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Abstract – We study the survival probability and the corresponding first passage time density
of fractional Brownian motion (FBM) confined to a two-dimensional open wedge domain with
absorbing boundaries. By analytical arguments and numerical simulation we show that in the
long-time limit the first passage time density scales as ℘Θ(t)≃ t

−1+π(2H−2)/(2Θ) in terms of the
Hurst exponent H and the wedge angle Θ. We discuss this scaling behaviour in connection with
the reaction kinetics of FBM particles in a one-dimensional domain.

Copyright c© EPLA, 2011

Introduction. – The first passage defines the moment
at which a random quantity crosses a given threshold value
for the first time. For instance, this could be the time when
a random walker first leaves a defined region of space.
Other examples include phenomena as diverse as diffusion-
limited reactions [1], cyclisation of a polymer [2,3], stock
market dynamics [4], or search problems [5]. The concept
of first passage statistics is of quite ubiquitous importance
in the theory of stochastic processes [6].
First passage characteristics have been investigated for

various geometries. Thus, on semi-infinite domains the
probability density of the first passage generally displays
a power-law tail, and the associated mean first passage
time diverges [6]. Recently, remarkable progress has been
achieved, relating the underlying geometry to the resulting
first passage behaviour [7].
In the case of normal diffusion, characterised by the

linear growth 〈r(t)2〉 ≃ t of the ensemble-averaged mean
squared displacement, the associated first passage prob-
lems are obtained by solving the associated diffusion equa-
tion with given boundary conditions or, for simpler geome-
tries, by the method of images [6]. For anomalous diffusion
with the non-linear growth [8]

〈r2(t)〉 ≃ t2H , 2H �= 1, (1)

(a)E-mail: metz@ph.tum.de

of the mean squared displacement, no general theory
exists to obtain the corresponding first passage time
statistics. Only for certain classes of anomalous diffusion
models analytical approaches for the first passage prop-
erties are known. Examples include the continuous time
random walk model [9] governed by a heavy-tailed waiting
time distribution with diverging characteristic waiting
time [10–13] or by a power-law jump length distribu-
tion with diverging variance (Lévy flights) [14]; as well as
the diffusion on fractal media [15]. Importantly the first
passage time behaviour differs between different stochastic
processes despite sharing the same form (1) of the mean
squared displacement with dynamic exponent 2H.
Fractional Brownian motion (FBM), originally intro-

duced by Kolmogorov [16] and later re-discovered by
Mandelbrot and van Ness [17], is an ergodic [3,18] gener-
alised Gaussian process, whose increments in one spatial
dimension,

dx(t) = ξH(t)dt, (2)

are stationary and normally distributed but dependent.
Here the quantity ξH(t) represents fractional Gaussian
noise with zero mean (〈ξH(t)〉= 0) and autocorrelation

〈ξH(t1)ξ
H(t2)〉 = 2KHH(2H − 1)|t1− t2|

2H−2

+4KHH|t1− t2|
2H−1δ(t1− t2). (3)
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Fig. 1: (Colour on-line) (a) Stochastic motion of a particle
confined to a two-dimensional wedge of opening angle Θ. The
particle motion at time t follows r(t) = (r(t), θ(t)) in polar
coordinates. The excursion is terminated when the particle hits
one of the absorbing walls located at θ= 0 or Θ, the moment
of first passage. (b) Diffusion-limited reaction of three particles
that move according to FBM in one-dimensional space.

KH of dimension [KH ] = cm
2/s2H is the anomalous

diffusion coefficient. The fractional Gaussian noise is
negatively (antipersistence) or positively (persistence)
correlated for the cases of subdiffusion and superdiffusion,
respectively. FBM has been widely used to describe
anomalous diffusion phenomena including annual river
discharge [19], stock market dynamics [20], the motion
of tracer particles in crowded environments [21–24],
or single-file diffusion [25]. Despite its popularity and
deceivingly simple definition in terms of fractional
Gaussian noise the exact stochastic properties of FBM
are not well understood. The first passage properties are
known only for the one-dimensional semi-infinite domain.
The associated long-time asymptotic form of the first
passage time density ℘(t)∼ tH−2 was conjectured by Ding
and Yang from scaling arguments [26], and rigorously
proved by Molchan [27]. Recently, it was shown that the
Wilemskii-Fixmann approximation, originally introduced
for the description of polymer cyclisation, produces
the first passage time behaviour and barrier crossings
of particles driven by fractional Gaussian noise [28].
The difficulty to analytically access FBM’s first passage
properties is related to the fact that FBM is a strongly
non-Markovian process, which does not fall into the class
of semi-martingales [29].
Here we analyse the first passage time behaviour of two-

dimensional FBM confined to a wedge domain of opening
angle Θ (fig. 1). This problem is of particular interest as
the reaction kinetics of three diffusive particles in one-
dimensional space can be mapped on this problem [6,30].
In the case of ordinary Brownian motion (H = 1/2), the
wedge problem can be solved exactly using the Green’s
function formalism [6]. Based on analytical and numerical
arguments we conjecture the first passage behaviour of
FBM for arbitrary Hurst exponent in a wedge geometry.

In the following section we define multi-dimensional
FBM and the first passage in a wedge domain. We then
review the Green’s function formalism for the Brownian
case and obtain analytical forms for the first passage
time quantities. We proceed to present our main results,
the asymptotic scaling forms of the first passage time
behaviour as function of H and Θ. These are numerically
confirmed in the subsequent section. We conclude with a
discussion related to reaction kinetics of FBM particles.

Fractional Brownian motion in wedge domain. –

Consider the random walk of a particle confined to a two-
dimensional wedge domain of opening angle Θ, see fig. 1.
The particle starts at a position r0 inside the wedge and
moves within the domain until eventually it hits one of the
absorbing boundaries at a time t for the first time. For this
process, we obtain the survival probability

SΘ(t) =

∫

W

G(r, t)dr (4)

on the wedge domainW , and the first passage time density

℘Θ(t) =−
dS (t)

dt
. (5)

In eq. (4), G(r, t) is the probability density to find the
particle at position r at time t. Due to the presence of
the absorbing boundaries, G(r, t) is not normalised, as
expressed by the survival probability, which decays from
SΘ(0) = 1 to limt→∞SΘ(t) = 0.
Two-dimensional FBM is defined as a superposition of

independent FBMs for each Cartesian coordinate [31–33]:

r(t) =

2
∑

i=1

∫ t

0

dt′ξHi (t
′)x̂i+ r0, (6)

where x̂i is the unit vector in Cartesian direction i (i=
x, y), and ξHi (t) is the fractional Gaussian noise. Due to
this definition it is clear that for a quadrant geometry
with Θ= π/2 the absorption to either wall decouples. We
now first address the case of normal Brownian motion
(H = 1/2), for which exact results for the survival and
first passage distributions can be found.

First passage process for H = 1/2. – For normal
Brownian motion, the diffusion in a wedge domain is
described in terms of the Green’s function G(r, θ; t), that
satisfies the diffusion equation in polar coordinates,

∂

∂t
G(r, θ; t) =K1/2

(

∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂θ2

)

G(r, θ; t).

(7)
The associated boundary conditions are G(r, 0; t) =
G(r,Θ; t) = 0, representing the absorbing walls. The
solution G is completely specified by the initial condition
G(r, θ; 0) = δ(r− r0)δ(θ− θ0)/r0. At long times t, the
solution G can be approximated by [6]

G(r, θ; t)≃
π sin

(

πθ
Θ

)

4K1/2Θt
e−(r

2+r2
0
)/(4K1/2t)Iπ/Θ

(

rr0
2K1/2t

)

,

(8)

20008-p2



First passage of FBM in 2D wedge domain

where Iν(z) is the modified Bessel function of the first
kind, which can be expressed by the series expansion

Iν(z) = (z/2)
ν
∞
∑

k=0

(z2/4)k

k!Γ(ν+ k+1)
. (9)

The survival probability (4) in polar coordinates is then

SΘ(t) =

∫ Θ

0

∫

∞

0

rG(r, θ; t)drdθ, (10)

from which the property SΘ(0) = 1 follows directly from
the sharp initial condition. Using the approximations
Iν(z)≈ (z/2)

ν/Γ(1+ ν) and e−r
2

0
/(4K1/2t) ≈ 1 for the long-

time limit in eq. (8), one obtains the scaling expressions

SΘ(t)≃

(

r0
√

K1/2

)π/Θ

t−π/(2Θ), (11a)

℘Θ(t)≃
π

2Θ

(

r0
√

K1/2

)π/Θ

t−1−π/(2Θ). (11b)

Notably, the wedge angle Θ enters the scaling exponents
inverse-proportionally; survival and first passage distribu-
tions decay faster for decreasing wedge angle, as it should.
We observe an interesting crossover as function of Θ: as
long as Θ� π/2 the mean first passage time

T =

∫

∞

0

t℘Θ(t)dt (12)

diverges, T →∞. In particular, in the half-space limit
Θ= π, the process reduces to the first passage in a one-
dimensional, semi-infinite geometry (along the y-axis),
and we find the usual Lévy-Smirnov scaling ℘(t)≃ t−3/2.
When the wedge angle is smaller, Θ<π/2, the mean
first passage time is finite, reflecting the much higher
probability to hit one of the two walls of the wedge. Thus,
for Θ= π/2, the absorption to either of the two walls can
be viewed as two decoupled Brownian random walks in
x- and y-direction. The resulting survival probability is
then given as the product of two one-dimensional survival
functions corresponding to Θ= π:Sπ/2(t) =Sπ(t)

2 ≃ t−1,
for which the mean first passage time is logarithmically
divergent. Remarkably, the scaling relation

SΘ/2(t)≃S
2
Θ(t) (13)

holds more generally for any Θ, see relations (11).

First passage process for H �= 1/2. – Let us now
address the case of general Hurst exponent, H �= 1/2, for
which no analogue to the above Green’s function method
is known. While there exist dynamic equations for FBM
in the literature [34,35] of the form

∂

∂t
G (r, t) =K(t)∇2G (r, t) (14)

with the time-dependent diffusion coefficient K(t)
∼ t2H−1, this description cannot fully specify the behav-
iour of FBM in the presence of non-natural boundary
conditions. To see this, we follow the procedure of the
preceding section, and find the first passage behaviours

S
G

Θ (t)∝ t
−π(2H)/(2Θ), (15a)

℘G

Θ(t)∝ t
−1−π(2H)/(2Θ). (15b)

While, naturally, the Brownian case H = 1/2 is consis-
tent with the results of the previous section, the
results (15) are inconsistent with Molchan’s result
℘(t)≃ tH−2 for a completely open wedge, Θ= π. There-
fore, for arbitrary wedge angle Θ and Hurst exponent
H the distributions (15) cannot be correct. In fact,
the same inconsistency is found when one naively
applies the method of images to the free space solution
(4πKHt

2H)−1/2 exp(−x2/[4KHt
2H ]).

We now argue in favour of a conjecture for the correct
scaling forms of the first passage time quantities. Let us
start by recollecting the known special cases, for which
analytical results are available:
i) When Θ= π, the first passage time quantities must

converge to Molchan’s result for a one-dimensional semi-
infinite domain [27]:

Sπ(t)≃ t
H−1, (16a)

℘π(t)≃ t
H−2, (16b)

valid in the long-time limit t≫ 1.
ii) When Θ= π/2, due to the independence of the x and

y motion the survival probability, by the above argument,
is given as the product of two one-dimensional survival
probabilities, Sπ/2 =S 2

π , and thus

Sπ/2(t)≃ t
2H−2, (17a)

℘π/2(t)≃ t
2H−3. (17b)

iii) For H = 1/2, we know the analytical results (11)
with the full Θ-dependence.
Assuming that the first passage time exponents are

simple combinations of the Hurst exponent H and the
wedge angle Θ, to satisfy the above three special cases
we conjecture the unique scaling form

SΘ(t)≃ t
π(2H−2)/(2Θ), (18a)

℘Θ(t)≃ t
−1+π(2H−2)/(2Θ). (18b)

These results imply that the survival decays faster for
slower diffusion (i.e., lower value of H), in analogy with
Molchan’s result and findings for the barrier crossing of
FBM [28]. Note that the inconsistent results (15) based on
the dynamic equation (14) follow from our results through
the substitution H→ 1−H.
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Simulations. – To numerically verify the conjec-
ture (18) for the survival probability and the first passage
time density, we performed simulations for various wedge
angles and Hurst exponents, and compared the results
with eqs. (18). For this comparison, we here focus on
the survival probability, which generally shows better
statistics.
Our simulations procedure is as follows. A wedge of

opening angle Θ is constructed by imposing two absorbing
walls at y= 0 and y= (tanΘ)x in the x-y plane (fig. 1(a)).
At t= 0, the particle is located at r0 = (r0 cos

Θ
2 , r0 sin

Θ
2 )

on the line bisecting the wedge. For t > 0, the particle
undergoes two-dimensional FBM in discrete time indexed
by n, following the rule

r(tn) =
(

n
∑

m=1

ξH1 (tm)+ r0 cos
Θ

2
,
n
∑

m=1

ξH2 (tm)+ r0 sin
Θ

2

)

.

(19)

Here, the two independent fractional Gaussian noise func-
tions ξH1 (t) and ξ

H
2 (t) are generated by the Hosking

method [32,36]. The simulation is terminated when the
particle escapes the wedge domain for the first time. This
is the survival time for the particle in the given run. From
repeated runs we construct the survival probability SΘ(t)
as the accumulated number of particles surviving until
time t. For each given wedge angle and Hurst exponent,
the survival probability SΘ(t) was obtained from 100000
runs and for initial radius r0 = 0.25.
To confirm that our simulations procedure produces

correct results for the survival probability, we first consider
the two special cases of wedge angles Θ= π and π/2, and
compare them to the predicted scaling behaviours (16a)
and (17a). Figure 2 shows on the left the distributions of
SΘ(t) obtained from simulations of a fully open wedge,
Θ= π, for Hurst exponents H = 1/4 (subdiffusion), 1/2
(normal diffusion), and 3/4 (superdiffusion). Clearly, the
distributions follow the predicted scaling behaviours for
this case corresponding to the one-dimensional, semi-
infinite domain. Similarly, for the case of a rectangular
wedge (Θ= π/2) on the right of fig. 2 we find excellent
verification of our simulations method, compared to the
predicted behaviour Sπ/2(t)∼ t

2H−2 for all values of H.
We now investigate whether our conjecture (18a) for

the survival probability also holds for other wedge angles.
In our simulation, the survival probabilities for wedge
angles Θ= π/4, 3π/4, 5π/4, and 7π/4 were investigated,
for Hurst exponents H = 1/8, 1/4, 1/2, 3/4, and 5/6. As
demonstrated in fig. 3, the simulated survival probabilities
remarkably well follow our conjecture (18a) for all wedge
angles and Hurst exponents. Particularly, the scaling
exponents of the survival indeed decreases for growing
values of the Hurst exponent H, in line with Molchan’s
result and findings for the barrier crossing behaviour of
FBM.

Discussion. – We studied the first passage proper-
ties of two-dimensional FBM confined to a wedge domain

Fig. 2: (Colour on-line) Survival probability SΘ(t) for wedge
angles Θ= π (left) and Θ= π/2 (right) with the Hurst expo-
nents H = 1/4, 1/2, and 3/4 (from bottom to top). The lines
represent the expected scaling behaviours, eqs. (16a) and (17a).

with absorbing boundaries. Starting from special cases, for
which exact long-time scaling expressions can be analyti-
cally derived, we obtained functional dependencies of first
passage time exponents on the Hurst exponent H and
wedge angle Θ. By numerical analysis we confirmed this
conjecture. We believe that our results are an important
additional brick in the construction of a clear picture of the
elusive FBM process. The obtained forms (18) of the first
passage time quantities imply that the mean first passage
time of a particle from a wedge domain across the domain
walls, T , diverges for wedge angles Θ�Θc. The critical
angle corresponds to Θc = π(1−H).
From the above results one may obtain some insight into

the reaction kinetics of three particles in one-dimensional
space, driven by FBM (fig. 1(b)). 1) Surrounded prey. Let
us consider the diffusion-limited reaction of the central
particle with either of the two comrade particles. The
problem can be transformed such that one particle is
confined between two moving absorbing boundaries [6].
If xi(t) denotes the position of the i-th particle at time
t, the survival condition of the central particle is x1(t)<
x2(t) and x2(t)<x3(t) for particles sharing the same
diffusion properties (H and KH). We regard xi(t) as
the i-th coordinate of a single particle, that diffuses in
three-dimensional space. Then, the survival criterion is
understood such that this particle diffuses inside a domain
limited by absorbing planes at x1 = x2 and x3 = x2. This is
equivalent to the first passage problem for two-dimensional
motion in a wedge domain, the wedge angle given by
the two intersecting planes, i.e., Θmid = π/3 (see ref. [6]).
Thus, from the distribution (18a) we find that the survival
probability for the central particle has the asymptotic form
Smid(t)∼ t

3(H−1). Contrary to our naive expectation, the
above scaling exponent shows that superdiffusive particles
(with H > 1/2) survive longer than ordinary Brownian
particles (H = 1/2), and subdiffusive particles have a
better chance to meet each other. These characteristics

20008-p4
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Fig. 3: (Colour on-line) Survival probability SΘ(t) for wedge angles Θ= π/4, 3π/4, 5π/4, and 7π/4, with Hurst exponents
H = 1/8, 1/4, 1/2, 3/4, and 5/6 (from bottom to top). The corresponding expected scaling behaviours (cf. eq. (18a)) are
depicted by the full lines.

will lead to significant differences in the total reaction
amount, compare figs. 2 and 3. Intriguingly the mean
reaction time T is finite for H <H∗ = 2/3, meaning that
reactions always occur for subdiffusive motion, similar to
the considerations in ref. [37]. 2) Chased prey. For the case
that one of the corner particles (x3, say) is chased by the
two other diffusing particles (x1 and x2), the problem is
reformulated to the task of finding the survival probability
for the wedge domain of angle Θend = 2π/3. Hence for
identical particles the probability that one corner particle
survives until time t scales as Send(t)∼ t

3(H−1)/2. In this
case the reaction is slower than that of the surrounded
particle. Note the scaling relation Smid(t)≃S 2

end(t), such
that the reaction of a particle surrounded by two others
corresponds to the product of two independent corner
particle reactions.
We note that closer inspection of the simulated survival

probabilities shows that in the non-Markovian case (H �=
1/2) the first passage process exhibits a somewhat intri-
cate scaling behaviour: the long-time behaviours (18) are
preceded by another distinct scaling law at intermediate
times. This behaviour is particularly noticeable for the
cases of wedge angle Θ� π, for which first passage events
occur easily at short and intermediate times. The appar-
ent intermediate scaling behaves differently, depending on
the diffusion characteristics. For subdiffusion, the inter-
mediate scaling exponent is smaller than the long-time
exponent πΘ (1−H) and larger for superdiffusion.
The first passage behaviour displayed by FBM is differ-

ent from results derived from the diffusion equation with
time-dependent diffusion coefficient. The latter would lead
to an inconsistent H-dependence, corresponding to the
replacement H→ 1−H in the correct forms (18). A simi-
lar inconsistency occurs if the method of images were
applied to construct the solution in the presence of non-
natural boundary conditions. We note in passing that the
substitution H→ 1−H in our results for Θ= π leads to
the scaling for the first passage behaviour found in the
analysis of a generalised Langevin equation in ref. [38].

The somewhat counterintuitive behaviour that smaller
H implies faster decay of the first passage time density,
may be connected to the fact that FBM is fuelled by
external noise, that is not balanced by friction. That is,
FBM does not obey the fluctuation-dissipation relation,
in contrast to the generalised (fractional) Langevin equa-
tion [34,35,39] that describes FBM in conditions close
to thermal equilibrium, when the fluctuation-dissipation
theorem is valid. We will investigate the latter behaviour
in a separate work.
We finally note that while for a compact process in

one dimension the first passage is identical to the first
arrival to a given position, these processes are no longer
necessarily equal to each other in higher dimensions.
This may also be the reason why the Wilemskii-Fixman
approximation reproduces Molchan’s result ℘(t)≃ tH−2 in
one dimension, but delivers a different result in higher
dimensions. It will also be interesting to study FBM
generalisation of first passage properties in cones of higher
dimensions [40].

∗ ∗ ∗

We thank M. Lomholt and I. Sokolov for help-
ful discussion. Financial support from the Academy of
Finland (FiDiPro scheme) and the European Commission
through MC IIF Grant No. 219966 LeFrac is gratefully
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Appendix

The survival probabilities presented in fig. 3 were obtained
with the same initial starting point and number of simu-
lation runs for consistency. Depending on the wedge
angle and Hurst exponent, however, some cases are more
problematic to show reliable long-time scaling properties
within the time window we used. Here we present addi-
tional representative results for these cases.
i) Figure 4 depicts the case for Θ= π/4 with r0 = 2.0

(i.e., eight times the value used in the main text) and
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Fig. 4: (Colour on-line) Left: survival probability SΘ(t) for
wedge angle Θ= π/4 and Hurst exponents H = 1/4 (below)
and 1/2 (above). Here r0 = 2.0, and the number of simulation
runs is 250000. Right: survival probability SΘ(t) at wedge
angle Θ= 3π/4 for the Hurst exponent H = 1/4. Here r0 =
0.10, and the number of simulation runs is 100000. The solid
lines are the expected power-laws predicted by eq. (18a).

250000 runs. Now the survival probabilities for H = 1/4
and 1/2 exhibit satisfactory long-time scaling.
ii) To obtain extended long-time scaling behaviour for

H = 1/4 and wedge angle Θ= 3π/4, the initial distance
from the origin was decreased to r0 = 0.10. The obtained
result in fig. 4 shows good agreement with eq. (18a).
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