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This paper introduces and analyses a general statistical model, termed the RAndom RElaxations
(RARE) model, of random relaxation processes in disordered systems. The model considers excita-
tions that are randomly scattered around a reaction center in a general embedding space. The model’s
input quantities are the spatial scattering statistics of the excitations around the reaction center, and
the chemical reaction rates between the excitations and the reaction center as a function of their mu-
tual distance. The framework of the RARE model is versatile and a detailed stochastic analysis of the
random relaxation processes is established. Analytic results regarding the duration and the range of
the random relaxation processes, as well as the model’s thermodynamic limit, are obtained in closed
form. In particular, the case of power-law inputs, which turn out to yield stretched exponential relax-
ation patterns and asymptotically Paretian relaxation ranges, is addressed in detail. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4770266]

I. INTRODUCTION

Relaxation, the return of a perturbed system into equilib-
rium, is one of the most fundamental processes of physical
systems. The simplest relaxation model is the exponential or
Debye law exp (−t/τ ) incorporating the relaxation time scale
τ . In many cases, however, significant deviations from the ex-
ponential law have been observed. The two most prominent
generalized relaxation laws to accommodate these deviations
are the stretched exponential law exp (−[t/τ ]α) with 0 < α

< 1 and the asymptotic power or Pareto law (sometimes also
called Nutting law) (1 + [t/τ ])(− β) with β > 0. When com-
pared to the simple exponential law, both these generalized
laws correspond to a broad distribution of relaxation times.1

Generalized relaxation patterns are observed on many scales,
ranging from single molecules2–4 over dielectric response5 to
macroscopic viscoelasticity.6–9

Theoretical approaches to describe generalized relax-
ation processes include parallel relaxation channels,10, 11 hier-
archically constrained dynamics giving rise to complex serial
relaxation,12 and defect diffusion models.13 For the stretched
exponential law Klafter and Shlesinger demonstrated the
common universal features behind these approaches.14 There
exist also extensions of stretched exponentials in models
of dynamic relaxation channels.15 Yet another approach to
generalized relaxation dynamics is that of fractional-order,
viscoelastic mechanical bodies;16–20 for their historical devel-
opment see Ref. 21. Similar methods based on generalized
dynamic equations and stochastic approaches based on stable
distributions have been used to describe dielectric relaxation
behavior.22, 23

In this paper, we establish a robust Poissonian approach
to complex relaxation processes based on individual reactions
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between excitations that are randomly scattered around a reac-
tion center in a general embedding space. The resulting model
is termed RARE, the acronym standing for RAndom RElax-
ations. The model’s input quantities are the spatial scattering
statistics of the excitations around the reaction center, and the
chemical reaction rates between the excitations and the reac-
tion center as a function of their mutual distance. The RARE
model is considerably general, it has a versatile framework,
and it allows for a fairly intuitive interpretation of complex
relaxation processes. The RARE model is analyzed in detail,
and analytic results regarding the duration and the range of the
model’s random relaxation processes are obtained in closed
form.

The paper is organized as follows. The RARE model is
introduced, intuitively explained, and rigorously constructed
in Sec. II. The detailed stochastic analysis of the RARE model
and a Monte-Carlo algorithm for the simulation of the model’s
random relaxation processes are presented, respectively, in
Secs. III and IV. The results presented in Sec. III establish a
comprehensive statistical picture of the duration and the range
of the model’s random relaxation processes: marginal distri-
butions, joint distribution, and conditional distributions. The
case of power-law inputs, which are shown to yield stretched
exponential relaxation patterns and asymptotically Paretian
relaxation ranges, is addressed in Sec. V. The thermodynamic
limit of the RARE model is investigated in Sec. VI. Detailed
proofs of the results stated along the paper are given in the
Appendixes.

II. THE RARE MODEL

The RARE model we introduce and explore in this pa-
per is described as follows. A reaction center is placed at an
arbitrary point P of a general metric space M, and a count-
able collection of excitations is scattered randomly across the
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space M. The excitations are labeled with the index i, and the
position of excitation i is the random point Pi. The distance
in the metric space M is measured by a general metric func-
tion d(·, ·), and the distance between the reaction center and
excitation i is Di = d(Pi, P ). Excitation i is equipped with a
random timer Ti, and a reaction between the center and the
excitations occurs upon the first timer-expiration event. The
model is statistically characterized by two random variables,
the reaction time T and the reaction range X, which are de-
fined as follows: The reaction time T is the time elapsing until
the first timer expires

T = min
i

{Ti}. (1)

The reaction range X is the distance between the reaction cen-
ter and the excitation whose timer first expired

X =
∑

i

DiI(T = Ti). (2)

In Eq. (2) and hereinafter, I(E) denotes the indicator function
of an event E (i.e., I(E) = 1 if the event did occur, and I(E)
= 0 if the event did not occur).

Setting the space M in which the reaction takes place to
be a metric space yields great versatility. Indeed, M can be
an Euclidean space of arbitrary dimension, a non-Euclidean
space, such as an elliptic space or a hyperbolic space, a gen-
eral surface or landscape, a fractal object, a network, etc. We
now turn to specify the RARE model assumptions, and there-
after present a preliminary analysis.

A. Model assumptions

To quantify the RARE model the distributions of the ran-
dom points {Pi}, as well as the distribution of the random
timers {Ti}, need to be specified. A highly applicable and
effective statistical methodology to model the random scat-
tering of points, in general, spaces are Poisson processes.24

Poisson processes have a wide span of applications ranging
from insurance and finance25 to queuing systems,26 and from
fractals27 to power-laws.30 We henceforth assume that the ran-
dom points {Pi} form a general Poisson process defined on
the metric space M. Consequently, the “displacement the-
orem” of the theory of Poisson processes (see Sec. 5.5 in
Ref. 24) implies that the distances {Di} form a general Pois-
son process defined on the positive half-line (0, ∞). In what
follows we denote by ρ(x) the average number of excitations,
which are within a distance x of the reaction center,

ρ(x) = E

[∑
i

I(Di ≤ x)

]
, x ≥ 0. (3)

In Eq. (3) and in the following, E denotes the mathematical
expectation. Namely, if ξ is a real-valued random variable
governed by the probability density function fξ (x) (x real),
and φ(x) is a real-valued function defined on the real line,
then E[φ(ξ )] = ∫ ∞

−∞ φ(x)fξ (x)dx. Moreover, in Eq. (3) the
function ρ(x) is monotone increasing and is assumed to start
at zero: ρ(0) = 0. We note that the derivative ρ ′(x) is the
Poissonian intensity of the Poisson process {Di}.24

As noted in the Introduction, the most common statis-
tical law for reactions in the physical sciences is the expo-
nential law. Given the distances {Di} we now assume that the
timers {Ti} are independent and exponentially distributed ran-
dom variables, and that the exponential distribution of timer
Ti is determined by the distance Di. In what follows we denote
by η(x) the exponential rate of the timers as a function of the
distance variable x. Namely, given the distance Di, the timer
Ti is exponentially distributed with tail distribution function

Pr(Ti > t |Di) = exp{−η(Di)t}, t ≥ 0. (4)

In other words, given the distance Di, the timer Ti is exponen-
tially distributed with mean E[Ti |Di] = 1/η(Di). Typically,
the function η(x) is monotone decreasing in the distance vari-
able x.

The RARE model is quantified by the pair of functions
introduced above, the scattering function ρ(x) and the reac-
tivity function η(x). The scattering function ρ(x) quantifies
the underlying spatial scattering of the excitations, and the
reactivity function η(x) quantifies the underlying distance-
dependent reaction rate. The “inputs” of the RARE model are
the scattering function ρ(x) and the reactivity function η(x),
and the “outputs” of the RARE model are the reaction time
T and the reaction range X. In what follows we establish the
statistics of the random outputs based on the given determin-
istic inputs.

The RARE model introduced herein can be viewed as a
descendant of a unified donor-acceptor energy transfer model
presented by Blumen28 and further studied by Burlatsky and
co-workers.53 In its basic form this model considers an N-site
lattice, in which each site is occupied by an excitation with
probability p (independent of all other sites), and the reac-
tions between the excitations and the reaction center are gov-
erned by Eq. (4). Thomas and co-workers29 consider a model
similar to the one developed herein, but with a uniform dis-
tribution of excitations. The RARE model generalizes these
models, as it (i) implements the notion of Poisson processes,
(ii) regards both the reaction time T and the reaction range X,
and (iii) considers a non-uniform distribution of excitations.
On the one hand, the implementation of a Poisson scattering
of excitations in a general metric space allows for a high vari-
ability and versatility on the other hand, this Poisson model-
ing is highly tractable, as it quantifies all the spatial and scat-
tering details (both potentially having infinitely many degrees
of freedom) into one single function, the scattering function
ρ(x). Moreover, in this paper we provide a stochastic analysis
of the reaction pair (T, X), whereas in Ref. 28 only the reaction
time T was analyzed.

B. Preliminary analysis

In Sec. III, we present a detailed stochastic analysis of the
RARE model. To facilitate the stochastic analysis of Sec. III,
we present here a preliminary analysis. In what follows we set
R(x) to denote the aggregate exponential rate corresponding to
excitations, whose distance from the reaction center is greater
than x,

R(x) =
∑

i

η(Di)I(Di > x), x ≥ 0. (5)
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Note that the aggregate rate R(x) is a stochastic process pa-
rameterized by the distance variable x.

Conditioned on the realizations of distances {Di}, the ag-
gregate rate R(x) yields compact formulas for the conditional
distributions of the reaction time T and the reaction range X.
Indeed, the assumptions of the RARE model, combined with
the statistical properties of the minima of independent expo-
nential random variables,31 implies that: (i) The conditional
distribution of the reaction time T is given by the tail distribu-
tion function

Pr(T > t |{Di}) = exp{−tR(0)}, t ≥ 0. (6)

(ii) The conditional distribution of the reaction range X is
given by the tail distribution function

Pr(X > x|{Di}) = R(x)

R(0)
, x ≥ 0. (7)

(iii) The joint conditional distribution of the reaction pair (T,
X) is given by the joint tail distribution function

Pr(T > t,X > x|{Di}) = exp{−tR(0)}R(x)

R(0)
, t, x ≥ 0.

(8)

Note that given the realizations of the distances {Di} the
reaction time T and the reaction range X turn out to be inde-
pendent random variables. Indeed, the joint tail distribution
function of the reaction pair (T, X) equals the product of the
tail distribution functions of the reaction time T and the reac-
tion range X,

Pr(T > t,X > x|{Di})

= Pr(T > t |{Di}) Pr(X > x|{Di}), t, x ≥ 0. (9)

III. STOCHASTIC ANALYSIS

The preliminary analysis presented in Sec. II provides us
with the conditional distribution of the reaction pair (T, X),
conditioned on the realizations of distances {Di}. A stochastic
analysis detailed in Appendixes A–D shifts us from the afore-
mentioned conditional distribution to the (unconditional) dis-
tribution of the reaction pair (T, X). In this section, we present
the key results of this stochastic analysis.

A. Reaction time

The tail distribution function of the reaction time T is
given by

Pr(T > t) = exp

(
−

∫ ∞

0
[1 − exp{−η(x)t}]ρ(dx)

)
,

(10)

for t ≥ 0. In turn, taking the limit t → ∞ in Eq. (10) yields
the probability that a reaction never takes place

Pr(T = ∞) = exp{−ρ(∞)}. (11)

Equation (11) implies that a reaction takes place with cer-
tainty, i.e., Pr(T < ∞) = 1, if and only if the scattering func-
tion ρ(x) diverges, which in turn occurs if and only if there
are infinitely many excitations. Moreover, differentiating

Eq. (10) with respect to the time variable t yields the prob-
ability density function of the reaction time T,

fT (t) = Pr(T > t)
∫ ∞

0
exp{−η(x)t}η(x)ρ(dx), t > 0.

(12)

It is straightforward to deduce from Eq. (12) that the proba-
bility density function fT(t) is monotone decreasing from the
level fT (0) = ∫ ∞

0 η(x)ρ(dx) (which can be either finite or in-
finite) to the level fT(∞) = 0.

B. Temporal hazard rate

The hazard rate of reaction time T is defined in terms of

hT (t) = lim
δ→0

1

δ
Pr(T ≤ t + δ|T > t) = fT (t)

Pr(T > t)
(13)

with t > 0. Namely, the hazard rate hT(t) is the realiza-
tion rate of the random variable T at time t, provided that
it has not already occurred up to time t. The hazard rate
is most commonly used in applied probability and in reli-
ability theory.32–34 Substituting the tail distribution function
Pr(T > t) of Eq. (10) and the probability density function fT(t)
of Eq. (12) into Eq. (13) yields the hazard rate of the reaction
time T,

hT (τ ) =
∫ ∞

0
exp{−η(x)t}η(x)ρ(dx), t > 0. (14)

It is evident from Eq. (14) that the hazard rate hT(t), anal-
ogous to the probability density function fT(t), is monotone
decreasing from the level hT (0) = ∫ ∞

0 η(x)ρ(dx) (which can
be either finite or infinite) to the level hT(∞) = 0. Note that
a monotone decreasing hazard rate hT(t) implies that the real-
ization rate of the reaction time T diminishes in the course
of time. Namely, the longer we are waiting for the reac-
tion time T to realize, the lower the likelihood that it occurs
immediately.

C. Reaction range

The probability density function of the reaction range X
is given by

fX(x) = (1 − E[exp{−η(x)T }])ρ ′(x), x > 0. (15)

Equation (15) implies that if the Poissonian intensity ρ ′(x) is a
monotone decreasing function, then so is the probability den-
sity function fX(x). In general, however, the probability den-
sity function fX(x) itself is not necessarily monotone decreas-
ing. Eq. (15) further implies that the tail distribution function
of the reaction range X is given by

Pr(X > x) =
∫ ∞

x

(1 − E[exp{−η(y)T }])ρ(dy), x ≥ 0.

(16)

Note that both the probability density function fX(x) and the
tail distribution function Pr(X > x) of the reaction range X
involve the Laplace transform of the reaction time T.
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D. Reaction pair

The joint probability density function of the reaction pair
(T, X) is given by

f(T ,X)(t, x) = Pr(T > t) exp{−tη(x)}η(x)ρ ′(x), t, x > 0.

(17)

Comparing the joint probability density function f(T, X)(t, x)
from Eq. (17) with the product fT(t)fX(x) of the probability
density function fT(t) from Eq. (12) and the probability den-
sity function fX(x) from Eq. (15), it is straightforward to see
that

f(T ,X)(t, x) �= fT (t)fX(x), t, x > 0. (18)

Relation (18) implies that the reaction time T and the reaction
range X are dependent random variables. This dependence is
diametric to the conditional independence of the reaction time
T and the reaction range X, conditioned on the realizations
of distances {Di}, which is manifested by Eq. (9). Thus the
random Poissonian structure of the distances {Di} induces a
statistical dependence between the reaction time T and the re-
action range X.

E. Conditional distributions

The conditional distribution of the reaction time T, con-
ditioned on the realization of the reaction range X, is given by
the tail distribution function

Pr(T > t |X = x) =
∫ ∞
t

Pr(T > s) exp{−η(x)s}ds∫ ∞
0 Pr(T > s) exp{−η(x)s}ds

, (19)

for t > 0. Also, the conditional distribution of the reaction
range X, conditioned to the realization of the reaction time T,
is given by the tail distribution function

Pr(X > x|T = t) =
∫ ∞
x

exp{−η(y)t}η(y)ρ(dy)∫ ∞
0 exp{−η(y)t}η(y)ρ(dy)

, (20)

for x > 0.
As noted at the end of Sec. II A, the RARE model can be

viewed as a descendant of Blumen’s unified donor-acceptor
energy transfer model28 and the donor-acceptor recombina-
tion model of Thomas et al.29 In Refs. 28 and 29, the re-
action time T was analyzed, and a counterpart of Eq. (10)
was established (in the context of Bernoulli scattering of ex-
citations over an N-site lattice). The analysis carried out in
this section goes significantly beyond those of Refs. 28 and
29 as it addresses the marginal, joint, and conditional distri-
butions of the reaction pair (T, X). Moreover, all results es-
tablished in this section are valid in the context of general
Poisson scattering of excitations over general metric spaces, a
setting which allows for high variability and versatility while
yielding closed-form analytic expressions.

IV. MONTE-CARLO SIMULATION

The stochastic analysis presented in Sec. III facilitates
the construction of a numerical Monte-Carlo algorithm for the

simulation of the reaction pair (T, X). The steps of the Monte-
Carlo algorithm are as follows:

(1) Identify the inputs of the RARE model: the scattering
function ρ(x) and the reactivity function η(x).

(2) Using the scattering function ρ(x) and the reactivity
function η(x), numerically compute the integral

I (t, x) =
∫ x

0
exp{−η(y)t}η(y)ρ(dy), t, x ≥ 0.

(21)

(3) Using the integral I(t, x), numerically compute the cu-
mulative distribution function of the reaction time

F (t) = 1 − exp

(
−

∫ t

0
I (τ,∞)dτ

)
, t ≥ 0, (22)

and then numerically compute its inverse function
F−1(u) (0 ≤ u ≤ 1).

(4) Using the integral I(t, x), numerically compute the con-
ditional cumulative distribution function of the reaction
range

G(x; t) = I (t, x)

I (t,∞)
, x ≥ 0, (23)

and then numerically compute its inverse function
G−1(u; t) (0 ≤ u ≤ 1).

(5) Generate a pair (U1, U2) of independent random vari-
ables, which are uniformly distributed over the unit in-
terval, and generate the reaction pair (T, X) via

T = F−1(U1) and X = G−1(U2; F−1(U1)). (24)

The third step of the Monte-Carlo algorithm is based on
Eq. (10), the fourth step is based on Eq. (20), and in the fifth
step we applied the following basic simulation principle:35

If 
(x) (x ≥ 0) is the cumulative distribution function of a
positive-valued random variable ξ , and if U is a random vari-
able which is uniformly distributed over the unit interval (and
independent of ξ ), then the random variable 
−1(U) is equal
in law to the random variable ξ .

The Monte-Carlo algorithm can be further used to sim-
ulate random walks whose dynamics are governed by the
RARE model. To that end assume that the scattering of the
excitations is spatially homogeneous. This homogeneity im-
plies that the Poissonian structure of the distances {Di} is
invariant with respect to the position P of the reaction cen-
ter. Now consider the following reaction-based propagation
scheme: if the reaction center reacted with excitation i, then
the center jumps from its initial position P to the position of
excitation i, Pi, and thereafter the process starts anew. This
propagation scheme generates a renewal continuous time ran-
dom walk (CTRW),36–38 whose law of motion is as follows:

(1) Initiate from an arbitrary position P0 at time t0, and sim-
ulate a reaction pair (T, X).

(2) At time t1 = t0 + T move to a point P1 which is uni-
formly distributed on a sphere with radius X centered at
the point P0.

(3) Set t0 := t1 and P0 := P1, and go back to step (1).
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The reaction time T is the CTRW’s generic waiting time,
and the reaction range X is CTRW’s generic jump length.
We emphasize that since the reaction time T and the re-
action range X are dependent random variables, the RARE
model induces CTRWs with coupled waiting times and jump
lengths.39–41

V. POWER-LAW INPUTS

To illustrate the results established so far we consider
now the example of the RARE model with power-law inputs.
Specifically, we consider both the scattering function and the
reactivity function to be power-laws

ρ(x) = axα and η(x) = bx−β, x > 0 (25)

whose coefficients a and b as well as the exponents α and β

are all positive parameters.
Power-law inputs occur naturally in many cases. If we

scatter the excitations uniformly across d-dimensional Eu-
clidean space using a spatially homogeneous Poisson pro-
cess, then the scattering function ρ(x) will be a power-law
with exponent α = d. Indeed, if the excitations are scattered
uniformly across the d-dimensional Euclidean space, then the
mean number of excitations present in a ball of radius x, quan-
tified by the scattering function ρ(x), is proportional to xd.
Moreover, in many fractal settings, which are abundant in
the physical sciences, the scattering of the chemical agents
is uniform across some fractal unbounded subset of the d-
dimensional Euclidean space. In such fractal settings the scat-
tering function ρ(x) will be a power-law with exponent α that
equals the fractal dimension of the underlying fractal subset.42

On the other hand, power-law decays of physical and chem-
ical interactions as a function of the distance between the
interacting elements are prevalent in the physical sciences,
the best known examples being Newton’s law of gravitation,
Coulomb’s law, or the van der Waals law.

We turn now to describe the statistical behavior of the
RARE model with power-law inputs. For the RARE model
to be well defined, the exponent α of the scattering function
must be smaller than the exponent β of the reactivity function,
and thus we assume that α < β.

A. Reaction time

From Eq. (10), we obtain that the tail distribution func-
tion of the reaction time T is given by

Pr(T > t) = exp(−c1t
α/β), t ≥ 0, (26)

where the precise value of the coefficient c1 is given by c1

= �(1 − α/β)abα/β . The tail distribution function of Eq. (26)
characterizes a stretched exponential law.43–45 The hazard rate
of the reaction time T is a power-law with a negative exponent
equal to −(1 − α/β), and the moments of the reaction time T
are given by

E[T m] = �(1 + mβ/α)c−mβ/α

1 , m > 0. (27)

We emphasize that although the reaction time T has conver-
gent moments of all orders, its moment generating function

is divergent: E[exp(θT )] = ∞ for all θ > 0. This statisti-
cal behavior of the stretched exponential distribution, conver-
gent moments and divergent moment generating function, im-
plies that the reaction time T displays a form of randomness
which Mandelbrot categorized as “borderline randomness.”46

Another well-known probability distribution displaying such
borderline randomness is the log-normal distribution.47

B. Reaction range

Evaluating Eq. (16), while applying a moment-expansion
of the Laplace transform of the reaction time T, we obtain that
the tail distribution function of the reaction range X is given
by the power-expansion

Pr(X > x) = aα

∞∑
m=1

(−1)m+1 bmE[T m]

m!(mβ − α)

1

xmβ−α
(28)

with x > 0. In turn, Eq. (28) implies that the asymptotic be-
havior of the tail distribution function of the reaction range X
is given by

Pr(X > x) ≈ c2

xβ−α
, x → ∞, (29)

where the coefficient c2 is given by c2 = [�(1 +
β/α)a1 − β/α]/[�(1 − α/β)(β − α)]. The tail asymptotics of
Eq. (29) characterize an asymptotically Paretian distribution
with exponent β − α.30, 48–50 The moments of the reaction
range X are convergent, i.e., E[Xm] < ∞, if and only if the
exponent m is in the range 0 < m < β − α. In particular, the
reaction range X has a convergent mean if and only if 1 + α

< β. This statistical behavior of asymptotically Paretian dis-
tributions, convergent moments only up to a given order, im-
plies that the reaction range X displays a form of randomness
which Mandelbrot categorized as “wild randomness.”46, 51 For
a recent treatment of the “categorization of randomness” see
Ref. 52.

C. Conditional distribution

From Eq. (20), we obtain that the conditional distribution
of the reaction range X, conditioned on the realization of the
reaction time T, is given by the tail distribution function

Pr(X > x|T = t) =
∫ tbx−β

0

exp(−u)u−α/β

�(1 − α/β)
du, x > 0.

(30)

Note that the integrand on the right-hand side of Eq. (30)
is the probability density function of a Gamma distribution
with exponent 1 − α/β. Thus, if we set ξ to be a Gamma-
distributed random variable with exponent 1 − α/β, we ob-
tain that Pr(X > x|T = t) = Pr(ξ ≤ tbx−β ). Equation (30)
further implies that the asymptotic behavior of the conditional
tail distribution function of the reaction range X is given by

Pr(X > x|T = t) ≈ c3
t1−α/β

xβ−α
, x → ∞, (31)

where c3 = b1 − α/β /�(2 − α/β). As in the case of Eq. (29),
the tail asymptotics of Eq. (31) characterize an asymptotically
Paretian distribution with exponent β − α. Consequently, also
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with any given realization of the reaction time T, the reaction
range X displays wild randomness.

VI. THERMODYNAMIC LIMIT

In this section, we explore the statistical behavior of the
RARE model as the concentration of the excitations is in-
creased to infinity. Specifically, we increase by n-fold the con-
centration of the excitations, and examine the limiting statisti-
cal behavior of the reaction time and the reaction range in the
limit n → ∞.

An n-fold increase of the concentration of the excitations
results in replacing the “original” scattering function ρ(x) by
the “concentrated” scattering function ρn(x) = nρ(x). Note
that an n-fold increase of the concentration of the excitations
does not affect the reactivity function η(x). In this section, we
denote by (Tn, Xn) the reaction pair corresponding to a RARE
model with scattering function ρn(x) and reactivity function
η(x). Moreover, we set

λ =
∫ ∞

0
η(x)ρ(dx) (32)

and assume that the integral on the right-hand side of Eq. (32)
is convergent.

We introduce the scaled reaction time Sn = nTn. A
stochastic limit analysis detailed in Appendix E asserts that
the joint probability density function of the reaction pair (Sn,
Xn) attains the limit

lim
n→∞ f(Sn,Xn)(s, x) = exp(−λs)η(x)ρ ′(x), s, x > 0. (33)

Namely, the reaction pair (Sn, Xn) converges in law (as n
→ ∞) to a limiting random vector (S∞, X∞), whose distri-
bution is governed by the joint probability density function

f(S∞,X∞)(s, x) = λ exp(−λs)
1

λ
η(x)ρ ′(x), s, x > 0. (34)

Equation (34) implies the following:

(1) The scaled reaction time Sn converges in law to a
stochastic limit S∞, which is exponentially distributed
with rate λ and density function

fS∞ (s) = λ exp(−λs), s > 0. (35)

(2) The reaction range Xn converges in law to a stochastic
limit X∞ whose distribution is governed by the proba-
bility density function

fX∞ (x) = 1

λ
η(x)ρ ′(x), x > 0. (36)

(3) The joint probability density function of the random vec-
tor (S∞, X∞) equals the product of its corresponding
marginal probability density functions

f(S∞,X∞)(s, x) = fS∞ (s)fX∞(x), s, x > 0, (37)

and hence the stochastic limits S∞ and X∞ are indepen-
dent random variables.

The stochastic limit result established in this section gets
us “all around the circle.” Indeed, in the preliminary analysis

of Sec. II we obtained that the conditional distribution of the
reaction time T, conditioned on the realizations of distances
{Di}, is exponential and independent of the reaction range X.
However, in Sec. III we found that the distribution of the reac-
tion time T is general and is tightly coupled to the distribution
of the reaction range X. Thus, the random Poissonian struc-
ture of the distances {Di} shifts the distribution of the reaction
time T from exponential to general, and induces a dependence
between the reaction time T and the reaction range X. In this
section, we established that in the infinite concentration limit
n → ∞ the original statistical structure is recovered: (i) the
exponential distribution is restored, as the stochastic limit S∞
of the scaled reaction time is exponentially distributed; and
(ii) the independence is restored, as the stochastic limit S∞
of the scaled reaction time and the stochastic limit X∞ of the
reaction range are independent random variables.

To illustrate the stochastic limit result established in
this section consider the example of power law scatter-
ing functions studied in Sec. V and exponential reactivity
functions

ρ(x) = axα and η(x) = b exp(−βx), x > 0, (38)

where the coefficients a and b as well as the parameters α and
β, are all positive. In this example, the stochastic limit S∞ is
exponentially distributed with rate

λ = ab
�(1 + α)

βα
, (39)

and the stochastic limit X∞ is Gamma distributed with prob-
ability density function

fX∞ (x) = βα

�(α)
exp(−βx)xα−1, x > 0. (40)

Note that the Gamma probability density function of Eq. (40)
is (i) unbounded and monotone decreasing in the exponent
range α < 1; (ii) bounded and monotone decreasing at the
exponent value α = 1, in which case X∞ is exponentially
distributed with mean 1/β; (iii) bounded and unimodal, with
mode x∗ = (α − 1)/β, in the exponent range α > 1.

VII. CONCLUSION

In this paper, we presented a general spatio-chemical
stochastic model for generalized RARE relaxation in complex
disordered systems. The RARE model considers a collection
of excitations which are randomly scattered around a reaction
center in some general embedding metric space. The RARE
model has two input quantities: (i) the scattering function ρ(x)
quantifying the scattering intensity of the excitations around
the reaction center as a function of the distance (x > 0) from
the center; (ii) the reactivity function η(x) quantifying the re-
action rate between the excitations and the reaction center as
a function of the distance (x > 0) from the center. The scatter-
ing and reactivity functions provide a straightforward intuitive
description, as well as a precise mathematical formulation, of
general relaxation processes in complex disordered systems.

The RARE model has two random outputs: (i) the re-
action time T of its random relaxation process; (ii) the re-
action range X of its random relaxation process. A detailed
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stochastic analysis of the reaction pair (T, X) was carried
out, yielding closed form results regarding the statistics of
this pair: marginal distributions, joint distribution, and con-
ditional distributions. The results established further led to
a Monte-Carlo algorithm for the simulation of the model’s
random relaxation process, and to the thermodynamic of the
RARE model. In addition, we investigated in detail the case
of power-law inputs, which were shown to yield stretched ex-
ponential relaxation patterns and asymptotically Paretian re-
laxation ranges.

The RARE model is a compact and transparent stochas-
tic approach to non-exponential relaxation processes. On the
one hand the model’s inputs are both intuitively clear and
mathematically precise and are directly related to the phys-
ical properties of the system considered. On the other hand
the model is robust and versatile, as its general mathemati-
cal formulation accommodates diverse physical settings. We
therefore expect the RARE model to be useful to a wide range
of applications in the physical sciences and beyond.
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APPENDIX A: THE DISTRIBUTION OF
THE REACTION TIME T

Equation (1) implies that the tail distribution function of
the reaction time T is given by

Pr(T > t) = Pr

(
min

i
{Ti} > t

)
= Pr

(⋂
i

{Ti > t}
)

.

(A1)

After conditioning with respect to the distances {Di}, this is
equal to

Pr(T > t) = E

[
Pr

(⋂
i

{Ti > t}|{Di}
)]

. (A2)

Using the assumptions of the RARE model and Eq. (4), we
have

Pr(T > t) = E

[∏
i

Pr(Ti > t |Di)

]

= E

[∏
i

exp{−η(Di)t}
]

. (A3)

With Campbell’s theorem of the theory of Poisson processes
(see Sec. 3.2 in Ref. 24),

Pr(T > t) = exp

(
−

∫ ∞

0
[1 − exp{−η(x)t}]ρ(dx)

)
.

(A4)
Equations (A1) to (A4) prove Eq. (10).

APPENDIX B: THE DISTRIBUTION OF
THE REACTION PAIR (T, X)

In what follows we set

E(t, θ, x) = E[exp{−tR(0) − θR(x)}], t, θ, x ≥ 0.

(B1)
Equation (5) implies that

tR(0) + θR(x) =
∑

i

(tη(Di)I(Di ≤ x)

+ (t + θ )η(Di)I(Di > x)), (B2)

and hence Eq. (B1) further implies that

E(t, θ, x) = E
[ ∏

i

exp(−tη(Di)I(Di ≤ x)

− (t + θ )η(Di)I(Di > x))
]
. (B3)

Consequently, Campbell’s theorem of the theory of Poisson
processes (see Sec. 3.2 in Ref. 24) implies that

E(t, θ, x) = exp{−�(t, θ, x)}, (B4)

where

�(t, θ, x) =
∫ ∞

0
[1 − exp{−tη(s)I(s ≤ x)

− (t + θ )η(s)I(s > x)}]ρ(ds)

=
∫ x

0
[1 − exp{−tη(s)}]ρ(ds)

+
∫ ∞

x

[1 − exp{−(t + θ )η(s)}]ρ(ds). (B5)

Applying conditioning with respect to the distances {Di}
and using Eq. (8), we obtain that the joint tail distribution
function of the reaction pair (T, X) is given by

Pr(T > t,X > x) = E[Pr(T > t,X > x|{Di})]

= E
[

exp{−tR(0)}R(x)

R(0)

]
, t, x ≥ 0.

(B6)

Differentiating this expression with respect to the variable t
yields

∂

∂t
Pr(T > t,X > x) = −E[exp{−tR(0)}R(x)]. (B7)

Conversely, differentiating Eq. (B1) with respect to the vari-
able θ yields

∂

∂θ
E(t, θ, x) = −E[exp{−tR(0) − θR(x)}R(x)]. (B8)

Combination of Eqs. (B7) and (B8) yields

∂

∂t
Pr(T > t,X > x) = ∂

∂θ
E(t, θ, x)

∣∣∣∣
θ=0

. (B9)

Now, Eq. (B4) implies that

∂

∂θ
E(t, θ, x)

∣∣∣∣
θ=0

= − exp{−�(t, 0, x)} ∂

∂θ
�(t, θ, x)

∣∣∣∣
θ=0

,

(B10)
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and Eq. (B5) further implies that

�(t, 0, x) =
∫ ∞

0
[1 − exp{−tη(s)}]ρ(ds) (B11)

and

∂

∂θ
�(t, θ, x)

∣∣∣∣
θ=0

=
∫ ∞

x

exp{−tη(s)}η(s)ρ(ds). (B12)

Thus, combining Eqs. (B9)–(B12), we conclude that

− ∂

∂t
Pr(T > t,X > x)

= exp

(
−

∫ ∞

0
[1 − exp{−tη(s)}]ρ(ds)

)

×
∫ ∞

x

exp{−tη(s)}η(s)ρ(ds). (B13)

Finally, differentiating this last expression with respect to the
variable x and using Eq. (10), we arrive at the desired result,

∂2

∂t∂x
Pr(T > t,X > x) = Pr(T > t) exp{−tη(x)}η(x)ρ ′(x),

(B14)
such that Eq. (B14) proves Eq. (17).

APPENDIX C: THE MARGINAL DISTRIBUTIONS
OF THE REACTION PAIR (T, X)

The probability density function of the reaction time T is
attained by integrating the joint probability density function
of the random pair (T, X) over the distance variable x,

fT (t) =
∫ ∞

0
f(T ,X)(t, x)dx. (C1)

With Eq. (17),

fT (t) = Pr(T > t)
∫ ∞

0
exp{−tη(x)}η(x)ρ(dx), t > 0. (C2)

Equations (C1) and (C2) prove Eq. (12). Note that the Laplace
transform of the reaction time T is given by

E[exp(−θT )] =
∫ ∞

0
exp(−θt)fT (t)dt. (C3)

Integration by parts yields

E[exp(−θT )] = 1 − θ

∫ ∞

0
exp(−θt) Pr(T > t)dt, (C4)

where θ ≥ 0.
The probability density function of the reaction range X

is attained by integrating the joint probability density function
of the random pair (T, X) over the time variable t,

fX(x) =
∫ ∞

0
f(T ,X)(t, x)dt (C5)

and, using Eq. (17),

fX(x) =
(∫ ∞

0
Pr(T > t) exp{−tη(x)}dt

)
η(x)ρ ′(x).

(C6)

With Eqs. (C3) and (C4) and θ = η(x), we find

fX(x) = (1 − E[exp{−η(x)T }])ρ ′(x), x > 0. (C7)

Equations (C5)–(C7) prove Eq. (15).

APPENDIX D: THE CONDITIONAL DISTRIBUTIONS
OF THE REACTION PAIR (T, X)

The conditional probability density function of the reac-
tion time T, conditioned to the realization of the reaction range
X, is given by

fT |X=x(t) = f(T ,X)(t, x)

fX(x)
. (D1)

With Eqs. (15) and (17),

fT |X=x(t) = Pr(T > t) exp{−tη(x)}η(x)ρ ′(x)( ∫ ∞
0 Pr(T > τ ) exp{−τη(x)}dτ

)
η(x)ρ ′(x)

= Pr(T > t) exp{−tη(x)}∫ ∞
0 Pr(T > τ ) exp{−τη(x)}dτ

. (D2)

In turn, Eqs. (D1) and (D2) imply Eq. (19).
The conditional probability density function of the reac-

tion range X, conditioned to the realization of the reaction
time T, is given by

fX|T =t (x) = f(T ,X)(t, x)

fT (t)
. (D3)

Using Eqs. (12) and (17), we see that

fX|T =t (x) = Pr(T > t) exp{−tη(x)}η(x)ρ ′(x)

Pr(T > t)
∫ ∞

0 exp{−η(x)t}η(x)ρ(dx)

= exp{−tη(x)}η(x)ρ ′(x)∫ ∞
0 exp{−η(x)t}η(x)ρ(dx)

. (D4)

In turn, Eqs. (D3) and (D4) imply Eq. (20).

APPENDIX E: THE LIMIT DISTRIBUTION
OF THE REACTION PAIR (Sn, Xn)

The scaling Sn = nTn implies the following connection
between the joint cumulative distribution function of the re-
action pair (Sn, Xn) and the joint cumulative distribution func-
tion of the reaction pair (Tn, Xn),

Pr(Sn ≤ s,Xn ≤ x) = Pr
(
Tn ≤ s

n
,Xn ≤ x

)
, s, x > 0.

(E1)

Consequently, differentiating this expression with respect to
the variables s and x yields the following connection between
the joint probability density function of the reaction pair (Sn,
Xn) and the joint probability density function of the reaction
pair (Tn, Xn),

f(Sn,Xn)(s, x) = f(Tn,Xn)

( s

n
, x

) 1

n
. (E2)

Using Eq. (17) with the concentrated scattering function
ρn(x), we arrive at

f(Sn,Xn)(s, x) = Pr
(
Tn >

s

n

)
exp

(
− s

n
η(x)

) η(x)ρ ′
n(x)

n
.

(E3)
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With the definition of the concentrated scattering function
ρn(x), this implies

f(Sn,Xn)(s, x) = Pr
(
Tn >

s

n

)
exp

(
− s

n
η(x)

)
η(x)ρ ′(x).

(E4)
Equations (E2)–(E4) lead us to conclude that

lim
n→∞ f(Sn,Xn)(s, x) =

[
lim

n→∞ Pr
(
Tn >

s

n

)]
η(x)ρ ′(x) (E5)

with s, x > 0. Now, using Eq. (10) with the concentrated scat-
tering function ρn(x) we find

lim
n→∞ Pr

(
Tn >

s

n

)

= lim
n→∞ exp

(
−

∫ ∞

0

[
1 − exp

(
−η(x)

s

n

)]
ρn(dx)

)
. (E6)

With the definition of the concentrated scattering function
ρn(x) this leads to

lim
n→∞ Pr

(
Tn >

s

n

)

= exp

(
−

∫ ∞

0

[
lim

n→∞
1 − exp (−η(x)t/n)

1/n

]
ρ(dx)

)
. (E7)

Finally, with de l’Hospital’s rule and Eq. (32) we obtain

lim
n→∞ Pr

(
Tn >

s

n

)

= exp

(
−

∫ ∞

0
[η(x)t]ρ(dx)

)
= exp(−λt). (E8)

Combining together the limits of Eqs. (E4) and (E8) proves
Eq. (33).
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