and
anomalous components possibly occurring on different length-
and time-scales, may produce such a separation effect.

Appendix A: ergodicity breaking parameter
for shorter trajectories

To illustrate the approach to ergodicity, we present graphs for
the ergodicity breaking parameter for trajectories that are

10 times shorter than those used in the majority of figures in
the main text. These figures are referenced in the main text.
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J. Chem. Phys., 2013, 138, 021101.

44 S. Havlin and D. Ben-Avraham, Adv. Phys., 1987, 36, 695.
45 A. Klemm, R. Metzler and R. Kimmich, Phys. Rev. E, 2002,

65, 021112.
46 M. F. Shlesinger, J. Klafter and Y. M. Wong, J. Stat. Phys.,

1982, 27, 499.
47 M. Niemann, H. Kantz and E. Barkai, Phys. Rev. Lett., 2013,

110, 140603.
48 G. Zumofen and J. Klafter, Phys. Rev. E, 1995, 51, 1818;

G. Zumofen and J. Klafter, Phys. Rev. E, 1993, 47, 851.
49 A. Godec and R. Metzler, Phys. Rev. Lett., 2013, 110, 020603;

A. Godec and R. Metzler, Phys. Rev. E, 2013, 88, 012116;
D. Froemberg and E. Barkai, Phys. Rev. E, 2013,
87, 030104(R); Phys. Rev. E, 2013, 88, 024101.

50 B. P. English, V. Hauryliuk, A. Sanamrad, S. Tankov,
N. H. Dekker and J. Elf, Proc. Natl. Acad. Sci. U. S. A., 2011,
108, E365.
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