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I. INTRODUCTION

Random processes in the physical and related sciences have a long-standing

history. Beginning with the description of the haphazard motion of dust particles

seen against the sunlight in a dark hallway in the astonishing work of Titus

Lucretius Carus [1], followed by Jan Ingenhousz’s record of jittery motion of

charcoal on an alcohol surface [2] and Robert Brown’s account of zigzag motion

of pollen particles [3], made quantitative by Adolf Fick’s introduction of the

diffusion equation as a model for spatial spreading of epidemic diseases [6], and

culminating with Albert Einstein’s theoretical description [4] and Jean Perrin’s

experiments tracing the motion of small particles of putty [5], the idea of an

effective stochastic motion of a particle in a surrounding heat bath has been a

triumph of the statistical approach to complex systems. This is even more true in

the present Einstein year celebrating 100 years after his groundbreaking work

providing our present understanding of Brownian motion. In Fig. 1, we display a

collection of typical trajectories collected by Perrin.

Classical Brownian motion of a particle is distinguished by the linear growth

of the mean-square displacement of its position coordinate x [9–11],1

hx2ðtÞi ’ Dt ð1Þ

1Editor’s note. The inertia of the particle is ignored.
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and the Gaussian form

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt

p exp 	 x2

4Dt

� �
ð2Þ

of its probability density function (PDF) Pðx; tÞ to find the particle at position x at

time t. This PDF satisfies the diffusion equation

q
qt

Pðx; tÞ ¼ D
q2

qx2
Pðx; tÞ ð3Þ

for natural boundary conditions Pðjxj ! 1; tÞ ¼ 0 and d function initial

condition Pðx; 0Þ ¼ dðxÞ. If the particle moves in an external potential

VðxÞ ¼ 	
Ð x

Fðx0Þdx0, the force FðxÞ it experiences enters additively into the

diffusion equation, and the diffusion equation [Eq. (3)] is the particular term of

the Fokker–Planck equation known as the Smoluchwski equation [11, 12]

q
qt

Pðx; tÞ ¼ q
qx

V 0ðxÞ
mZ

þ D
q2

qx2

� �
Pðx; tÞ ð4Þ

Figure 1. Random walk traces recorded by Perrin [5]: Three trajectories obtained by tracing a

small grain of putty at intervals of 30sec. Using Einstein’s relation between the macroscopic gas

constant and the diffusion constant, Perrin found a quite accurate result for Avogadro’s number.

Refined results were successively obtained by Westgren and Kappler [7,8].
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where m is the mass of the particle and Z the friction constant arising from

existing from exchange of energy with the surrounding heat bath. This Fokker–

Planck equation is a versatile instrument for the description of a stochastic

process in external fields [12]. Requiring that the stationary solution defined by

qPðx; tÞ=qt ¼ 0 is the equilibrium distribution,

PstðxÞ ¼ N exp 	V 0ðxÞ
DmZ

� �
!¼N exp 	V 0ðxÞ

kBT

� �
ð5Þ

where N is the normalization constant and kBT the thermal energy, one obtains

the Einstein–Stokes relation

D ¼ kBT

mZ
ð6Þ

for the diffusion constant. The second important relation connected with the

Fokker–Planck equation [Eq. (4)] is the linear response

hxðtÞiF0
¼ 1

2
F0

hx2ðtÞiF¼0

kBT
ð7Þ

between the first moment (drift) in presence of a constant force F0 and the variance

in absence of that force, sometimes referred to as the second Einstein relation.

The Fokker–Planck equation can be obtained phenomenologically following

Fick’s approach by combining the continuity equation with the constitutive

equation for the probability current j,

q
qt

Pðx; tÞ ¼ 	 q
qx

jðx; tÞ; jðx; tÞ ¼ 	D
q
qx

Pðx; tÞ ð8Þ

Alternatively, that equation follows from the master equation [11]2

q
qt

Pðx; tÞ ¼
ð n

Wðxjx0ÞPðx0; tÞ 	 Wðx0; xÞPðx; tÞ
o

dx0 ð9Þ

by Taylor expansion of the transition probabilities W under specific conditions.

The master equation is thus a balance equation for the ‘‘state’’ Pðx; tÞ, and as such

is a representation of a Pearson random walk: The transition probabilities quantify

jumps from position x0 to x and vice versa [11]. Finally, the Fokker–Planck

equation emerges from the Langevin equation [13] (ignoring inertial effects)3:

dxðtÞ
dt

¼ FðxÞ
mZ

þ �ðtÞ ð10Þ

2The differential form of the Chapman–Kolmogorov equation [11].
3That is, we consider the overdamped case.
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relating the velocity of a particle to the external force, plus an erratic, time-

fluctuating force �ðtÞ. This random force �ðtÞ is supposed to represent the many

small impacts on the particle by its surroundings (or heat bath); It constitutes a

measure of our ignorance about the microscopic details of the ‘‘bath’’ to which

the particle is coupled. On the typical scale of measurements, the Langevin

description is, however, very successful. The random force �ðtÞ is assumed

independent of x, and it fluctuates very rapidly in comparison to the variations of

xðtÞ. We quantify this by writing

�ðtÞ ¼ 0; �ðtÞ�ðt0Þ ¼ �dðt 	 t0Þ ð11Þ

where noise strength � and overbars denotes bath particle averages. d denotes

the Dirac-delta function, �ðtÞ is Gaussian, white noise which obeys Isserlis’s

(Wick’s) theorem [13]. We will see below the differences which occur when the

noise is no longer Gaussian.

Gaussian diffusion is by no means ubiquitous, despite the appeal of the

central limit theorem. Indeed, many systems exhibit deviations from the linear

time dependence of Eq. (1). Often, a nonlinear scaling of the form [14–16]

hx2ðtÞi ’ Dta ð12Þ

is observed, where the generalized diffusion coefficient now has the dimension

cm2=seca. One distinguishes subdiffusion (0 < a< 1) and sub-ballistic,

enhanced diffusion (1 < a< 2). Subdiffusive phenomena include charge carrier

transport in amorphous semiconductors [17], tracer diffusion in catchments [18],

or the motion of inclusions in the cytoskeleton [19], just to name a few.4 In

general, subdiffusion corresponds to situations where the normal diffusion is

slowed down by trapping events [21–25]. Conversely, sub-ballistic, enhanced

diffusion can stem from advection among random directional motions [26,27],

from trapping of a wave-like process [28], or in Knudsen diffusion [29,30,31],

among others. Trapping processes in the language of continuous time random

walk theory are characterized by a waiting time drawn from a waiting time

distribution cðtÞ, exhibiting a long tail, cðtÞ ’ t	1	b, where 0 < b< 1

[14,21,32]. Now no characteristic waiting time exists; and while this process

endures longer and longer, waiting times may be drawn from this cðtÞ. The

nonexistence of a characteristic waiting time alters the Markovian character of

normal diffusion, giving rise to slowly decaying memory effects (‘semi-Markov’

character). Among other consequences, this causes the aging effects. From a

probability theory point of view, such behavior corresponds to the limiting

distribution of a sum of positive, independent identically distributed random

4An extensive overview can be found in Ref. [20].
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variables with a diverging first moment, enforcing by the generalized central limit

theorem a one-sided Lévy stable density with characteristic function [14,33,34]

cðuÞ ¼ LfcðtÞg �
ð1
0

e	utcðtÞ dt ¼ e	ðt=tÞb ; 0 < b < 1: ð13Þ

The above relation is valid also for b ¼ 1. Indeed, in that limit, we have

cðuÞ ¼ e	t=t, whence cðtÞ ¼ dðt 	 tÞ. This sharp distribution of the waiting

time is but one possible definition of a Markovian process. In the remainder of

this review, we solely focus on processes with b ¼ 1.

Apart from trapping, there also exist situations where, as far as ensemble

average h�i is concerned, the mean square displacement does not exist. This

corresponds to a jump length distribution lðxÞ emerging from an Lévy stable

density for independent identically distributed random variables of the

symmetric jump length x, whose second moment diverges. The characteristic

function of this Lévy stable density is [14,33,34]

lðkÞ ¼ FflðxÞg �
ð1

	1

lðxÞeikxdx ¼ exp 	sajkjað Þ ð14Þ

for 0 < a�2. For a ¼ 2, one immediately recovers a Gaussian jump length

distribution with finite variance s2. Figure 2 describes the data points for the

Figure 2. The starting point of each step from Fig. 1 is shifted to the origin. This illustrates the

continuum approach of the jump length distribution if only a large number of jumps is considered [5].
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jump lengths collected by Perrin, which were then fitted to a Gaussian.

Asymptotically for 0 < a< 2, relation (14) implies the long-tailed form

lðxÞ ’ jxj	1	a ð15Þ

During the random walk governed by lðxÞ with 0 < a< 2, longer and longer

jump lengths occur, leading to a characteristic trajectory with fractal dimension

a. Thus, processes with an underlying Lévy stable jump length distribution are

called Lévy flights [35,36]. A comparison between the trajectory of a Gaussian

and a Lévy flight process is shown in Fig. 3, for the same number of steps. A

distinct feature of the Lévy flight is the hierarchical clustering of the trajectory.

Lévy-flight processes have been assigned to spreading of biological species

[37–39], related to the high efficiency of a Lévy flight as a search mechanism for

exactly this exchange of long jumps and local exploration [40], in contrast to the

locally oversampling (in one or two dimensions) of a Gaussian process. A

number of trajectories monitored for the motion of spider monkeys are displayed

in Fig. 4, along with the power-law motion length distribution for individual

monkeys and the entire group [41]. Lévy flights have been also used to model

groundwater flow [42], which exhibits Lévy stable features, these are implicated

in plasma processes [43] and other turbulent phenomena, among many others,

see, for instance [16,20]. It is worthwhile noting that a diverging kinetic energy

has been reported for an ion in an optical lattice [44].

Lévy flights are the central topic of this review. For a homogeneous environment

the central relation of continuous time random walk theory is given by [14,45]

Pðk; uÞ ¼ 1 	 cðuÞ
u

1

1 	 cðuÞlðkÞ ð16Þ

Figure 3. Comparison of the trajectories of a Gaussian (left) and a Lévy (right) process, the latter

with index a ¼ 1:5. While both trajectories are statistically self-similar, the Lévy walk trajectory

possesses a fractal dimension, characterizing the island structure of clusters of smaller steps,

connected by a long step. Both walks are drawn for the same number of steps (�7000).
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that is, the Fourier–Laplace transform of the propagator, which immediately

produces in the limit ks ! 0 and ut ! 0 (i.e., long distance and long time limit,

in comparison to s and t) the characteristic function

Pðk; tÞ ¼ exp
�
	 Djkjat

	
ð17Þ

with diffusion coefficient D ¼ sa=t with dimensions cma=sec. That is, the PDF

Pðx; tÞ of such a Lévy flight process is a Lévy stable density. In particular, it

decays like Pðx; tÞ ’ Dt=jxj1þa
. Although the variance of Lévy flights diverges,

one can obtain by means of rescaling of fractional moments a relation that is

formally equivalent to expression (1), namely [46]

hjxj�i2=� ’ Dt2=a ð18Þ

where 0 < � < a for convergence. This scaling relation indicates that Lévy

flights are indeed move superdiffusively. We note here that instead of the

decoupled jump length and waiting time distributions used in this continuous

time random walk description of Lévy flights, one can introduce a coupling

between lðxÞ and cðtÞ, such that long jumps invoke a higher time cost than

short jumps. Such a coupling therefore introduces a finite ‘‘velocity,’’ leading to

the name Lévy walks, compare [45,47,48]. These are non-Markovian processes,

which we shall not consider any further.

Figure 4. Daily trajectories of adult female (a,b) and male (c) spider monkeys. In panel d, a

zoom into the square of c is shown [41]. On the right, the step length distribution is

demonstrated to approximately follow power-law statistics with exponent ag corresponding to

Lévy motion.
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Continuous time random walk processes with decoupled lðxÞ and cðtÞ can

be rephrased in terms of a generalized master equation [49]. This is also true for

a general external force FðxÞ, where we obtain a relation of the type

q
qt

Pðx; tÞ ¼
ð1

	1

dx0
ðt
0

dt0Kðx; x0; t 	 t0ÞPðx0; t0Þ ð19Þ

The kernel K determines the jump length dependence of the starting position x0,
as well as the waiting time. Only in the spatially homogeneous case, is

Kðx;0 x; t 	 t0Þ ¼ Kðx 	 x0; t 	 t0Þ [50,51]. In continuous time random walk

language, one needs to replace lðxÞ by �ðx; x0Þ [52].

A convenient way to formulate a dynamical equation for a Lévy flight in an

external potential is the space-fractional Fokker–Planck equation. Let us

quickly review how this is established from the continuous time random walk.

We will see below, how that equation also emerges from the alternative

Langevin picture with Lévy stable noise. Consider a homogeneous diffusion

process, obeying relation (16). In the limit k ! 0 and u ! 0, we have

lðkÞ � 1 	 sajkja and cðuÞ � 1 	 ut, whence [52–55]

uPðk; uÞ 	 1 ¼ 	DjkjaPðk; uÞ ð20Þ

From the differentiation theorem of Laplace transform, L _ff ðtÞ

 �

¼ uPðuÞ
	Pðt ¼ 0Þ, we infer that the left-hand side in ðx; tÞ space corresponds to

qPðx; tÞ=qt, with initial condition Pðx; 0Þ ¼ dðxÞ. Similarly in the Gaussian limit

a ¼ 2, the right-hand side is Dq2Pðx; tÞ=qx2, so that we recover the standard

diffusion equation. For general a, the right-hand side defines a fractional

differential operator in the Riesz–Weyl sense (see below) and we find the

fractional diffusion equation [52–56]

q
qt

Pðx; tÞ ¼ D
qa

qjxja Pðx; tÞ ð21Þ

where we interpret F qagðxÞ=qjxjaf g ¼ 	jkjagðkÞ. The drift exerted by the

external force FðxÞ should enter additively (as proved in Ref. 52), and we finally

obtain the fractional Fokker–Planck equation for Lévy flight processes, [52,54–56]

q
qt

Pðx; tÞ ¼ q
qx

V 0ðxÞ
mZ

þ D
qa

qjxja
� �

Pðx; tÞ ð22Þ

The fractional Fokker–Planck equation (22) which ignores inertial effects

can be solved exactly for an harmonic potential (Ornstein–Uhlenbeck process),
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giving rise to the restoring Hookean force FðxÞ ¼ 	mo2x. In the space of

wavenumbers k, the solution is [57]

Pðk; tÞ ¼ exp 	ZDjkja

ao2

h
1 	 e	ao2t=Z

i� �
ð23Þ

which is a Lévy stable density with the same stable index a, but time-dependent

width ZD=ðaoÞ � 1 	 exp 	ao2t=Zð Þ½ �. In particular, the stationary solution

PstðxÞ ¼ F	1 exp 	ZDjkja

ao2

� �� �
� ZD

ao2jxj1þa ð24Þ

leads to an infinite variance. Thus, although the harmonic potential introduces a

linear restoring force, the process never leaves the basin of attraction of the Lévy

stable density with index a, imposed by the external noise. In particular, due to

the diverging variance, the Einstein–Stokes relation and the linear response

found for standard diffusion,5 no longer hold.

After addressing the Langevin and fractional Fokker–Planck formulations

of Lévy flight processes in some more detail, we will show that in the

presence of steeper than harmonic external potentials, the situation changes

drastically: The forced Lévy process no longer leads to an Lévy stable density

but instead to a multimodal PDF with steeper asymptotics than any Lévy

stable density.

Mutimodality of the PDF and a converging variance are just one result, which

one would not expect at first glance. We will show that Lévy flights in the

presence of non-natural boundary conditions are incompatible with the method of

images, leading to subtleties in the first passage and first arrival behaviour.

Moreover, we will demonstrate how a driving Lévy noise alters the standard

Kramers barrier crossing problem, thereby preserving the exponential decay of

the survival probability. Finally, we address the long-standing question of whether

or not a Lévy flight with a diverging variance (or diverging kinetic energy)

exhibits pathological behavior. As we will show, within a proper framework,

nonlinear dissipative effects will cause a truncation of the Lévy stable nature;

however, within a finite experimental window, Lévy flights are a meaningful

approximation to real systems. These questions touch on the most fundamental

properties of a stochastic process, and the question of the thermodynamic

interpretation of processes that leave the basin of attraction of standard Gaussian

processes. Lévy flights, despite having been studied for many decades, still leave

numerous open questions. In the following we explore the new physics of Lévy

flight processes and demonstrate their subtle and the intruguing nature.

5And, in generalized form, also for subdiffusive processes [58].
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II. DEFINITION AND BASIC PROPERTIES OF LÉVY FLIGHTS

In this section, we formulate the dynamical description of Lévy flights using both

a stochastic differential (Langevin) equation and the deterministic fractional

Fokker–Planck equation. For the latter, we also discuss the corresponding form

in the domain of wavenumbers, which is a convenient form for certain analytical

manipulations in later sections.

A. The Langevin Equation with Lévy Noise

Our starting point in the stochastic description is the overdamped Langevin

equation [54,59]6

dx

dt
¼ FðxÞ

mZ
þ �aðtÞ ð25Þ

where F ¼ 	dV=dx is an external force with potential VðxÞ, which we choose to be

VðxÞ ¼ ajxjc

c
ð26Þ

with amplitude a > 0 and exponent c�2 (for reasons that become clear below);

as before, m is the particle mass, Z the friction coefficient, and �aðtÞ represents a

stationary white Lévy noise with Lévy index a (1�a�2). By white Lévy noise

�aðtÞ we mean that the process

Lð�tÞ ¼
ðtþ�t

t

�aðtÞ dt ð27Þ

that is, the time integral over an increment �t, is an a-stable process with

stationary independent increments. Restricting ourselves to symmetric Lévy

stable distributions, this implies a characteristic function of the form

paðk;�tÞ ¼ exp 	Djkja�tð Þ ð28Þ

The constant D in this description constitutes the intensity of the external noise.

In Fig. 5 we show realizations of white Lévy noises for various values of a.

The sharply pronounced ‘spikes’, due to the long-tailed nature of the Lévy stable

distribution, are distinctly apparent in comparison to the Gaussian case a ¼ 2.

6A more formal way of writing this Langevin equation is

xðt þ dtÞ 	 xðtÞ ¼ 	 1

mZ
dVðxÞ

dx
dt þ D1=a�aðdtÞ
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B. Fractional Fokker–Planck Equation

The Langevin equation [Eq. (25)] still defines a Markov process, and it is therefore

fairly straightforward to show that the corresponding fluctuation-averaged

(deterministic) description is given in terms of the space-fractional Fokker–Planck

equation (22) [54,60]. In what follows, we solve it with d-initial condition

Pðx; 0Þ ¼ dðxÞ ð29Þ

The space-fractional derivative qa=qjxja occurring in the fractional Fokker–

Planck equation (22) is called the Riesz fractional derivative. We have already

seen that it is implicitly defined by

F
qaPðx; tÞ
qjxja

� �
¼ 	jkjaPðk; tÞ: ð30Þ

The Riesz fractional derivative is defined explicitly, via the Weyl fractional

operator

daPðx; tÞ
djxja ¼ 	 Da

þPðx;tÞþDa
	Pðx;tÞ

2 cosðpa=2Þ ; a 6¼ 1

	 d
dx

HPðx; tÞ; a ¼ 1

(
ð31Þ

Figure 5. Examples of white Lévy noise with Lévy index a ¼ 2; 1:7; 1:3; 1:0. The outliers are

increasingly more pronounced the smaller the Lévy index a becomes. Note the different scales on

the ordinates.

450 aleksei v. chechkin et al.



where we use the following abbreviations:

ðDa
þPÞðx; tÞ ¼ 1

�ð2 	 aÞ
d2

dx2

ðx
	1

Pðx; tÞ dx

ðx 	 xÞa	1
ð32Þ

and

ðDa
	PÞðx; tÞ ¼ 1

�ð2 	 aÞ
d2

dx2

ð1
x

Pðx; tÞ dx

ðx	 xÞa	1
ð33Þ

for the left and right Riemann–Liouville derivatives (1�a< 2), respectively, and

[61]

ðHPÞðx; tÞ ¼ 1

p

ð1
	1

Pðx; tÞ dx
x 	 x

ð34Þ

is the Hilbert transform. Note that the integral is to be interpreted as the Cauchy

principal value. The definitions of qa=qjxja demonstrate the strongly nonlocal

property of the space-fractional Fokker–Planck equation.

1. Rescaling of the Dynamical Equations

Passing to dimensionless variables

x0 ¼ x=x0; t0 ¼ t=t0 ð35Þ

with

x0 ¼ mDZ
a

� �1=ðc	2þaÞ
; t0 ¼ xa0

D
ð36Þ

the initial equations take the form (we omit primes below)

dx

dt
¼ 	 dV

dx
þ �aðtÞ ð37Þ

instead of the Langevin equation (25), and

qPðx; tÞ
qt

¼ q
qx

dV

dx
Pðx; tÞ þ qaPðx; tÞ

qjxja ð38Þ

instead of the fractional Fokker–Planck equation (22); also,

VðxÞ ¼ jxjc

c
ð39Þ

instead of Eq. (26).
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C. Starting Equations in Fourier Space

For the PDF Pðx; tÞ and its Fourier image Pðk; tÞ ¼ FfPðx; tÞg, we use the

notation

Pðx; tÞ � Pðk; tÞ; ð40Þ

where the symbol � denotes a Fourier transform pair. Since [62]

Da
�Pðx; tÞ � ð�ikÞaPðk; tÞ ð41Þ

and

HPðx; tÞ � isignðkÞPðk; tÞ ð42Þ

we obtain

qaPðx; tÞ
qjxja �	jkjaPðk; tÞ ð43Þ

for all a. The transformed fractional Fokker–Planck equation [Eq. (38)] for the

characteristic function then follows immediately:

qPðk; tÞ
qt

þ jkjaPðk; tÞ ¼ VkPðk; tÞ ð44Þ

with the initial condition

Pðk; t ¼ 0Þ ¼ 1 ð45Þ

and the normalization

Pðk ¼ 0; tÞ ¼ 1 ð46Þ

The external potential VðxÞ becomes the linear differential operator in k,

VkPðx; tÞ ¼
ð1

	1

eikx q
qx

dV

dx
Pðx; tÞ

� �
dx

¼ 	ik

ð1
	1

eikxsignðxÞjxjc	1
Pðx; tÞ dx

ð47Þ

Next, by using the following inverse transforms

ð�ixÞaPðxÞ � Da
�PðkÞ ð48Þ
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and

	iðsignðxÞPðxÞ � HPðkÞ ð49Þ

we obtain the explicit expression for the external potential operator,

VkPðk; tÞ ¼
k

2 cosðpc=2Þ Dc	1
þ 	 Dc	1

	
� �

Pðk; tÞ; c 6¼ 3; 5; 7; . . .

ð	1Þm
k d2m

dk2m HPðk; tÞ; c ¼ 3; 5; 7; . . .

(
ð50Þ

Note that for the even potential exponents c ¼ 2m þ 2 , m ¼ 0; 1; 2; . . . , we find

the simplified expression

Vk ¼ ð	1Þmþ1
k
q2mþ1

qk2mþ1
ð51Þ

in terms of conventional derivatives in k. We see that the force term can be written

in terms of fractional derivatives in k-space, and therefore it is not straightforward

to calculate even the stationary solution of the fractional Fokker–Planck equation

[Eq. (38)] in the general case c =2 N. In particular, in this latter case, the nonlocal

equation [Eq. (38)] in x-space translates into a nonlocal equation in k-space, where

the nonlocality shifts from the diffusion to the drift term.

III. CONFINEMENT AND MULTIMODALITY

In the preceding section, we discussed some elementary properties of the space-

fractional Fokker–Planck equation for Lévy flights; in particular, we highlighted

in the domain of wave numbers k the spatially nonlocal character of Eq. (38), and

its counterpart (44). For the particular case of the external harmonic potential

corresponding to Eq. (26) with c ¼ 2, we found that the PDF does not leave the

basin of attraction imposed by the external noise �aðtÞ—that is, its stable index

a. In this section, we determine the analytical solution of the fractional Fokker–

Planck equation for general c � 2. We start with the exactly solvable stationary

quartic Cauchy oscillator, to demonstrate directly the occurring steep asymptotics

and the bimodality, that we will then investigate in the general case. The findings

collected in this section were first reported in Refs. 60, 63 and 64.

A. The Stationary Quartic Cauchy Oscillator

Let us first consider a stationary quartic potential with c ¼ 4 for the Cauchy–

Lévy flight with a ¼ 1 that is, the solution of the equation

d

dx
x3PstðxÞ þ

d

djxjPstðxÞ ¼ 0 ð52Þ
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or

d3PstðkÞ
dk3

¼ signðkÞjkjPstðkÞ ð53Þ

in the k domain. Its solution is

PstðkÞ ¼
2ffiffiffi
3

p exp 	 jkj
2

� �
cos

ffiffiffi
3

p
jkj

2
	 p

6

� �
ð54Þ

whose inverse Fourier transform results in the simple analytical form

PstðxÞ ¼
1

pð1 	 x2 þ x4Þ : ð55Þ

We observe surprisingly that the variance

hx2i ¼ 1 ð56Þ

of the solution (55) is finite, due to the long-tailed asymptotics PstðxÞ � x	4. In

addition, as shown in Fig. 6, this solution has two global maxima at

xmax ¼ �1=
ffiffiffi
2

p
along with the local minimum at the origin (that is the position

of the initial condition). These two distinct properties of Lévy flights are a central

theme of the remainder of this section.
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Figure 6. Stationary PDF (55) of the Cauchy-Lévy flight in a quartic (c ¼ 4) potential. Two

global maxima exist at xmax ¼ �
ffiffiffiffiffiffiffiffi
1=2

p
, and a local minimum at the origin also exists.
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B. Power-Law Asymptotics of Stationary Solutions for c � 2, and Finite

Variance for c > 2

We now derive the power-law asymptotics of the stationary PDF PstðxÞ for

external potentials of the form (39) with general c � 2. Thus, we note that as

x ! þ1, it is reasonable to assume

Da
	Pst � Da

þPst ð57Þ

since the region of integration for the right-side Riemann–Liouville derivative

Da
	PstðxÞ, ðx;1Þ, is much smaller than the region of integration for the left-side

derivative Da
þPstðxÞ, ð	1; xÞ, in which the major portion of PstðxÞ is located.

Thus, at large x we get for the stationary state,

d

dx

dV

dx
PstðxÞ

� �
	 1

2 cosðpa=2Þ
d2

dx2

ðx
	1

PstðxÞ dx

ðx 	 xÞa	1
ffi 0 ð58Þ

This relation corresponds to the approximate equality

xc	1PstðxÞ ffi
1

2 cosðpa=2Þ
d

dx

ðx
	1

PstðxÞ dx

ðx 	 xÞa	1
ð59Þ

We are seeking asymptotic behaviors of PstðxÞ in the form PðxÞ � C1=xm

(x ! þ1, m> 0Þ. After integration of relation (59), we find

2C1 cosðpa=2Þ�ð2 	 aÞ
	mþ c

x	mþc ffi
ðx

	1

PstðxÞ dx

ðx 	 xÞa	1
ð60Þ

The integral on the right-hand side can be approximated by

1

xa	1

ðx
	1

PstðxÞ dx ffi 1

xa	1

ð1
	1

PstðxÞ dx ¼ 1

xa	1
ð61Þ

Thus, we may identify the powers of x and the prefactor, so that

m ¼ aþ c 	 1 ð62Þ

and

C1 ¼ sinðpa=2Þ�ðaÞ
p

ð63Þ
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By symmetry of the PDF we therefore recover the general asymptotic form

PstðxÞ �
sinðpa=2Þ�ðaÞ

pjxjm ; x ! þ1 ð64Þ

for all c � 2. This result is remarkable, for several reasons:

(i) despite the approximations involved, the asymptotic form (64) for

arbitrary c � 2 corresponds exactly to previously obtained forms, such as

the exact analytical result for the harmonic Lévy flight (linear Lévy

oscillator), c ¼ 2 reported in Ref. 57; the result for the quartic Lévy

oscillator with c ¼ 4 discussed in Ref. 60 and 64; and the case of even

power-law exponents c ¼ 2m þ 2 (m 2 N0) given in Ref. 60. It is also

supported by the calculation in Ref. 65.

(ii) The prefactor C1 is independent of the potential exponent c; in this sense,

C1 is universal.

(iii) For each value a of the Lévy index a critical value

ccr ¼ 4 	 a ð65Þ

exists such that at c < ccr the variance hx2i is infinite, whereas at c > ccr

the variance is finite.

(iv) We have found a fairly simple method for constructing stationary

solutions for large x in the form of inverse power series.

The qualitative consequence of the steep power-law asymptotics can be

visualized by direct integration of the Langevin equation for white Lévy noise,

the latter being portrayed in Fig. 5. Typical results for the sample paths under

the influence of an external potential (39) with increasing superharmonicity are

shown in Fig. 7 in comparison to the Brownian case (i.e., white Gaussian noise).

For growing exponent c, the long excursions typical of homogeneous Lévy

flights are increasingly suppressed. For all cases shown, however, the qualitative

behavior of the noise under the influence of the external potential is different

from the Brownian noise even in this case of strong confinement. In the same

figure, we also show the curvature of the external potential. Additional

investigations have shown that the maximum curvature is always very close to

the positions of the two maxima, leading us to conjecture that they are in fact

identical.

C. Proof of Nonunimodality of Stationary Solution for c > 2

In this subsection we demonstrate that the stationary solution of the kinetic

equation (38) has a nonunimodal shape. For this purpose, we use an
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alternative expression for the fractional Riesz derivative (compare, e.g., Ref.

62),

daPðxÞ
djxja � �ð1 þ aÞ sinðap=2Þ

p

�
ð1
0

dx
Pðx þ xÞ 	 2PðxÞ þ Pðx 	 xÞ

x1þa ð66Þ

Figure 7. Left column: The potential energy functions V ¼ xc=c, (solid lines) and their

curvatures (dotted lines) for different values of c: c ¼ 2 (linear oscillator), and c ¼ 4; 6; 8 (strongly

non-linear oscillators). Middle column: Typical sample paths of Brownian oscillators, a ¼ 2, with

the potential energy functions shown on the left. Right column: Typical sample paths of Lévy

oscillators, a ¼ 1. On increasing m the potential walls become steeper, and the flights become

shorter; in this sense, they are confined.
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valid for 0 < a< 2. In the stationary state (qP=qt ¼ 0), we have from Eq. (38)

d

dx
sgnðxÞjxjc	1

PstðxÞ
� 	

þ daPstðxÞ
djxja ¼ 0 ð67Þ

Thus, it follows that at c > 2 (strict inequality)

daPstðxÞ
djxja

����
x¼0

¼ 0 ð68Þ

or, from definition (66) and noting that PstðxÞ is an even function,

ð1
0

dx
PstðxÞ 	 Pstð0Þ

x1þa ¼ 0 ð69Þ

we can immediately obtain a proof of the nonunimodality of Pst, from the latter

relation, which we produce in two steps:

1. If we assume that the stationary PDF PstðxÞ is unimodal, then due to the

symmetry x ! 	x, it necessarily has one global maximum at x ¼ 0. Here

the integrand in equation (69) must be negative, and therefore contradicts

equation (69). Therefore, PstðxÞ is nonunimodal.

2. We can in addition exclude Pð0Þ ¼ 0, as now the integrand will be

positive, which again contradicts Eq. (69).

Since PðxÞ ! 0 at x ! 1, based on statements 1 and 2, one may conclude

that the simplest situation is such that x0 > 0 exists with the property

ð1
x0

dx
PðxÞ 	 Pð0Þ

x1þa < 0 ð70Þ

and

ðx0

0

dx
PðxÞ 	 Pð0Þ

x1þa > 0 ð71Þ

that is, the condition for a two-hump stationary PDF for all c > 2. At

intermediate times, however, we will show that a trimodal state may also exist.

If such bimodality occurs, it results from a bifurcation at a critical time t12

[64] when evolution commences (as usually assumed) from the delta function at

the origin. A typical result is shown in Fig. 8, for the quartic case c ¼ 4 and
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Lévy index a ¼ 1:2: from an initial d-peak, eventually a bimodal distribution

emerges.

D. Formal Solution of Equation (38)

Returning to the general case, we rewrite Eq. (44) in the equivalent integral form,

Pðk; tÞ ¼ paðk; tÞ þ
ðt
0

dt paðk; t 	 tÞVkPðk; tÞ ð72Þ

Figure 8. Time evolution of the Lévy flight-PDF in the presence of the superharmonic external

potential [Eq. (26)] with c ¼ 4 (quartic Lévy oscillator) and Lévy index a ¼ 1:2, obtained from the

numerical solution of the fractional Fokker–Planck equation, using the Grünwald–Letnikov

representation of the fractional Riesz derivative (full line). The initial condition is a d-function at the

origin. The dashed lines indicate the corresponding Boltzmann distribution. The transition from one to

two maxima is clearly seen. This picture of the time evolution is typical for 2 < c � 4 (see below).
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where

paðk; tÞ ¼ expð	jkjatÞ ð73Þ

is thecharacteristic functionofa free (homogeneous)Lévyflight.This relation follows

from equation (44) by formally treating it as a nonhomogeneous linear first-order

differential equation, where Vk plays the role of the nonhomogeneity. Then, Eq. (44) is

obtained by variation of parameters. [Differentiate Eq. (72) to return to Eq. (44).]

Equation (72) can be solved formally by iteration: Let

f ð0Þðk; tÞ ¼ paðk; tÞ ð74Þ

then

f ð1Þðk; tÞ ¼ paðk; tÞ þ
ðt
0

dtpaðk; t 	 tÞVkf ð0Þðk; tÞ ð75Þ

f ð2Þðk; tÞ ¼ paðk; tÞ þ
ðt
0

dtpaðk; t 	 tÞVkpaðk; tÞ

þ
ðt
0

dt
ðt
0

dt0paðk; t 	 tÞVkpaðk; t	 t0ÞVkpaðk; t0Þ ð76Þ

and so on. From the convolution,

A  B ¼
ðt
0

dtAðt 	 tÞBðtÞ ¼
ðt
0

dtAðtÞBðt 	 tÞ ð77Þ

using

A  B  C ¼ ðA  BÞ  C ¼ A  ðB  CÞ ð78Þ

we arrive at the formal solution

Pðk; tÞ ¼
X1
n¼0

pað VkpaÞn ð79Þ

This procedure is analogous to perturbation theory, with VkP playing the role of

the interaction term (see, for instance, Ref. 66, Chapter 16).

Applying a Laplace Transformation, namely,

Pðk; uÞ ¼
ð1
0

dt expð	utÞPðk; tÞ ð80Þ
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to Eq. (72), we obtain

Pðk; uÞ ¼ paðk; uÞ þ paðk; uÞVkPðk; uÞ ð81Þ

where

paðk; uÞ ¼ 1

u þ ka
ð82Þ

is the Fourier–Laplace transform of the homogeneous Lévy stable PDF. Thus, we

obtain the equivalent of the solution (79) in ðk; uÞ-space:

Pðk; uÞ ¼
X1
n¼0

paðk; uÞVk½ �npaðk; uÞ ð83Þ

This iterative construction scheme for the solution of the fractional Fokker–

Planck equation will be useful below.

E. Existence of a Bifurcation Time

For the unimodal initial condition Pðx; 0Þ ¼ dðxÞ we now prove the existence of a

finite bifurcation time t12 for the turnover from a unimodal to a bimodal PDF. At

this time, the curvature at the origin will vanish; that is, it is a point of inflection:

q2PðxÞ
qx2

����
x¼0;t¼t12

¼ 0 ð84Þ

Introducing

JðtÞ ¼
ð1
0

dkk2Pðk; tÞ ð85Þ

Eq. (84) is equivalent to (note that the characteristic function is an even function)

Jðt12Þ ¼ 0 ð86Þ

The bifurcation can now be obtained from the iterative solution (83); we consider

the specific case c ¼ 4. From the first-order approximation

P1ðk; uÞ ¼ 1

u þ ka
1 þ Vk

1

u þ ka

� �
ð87Þ

where

Vk ¼ k
q3

qk3
ð88Þ
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Combining these two expressions, we have

P1ðk; uÞ ¼ 1

u þ ka
þ aða	 1Þð2 	 aÞ ka	2

ðu þ kaÞ3

þ 6a2ða	 1Þ k2a	2

ðu þ kaÞ4
	 6a3 k3a	2

ðu þ kaÞ5
ð89Þ

or, on inverse Laplace transformation,

P1ðk; tÞ ¼ e	kat 1 	 a3

4
t4k3a	2 þ a2ða	 1Þt3k2a	2

�

þ aða	 1Þð2 	 aÞ t2

2
ka	2

�
ð90Þ

The first approximation to the bifurcation time t12 is then determined via Eq.

(85); that is, we calculate

ð1
0

dk k2P1ðk; t
ð1Þ
12 Þ ¼ 0 ð91Þ

to obtain

t
ð1Þ
12 ¼ 4�ð3=aÞ

3ð3 	 aÞ�ð1=aÞ

� �a=ð2þaÞ
ð92Þ

In Fig. 9, we show the dependence of this first approximation t
ð1Þ
12 as a function of

the Lévy index a (dashed line), in comparison to the values determined from the

numerical solution of the fractional Fokker–Planck equation (38) shown as the

dotted line. The second-order iteration for the PDF, P2ðk; tÞ, can be obtained with

maple6, whence the second approximation for the bifurcation time is found by

analogy with the above procedure. The result is displayed as the full line in

Fig. 9. The two approximate results are in fact in surprisingly good agreement

with the numerical result for the exact PDF. Note that the second approximation

appears somewhat worse than the first; however, it contains the minimum in the

a-dependence of the t12 behavior.

1. Trimodal Transient State at c > 4.

we have already proved the existence of a bimodal stationary state for the quartic

ðc ¼ 4Þ Lévy oscillator. This bimodality emerges as a bifurcation at a critical

time t12, at which the curvature at the origin vanishes. This scenario is changed
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for c > 4, as displayed in Fig. 10: There exists a transient trimodal form of the

PDF. Thus, there are obviously two time scales that are relevant: the critical time

for the emergence of the two off-center maxima, which are characteristic of the

stationary state; and a second one, which corresponds to the relaxing initial

central hump—that is, the decaying initial distribution Pðx; 0Þ ¼ dðxÞ. The

formation of the two off-center humps while the central one is still present, as

detailed in Fig. 11. The existence of a transient trimodal state was found to be

typical for all c > 4.

2. Phase Diagrams for n-Modal States

The above findings can be set in the context of the purely bimodal case

discussed earlier. A convenient way of displaying the n-modal character of the

PDF in the presence of a superharmonic external potential of the type (39) is

the phase diagram shown in Fig. 12. There, we summarize the findings that for

2 < c �4 the bifurcation occurs between the initial monomodal and the

stationary bimodal PDF at a finite critical time, whereas for c > 4, a transient

trimodal state exists. Moreover, we also include the shaded region, in which c is

too small to ensure a finite variance. In Fig. 13, in complementary fashion the

temporal domains of the n-modal states are graphed, and the solid lines

separating these domains correspond to the critical time scales

tcrð¼ t12; t13; t32Þ. Again, the transient nature of the trimodal state is distinctly

apparent.

1.0

0

0.5t 1
2

1.0

1.5 2.0
a

Figure 9. Bifurcation time t12 versus Lévy exponent a for external potential exponent c ¼ 4:0.

Black dots: bifurcation time deduced from the numerical solution of the fractional Fokker–Planck

equation [Eq. (38)] using the Grünwald–Letnikov representation of the fractional Riesz derivative (see

appendix). Dashed line: first approximation t
ð1Þ
12 ; solid line: second approximation t

ð2Þ
12 .
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F. Consequences

By combining analytical and numerical results, we have discussed Lévy flights in

a superharmonic external potential of power c. Depending on the magnitude of

this exponent c, different regimes could be demonstrated. Thus, for c ¼ 2, the

character of the Lévy noise imprinted on the process, is not altered by the

external potential: The resulting PDF has Lévy index a, the same as the noise

itself, and will thus give rise to a diverging variance at all times. Conversely, for

c > 2, the variance becomes finite if only c > ccr ¼ 4 	 a. Because the PDF no

Figure 10. Time evolution of the PDF governed by the fractional Fokker–Planck equation (38) in

a superharmonic potential (26) with exponent c ¼ 5:5, and for Lévy index a ¼ 1:2, obtained from

numerical solution using the Grünwald–Letnikov method explained in the appendix. Initial condition

is Pðx; 0Þ ¼ dðxÞ. The dashed lines indicate the corresponding Boltzmann distribution. The

transitions between 1 ! 3 ! 2 humps are clearly seen. This picture of time evolution is typical for

c>4. On a finer scale, we depict the transient trimodal state in Fig. 11.
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0.89 0.90 0.93

Figure 11. The transition 1 ! 3 ! 2 from Fig. 10 on a finer scale (c ¼ 5:5, a ¼ 1:2).

2
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C

6 8
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a

Figure 12. ðc; aÞ map showing different regimes of the PDF. The region with infinite variance is

shaded. The region c < 4 covers transitions from 1 to 2 humps during the time evolution. For c > 4,

a transition from 1 to 3, and then from 3 to 2 humps occurs. In both cases, the stationary PDF

exhibits 2 maxima. Compare Fig. 13.
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longer belongs to the set of Lévy stable PDFs and acquires an inverse power-law

asymptotic behavior with power m ¼ aþ c 	 1. Obviously, moments of higher

order will still diverge. Apart from the finite variance, the PDF is distinguished

by the observation that it bifurcates from the initial monomodal to a stationary

bimodal state. If c > 4, there exists a transient trimodal state. This interesting

behavior of the PDF both during relaxation and under stationary conditions,

depending on a competition between Lévy noise and steepness of the potential is

in contrast to the universal approach to the Boltzmann equilibrium, solely

defined by the external potential, encountered in classical diffusion.

One may demand the exact kinetic reason for the occurrence of the multiple

humps. Now the nontransient humps seem to coincide with the positions of

maximum curvature of the external potential, which at these points changes

almost abruptly for larger c from a rather flat to a very steep slope. Thus one

may conclude that the random walker, which is driven towards these flanks by

the anomalously strong Lévy diffusivity, is thwarted, thus the PDF accumulates

close to these points. Apart from this rudimentary explanation, we do not yet

have a more intuitive argument for the existence of the humps and their

bifurcations, we also remark that other systems exist where multimodality

occurs, for instance, in the transverse fluctuations of a grafted semiflexible

polymer [67]. We will later return to the issue of finite variance in the discussion

of the velocity distribution of a Lévy flight.

The different regimes for c > 2 can be classified in terms of critical

quantities, in particular, the bifurcation time(s) tcrð¼ t12; t13; t32Þ and the critical

2
0

0.5t c
r

1.0

4
C

6 8

1

2
3

Figure 13. ðc; tÞ map showing states of the PDF with different number of humps and the

transitions between these. Region 1: The PDF has 1 hump. Region 2: The PDF exhibits 2 humps.

Region 3: Three humps occur. At c < 4, there is only one transition 1 ! 2, whereas for c > 4, there

occur two transitions, 1 ! 3 and 3 ! 2.
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external potential exponent ccr. Lévy flights in superharmonic potentials can

then be conveniently represented by phase diagrams on the ðc; aÞ and ðc; tcrÞ
plains.

The numerical solution of both the fractional Fokker–Planck equation in terms

of the Grünwald–Letnikov scheme used to find a discretized approximation to the

fractional Riesz operator exhibits reliable convergence, as corroborated by direct

solution of the corresponding Langevin equation.

Our findings have underlined the statement that the properties of Lévy

flights, in particular under nontrivial boundary conditions or in an external

potential are not fully understood. The general difficulty, which hampers a

straightforward investigation as in the regular Gaussian or the subdiffusive

cases, is connected with the strong spatial correlations associated with such

problems, manifested in the integrodifferential nature of the Riesz fractional

operator. Thus it is not easy to determine the stationary solution of the process.

We expect, since diverging fluctuations appear to be relevant in physical

systems, that many hitherto unknown properties of Lévy flights remain to be

discovered. Some of these features are discussed in the following sections.

IV. FIRST PASSAGE AND ARRIVAL TIME PROBLEMS

FOR LÉVY FLIGHTS

The first passage time density (FPTD) is of particular interest in random

processes [14,68–70]. For Lévy flights, the first passage time density was

determined by the method of images in a finite domain in reference [71], and by

similar methods in reference [72]. These methods lead to results for the first

passage time density in the semi-infinite domain, whose long-time behavior

explicitly depends on the Lévy index a. In contrast, a theorem due to Sparre

Andersen proves that for any discrete-time random walk process starting at

x0 6¼ 0 with each step chosen from a continuous, symmetric but otherwise

arbitrary distribution, the first passage time density asymptotically decays as

�n	3=2 with the number n of steps [70,73,74], being fully independent of the

index of the Lévy flight—that is, universal. In the case of a Markov process, the

continuous time analogue of the Sparre Andersen result reads [69,70]

pðtÞ � t	3=2 ð93Þ

The analogous universality was proved by Frisch and Frisch for the special case

in which an absorbing boundary is placed at the source of the Lévy flight at t > 0

[75], and numerically corroborated by Zumofen and Klafter [76]. In the

following, we demonstrate that the method of images is generally inconsistent

with the universality of the first passage time density, and therefore cannot be

applied to solve first passage time density-problems for Lévy flights. We also
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show that for Lévy flights the first passage time density differs from the PDF for

first arrival. The discussion will be restricted to the case 1 < a< 2 [77].

A. First Arrival Time

By incorporating in the fractional diffusion equation (21) a d-sink of strength

pfaðtÞ, we obtain the diffusion-reaction equation for the non-normalized density

function f ðx; tÞ,
q
qt

f ðx; tÞ ¼ D
qa

qjxja f ðx; tÞ 	 pfaðtÞdðxÞ ð94Þ

from which by integration over all space, we may define the quantity

pfaðtÞ ¼ 	 d

dt

ð1
	1

f ðx; tÞ dx ð95Þ

that is, pfaðtÞ is the negative time derivative of the survival probability. By

definition of the sink term, pfaðtÞ is the PDF of first arrival: once a random walker

arrives at the sink, it is annihilated. By solving equation (94) by standard

methods (determining the homogeneous and inhomogeneous solutions), it is

straightforward to calculate the solution f in terms of the propagator P of the

fractional diffusion equation (21) with initial condition Pðx; 0Þ ¼ dðx 	 x0Þ
yielding f ðx; tÞ ¼ eikx0 þ pðuÞ

� �
= u þ Djkjað Þ, whence pfaðtÞ satisfies the chain

rule (pfa implicitly depending on x0)

Pð	x0; tÞ ¼
ðt
0

pfaðtÞPð0; t 	 tÞ dt ð96Þ

which corresponds to the m domain relation pfaðuÞ ¼ Pð	x0; uÞ=Pð0; uÞ. Equation

(96) is well known and for any sufficiently well-behaved continuum diffusion

process is commonly used as a definition of the first passage time density [14,70].

For Gaussian processes with propagator Pðx; tÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
4pDt

p
exp 	x2=½4Dt�ð Þ,

one obtains by direct integration of the diffusion equation with appropriate

boundary condition the first passage time density [70]

pðtÞ ¼ x0ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt3

p exp 	 x2
0

4D

� �
ð97Þ

including the asymptotic behaviour pðtÞ � t	3=2 for t ! x2
0=ð4DÞ. In this

Gaussian case, the quantity pfaðtÞ is equivalent to the first passage time density.

From a random walk perspective, this occurs because individual steps all have

the same increment, and the jump length statistics therefore ensure that the
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walker cannot hop across the sink in a long jump without actually hitting the sink

and being absorbed. The behaviour is very different for Lévy jump length

statistics: There, the particle can easily cross the sink in a long jump. Thus,

before eventually being absorbed, it can pass by the sink location many times,

and therefore the statistics of the first arrival will be different from those of the

first passage. In fact, with Pðx; uÞ ¼ ð2pÞ	1 Ð1
	1 eikx u þ Djkjað Þ	1

dk , we find

pfaðuÞ ¼ 1 	

ð1
0

1 	 cos kx0ð Þ= u þ Dkað Þdk

ð1
0

1= u þ Dkað Þdk

ð98Þ

Since
Ð1

0
ðu þ DkaÞ	1

dk ¼ pu1=a	1=ðaD1=a sinðp=aÞÞ and

ð1
0

1 	 cos kx0

u þ Dka
� �ðð2 	 aÞ sin pð2 	 aÞ=2ð Þxa	1

0

ða	 1ÞD ; for u ! 0; a > 1

we obtain the limiting form

pfaðuÞ � 1 	 xa	1
0 u1	1=aD	1þ1=a~��ðaÞ ð99Þ

where ~��ðaÞ ¼ a�ð2 	 aÞ sinðpð2 	 aÞ=2Þ sinðp=aÞ=ða	 1Þ. We note that the

same result may be obtained using the exact expressions for Pðx0; uÞ and Pð0; uÞ
in terms of Fox H-functions and their series expansions [78]. The inverse

Laplace transform of the small u-behavior (99) can be obtained by completing

(99) to an exponential, and then computing the Laplace inversion using the

identity ez ¼ H
1;0
0;1 ½zjð0; 1Þ� in terms of the Fox H-function [78], for which the

exact Laplace inversion can be performed [79]. Finally, series expansion of this

result leads to the long-t form

pfaðtÞ � CðaÞ xa	1
0

D1	1=at2	1=a
ð100Þ

with CðaÞ ¼ a�ð2 	 aÞ�ð2 	 1=aÞ sin p½2 	 a�=2ð Þ sin2ðp=aÞ=ðp2ða 	 1ÞÞ.
Clearly, in the Gaussian limit, the required asymptotic form pðtÞ � x0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt3

p

for the first passage time density is consistently recovered, whereas in the general

case the result (100) is slower than in the universal first passage time density

behavior embodied in Eq. (93), as it should be since the d-trap used in equation

(94) to define the first arrival for Lévy flights is weaker than the absorbing wall

used to properly define the first passage time density. For Lévy flights, the PDF

for first arrival thus scales like (100) (i.e., it explicitly depends on the index a of

the underlying Lévy process), and, as shown below, it differs from the

corresponding first passage time density.
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Before calculating this first passage time density, we first demonstrate the

validity of Eq. (100) by means of a simulation the results of which are shown in

Fig. 14. Random jumps with Lévy flight jump length statistics are performed,

and a particle is removed when it enters a certain interval of width w around the

sink; in our simulations we found an optimum value w � 0:3. As seen in Fig. 14

(note that we plot lg tpðtÞ!) and for analogous results not shown here, relation

(100) is satisfied for 1 < a< 2 , whereas for larger w, the slope increases.

B. Sparre Anderson Universality

To corroborate the validity of the Sparre Anderson universality, we simulate a

Lévy flight in the presence of an absorbing wall—that is, random jumps with

Lévy flight jump length statistics exist along the right semi-axis—and a particle

is removed when it jumps across the origin to the left semi-axis. The results of

such a detailed random walk study are displayed in Figs. 15 and 16. The

expected universal t	3=2 scaling is confirmed for various initial positions x0 and
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α=1.2, x0=0.0, w=0.3
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α=1.2, x0=1.0, w=0.3
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t-2+1/α, α=1.2
t-2+1/α, α=1.8

t-3/2

Figure 14. First arrival PDF for a ¼ 1:2 demonstrating the t	2þ1=a scaling, for optimal trap

width w ¼ 0:3. For comparison, we show the same scaling for a ¼ 1:8, and the power-law t	3=2

corresponding to the first passage time density. The behavior for large w ¼ 1:0 shows a shift of the

decay toward the 	3=2 slope. Note that the ordinate is lg tpðtÞ. Note also that for the initial condition

x0 ¼ 0:0, the trap is activated after the first step, consistent with Ref. [76].
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Lévy stable indices a. Clearly, the scaling for the first arrival as well as the

image method–first passage time density derived below are significantly

different.

The following qualitative argument may be made in favor of the observed

universality of the Lévy flight–first passage time density: The long-time

decay is expected to be governed by short-distance jump events, correspond-

ing to the central region of very small jump lengths for the Lévy stable

jump length distribution. However, in this region the distribution function

is, apart from a prefactor, indistinguishable from the Gaussian distribution,

and therefore the long-time behavior should in fact be the same for any

continuous jump length distribution lðxÞ. In fact, the universal law (93) can

only be modified in the presence of non-Markov effects such as broad waiting

time processes or spatiotemporally coupled walks [45,46,70,80,81]. In terms

of the special case covered by the theorem of Frisch and Frisch [75], in which

the absorbing boundary coincides with the initial position, we can understand

the general situation for finite x0 > 0, as in the long-time limit, the distance x0

becomes negligible in comparison to the diffusion length hjxðtÞji � t1=a:
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x_0=1.00
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t**(-1.5)

First arrival
Images method

Figure 15. Numerical results for the first process time density process on the semi-infinite

domain, for an Lévy flight with Lévy index a ¼ 1:2. Note abscissa, is tpðtÞ. For all initial conditions

x0 ¼ 0:10 1.00, 10.0, and 100.0 the universal slope 	3=2 in the log10–log10 plot is clearly

reproduced, and it is significantly different from the two slopes predicted by the method of images

and the direct definition of the first process time density.
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therefore the asymptotic behavior is necessarily governed by the same

universality.

C. Inconsistency of Method of Images

We now demonstrate that the method of images produces a result, which is neither

consistent with the universal behavior of the first passage time density (93) nor

with the behavior of the PDF of first arrival (100), Given the initial condition

dðx 	 x0Þ, the solution fimðx; tÞ for the absorbing boundary value problem with the

analogous Dirichlet condition fimð0; tÞ ¼ 0 according to the method of images is

given in terms of the free propagator P by the difference [69,70]

fimðx; tÞ ¼ Pðx 	 x0; tÞ 	 Pðx þ x0; tÞ ð101Þ

that is, a negative image solution originating at 	x0 balances the probability flux

across the absorbing boundary. The corresponding pseudo-first passage time

density is then calculated just as Eq. (95). For the image solution in the ðk; uÞ
domain, we obtain

fimðk; uÞ ¼ 2i sinðkx0Þ
u þ Djkja ð102Þ
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Figure 16. Same as in Fig. 15, for a ¼ 2:0, 1.5, 1.0, and 0.6, and for the initial condition

x0 ¼ 10:0. Again, the universal � t	3=2 behavior is obtained.
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for a process which starts at x0 > 0 and occurs in the right half-space. In u space,

the image method–first passage time density becomes

pimðuÞ ¼ 1 	 u

ð1
0

dx

ð1
	1

dk

2p
e	ikx 2i sin kx0

u þ Djkja ð103Þ

After some transformations, we have

pimðuÞ ¼ 1 	 2

p

ð1
0

dx
sin xs1=ax0=D1=a

� �
x 1 þ xað Þ ð104Þ

In the limit of small s, this expression reduces to pimðuÞ � 1 	 �ðaÞx0D	1=au1=a,

with �ðaÞ ¼ ð2=pÞ
Ð1

0
1 þ xað Þ	1

dx ¼ 2=ða sinðp=aÞÞ. In like manner, we find

the long-t form

pimðtÞ � 2�ð1=aÞ x0

paD1=at1þ1=a
ð105Þ

for the image method–first passage time density. In the Gaussian limit a ¼ 2,

expression (105) produces pimðtÞ � x0=
ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt3

p
, in accordance with Eq. (97).

Conversely, forgeneral1 < a< 2,pðtÞ according toEq. (105)woulddecayfaster than

� t	3=2. The failure of the method of images is closely related to the strongly nonlocal

character of Lévy flights. Under such conditions, the random variable x 	 x0 is no

longer independent of x þ x0, so that the method of images is not appropriate.

The proper dynamical formulation of a Lévy flight on the semi-infinite

interval with an absorbing boundary condition at x ¼ 0, and thus the

determination of the first passage time density, has to ensure that in terms of

the random walk picture jumps across the sink are forbidden. This objective can

be consistently achieved by setting f ðx; tÞ � 0 on the left semi-axis, i.e., actually

removing the particle when it crosses the point x ¼ 0. This procedure formally

corresponds to the modified dynamical equation

qf ðx; tÞ
qt

¼ D

k
q2

qx2

ð1
0

f ðx0; tÞ
jx 	 x0ja	1

dx0 � q2

qx2
Fðx; tÞ ð106Þ

in which the fractional integral is confined to the semi-infinite interval. Here, we

have written

k ¼ 2�ð2 	 aÞ
��� cos

pa
2

��� ð107Þ
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After Laplace transformation and integrating over x twice, one obtains

ð1
0

Kðx 	 x0; uÞ f ðx0; uÞ dx0 ¼ ðx 	 x0Þ�ðx 	 x0Þ 	 xpðuÞ 	 Fð0; uÞ ð108Þ

where pðtÞ is the FPTD and the kernel Kðx; uÞ ¼ ux�ðxÞ 	 ðkjxja	1Þ. This equation

is formally a Wiener–Hopf equation of the first kind [82]. After some manipulations

similar to those applied in Ref. 76, we arrive at the asymptotic expression

pðuÞ ’ 1 	 Cu1=2; where C ¼ const ð109Þ

in accordance with the expected universal behavior (93) and with the findings of

reference [76]. Thus, the dynamic equation (106) governs the first passage time

density problem for Lévy flights. We note that due to the truncation of the

fractional integral it was not possible to modify the well-established Grünwald–

Letnikov scheme [61] to numerically solve Eq. (106) with enough computational

efficiency to obtain the direct solution for f ðx; tÞ.

V. BARRIER CROSSING OF A LÉVY FLIGHT

The escape of a particle from a potential well is a generic problem investigated

by Kramers [84] that is often used to model chemical reactions, nucleation

processes, or the escape from a potential well 84. Keeping in mind that many

stochastic processes do not obey the central limit theorem, the corresponding

Kramers escape behavior will differ. For subdiffusion, the temporal evolution of

the survival behavior is bound to change, as discussed in Ref. 85. Here, we

address the question how the stable nature of Lévy flight processes generalizes

the barrier crossing behavior of the classical Kramers problem [86]. An

interesting example is given by the a-stable noise-induced barrier crossing in

long paleoclimatic time series [87]; another new application is the escape from

traps in optical or plasma systems (see, for instance, Ref. 88).

A. Starting Equations

Here, we investigate barrier crossing processes in a reaction coordinate xðtÞ
governed by a Langevin equation [Eq. (25)] with white Lévy noise �aðtÞ. Now,

however, the external potential VðxÞ is chosen as the (typical) double-well shape

VðxÞ ¼ 	 a

2
x2 þ b

4
x4 ð110Þ

compare, for instance, Ref. 89. For convenience, we introduce dimensionless

variables t ! t=t0 and x ! x=x0 with t0 ¼ mZ=a and x2
0 ¼ 1=ðbt0Þ and
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dimensionless noise strength D ! Dt
1=a
0 =x0 (by �aðt0tÞ ! t

1=a	1
0 �aðtÞ) [43], so

that we have the stochastic equation

dxðtÞ
dt

¼ x 	 x3
� �

þ D1=a�aðtÞ ð111Þ

Here, we restrict our discussion to 1�a< 2.

B. Brownian Motion

In normal Brownian motion corresponding to the limit a ¼ 2, the survival

probability S of a particle whose motion at time t ¼ 0 which is initiated in one of

the potential minima xmin ¼ �1, follows an exponential decay SðtÞ ¼ exp

	t=Tcð Þ with mean escape time Tc, such that the probability density function

pðtÞ ¼ 	dS=dt of the barrier crossing time t becomes

pðtÞ ¼ T	1
c exp 	t=Tcð Þ ð112Þ

The mean crossing time (MCT) follows the exponential law

Tc ¼ C exp h=Dð Þ ð113Þ

where h is the barrier height (equal to 1/4 for the potential (110)) in rescaled

variables, and the prefactor C includes details of the potential [84]. We want to

determine how the presence of Lévy stable noise modifies the laws (112) and (113).

C. Numerical Solution

The Langevin equation [Eq. (111)] was integrated numerically following

the procedure developed in Ref. 90. Whence, we obtained the trajectories of

the particle shown in Fig. 17. In the Brownian limit, we reproduce qualitatively the

behavior found in Ref. 89. Accordingly, the fluctuations around the positions of

the minima are localized in the sense that their width is clearly smaller than the

distance between the minima and barrier. In contrast, for progressively smaller

stable index a, characteristic spikes become visible, and the individual sojourn

times in one of the potential wells decrease. In particular, we note that single spikes

can be of the order of or larger than the distance between the two potential minima.

From such single trajectories we determine the individual barrier crossing

times as the time interval between a jump into one well across the zero line

x ¼ 0 and the escape across x ¼ 0 back to the other well. In Fig. 18, we

demonstrate that on average, the crossing times are distributed exponentially,

and thus follow the same law (112) already known from the Brownian case.

Such a result has been reported in a previous study of Kramers’ escape driven

by Lévy noise [91]. In fact, the exponential decay of the survival probability
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Figure 17. Typical trajectories for different stable indexes a obtained from numerical integration

of the Langevin equation [Eq. (111)]. The dashed lines represent the potential minima at �1. In the

Brownian case a ¼ 2, previously reported behavior is recovered [89]. In the Lévy stable case,

occasional long jumps of the order of or larger than the separation of the minima can be observed.

Note the different scales.
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Figure 18. Probability density function pðtÞ of barrier crossing times for a ¼ 1:0 and

D ¼ 10	2:5 � 0:00316. The dashed line is a fit to Eq. (112) with mean crossing time Tc ¼ 1057:8 � 17:7.
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S observed in a Lévy flight is not surprising, given the Markovian nature of the

process. Due to the Lévy stable properties of the noise �a, the Langevin

equation [Eq. (111)] produces occasional long jumps, by which the particle can

cross the barrier. Large enough values of the noise �a thus occur considerably

more frequently than in the Brownian case with Gaussian noise (a ¼ 2), causing

a lower mean crossing time.

The numerical integration of the Langevin equation (111) was repeated for

various stable indices a, and for a range of noise strengths D. From these

simulations we obtain the detailed dependence of the mean crossing time

Tcða;DÞ on both of the parameters, a and D. As expected, for decreasing noise

strength, the mean crossing time increases. For sufficiently large values of 1=D

and fixed a, a power-law trend in the double-logarithmic plot is clearly visible.

These power-law regions, for the investigated range of a are in very good

agreement with the analytical form

Tcða;DÞ ¼ CðaÞ
DmðaÞ ð114Þ

over a large range of D. Equation (114) is the central result of this study. It is

clear from Fig. 19, that this relation is appropriate for the entire a-range studied
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Figure 19. Escape time Tc as a function of noise strength D for various a. Above roughly

lg 1=D ¼ 1:5, a power-law behavior is observed that corresponds to Eq. (114). The curve [Eq. (113)]

for a ¼ 2:0 appears to represent a common envelope.
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in our simulations. For larger noise strength, we observe a breakdown of the

power-law trend, and the curves seem to approach the mean crossing time

behavior of the Brownian process (a ¼ 2) as a common envelope. A more

thorough numerical analysis of this effect will be necessary in order to ascertain

its exact nature. The main topic we want to focus on here is the behavior

embodied in Eq. (114). We note from Fig. 19 that for a ranging roughly between

the Cauchy case a ¼ 1 and the Holtsmark case a ¼ 3=2, the exponent m is almost

constant; that is, the corresponding lines in the log–log plot are almost parallel.

The behavior of both the scaling exponent m and the prefactor C as a function of

the stable index a becomes clear in Fig. 20. There, we recognize a slow variation

of m for values of a between 3/2 and slightly below 2, before a steeper rise in

close vicinity of 2. This apparent divergence must be faster than any power, so

that in the Gaussian noise limit a ¼ 2, the activation follows the exponential law

(113) instead of the scaling form (114). The mðaÞ results are fitted with the

parabola indicated in the plot where, for the analytical results derived below, we

forced the fit function to pass through the point mð1Þ ¼ 1.

D. Analytical Approximation for the Cauchy Case

In the Cauchy limit a ¼ 1, we can find an approximate result for the mean

crossing time as a function of noise strength D. To this end, we start with the
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Figure 20. Scaling exponent m as function of stable index a. The constant behavior mðaÞ � 1

over the range 1 � a/ 1:6 is followed by an increase above 1.6, and it eventually shows an apparent

divergence close to a ¼ 2, where Eq. (113) holds. Corresponding to the right ordinate, we also plot

the decadic logarithm of the amplitude CðaÞ.
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rescaled fractional Fokker–Planck equation [20,46,54,57,71], corresponding to

equation (111),

qPðx; tÞ
qt

¼ q
qx

	x þ x3
� �

Pðx; tÞ þ D
qa

qjxja Pðx; tÞ ð115Þ

Rewriting Eq. (115) in continuity equation form qPðx; tÞ=qt þ qjðx; tÞqx ¼ 0,

that is equivalent to qPðk; tÞqt ¼ ikjðk; tÞ in k space, we obtain for the flux the

expression

jðkÞ ¼ 	 q3

qk3
	 i

q
qk

þ i D signðkÞjkja	1

� �
Pðk; tÞ ð116Þ

To obtain an approximate expression for the mean crossing time, we follow the

standard steps [92] and for large values of 1=D make the constant flux

approximation assuming that the flux across the barrier is a constant, j0,

corresponding to the existence of a stationary solution PstðxÞ. By integration of

the continuity equation, it then follows that equation (112) is satisfied, and

Tc ¼ 1=j0. Due to the low noise strength, we also assume that for all relevant

times the normalization
Ð 0

	1 PstðxÞ ¼ 1 obtains.

In this constant flux approximation, we obtain from equation (116) the

relation

d3PstðkÞ
dk3

þ dPstðkÞ
dk

	 D signðkÞPstðkÞ ¼ 2pij0dðkÞ ð117Þ

in the Cauchy case a ¼ 1. With the ansatz PstðkÞ ¼ C1ez�k þ C2eðz
 Þ�k for k >

< 0,

we find the characteristic equation ðz�Þ3 þ z� � D ¼ 0 solved by the Cardan

expressions z� ¼ 	 1
2

u� þ v�ð Þ þ 1
2

i
ffiffiffi
3

p
u� 	 v�ð Þ, with u3

þ ¼ D 1 þ
ffiffiffiffiffiffiffi
1þ

p�
4=½27D2�Þ=2 ¼ 	v3

	 and v3
þ ¼ D 1 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4=½27D2�

p� 	
=2 ¼ 	u3

	. Matching

the left and right solutions at k ¼ 0, requiring that PstðkÞ 2 R, and assuming

that PstðkÞ in the constant flux approximation is far from the fully relaxed

(t ! 1) solution, we obtain the shifted Cauchy form

PstðkÞ ¼
j0

2�þ�	

�þ

x þ �	ð Þ2þ�2
þ
;

; �þ ¼ 1

2
uþ þ vþð Þ; �	 ¼

ffiffiffi
3

p

2
uþ 	 vþð Þ ð118Þ

With the normalization
Ð 0

	1 PstðxÞ dx ¼ 1, we arrive at the mean crossing time

Tc ¼
p

4�þ�	
1 þ 2

p
arctan

�	
�þ

� �
ð119Þ
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For D � 1, �þ � D=2 and �	 � 1, so that Tc � p=D. In comparison with the

numerical result corresponding to Fig. 18 with Tc ¼ 1057:8 for D ¼ 0:00316, we

calculate from our approximation Tc � 994:2, which is within 6% of the

numerical result. This good agreement also corroborates the fact that the constant

flux approximation appears to pertain to Lévy flights.

E. Discussion

We observe from numerical simulations an exponential decrease of the survival

probability SðtÞ in the potential well, at the bottom of which we initialize the

process. Moreover, we find that the mean crossing time assumes the scaled form

(114) with scaling exponent m being approximately constant in the range 1 � a /

1:6, followed by an increase before the apparent divergence at a ¼ 2, that leads

back to the exponential form of the Brownian case, Eq. (113). An analytic

calculation in the Cauchy limit a ¼ 1 reproduces, consistently with the constant

flux approximation commonly applied in the Brownian case, the scaling

Tc � 1=D, and, within a few percent error, the numerical value of the mean

crossing time Tc.

Employing scaling arguments, we can restore the dimensionality into

expression (114) for the mean crossing time. From our model potential (110),

where we absorb the friction factor mZ via a ! a=ðmZÞ and b ! b=ðmZÞ, we find

that the minima are xmin ¼ �
ffiffiffiffiffiffiffiffi
a=b

p
and the barrier height�V ¼ a2=ð4bÞ . In terms

of the rescaled prefactors a and b with dimensions ½a� ¼ sec	1 and ½b� ¼
sec	1cm	2, we can now reintroduce the dimensions via t0 ¼ 1=a and x2

0 ¼ b=a. In

the domain where Tc � 1=D (i.e., mðaÞ � 1), we then have the scaling

Tc �
xa0
D

¼ ða=bÞa=2

D
¼ jxminja

D
ð120Þ

by analogy with the result reported in Ref. 91. However, we emphasiz two caveats

based on our results: (i) The linear behavior in 1=D is not valid over the entire

a-range. For larger values, a ’ 1:6, the scaling exponent mðaÞ assumes nontrivial

values; then, the simple scaling used to establish Eq. (120) has to be modified. It is

not immediately obvious how this should be done systematically. (ii) From relation

(120) it cannot be concluded that the mean crossing time is independent of the

barrier height �V , despite the fact that Tc depends on the distance jxminj from the

barrier only. The latter statement is obvious from the expressions for xmin and �V

derived for our model potential: The location of the minima relative to the barrier

is in fact coupled to the barrier height. Therefore, a random walker subject to Lévy

noise senses the potential barrier and does not simply move across it with the

characteristic time given by the free mean-square displacement. Apparently, the

activation for the mean crossing time as a function of noise strength D varies only

as a power law instead of the standard exponential behaviour.
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The time dependence of the probability density 	dSðtÞ=dt for first barrier

crossing time of a Lévy flight process is exponential, just as the standard

Brownian case. This can be understood qualitatively because the process is

Markovian. From the governing dynamical equation (115), it is clear that the

relaxation of modes is exponential, compare Ref. 46. For low noise strength D,

the barrier crossing will be dominated by the slowest time-eigenmode ’e	l1t

with eigenvalue l1. This is indeed similar to the first passage time problem of

Lévy flights discussed in the previous section.

VI. DISSIPATIVE NONLINEARITY

The alleged ‘‘pathology’’ of Lévy flights is related to their divergent variance,

unless confined by a steeper than harmonic external potential. There indeed exist

examples of processes where the diverging variance does not pose a problem: for

example, diffusion in energy space [93], or the Lévy flight in the chemical

coordinate of diffusion along a polymer chain in solution, where Lévy jump

length statistics are invoked by intersegmental jumps, which are geometrically

short in the embedding space [94]. Obviously however, for a particle with a finite

mass moving in Euclidian space, the divergence of the variance is problematic.7

There are certain ways of overcoming this difficulty: (i) by a time cost through

coupling between x and t, producing Lévy walks [45,98], or (ii) by a cutoff in the

Lévy noise to prevent divergence [99,100]. While (i) appears a natural choice, it

gives rise to a nonMarkov process. Conversely, (ii) corresponds to an ad hoc

measure.

A. Nonlinear Friction Term

Here, we pursue an alternative, physical way of dealing with the divergence;

namely, inclusion of nonlinear dissipative terms. They provide a mechanism, that

naturally regularizes the Lévy stable PDF PðV ; TÞ of the velocity distribution.

Dissipative nonlinear structures occur naturally for particles in a frictional

environment at higher velocities [101]. A classical example is the Riccati

equation MdvðtÞ=dt ¼ Mg 	 KvðtÞ2
for the motion of a particle of mass M in a

gravitational field with acceleration g [102], autonomous oscillatory systems

with a friction that is nonlinear in the velocity [101,103], or nonlinear corrections

to the Stokes drag as well as drag in turbulent flows [104]. The occurrence of a

non-constant friction coefficient gðVÞ leading to a nonlinear dissipative force

7Note that in fact the regular diffusion equation includes a similar flaw, although less significant: Due

to its parabolic nature, it features an infinite propagation speed; that is, even at very short times, there

exists a finite value of Pðx; tÞ for large jxj. In that case, this can be removed by invoking the

telegrapher’s (Cattaneo) equation [95–97]. (Editor’s note: For a critical discussion of this procedure,

see Risken [12, p. 257 et seq.)
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	gðVÞV was highlighted in Klimontovich’s theory of nonlinear Brownian

motion [105]. In what follows, we show that dissipative nonlinear structures

regularize a stochastic process subject to Lévy noise, leading to finite variance of

velocity fluctuations and thus a well-defined kinetic energy. The velocity PDF

PðV ; tÞ associated with this process preserves the properties of the Lévy process

for smaller velocities; however, it decays faster than a Lévy stable density and

thus possesses a physical cutoff. In what follows, we start with the asymptotic

behavior for large V and then address the remaining, central part of PðV ; TÞ, that

preserves the Lévy stable density property.

B. Dynamical Equation with Lévy Noise and Dissipative Nonlinearity

The Langevin equation for a random process in the velocity coordinate V is

usually written as [59]

dVðtÞ
dt

þ gðVÞVðtÞ ¼ �aðtÞ ð121Þ

with the constant friction g0 ¼ gð0Þ. �aðtÞ is the a-stable Lévy noise defined in

terms of a characteristic function (see Section I). The characteristic function of

the velocity PDF PðV ; tÞ, Pðk; tÞ � FfPðV ; tÞg is then governed by the

dynamical equation [59]

qPðk; tÞ
qt

¼ 	g0k
qPðk; tÞ

qk
	 DjkjaPðk; tÞ ð122Þ

This is exactly the V-space equivalent of the Lévy flight in an external harmonic

potential discussed in the introduction. Under stationary conditions the

characteristic function assumes the form

Pstðk; tÞ ¼ exp 	Djkja

g0a

� �
ð123Þ

So that the PDF PðV; tÞ converges toward a Lévy stable density of index a. This

stationary solution possesses, however, a diverging variance.

To overcome the divergence of the variance hV2ðtÞi, we introduce into Eq.

(121) the velocity-dependent dissipative nonlinear form gðVÞ for the friction

coefficient [101,105]. We require gðVÞ to be symmetric in V [105], assuming

the virial expansion up to order 2N

gðVÞ ¼ g0 þ g2V2 þ � � � þ g2NV2N ; g2N > 0 ð124Þ

The coefficients g2n are assumed to decrease rapidly with growing n (n 2 N). To

determine the asymptotic behavior, it is sufficient to retain the highest power 2N.
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More generally, we will consider a power gnjV jn with n 2 Rþ and gn > 0. We will

show that, despite the input driving Lévy noise, the inclusion of the dissipative

nonlinearity (124) ensures that the resulting process possesses a finite variance.

To this end, we pass to the kinetic equation for PðV ; tÞ, the fractional Fokker–

Planck equation [20,46,54,60,64]

qPðV ; tÞ
qt

¼ q
qV

VgðVÞPðV ; tÞð Þ þ D
qaPðV ; tÞ
qjV ja ð125Þ

The nonlinear friction coefficient gðVÞ thereby takes on the role of a confining

potential: while for g0 ¼ gð0Þ the drift term Vg0, as mentioned before, is just the

restoring force exerted by the harmonic Ornstein–Uhlenbeck potential, the next

higher-order contribution g2V3 corresponds to a quartic potential, and so forth.

The fractional operator qa=qjV ja in Eq. (125) for the velocity coordinate for

1 < a< 2 is explicitly given by [20,64]

daPðVÞ
djVja ¼ 	k

d2

dV2

ð1
	1

PðV 0Þ
jV 	 V 0ja	1

dV 0 ð126Þ

by analogy with the x-domain operator (31), with k being defined in Eq. (107).

C. Asymptotic Behavior

To derive the asymptotic behavior of PðV; tÞ in the presence of a particular form of

gðVÞ, it is sufficient to consider the highest power, say, gðVÞ � gnjV jn. In

particular, to infer the behavior of the stationary PDF PstðVÞ for V ! 1, it is

reasonable to assume that we can truncate the integral
Ð1
	1 dV 0 in the fractional

operator (126) at the pole V 0 ¼ V , since the domain of integration for the

remaining left-side operator is much larger than the cutoff right-side domain.

Moreover, the remaining integral over ð	1;V � also contains the major portion of

the PDF. For V ! þ1, we find in the stationary state after integration over V,

gnV
nþ1PstðVÞ ’ Dk

d

dV

ðV
	1

PstðV 0Þ
ðV 	 V 0Þa	1

dV 0 ð127Þ

We then use the ansatz PstðVÞ � C=jVjm, m > 0. With the approximationÐ V

	1 PstðV 0Þ=ðV 	 V 0Þa	1
dV 0 � V1	a

Ð V

	1 PstðV 0ÞdV 0 � V1	a
Ð1
	1 PstðV 0ÞdV 0 ¼

V1	a we obtain the asymptotic form

PstðVÞ ’ CaD

gnjV jm ;m ¼ aþ nþ 1 ð128Þ
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valid for V ! �1 due to symmetry. We conclude that for all n>ncr ¼ 2 	 a the

variance hV2i is finite, and thus a dissipative nonlinearity whose highest power n
exceeds the critical value ncr counterbalances the energy supplied by the Lévy

noise �aðtÞ.

D. Numerical Solution of Quadratic and Quartic Nonlinearity

Let us consider dissipative nonlinearity up to the quartic order contribution,

gðVÞ ¼ g0 þ g2V2 þ g4V4. According to the previous result (128), the stationary

PDF for the quadratic case with g2 > 0 and g4 ¼ 0 falls off like PstðVÞ � jV j	a	3
,

and thus 8a 2 ð0; 2Þ the variance hV2i is finite. Higher-order moments such as the

fourth-order moment hV4i are, however, still infinite. In contrast, if g4 > 0, the

fourth-order moment is finite. We investigate this behavior numerically by solving

the Langevin equation (121); compare Ref. 64 for details.

In Fig. 21 we show the asymptotic behavior of the stationary PDF PstðVÞ for

three different sets of parameters. Clearly, in all three cases the predicted power-

law decay is obtained, with exponents that, within the estimated error bars agree

well with the predicted relation for m according to Eq. (128).8

8From the scattering of the numerical data after repeated runs, see Fig. 7.
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Figure 21. Power-law asymptotics of the stationary PDF, ln–ln scale. We observe the expected

scaling with exponent m from Eq. (128). In the graph, we also indicate the number Ntra of trajectories

of individual length N simulated to produce the average PDF.
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E. Central Part of PðV; tÞ

The nonlinear damping (124) mainly affects larger velocities, while smaller

velocities (V � 1) are mainly subject to the lowest-order friction gð0Þ. We

therefore expect that in the central region close to V ¼ 0, the PDF PðV; TÞ
preserves it Levy stable density character. This is demonstrated in Fig. 22,

where the initial power-law decay of the Levy stable density eventually gives

way to the steeper decay caused by the nonlinear friction term. In general, the

PDF shows transitions between multiple power laws in the case when several

higher-order friction terms are retained. The turnover point from the unaffected

Levy stable density to steeper decay caused by nonlinear friction depends on

the ratio g0 : g2n, where 2n is the next higher-order nonvanishing friction

coefficient.

In Fig. 23, we show the time evolution of the variance hV2ðtÞi for various

combinations of Lévy index a and magnitude g2 of the quadratic nonlinearity

(g0 ¼ 1:0 and g4 ¼ 0:0). For all cases with finite g2 (g2 ¼ 0:1), we find

convergence of the variance to a stationary value. For the two smaller a values

(1.2 and 1.5), we observe some fluctuations; however, these are comparatively

small with respect to the stationary value they oscillate around. For a ¼ 1:8,

the fluctuations are hardly visible, and in fact the stationary value is practically

the same as in the Gaussian case a ¼ 2:0. In contrast, the case with vanishing
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Figure 22. Stationary PDF PstðVÞ for g0 ¼ 1:0 and (i) g2 ¼ 0:0001 and g4 ¼ 0, and (ii) g2 ¼ 0

and g4 ¼ 0:000001, with a ¼ 1:0. The lines indicate the slopes 	1, 	3, and 	5.
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g2 (and a ¼ 1:2) clearly shows large fluctuations requiring a right ordinate

whose span is roughly two orders of magnitude larger than that of the left

ordinate.

Similarly, in Fig. 24, we show the fourth order moment hV4ðtÞi as a function

of time. It is obvious that only for finite g4 (g4 ¼ 0:01 and a ¼ 1:8) the moment

converges to a finite value that is quite close to the value for the Gaussian case

(a ¼ 2:0) for which all moments converge. In contrast to this behavior, both

examples with vanishing g4 exhibit large fluctuations. These are naturally much

more pronounced for smaller Lévy index (a ¼ 1:2, corresponding to the right

ordinate).

F. Discussion

Strictly speaking, all naturally occurring power-laws in fractal or dynamic

patterns are finite. Scale-free models nevertheless provide an efficient description

of a wide variety of processes in complex systems [16,20,46,106]. This

phenomenological fact is corroborated by the observation that the power-law

properties of Lévy processes persist strongly even in the presence of cutoffs [99]
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this curve corresponding to the right ordinate.

486 aleksei v. chechkin et al.



and, mathematically, by the existence of the generalized central limit theorem

due to which Lévy stable laws become fundamental [69]. A categorical question

is whether in the presence of Lévy noise, there exists a physical cause to remove

the consequential divergences. A possible, physically reasonable answer is given

by introducing a nonconstant friction coefficient gðVÞ, as occurs in various

classical systems. Here, we present a concise derivation of the regularization of a

stochastic process in velocity space driven by Lévy stable noise, in the presence

of dissipative nonlinearities.

These dissipative nonlinearities remove the divergence of the kinetic energy

from the measurable subsystem of the random walker. In idealized

mathematical language, the surrounding heat bath provides an infinite amount

of energy through the Lévy noise, and the coupling via the nonlinear friction

dissipates an infinite amount of energy into the bath, and thereby introduces a

natural cutoff in the kinetic energy distribution of the random walker subsystem.

Physically, such divergences are not expected, but correspond to the limiting

behavior associated with large numbers in probability theory. In this section, we

showed that both statements can be reconciled, and that Lévy processes are

indeed physical.
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VII. SUMMARY

A hundred years after Einstein’s seminal work [4], the theory of stochastic

processes has been put on solid physical and mathematical foundations, at the

same time playing a prominent role in many branches of science [36,107–109].

Lévy flights represent a widely used tool in the description of anomalous

stochastic processes. By their mathematical definition, Lévy flights are

Markovian and their statistical limit distribution emerges from independent

identically distributed random variables, by virtue of the central limit theorem.

Despite this quite straightforward definition, Lévy flights are less well

understood than one might at first assume. This is due to their strongly

nonlocal character in space, these long-range correlations spanning essentially

the entire available geometry; as exemplified by the infinite range of the

integration boundaries in the associated fractional operator.

In this review, we have addressed some of the fundamental properties of

random processes, these being the behaviour in external force fields, the first

passage and arrival behaviour, as well as the Kramers-like escape over a

potential barrier. We have examined the seemingly pathological nature of Lévy

flights and showed that dissipative non-linear mechanisms cause a natural cutoff

in the PDF, so that with a finite experimental range the untruncated Lévy flight

still provides a good description.

These investigations have been almost entirely based on fractional diffusion

and Fokker–Planck equations with a fractional Riesz derivative and have turned

out to be a convenient basis for mathematical manipulations, while at the same

time being easy to interpret in the context of a dynamical approach.
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VIII. APPENDIX. NUMERICAL SOLUTION METHODS

In this appendix, we briefly review the numerical techniques, which have been

used in this work to determine the PDF from the fractional Fokker–Planck

equation [Eq. (38)] and the Langevin equation [Eq. (37)].

A. Numerical solution of the fractional Fokker–Planck equation

[Eq. (38)] via the Grünwald–Letnikov Method

From a mathematical point of view, the fractional Fokker–Planck equation

[Eq. (38)] is an first-order partial differential equation in time, and of nonlocal,

integrodifferential kind in the position coordinate x. It can be solved numerically

via an efficient discretization scheme following Grünwald and Letnikov [110–112].
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Let us designate the force component on the right-hand side of Eq. (38) as


FFðx; tÞ � q
qx

dV

dx
P

� �
ð129Þ

and the diffusion part as


DDðx; tÞ � qaP

qjxja ð130Þ

With these definitions, we can rewrite Eq. (38) in terms of a discretisation

scheme as

Pj;nþ1 	 Pj;n

�t
¼ 
FFj;n þ 
DDj;n ð131Þ

where we encounter the term


FFj;n ¼ xc	2
j ðc 	 1ÞPj;n þ xj

Pjþ1;n 	 Pj	1;n

2�x

� �
ð132Þ

which is the force component of the potential VðxÞ ¼ jxjc=c. Here, �t and �x are

the finite increments in time and position, such that tn ¼ ndt and xj ¼ j�x, for

n ¼ 0; 1; . . . ;N and j ¼ 0; 1; . . . ; J, and Pj;n � Pðxj; tnÞ. Due to the inversion

symmetry of the kinetic equation (38), it is sufficient to solve it on the right semi-

axis. In the evaluation of the numerical scheme, we define xJ such that the PDF in

the stationary state is sufficiently small, say, 10	3, as determined from the

asymptotic form (64).

In order to find a discrete time and position expression for the fractional

Riesz derivative in Eq. (130), we employ the Grünwald–Letnikov scheme

[110–112], whence we obtain


DDj;n ¼ 	 1

2ð�xÞa cosðpa=2Þ
XJ

q¼0

xq Pjþ1	q;n þ Pj	1þq;n

� �
ð133Þ

where

xq ¼ ð	1Þq a
q

� �
ð134Þ

with

a
q

� �
¼ aða	 1Þ . . . ða	 q þ 1Þ=q!; q > 0

1; q < 0

�
ð135Þ

and 1 < a�2. Note that in the limiting case a ¼ 2 only three coefficients

differ from zero, namely, x0 ¼ 1, x1 ¼ 	2, and x2 ¼ 1, corresponding to the
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standard three-point difference scheme for the second order derivative,

d2gðxjÞ=dx2 � ðgjþ1 	 2gj þ gj	1Þ=ð�xÞ2
. In Fig. 25, we demonstrate that with

decreasing a, an increasing number of coefficients contribute significantly to the

sum in Eq. (133). This becomes particularly clear in the logarithmic

representation in the bottom plot of Fig. 25. We note that the condition

m � �t=ð�xÞa < 0:5 ð136Þ

is needed to ensure the numerical stability of the discretisation scheme. In our

numerical evaluation, we use �x ¼ 10	3, and therefore the associated time

increment �t � 10	5 . . . 10	6, depending on the actual value of a. The initial

condition for Eq. (131) is P0;0 ¼ 1=�x.

In Fig. 26, the time evolution of the PDF is shown together with the evolution

of the force and diffusion components defined by Eqs. (129) and (130),

Figure 25. Coefficients xq in Grünwald-Letnikov approximation for different values of the Lévy

index a ¼ 1:9, 1.5, and 1.1.
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Figure 26. Further details of the Grünwald–Letnikov scheme. Left: Time evolution of the PDF

as obtained by numerical solution of Eq. (131) at c ¼ 4 and a ¼ 1:2. Right: Time evolution of the

diffusion component (130) (thick lines), and of the force term (129) (thin lines).
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respectively. Accordingly, at the initial stage of the relaxation process, the

diffusion component prevails. The force term grows with time, until in

the stationary state 
FF ! 	
DD. This is particularly visible in the bottom right

part of Fig. 26, which corresponds to the stationary bimodal state shown to the

left.

B. Numerical Solution of the Langevin Equation [Eq. (25)]

An alternative way to obtain the PDF is to sample the trajectories determined by

the Langevin equation [Eq. (25)]. To this end, Eq. (37) is discretized in time

according to

xnþ1 ¼ xn þ FðxnÞ�t þ ð�tÞ1=a�aðn�tÞ ð137Þ

with tn ¼ n�t for n ¼ 0; 1; 2; . . . , and where FðxnÞ is the dimensionless force

field at position xn. The sequence f�aðn�tÞg is a discrete-time approximation of

a white Lévy noise of index a with a unit scale parameter. That is, the sequence

of independent random variables possessing the characteristic function

p̂p ¼ exp 	jkjað Þ. To generate this sequence f�aðn�tÞg, we have used the method

outlined in Ref. 113.
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