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Abstract
We investigate the dynamics of a single local denaturation zone in a DNA
molecule, a so-called DNA bubble, in the presence of single-stranded DNA
binding proteins (SSBs). In particular, we develop a dynamical description of
the process in terms of a two-dimensional master equation for the time evolution
of the probability distribution of having a bubble of size m with n bound SSBs,
for the case when m and n are the slowest variables in the system. We derive
explicit expressions for the equilibrium statistical weights for a given m and
n, which depend on the statistical weight u associated with breaking a base-
pair interaction, the loop closure exponent c, the cooperativity parameter σ0,
the SSB size λ, and binding strength κ . These statistical weights determine,
through the detailed balance condition, the transfer coefficient in the master
equation. For the case of slow and fast binding dynamics the problem can be
reduced to one-dimensional master equations. In the latter case, we perform
explicitly the adiabatic elimination of the fast variable n. Furthermore, we find
that for the case that the loop closure is neglected and the binding dynamics
is vanishing (but with arbitrary σ0) the eigenvalues and the eigenvectors of the
master equation can be obtained analytically, using an orthogonal polynomial
approach. We solve the general case numerically (i.e., including SSB binding
and the loop closure) as a function of statistical weight u, binding protein size
λ, and binding strength κ , and compare to the fast and slow binding limits. In
particular, we find that the presence of SSBs in general increases the relaxation
time, compared to the case when no binding proteins are present. By tuning
the parameters, we can drive the system from regular bubble fluctuation in
the absence of SSBs to full denaturation, reflecting experimental and in vivo
situations.
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1. Introduction

The Watson–Crick double-helix, or, more precisely, its B-form, is the thermodynamically
stable configuration of a DNA molecule under physiological conditions (normal salt and
room/body temperature). This stability is effected first by Watson–Crick H-bonding, that is
essential for the specificity of base-pairing, i.e., for the key-lock principle according to which
the base (nucleotide) adenine (A) exclusively binds to thymine (T), and guanine (G) only to
cytosine (C). Base-pairing therefore guarantees the high level of fidelity during replication
and transcription. The second contribution to DNA-helix stability comes from base-stacking
between neighbouring base-pairs: through hydrophobic interactions between the planar
aromatic bases, that overlap geometrically and electronically, the base-pair stacking stabilizes
the helical structure against the repulsive electrostatic force between the negatively charged
phosphate groups located at the outside of the DNA double-strand. While hydrogen bonds
contribute only little to the helix stability, the major support comes from base-stacking [1, 2].

An important feature of double-stranded DNA (dsDNA) is the ease with which its com-
ponent chains can come apart and rejoin, without damaging the chemical structure of the two
single-strands. This is crucial to many physiological processes such as replication via the
proteins DNA helicase and polymerase, and transcription through RNA polymerase. During
these processes, the proteins unzip a certain region of the double-strand, to obtain access to the
genetic information stored in the bases in the core of the double-helix [1, 3, 4]. This unzipping
corresponds to breaking the hydrogen bonds between the base-pairs. Classically, the so-called
melting and reannealing behaviour of DNA has been studied in solution in vitro by increasing
the temperature, or by titration with acid or alkali. During thermal melting, the stability of the
DNA duplex is related to the content of triple-hydrogen-bonded G–C base-pairs: the larger
the fraction of G–C pairs, the higher the required melting temperature or pH value. Thus,
under thermal melting, dsDNA starts to unwind in regions rich in double-hydrogen-bonded
A–T base-pairs, and then proceeds to regions of progressively higher G–C content [1, 2].
Conversely, molten, complementary chains of single-stranded DNA (ssDNA) begin to reasso-
ciate and eventually reform the original double-helix under incubation at roughly 25◦ below the
melting temperature Tm [1]. The relative amount of molten DNA in a solution can be measured
by UV spectroscopy, revealing large changes in absorption in the presence of perturbed base-
stacking [5]. Careful melting studies allow one to obtain accurate values for the stacking ener-
gies of the various combinations of neighbouring base-pairs, a basis for detailed thermodynamic
modelling of DNA-melting and DNA-structure per se [6, 7]. In fact, thermal melting data have
been used to identify coding sequences of the genome due to the different G–C content [8–10].

While the double-helix is the thermodynamically stable configuration of the DNA
molecule below Tm (or at non-denaturing pH), even at physiological conditions there exist
local denaturation zones, so-called DNA-bubbles, predominantly in A–T-rich regions of the
genome [5, 11]. Driven by ambient thermal fluctuations, a DNA-bubble is a dynamical entity
whose size varies by thermally activated zipping and unzipping of successive base-pairs at the
two forks where the ssDNA-bubble is bordered by the dsDNA-helix. This incessant zipping
and unzipping leads to a random walk in the bubble-size coordinate, and to a finite lifetime
of DNA-bubbles under non-melting conditions, as eventually the bubble closes due to the
comparatively large loop initiation barrier [5, 11]. DNA-breathing opens up a few tens of
base-pairs [12]. It has been demonstrated recently that by fluorescence correlation methods
the fluctuations of DNA-bubbles can be explored on the single molecule level, revealing a
multistate kinetics that corresponds to the picture of successive zipping and unzipping of
single base-pairs1. At room temperature, the characteristic closing time of an unbounded

1 Essentially, the zipper model advocated by Kittel [13].
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base-pair was found to be in the range 10–100 µs corresponding to an overall bubble lifetime
in the range of tens of milliseconds [14]. The multistate nature of the DNA-breathing was also
confirmed by a UV-light absorption study [15].

The presence of fluctuating DNA-bubbles is essential to the understanding of the binding
of single-stranded DNA binding proteins (SSBs) that selectively bind to ssDNA, and that
play important roles in replication, recombination and repair of DNA [16]. One of the key
tasks of SSBs is to prevent the formation of secondary structure in ssDNA [17]. From the
thermodynamical point of view one would therefore expect SSBs to be of an effectively helix-
destabilizing nature, and thus to lower Tm [18]. However, it was found that neither the gp32
protein from the T4 phage nor E. coli SSBs do [18, 19, 17]. An explanation to this apparent
paradox was suggested to consist in a kinetic block, i.e., a kinetic regulation such that the rate
constant for the binding of SSBs is smaller than the one for bubble closing [19, 20]. This
hypothesis could recently be verified in extensive single molecule setups using mechanical
overstretching of dsDNA by optical tweezers in the presence of T4 gene 32 protein [21, 22].

In what follows, we develop a quantitative dynamical model for the description of the
competition between SSB-binding and DNA-bubble fluctuations. Based on the free energy of
the Poland–Scheraga approach to DNA-melting, we establish a master equation that governs the
size change of a bubble simultaneously to the number change of bound proteins. In comparison
to previous approaches to DNA-bubble fluctuations in the absence of binding proteins [23, 24],
our discrete formalism allows for the explicit consideration of the cooperative bubble initiation
brought about by the activation factor σ0 due to the breaking of stacking interactions [5–7, 11].
We consider cases of fast and vanishing binding/unbinding of SSBs, for which the (2 + 1)-
dimensional description (coordinates m and n plus time t) can be reduced to (1+1) dimensions,
as well as the general case. In particular, we quantify the free energy landscape and the lifetime
of a bubble as influenced by the presence of SSBs. After setting up the general framework
in the next section, we proceed by defining the transfer coefficients in our master equation.
We then discuss three cases of SSB-bubble dynamics by means of the relaxation time and the
effective free energy, before drawing our conclusions. In the four appendices, we collect some
more formal derivations.

2. General two-dimensional framework

Bearing in mind typical in vitro studies on designed DNA with a poly-(AT) bubble zone2, we
consider a dsDNA segment with M internal base-pairs that is clamped at the two ends and
immersed in a bath of single-stranded DNA binding proteins (or single-stranded DNA binders,
SSBs). Apart from the connection to the experimental setup, we note that at temperatures well
below the melting temperature Tm, a one-bubble picture is a good approximation due to the
rather high bubble initiation barrier; see appendix D for details. A schematic diagram of the
system we have in mind is depicted in figure 1. We assume that there are two slow variables in
the problem: m, which is the number of broken base-pairs in the bubble; and n, which is the
number of SSBs bound to the bubble. The aim is to understand how m and n change in time.

The individual dynamics of bubble breathing, and SSB attachment and detachment, are
stochastic processes, and hence must be described in terms of a Langevin equation, or a
probability distribution. Moreover, bubble fluctuation and SSB binding dynamics are coupled

2 In the experimental protocol of [25], different variants of AT-zones were compared, some of which could in principle
produce secondary structure. Dynamically, no difference in behaviour could be discerned, such that it seems legitimate
to ascribe to the homopolymer, poly-(AT) bubble a somewhat more general meaning; analogously, we could have a
poly-(GC) bubble with physical loop-clamps in mind, that would show similar breathing at slightly more elevated T .
The investigation of the dynamical properties of heteropolymers is left for future studies.
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Figure 1. DNA bubble in a region which is clamped at the ends, and immersed in a bath of
single-stranded DNA binding proteins (or single-stranded DNA binders, SSBs).

processes. We introduce a joint probability distribution P(m, n, t) for the probability of having
a bubble of size m with n bound SSBs at time t , and proceed by assuming that transitions can
occur only one step in the forward or backward direction (i.e., m or n are each increased or
decreased by one). This assumption is reasonable since the dynamics for nanometre-sized
particles moving in a liquid medium is strongly overdamped (low Reynolds number motion)
and zipping requires the hinge-like guidance by a zipped vicinal base-pair; this multistep
kinetics picture is also supported by experiment [25]. The transition probability for forward
and backward motion is described by the transfer coefficients t+(m, n), t−(m, n) (governing an
increase/decrease in bubble size m) and r+(m, n), r−(m, n) (controlling an increase/decrease
in the number n of bound SSBs), respectively. We limit the study to bubbles, that are initiated
in the middle part of the potential DNA bubble zone, for temperatures below the melting
temperature in order to avoid complications associated with end effects [26]. We then describe
the dynamics through a master equation for the probability distribution P(m, n, t),

∂

∂ t
P(m, n, t) = t+(m − 1, n)P(m − 1, n, t) + t−(m + 1, n)P(m + 1, n, t)

− (t+(m, n) + t−(m, n))P(m, n, t)

+ r+(m, n − 1)P(m, n − 1, t) + r−(m, n + 1)P(m, n + 1, t)

− (r+(m, n) + r−(m, n))P(m, n, t). (1)

Notice that the maximum number of bound SSBs, for a given bubble size m, is

nmax(m) = 2[m/λ], (2)

where λ is the number of bases occupied by a binding protein if bound onto one of the single-
strands, i.e., the size of an SSB measured in units of a single base. For SSBs, typical sizes λ

are of the order of 10 bases. Moreover, [·] is the Landau bracket returning the integer value of
the argument, and the maximum number of SSBs per strand is nmax/2. Thus, the bubble size
m constrains n such that 0 � n � nmax(m). For a completely unzipped DNA region, m = M ,
the maximum number of bound SSBs is N = nmax(M) = 2[M/λ]. The (m, n)-lattice, on
which the above problem is defined, is illustrated in figure 2.

At this point a few words concerning the boundary conditions we want to impose on
equation (1) are in order. We require reflecting boundary conditions at m = M , i.e.,

t+(m = M, n) = 0. (3)
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Figure 2. The lattice, on which the general two-dimensional master equation is solved; see
equation (1) (compare also to the corresponding eigenvalue equation (12)). The boundary
conditions given by equations (3)–(7) are also schematically illustrated. The maximum n-value is
N = nmax(M) = 2[M/λ].

This condition states that, due to the clamping, the bubble size cannot increase beyond m = M .
Analogously,

t−(m = 0, n = 0) = 0. (4)

Furthermore, it is obvious that the bubble size m and the number n of bound SSBs are coupled
in the sense that if m equals an integer multiple of λ and n = nmax(m) or n = nmax(m) − 1,
then at least one of the two strands is completely filled and it is not possible for the bubble to
decrease in size, i.e., we have

t−(m = kλ, n = nmax(m)) = 0,

t−(m = k ′λ, n = nmax(m) − 1) = 0,
(5)

where k, k ′ = 0, 1, . . . , M , as is illustrated in figure 2. Similarly, for the transfer coefficients
for the number of SSBs attached to the bubble, it has to be guaranteed that

r−(m, n = 0) = 0, (6)

and

r+(m, n = nmax(m)) = 0. (7)

These conditions declare that if there are no SSBs bound to the DNA, no unbinding can
take place; and that when the bubble is completely filled with SSBs, no additional binding
proteins can bind3. We note the fact that the form of the coupled DNA bubble and SSB

3 For equation (1) to be completely specified we need to describe the transfer coefficients just outside the lattice as
well; from the detailed balance condition (17) and the boundary conditions (3)–(7), we have

t−(m = M + 1, n) = 0 (8)

and

t+(m = kλ − 1, nmax(m) < n � nmax(m + 1)) = 0, (9)

as well as

r+(m, n = −1) = r−(m, n = nmax(m) + 1) = 0. (10)
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dynamical equations as contained in equation (1), together with the boundary conditions (3)–
(7), necessarily have to be imposed whenever m and n are the relevant slow variables of the
problem (as long as the dynamics is strongly damped). Explicit expressions for the transfer
coefficients for interior points on the lattice (see figure 2) will be constructed in the next section,
based on the detailed balance condition.

We are mainly interested in the dynamics caused by the fluctuations. Instead of the master
equation in time as given by equation (1), we use the corresponding eigenvalue equation to
obtain the mode relaxation. To this end, we decompose the probability density P(m, n, t) into
the eigenmodes [27]

P(m, n, t) =
∑

p

cp Q p(m, n) exp(−ηpt) (11)

where the index p labels different eigenmodes. The coefficients cp are determined by the initial
condition. Inserting this expansion into equation (1), we arrive at the eigenvalue equation

t+(m − 1, n)Q p(m − 1, n) + t−(m + 1, n)Q p(m + 1, n)

− (t+(m, n) + t−(m, n))Q p(m, n)

+ r+(m, n − 1)Q p(m, n − 1) + r−(m, n + 1)Q p(m, n + 1)

− (r+(m, n) + r−(m, n))Q p(m, n) = −ηp Q p(m, n), (12)

with eigenvalues ηp and eigenvectors Q p(m, n). We prefer using an eigenvalue approach
(spectral representation) to the present problem rather than solving the master equation in real
time, since the eigenvalue approach avoids time discretization problems. Also, the eigenvalue
approach directly provides the spectral density of relaxation times,which can be experimentally
measured (see below). In general we have to solve equation (12) numerically (although limiting
behaviour is analytically obtained in a later section), the procedure of which is described in
appendix A.

A convenient, experimentally accessible, quantity is the equilibrium bubble size
autocorrelation function A(t) = 〈�m(t)�m(0)〉 = 〈m(t)m(0)〉 − (〈m〉eq)

2, where 〈· · ·〉eq

denotes the equilibrium value. This correlation function can be written as4

A(t) =
∫

dτ exp(−t/τ) f (τ ) (13)

where we have introduced the relaxation time spectrum

f (τ ) ≡
∑

p �=0

A pδ(τ − τp) (14)

with amplitudes

A p ≡
(
∑

m,n

m Q p(m, n)

)2

(15)

4 By definition, we have

〈m(t)m(0)〉 =
∑

n,n′

∑

m,m′
mm ′ P(m, n, t; m′, n′),

where P(m, n, t; m′, n′) is the probability density for the initial condition m = m′ and n = n′. By using the eigenvalue
expansion, equation (12), the orthogonality relation [27]

∑

m,n

Q p′ (m, n)Q p(m, n)

Q0(m, n)
= δpp′ ,

together with the assumption that the system initially is in equilibrium, P(m, n, t = 0; m′, n′) = δmm′δnn′ Q0(m, n),
one straightforwardly proves equations (13)–(15).
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and τp ≡ 1/ηp. The general theory for processes as described by equation (12) guarantees
that there is one zero eigenvalue, η0 = 0, and that all other ηp > 0, p = 1, . . . , M [27]. We
label the eigenvalues such that η0 = 0 < η1 < η2 < . . .. The eigenvector corresponding
to the eigenvalue η0 = 0 is just the equilibrium distribution, i.e., Q0(m, n) = Peq(m, n),
where Peq(m, n) = limt→∞ P(m, n, t). Note that we exclude the eigenvalue η0 = 0 in the
spectrum (14). Throughout this study, we will show examples of spectral densities f (τ ),
in order to illustrate the relaxation behaviour of DNA bubbles under different conditions.
A related quantity of interest is the longest relaxation time, τrelax ≡ 1/η1, which sets the
characteristic time for system equilibration. τrelax can, for instance, be studied as a function of
the dimensionless number γ , the ratio between the rate constant for SSB unbinding and the
rate constant for base-pair closing, the statistical weight u, and the SSB binding strength κ .
We are going to introduce these parameters in the next section in connection with the models
for the bubble partition function and the statistical weights for SSB (un)binding5.

3. Definition of the transfer coefficients t± and r±

In the previous section we introduced the master equation (1) involving the transfer rates t± and
r±, and we specified the boundary conditions. We now proceed by constructing these transfer
rates based on the assumption that m and n are the slow variables of the system, that we require
to eventually settle into equilibrium. This is guaranteed by imposing detailed balance on the
dynamics, i.e., demanding that the number of transitions per time from state m into state m −1
balances the number of transitions per time from state m − 1 into state m (and similarly for
n). The condition of detailed balance therefore reads

t+(m − 1, n)Z(m − 1, n) = t−(m, n)Z(m, n) (17)

and

r+(m, n − 1)Z(m, n − 1) = r−(m, n)Z(m, n), (18)

where Z(m, n) is the (equilibrium) statistical weight for a given m and n as defined below. The
dynamical equation (1) together with the rate constants of the form above make sure that the
equilibrium (in the Boltzmann sense) distribution is reached for sufficiently long times. We
point out that the detailed balance conditions above do not fully determine (only constrain) the
transfer coefficients. Physically reasonable, explicit expression are constructed below.

Let us first consider the statistical weight Z(m, n) to find the system in state (m, n), from
which in turn we are going to define the transfer rates. Using the one-bubble approximation
(see appendix D), we write

Z(m, n) = Z bubble(m)Z bind(m, n) (19)

as a product of the (free) bubble weight and the weight for the degrees of freedom of the
SSB binding states. We adopt the Zimm–Poland–Scheraga model for a denaturation bubble
according to which the rather stiff dsDNA segments are considered to be in a zero-entropy
state and to carry the enthalpic contributions from the bound base-pairs, whereas the flexible
ssDNA-bubbles correspond to entropy reservoirs; see [5, 11, 28, 29] for details. The bubble
statistical weight then becomes

Z bubble(m) = σ0um(1 + m)−c, for m � 1, (20)
5 Furthermore, it is sometimes instructive to investigate the difference between the longest relaxation time and the
second longest, τ2, i.e.,

�τ = 1/η1 − 1/η2. (16)

The quantity �τ contains information that allows a rough discrimination between ‘multi-exponential’ and
‘exponential’ relaxation dynamics.
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and Z bubble(m = 0) = 1. We have above introduced the following physical parameters
characterizing the bubble breathing: (i) the statistical weight

u = exp(−β E), (21)

with β = 1/kBT , where kB is the Boltzmann constant and T the temperature of the
surrounding solution. Moreover, E = E(T ) denotes the free energy associated with breaking
a hydrogen bond (note that this energy differs between A–T and G–C bonds) [6]; (ii) the non-
universal prefactor σ0 that measures the loop initiation energy associated with breaking the
stacking interactions necessary to open the bubble. Determined from DNA melting data, σ0

typically varies between 10−3 and 10−5, corresponding to an activation barrier of some 7–12
kBT [5–7, 11]; (iii) and the loop closure exponent c that stems from the entropy loss upon loop
formation of a polymer of length m, m−c [30]. To take care of persistence length effects in the
ssDNA bubble, we use the modified form (1 + m)−c [31]. The exponent c, for a polymer ring
assumes the value 3/2 in the Gaussian (phantom) chain limit, and c ≈ 1.76 for self-avoiding
chains [30]6. For an infinite chain in the absence of SSBs, the melting temperature Tm is
defined by E(Tm) = 0, or, u = 1. We point out that, following [41], including an external
torque τ has the effect of changing u → u exp(βθ0τ ), where θ0 = 2π/10.35 is the twist
angle per base of the double helix. Thus, experimentally, u can be changed by an applied
external torque on the DNA rather than by changing the temperature. This can be achieved
in the optical tweezers setup applied in [21], in which the DNA is pulled until reaching the
overstretching transition; due to the possibility that the tweezers beads can rotate freely, the
dsDNA is progressively unwound.

The statistical weight Z bind(m, n) for SSB (un)binding in equation (19) is given by

Z bind(m, n) = 
bind(m, n)κn, (22)

where 
bind(m, n) counts the possible configurations that can be explored by n SSBs bound
to a bubble consisting of m broken base-pairs, and κ is the binding strength. The number of
degrees of freedom,


bind(m, n) =
n∑

n1=0

ωbind(m, n1)ω
bind(m, n − n1)

∣∣n−n1�nmax/2

n1�nmax/2 , (23)

can be expressed in terms of the measure ωbind(m, n1), which counts the number of ways of
arranging n1 SSBs onto m binding sites, i.e., onto the m available bases on one of the two
single-strands in the bubble. The conjugated ωbind(m, n − n1) counts the degrees of freedom
on the second single-strand. The explicit expression for ωbind becomes (compare [42–44])

ωbind(m, n) =
(

m − (λ − 1)n

n

)
= (m − (λ − 1)n)!

n!(m − λn)!
. (24)

Throughout this study we assume that the SSB binding is effectively insensitive to DNA base
structure differences of the two strands. The quality of the binding is characterized by the
dimensionless binding strength [44]

κ = c0 K eq = exp{β|Ebind| + ln(v0c0)}, (25)

where

K eq = v0 exp(β|Ebind|) (26)

6 The value of c in fact determines the order of the phase transition of DNA melting within the Poland–Scheraga
approach [32]: if c > 2, the transition is first order, while for c < 2, it is of second order. Whereas there exist
models that predict a c > 2 [33, 34], this issue has received some debate [35–40]. The bubble dynamics appears fairly
insensitive to whether c is slightly above or below 2 [23, 24]. In contemporary bioinformatics, the choice c ≈ 1.76
appears standard, compare, for instance, [6].
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Figure 3. The ‘free energy’ F(m, n) for fixed number n of bound SSBs as function of bubble size
m for various n. We consider (top) relatively weak binding (or high SSB concentration), κ = 0.5;
and (bottom) stronger binding, κ = 1.5. Notice that, for small n, F(m, n) increases rapidly with
increasing m, i.e., if only a few SSBs are bound there is a tendency for the bubble to close. When
n is larger, F(m, n) has a smaller or negative slope. The solid curves represent the averaged free
energy βF(m) = − ln Z(m), where Z(m) is given in equation (56). F(m) corresponds to the free
energy profile relevant for fast SSB dynamics, as derived in section 4.2. Notice that this averaged
free energy has a positive (negative) slope for weak (strong) SSB binding for large m, for the
parameters used here: u = 0.6, M = 40 c = 1.76, and λ = 5. In the latter case, the SSB dynamics
would therefore lead to full denaturation in an unclamped DNA molecule.

is the equilibrium binding constant, v0 denotes the typical volume occupied by an SSB, Ebind

is the binding energy of an SSB to the DNA, and c0 is the number-per-volume concentration of
SSBs in the solution. In figure 3, the ‘free energy’ F(m, n) = −kBT ln Z(m, n) is plotted using
the results above. Notice that if n is small (large), then β F(m, n) increases rapidly (slowly)
with increasing m. The solid curves represent the averaged free energy β F(m) = − ln Z(m),
where Z(m) corresponds to the adiabatic limit as given in equation (56); F(m) corresponds to
the free energy profile relevant for fast SSB dynamics derived in section 4.2.
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Having defined explicit expressions for the statistical weights Z(m, n), we are ready to
construct physically realistic transfer coefficients. For the bubble opening rate, that we assume
to be independent of the number n of bound SSBs7, we choose

t+(m, n) = t+(m) = k(1 + m)−µ Z bubble(m + 1)

Z bubble(m)
, (27)

so that, using equation (20), we arrive at the bubble initiation rate for leaving the ground state
m = 0,

t+(0) = kσ0us(0), (28)

that includes the cooperativity factor σ0 to overcome the base-stacking interactions on
introducing a bubble (m = 0 → m = 1) into the previously intact double-strand. For
general m � 1, we obtain the forward rates

t+(m) = ku(1 + m)−µs(m), for m � 1. (29)

These expressions state that a forward step (i.e., an increase in bubble size from m to m + 1) is
determined by the statistical weight u associated with breaking a base-pair, multiplied by the
loop closure factor

s(m) =
(

1 + m

2 + m

)c

. (30)

Notice that s(m) ≈ 1 for large m. The constant factor k represents the typical rate for
(un)zipping, and is determined by the quantum chemistry of H-bond formation or breaking.
In our phenomenological approach, it is a free parameter.

Finally, in equation (28), we also introduced an additional factor (1+m)−µ for the following
reason. A local zipping or unzipping event not only involves the pulling or pushing of the
immediate base pairs at the zipper fork, but, due to the connectivity of the flexible ssDNA
strands, by necessity involves the motion of several Kuhn segments adjacent to the zipper fork.
The effective number of segments engaged in an (un)zipping event depends on the bubble size
m, as we are going to show now. In a phenomenological argument, we include this collective
effect in the spirit of the scaling approach brought forth in [45]. We note that the validity
of this argument should be verified by simulations; however, for completeness we include it
in our dynamical formulation. To this end, consider the plane that is perpendicular to the
plane spanned by the open base-pair, and that contains the local tangent to the double-strand
segment connected to the zipper fork8. Following one of the strands from the zipper fork along
its contour until the first point where it returns to the plane, then the length of this hook is
proportional to mν . This corresponds to the random walk character of a random polymer: in
a Gaussian chain of length M , it takes on average 
M1/2 steps to return to the plane; in a
self-avoiding chain, the analogous number is expected to scale like 
Mν . This quantity scales
like the gyration radius Rg 
 Mν , which makes sense, as the typical length of a hook must
lie between the monomer size and the overall chain length, and Rg is the only such length
scale available. Pulling at the end of such a hook results in the motion of this hook, but does
not propagate to the remainder of the strand because physically tension cannot be transferred
beyond it (imagine pulling at the end of a rope immersed, in a coiled up configuration, into
water). The presence of this hook effect reduces the closing rate, and, by detailed balance, the

7 It may be argued that, in contrast to SSBs bound in the ‘middle’ of a bubble, SSBs bound next to one of the zipper
forks of the bubble may ease the opening of further base-pairs. Moreover, some types of SSBs are known to bind
cooperatively. Such effects can, in principle, be included in the model. For the sake of simplicity, we neglect such
effects in this study.
8 This plane appears a natural choice given the hinge-like structure of the zipper fork.
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forward rate involves pushing away all segments in a hook. We take t+(m, n) ∝ k(1 + m)−ν ,
which should be appropriate for Rouse-like dynamics for which the total friction is obtained
by summing up the friction from different monomers (hydrodynamic interactions are hence
neglected). Note that we included the shift by 1 in the factor (1 + m)−ν , to keep consistent
with the notation for the loop closure according to [31]. We also note that the inclusion of
hydrodynamical interactions may change the exponent µ. The bubble size being of the order
of a few tens of broken base-pairs, at temperatures well below Tm this truly polymeric effect
may be expected to be of lesser significance. At higher temperatures leading to bubbles of the
size of a few hundreds of broken base-pairs, i.e., roughly a hundred Kuhn segments, it may
become relevant. We therefore leave the exponent µ in expression (29) as a free parameter,
that has to be determined by more detailed studies9.

For the bubble closing rate, we choose the expression

t−(m, n) = km−µ Z bind(m − 1, n)

Z bind(m, n)
= km−µ 
bind(m − 1, n)


bind(m, n)
. (31)

The transfer coefficient t−(m, n) is thus determined by the ratio between the number of available
configurations (for a given n) between bubbles of size m − 1 and m. This choice of t−(m, n)

realistically describes the fact that a region, which is almost fully occupied by SSBs (n large),
is less likely to decrease in size due to steric constraints. We note that, in general, t−(m, n) � k,
and that t−(m, n = 0) = km−µ. The m−µ-factor again accounts for the fact that the zipping
process, due to the connectivity of the chain, involves the motion of several bases10. Although
the detailed balance condition (17) does not uniquely determine the transfer coefficients, we
believe that the above choice is physically reasonable: the rate k has the simple physical
interpretation as the characteristic inverse DNA zipping time in the absence of SSBs for a bubble
of size m = 1. Also, with the expressions above for the transfer coefficients, the forward rate
has a simple Arrhenius form (being proportional to the statistical weight u = exp(−E/kBT ),
i.e., to the Boltzmann factor associated with breaking a base-pair interaction).

Let us now consider the transfer coefficients associated with the increase or decrease of n
by one. We choose

r+(m, n) = (n + 1)q
Z(m, n + 1)

Z(m, n)
= (n + 1)γ k

Z bind(m, n + 1)

Z bind(m, n)

= (n + 1)γ kκ

bind(m, n + 1)


bind(m, n)
, (32)

and

r−(m, n) = nq = nγ k (33)

where q is the rate constant associated with the unbinding of a single protein. We have for
convenience defined a dimensionless parameter

γ ≡ q

k
(34)

as the ratio between the rate constant for SSB unbinding and the rate constant for bubble
closing. When γ � 1 (γ 
 1) the SSB binding is much slower (faster) than the typical
bubble base-pair closing time. In order to show that the above choice of transfer coefficients

9 Additional corrections to the dynamical behaviour may result from the dynamics of the two vicinal DNA double-
strands, into which the bubble is embedded. This will be of importance to long DNA molecules, whereas for the short
experimental DNA construct we have in mind, this effect should again be of higher order.
10 We note that the boundary conditions as contained in equation (5) are implicit in equation (31); the number of ways
of binding nmax(m) = 2[m/λ] or nmax(m) − 1 SSBs to a bubble with m − 1 broken base-pairs is zero if m equals an
integer number of λ, i.e., we have 
bind(kλ − 1, nmax(m)) = 0 and 
bind(kλ − 1, nmax(m) − 1) = 0.
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is physically realistic, we consider the case λ = 1, for which the above expression reduces to
standard results. For λ, it is straightforward to show that r+(m, n) = qκ(2m − n). This means
that the rate for the process n → n + 1 is proportional to the binding strength κ = c0 K eq (i.e.,
proportional to the concentration of SSBs in solution),and to the number of unoccupied binding
sites (2m −n), as it should (see [27], chapter VI). For the general expression, equation (32), the
forward transfer coefficients r+(m, n) are proportional to κ , multiplied with a correction factor,
that accounts for the fact that for a given m the number of allowed configuration changes with
the number n of bounds SSBs. The transfer coefficients r−(m, n), as given by equation (33),
correspond to the backward rate being proportional to the number of bound SSBs [27]11. The
above choice, equations (32) and (33), for the rate coefficients satisfies the detailed balance
condition (18) as it should.

4. Eigenvalue spectrum of the master equation

In this section, we explore two limiting cases of the general dynamics contained in the (2 + 1)-
dimensional master equation (1), these being (1) the case of no binding (or absence of SSBs),
and (2) the case of fast binding. In the former, the description naturally reduces to a (1 + 1)-
dimensional master equation, whereas in the latter we perform a procedure of adiabatically
removing the fast SSB variable, revealing a ‘dressed’ (1 + 1)-dimensional description with an
effective bubble free energy. (3) In the last subsection, we then embark on the general case.
For the case of vanishing SSB dynamics we can solve the eigenvalue equation corresponding
to the master equation analytically, if the loop closure effects are neglected. We compare the
approximate results to the general numerical solution of the full (2 + 1)-dimensional problem.
The focus is on the spectral density of relaxation times for the combined DNA bubble and SSB
dynamics.

4.1. Vanishing SSB dynamics

Let us at first consider the bubble dynamics in the absence of SSBs, or, equivalently, of SSBs
with vanishing binding strength, κ = 0, or extremely slow binding dynamics. In this limiting
case, our discrete model features a few advantages over the continuum model of [24], and
therefore a few words on this case are in order. Apart from being the more physical approach,
given the discrete nature of both (un)zipping base-pair by base-pair and SSB (un)binding, the
discrete description allows the explicit incorporation of the cooperativity parameter σ0 for loop
initiation. This latter feature is not possible in the continuum Fokker–Planck approach, as there
the drift term involves the force as given by the gradient of the free energy.

The dynamical equation in the absence of SSB binding can be obtained from the original,
full description, by putting n = 0 in equation (1) (we assume that initially no SSBs are bound
to the DNA), to find

∂

∂ t
P̄(m, t) = t̄+(m − 1)P̄(m − 1, t) + t̄−(m + 1)P̄(m + 1, t) − (t̄+(m) + t̄−(m))P̄(m, t), (35)

where we introduced the shorthand notations P̄(m, t) = P(m, n = 0, t) and t̄±(m) =
t±(m, n = 0). The boundary conditions become t̄+(−1) = t̄−(0) = 0 and t̄−(M + 1) =
t̄+(M) = 0. While the forward transfer coefficients are t̄+(m) = t+(m), with t+(m) given in
equations (28) and (29), the backward transfer coefficients now read t̄−(m) = km−µ, i.e.,

11 We note that the boundary condition given by equation (7) is implicit in equation (32); it is not possible to attach
nmax(m) + 1 SSBs to a bubble of size m, and hence 
bind(m, nmax(m) + 1) = 0. Also, the boundary condition (6) is
implicit in equation (33).
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they are determined by the constant rate k and the hook exponent µ. The eigenvalue equation
corresponding to equation (35) has the comparatively simple structure

t̄+(m − 1)Q̄ p(m − 1) + t̄−(m + 1)Q̄ p(m + 1) − (t̄+(m) + t̄−(m))Q̄ p(m) = −ηp Q̄ p(m), (36)

where p = 0, 1, . . . , M . Based on the eigenvectors and eigenvalues of this equation, any
quantity of interest may be constructed. Below, we show that we can solve the eigenvalue
equation (36) analytically in the absence of the loop closure factor, but with arbitrary
cooperativity parameter σ0. In the general case, the solution is obtained numerically.

Neglecting loop closure (i.e., setting s(m) = 1 in equations (28) and (29)) as well as the
hook effect (i.e., setting µ = 0), but keeping an arbitrary σ0, the transfer coefficients take on
the form

t̄+(0) = kσ0u,

t̄+(m) = ku, for m � 1,

t̄−(m) = k,

(37)

and, apart from the initiation term, correspond to constant drift-diffusion in bubble size space.
The eigenvalue equation (36) with these rate coefficients can be solved analytically by using the
orthogonal polynomial approach described in appendix B; in general, an eigenvalue problem
of the type considered here can be transformed into a recurrence relation for the orthogonal
polynomials �̄m , m = 0, . . . , M . Through these polynomials eigenvalues and eigenvectors
can be constructed. Accordingly, we solve equations (B.8) and (B.9) for �̄m , using the transfer
coefficients (37). We obtain (for m = 1 in equation (B.9))

�̄1(ηp) = −ηp + k(1 + σ0), (38)

while for m � 2, we have the three-term recurrence relation

�̄m(ηp) + (ηp − k(u + 1))�̄m−1(ηp) + k2u�̄m−2(ηp) = 0. (39)

We follow [46], and introduce the ansatz

ηp = k[u + 1 − 2u1/2 cos ωp] (40)

for the eigenvalues, so that equation (39) becomes

�̄m(ωp) − 2ku1/2 cos ωp�̄m−1(ωp) + k2u�̄m−2(ωp) = 0. (41)

For ωp �= 0, equations (41), (B.9) and (38) are satisfied by the solution

�̄m(ωp) = (k2u)m/2

sin ωp
(sin[(m + 1)ωp] − δ sin[mωp])

= (k2u)m/2(Um(cos ωp) − δUm−1(cos ωp)), (42)

as may be verified by direct substitution. We have above introduced the Chebyshev polynomials
of the second kind Um(x). The eigenvalues are determined by equation (B.6), leading to

g(ωp) ≡ sin[(M + 1)ωp] − δ sin[Mωp] = 0, (43)

with

δ ≡ (1 − σ0)u
1/2. (44)

This, together with equation (40), determines the eigenvalues. Equation (43) can alternatively
be written in terms of the Chebyshev polynomials according to

UM (cos ωp) − δUM−1(cos ωp) = 0. (45)
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It is straightforward to show that the M solutions to the eigenvalue equation for δ > 0 range
in the intervals12

(p − 1)π

M + 1
< ωp <

pπ

M + 1
(46)

for p = 1, . . . , M . This result is useful when solving equation (40) numerically. For the
special case δ = 0 (i.e., trivial cooperativity σ0 = 1), we obtain the standard (compare [46]),
explicit solutions ωp = pπ/(M + 1) for p = 1, . . . , M13. The eigenvectors are given by

Q p = (1, χ1(ηp), . . . , χM (ηp)), (48)

with

χm(η) = um/2

sin ω
{sin[(m + 1)ωp] + u−1/2(u(σ0 − 1) − 1) sin[mωp]

+ (1 − σ0) sin[(m − 1)ωp]},
= um/2{Um(cos ωp) + u−1/2(u(σ0 − 1) − 1)Um−1(cos ωp)

+ (1 − σ0)Um−2(cos ωp)} (49)

and the solutions above are completed by the eigenvalue–eigenvector pair

η0 = 0,

Q0 = (1, σ0u, σ0u, . . . , σ0uM ).
(50)

These results above completely determine the eigenvalue and eigenvector spectrum. We have
reduced the problem of computing the eigenvalues and eigenvectors to an (M + 1) × (M + 1)

matrix to that of solving equation (43). As before, introducing the relaxation times τp = 1/ηp,
we see from equation (40) that

τmin(u) � τp � τmax(u), (51)

where

τmin(u) = k−1(1 + u1/2)−2,

τmax(u) = k−1(1 − u1/2)−2.
(52)

For p = 1, . . . , M , the inequality (52) enforces a constraint on the allowed eigenvalues, for a
given u. Combining this statement with equation (46), we find that the largest (smallest)

12 Equation (46) is proven in the following way: first, consider the cases p = 2, . . . , M. We are interested in
investigating the function g(ω) in the interval [(p −1)π/(M + 1), pπ/(M + 1)]. One straightforwardly shows that the
g(ω) have different sign at the end points of this interval; hence g(ω) passes zero at least once in the considered region.
The behaviour of g(ω) in the interval [0, π/(M + 1)] requires special considerations. We here limit the discussion to
the physically realistic case δ > 0. We then see that g(ω = 0) = 0, g(ω = π/(M + 1)) < 0, and that the derivative
of g(ω) is positive at ω = 0. These results guarantee that there is at least one solution to equation (43) in the interval
[0, π/(M + 1)]. Collecting the results above, we have thus shown that there is at least one solution to equation (43)
in each of the M intervals [(p − 1)π/(M + 1), pπ/(M + 1)]. However, since the general theory of W -matrices of
the form considered here guarantees that there are M non-zero eigenvalues we can conclude that there is exactly one
solution in each of the considered interval, which proves equation (46).
13 A different way of solving equation (43) numerically is to transform it into a polynomial equation. We define
x = cos ωp . By using equation (1.331) in [47], we can rewrite expression (43) according to

g(ωp) = 2M sin ωp

{
x M − δ

2
x M−1 +

[M/2]∑

k=1

(−1)k4−k
(

M − k

k

)
x M−2k

− δ

2

[(M−1)/2]∑

k=1

(−1)k4−k
(

M − k − 1

k

)
x M−2k−1

}
= 0. (47)

The polynomial equation above can be straightforwardly solved on a computer. The roots to this equation, together
with equation (40), lead to the eigenvalues. We note that equation (47) follows also from the series expansion of the
Chebyshev polynomials of the second kind.



Binding dynamics of SSBs to DNA-bubbles S1855

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

τ (in units of k–1)

f(
τ)

solid bars ( ), c=1.76, µ=0.59

dashed bars (  ), c=1.76, µ=0

dotted bars (⋅⋅⋅), c=0, µ=0

solid bars (– ), c=1.76, µ=0.59

dashed bars (––  ), c=1.76, µ=0

dotted bars (⋅⋅⋅), c=0, µ=0

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

τ (in units of k–1)

f(
τ)

solid bars (–), c=1.76, µ=0.59

dashed bars (––), c=1.76, µ=0

dotted bars (⋅⋅⋅), c=0, µ=0

Figure 4. The spectral density f (τ ) of relaxation times τ is plotted for two different u (i.e., for
two different temperatures or applied torques). The top (bottom) graph corresponds to u = 0.6
(u = 0.9), i.e., the top (bottom) graph is for the case when the DNA region is well below (close to)
the melting temperature. Notice the logarithmic abscissa. The solid bars correspond to the case
with loop closure and the hook effect (c �= 0 and µ �= 0), and for the dashed bars we included the
loop correction, but not the hook effect (c �= 0, µ = 0). The dotted bars are for the case that both the
loop closure and hook correction are excluded (c = 0 and µ = 0). The corresponding free energy
is shown in figure 5. Note that for the case when u is well below the melting temperature (top),
the spectrum consists of many closely spaced eigenvalues (multiexponential behaviour), whereas
closer to the melting temperature (bottom) there is one (slow) dominant eigenvalue (exponential
behaviour). Including the hook correction shifts the spectrum towards longer relaxation times, as
expected. The length of the DNA region was taken to be M = 20, and the cooperativity parameter
is σ0 = 10−3.

eigenvalue approaches τmax (τmin) as M → ∞. We also see that the relaxation time
τrelax = 1/η1 is larger for the case of non-zero δ than for the case of δ = 0; thus, the
incorporation of a cooperativity parameter smaller than one gives rise, for finite sized DNAs,
to an increased relaxation time. We also point out that τmax tends to infinity as u → 1, i.e.,
the relaxation time τrelax is expected to become extremely large and eventually diverges as the
melting temperature Tm is approached (u → 1), as it should.

In figure 4, the spectral density is shown for two different u-values,while the corresponding
free energy profiles are shown in figure 5. Notice that for the case when u is well below the
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Figure 5. The free energy F(m) as a function of m for the two different u used in figure 4. Solid
lines: including the loop closure. Dashed lines: excluding the loop closure. The cooperativity
parameter is σ0 = 10−3, and the loop closure exponent c = 1.76.

melting temperature, the spectrum consists of many ‘closely’ spaced eigenvalues corresponding
to a multiexponential dynamics, whereas closer to the melting temperature there is one (slow)
dominant eigenvalue, so that the system essentially behaves like a two-state system, with
monoexponential relaxation. Thus, the spectral density is sensitive to the temperature (and in
general to external torque, etc), and therefore provides a convenient fingerprint of the system
under investigation. Including the hook correction (µ �= 0), i.e., considering that a closing
(opening) base-pair needs to pull (push) that portion of the connected ssDNA until the first
significant bend, shifts the spectrum towards longer relaxation times.

In figure 6, the relaxation time τrelax as a function of u is plotted for two different sizes
of the bubble region (M = 10 and M = 20). Note that τrelax increases as u approaches the
melting temperature (u → 1), as shown above. Also note that the loop correction becomes
more pronounced closer to the melting temperature. We point out that the dependence of τrelax

on σ0 is more pronounced for shorter DNA regions, as discussed above, while the effect of the
loop closure is less pronounced for a longer DNA region, as is seen in figure 6.

4.2. Fast binding dynamics, γ 
 1

Let us now address the other limiting behaviour, that is, the case of fast binding, when
γ = q/k 
 1. We define the effective probability distribution P̃(m, t) ≡ ∑

n P(m, n, t).
Using the adiabatic elimination technique described in appendix C, equation (1) reduces to the
(1 + 1)-dimensional master equation

∂

∂ t
P̃(m, t) = t̃+(m − 1)P̃(m − 1, t) + t̃−(m + 1, n)P̃(m + 1, t) − (t̃+(m) + t̃−(m))P̃(m, t),

(53)

where the effective transfer coefficients are given through

t̃±(m) = k
nmax(m)∑

n=0

t±(m, n)
Z(m, n)

Z(m)
. (54)
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Figure 6. Plot of the relaxation time τrelax as a function of the statistical weight u (which in turn
depends on temperature and applied external torque). Note the logarithmic scale on the vertical
axis. Top: short DNA region with M = 10. Bottom: longer DNA region with M = 20. Also
note that the dependences on σ0 and the loop correction are smaller for the longer DNA region.
Including the hook effect (µ �= 0) significantly increases the relaxation time, as one would expect.
As u approaches the melting temperature (u → 1), the relaxation time τrelax increases dramatically,
and finally diverges.

It is straightforward to show that these transfer coefficients satisfy the detailed balance condition
(compare appendix C)

t̃+(m − 1)Z(m − 1) = t̃−(m)Z(m), (55)

where

Z(m) = Z bubble(m)Z bind(m), (56)

and where we have introduced the binding partition function

Z bind(m) =
nmax(m)∑

n=0

Z bind(m, n). (57)
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Figure 7. The spectral density f (τ ) of relaxation times τ . The length of the DNA region was
taken to be M = 20, the cooperativity parameter is σ0 = 10−3, the statistical weight u = 0.6, the
binding strength κ = 0.5, and the SSB size λ = 5. The solid (dashed) bars corresponds to the case
µ �= 0 (µ = 0), respectively. The dotted bars denote the adiabatically eliminated (γ → ∞) result
for µ = 0. Note that including the hook effect, µ �= 0, increases the characteristic relaxation times
considerably.

The quantity nmax(m) = 2[m/λ] represents the maximum number of attached binding particles,
as before, and the corresponding statistical weight Z bind(m, n) is given in equation (23). The
boundary conditions become t̃+(−1) = t̃−(0) = 0 and t̃−(M + 1) = t̃+(M) = 0 (i.e., reflecting
boundary conditions at the ends). The eigenvalue equation corresponding to equation (53) is

t̃+(m − 1)Q̃ p(m − 1) + t̃−(m + 1)Q̃ p(m + 1) − (t̃+(m) + t̃−(m))Q̃ p(m) = −ηp Q̃ p(m), (58)

where p = 0, 1, . . . , M . Through the eigenvectors and eigenvalues of this equation, any
quantity of interest may be constructed. In figure 3, the effective free energy, given by
F(m) = −kBT ln Z(m), with Z(m) from equation (56), is shown as the solid lines. Note
that the presence of SSBs in general has the effect of decreasing the slope of the free energy for
large m, compared to the case in absence of SSBs; thus adding fast binding SSBs effectively
lowers the melting temperature of the DNA. Depending on the parameters involved, SSBs can
thus lead to full denaturation in an unclamped DNA molecule.

4.3. General two-dimensional case

In this subsection, we solve the general eigenvalue problem, equation (12), numerically (see
appendix A for details) and compare to the limiting results of the preceding two subsections.

Thus, in figure 7 we plot the relaxation time spectrum f (τ ), that is related to the
autocorrelation function (13), which is an accessible experimental observable. Therefore,
f (τ ) is a convenient fingerprint of the combined DNA bubble and SSB dynamics. In the
caption, we list the various parameters that were chosen to obtain this graph.

In figure 8, we show the relaxation time τrelax as a function of the statistical weight u for (i)
no SSBs, but including the loop closure; (ii) no SSBs and no loop closure; (iii) including SSBs
and the loop closure; and (iv) including ‘fast’ SSBs, γ → ∞. The relaxation time increases
for increasing u (for larger temperature DNA bubbles stay open longer), and we see that by
adding SSBs we increase the relaxation time further. The correction due to loop closure is
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Figure 8. Plot of τrelax as a function of statistical weight u (which in turn depends on the temperature
and the applied external torque), for (i) no SSBs, and including loop closure, dotted curve; (ii) no
SSBs, no loop correction, dash–dotted curve; (iii) including SSBs and loop correction for different
γ and µ, solid curves; and (iv) including SSBs and loop correction, using the fast binding result
γ → ∞. The following parameters were used: σ0 = 10−3, M = 20, κ = 0.5, and λ = 5.
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Figure 9. Plot of the relaxation time τrelax as a function of binding strength κ , for (i) no SSBs
and no hook effect µ = 0, dotted line; (ii) fast SSBs, γ → ∞ and µ = 0, dash–dotted curve;
(iii) general 2D case for different γ and µ = 0, dashed curves; (iv) general 2D case, including the
hook effect (µ �= 0), solid line. Note that the relaxation time increases with increasing binding
strength κ . The following parameters were used: σ0 = 10−3, M = 20, u = 0.6, and λ = 5.

more pronounced close to the melting temperature (u → 1). Also note that the relaxation time
τrelax can be orders of magnitude larger than the typical base-pair closing time (k−1).

Finally, in figure 9, the relaxation time τrelax as a function of κ for different γ is displayed.
The relaxation time increases with increasing binding strength κ , as it should. As γ becomes
larger, the adiabatic result for fast SSB binding calculated in the previous subsection is
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approached. Inclusion of the hook effect (µ �= 0) shifts the characteristic relaxation time
to larger values.

5. Conclusions

We investigated the coupled dynamics of a single DNA-bubble in the presence of single-
stranded DNA binding proteins (SSBs). This study was motivated by a recent experimental
work in which a single DNA molecule was overstretched, to obtain information on the
binding kinetics of SSBs. The observed kinetic block due to a timescale competition between
SSB (un)binding kinetics and bubble lifetime provided an answer to some long-standing
questions on the detailed interactions between locally denatured DNA and SSBs. The present
investigation is meant to provide a theoretical model basis for the bubble–SSBs system, in
particular, to obtain a quantitative interpretation of the process.

As a natural physical approach to the process, we developed a bivariate master equation
for the probability distribution of having a bubble of size m with n bound SSBs for different
times, for the case when m and n are the slowest variables in the system. The associated two-
dimensional eigenvalue problem allowed us to compute the relaxation times for a DNA bubble.
With the help of the detailed balance condition, the transfer coefficients in the master equation
were explicitly constructed and expressed in terms of the fundamental physical parameters
of the problem: the statistical weight u associated with breaking a base-pair interaction, the
loop correction exponent c and ‘hook exponent’ µ, the cooperativity parameter σ0, the SSB
size λ, and binding strength κ . In addition, two rate constants enter the two subprocess
governed by the master equation: the inverse zipping time k of a base-pair and the unbinding
rate q of a single SSB from the DNA. These two fundamental scales, in combination with
the other parameters, determine the competition between bubble and SSB dynamics. For the
cases of vanishing and fast binding dynamics (γ = q/k 
 1), the problem was reduced to
one-dimensional master equations. In the latter case, we performed explicitly the adiabatic
elimination of the fast variable n. We solved the general case numerically and compared to the
no binding and slow binding limits. In particular, we found that the relaxation time (i) is large
close to the melting temperature, and that (ii) the presence of SSBs in general increases the
relaxation time, compared to the case when no binding proteins are present. Depending on the
parameters, we can tune the competition between SSBs attempting to bind to the bubble and
the bubble lifetime, that may eventually provoke full denaturation of the (unclamped) DNA
molecule. It was furthermore suggested that the spectral density of relaxation times can be
used as a fingerprint of the combined DNA/SSB system, containing experimentally accessible
information about the physical parameters of the system.
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Appendix A. Numerical solution of the two-dimensional master equation on a
triangular-like lattice

In this appendix, we present some details of the solution procedure for a two-dimensional
eigenvalue problem of the type described by equation (12). One way to solve this problem
numerically is to label each (m, n)-pair by a single running variable (here denoted by s), in
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Figure A.1. The lattice, on which the general two-dimensional master equation and its associated
eigenvalue problem are defined (see equations (1) and (12)). For numerical solutions the (m, n)-
pairs are labelled by a single running variable s, as illustrated above.

order to effectively turn the problem into a ‘one-dimensional’ eigenvalue equation. The lattice,
on which the eigenvalue problem is to be solved, is shown in figure A.1 (see also figure 2). From
this figure, we notice that 0 � n � N (where N = 2[M/λ]), and that [(n + 1)/2] � m � M .
An arbitrary s-point can be obtained from a specific (m, n)-coordinate according to

s = n(M + 1) − λ f (n) + m, (A.1)

where

f (n) =
n∑

n′=0

[
n′ + 1

2

]
. (A.2)

From equation (A.1), we notice that the maximum s-value is

S = max{s} = N(M + 1) − λ f (N) + M. (A.3)

Moreover, from equation (A.1) and figure A.1, we notice that a local jump in the m-direction
is also a local jump in s-space, i.e., that

m → m − 1 ⇐⇒ s → s − 1, for 1 � m � M

m → m + 1 ⇐⇒ s → s + 1, for 0 � m � M − 1.
(A.4)

However, a jump in the n-direction is equal to a non-local jump in s-space:

n → n − 1 ⇐⇒ s → s − {M + 1 − λ ( f (n) − f (n − 1))}, for 1 � n � nmax

n → n + 1 ⇐⇒ s → s + {M + 1 − λ( f (n + 1) − f (n))}, for 0 � n � nmax − 1.
(A.5)

Using the result above, equation (12) can be written as

t+(s − 1)Q p(s − 1) + t−(s + 1)Q p(s + 1) − (t+(s) + t−(s))Q p(s)

+ r+(s − {M + 1 − λ( f (n) − f (n − 1))})
× Q p(s − {M + 1 − λ( f (n) − f (n − 1))})
+ r−(s + {M + 1 − λ( f (n + 1) − f (n))})
× Q p(s + {M + 1 − λ( f (n + 1) − f (n))}))
− (r+(s) + r−(s))Q p(s) = −ηp Q p(s), (A.6)

which, together with the boundary conditions equations (3)–(7), specify the problem: to
determine the eigenvalues and eigenvectors of the (S + 1) × (S + 1)-matrix above. Convenient
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checks of the numerical results include: (i) one of the eigenvalues should be zero, and the
corresponding eigenvector necessarily has to be the equilibrium distribution; (ii) all other
eigenvalues are real and satisfy ηp > 0 (this guarantees that the equilibrium distribution is
indeed reached for long times).

Appendix B. Spectral representation using an orthogonal polynomial approach

Reference [46] is an elaborate mathematical paper describing a polynomial technique of solving
birth–death master equations. The paper is aimed at solving infinitely large matrix equations,
but contains a number of results pertaining to finite matrices of the type considered here. In
this appendix, we summarize some findings derived in [46], that are relevant for our study.

Consider a birth–death eigenvalue equation of the kind of equation (12). We introduce
the eigenvector (a row-vector)

Q p = (Q p(0), . . . , Q p(M)) (B.1)

and the matrix

W (M) =




−t+(0) t+(0) 0 · · ·
t−(1) −(t+(1) + t−(1)) t+(1) · · ·

0 t−(2) · · · ·
· · · · · ·
· · · 0 t−(M) −t−(M)


 . (B.2)

Furthermore, introducing the (M + 1) × (M + 1) matrix

S(M)(η) = ηI (M) + W (M), (B.3)

where I (M) is the (M + 1) × (M + 1) unit matrix, we can rewrite equation (12) in the form

S(M)(ηp)Q p = 0. (B.4)

We then proceed by defining the determinant

�m(η) = det S(m)(η), (B.5)

which is a polynomial of degree m (m = 0, 1, . . . , M). The M + 1 eigenvalues {ηp}M
p=0 are

then determined by the equation

�M(ηp) = 0. (B.6)

The spectral theory of a matrix of the form above guarantees that one of the eigenvalues is
zero [27, 46]. It is therefore convenient to introduce

�̄m(η) = η�m(η), (B.7)

where in [46] it is shown that �̄m(η) satisfies the three-term recurrence relation

�̄m(η) + (η − t+(m − 1) − t−(m))�̄m−1(η) + t+(m − 1)t−(m − 1)�̄m−2(η) = 0 (B.8)

together with

�̄−1(η) = 0,

�̄0(η) = 1.
(B.9)

We note that the �̄m(η) defined by equation (B.8) are orthogonal polynomials, see [48], chapter
22. The eigenvectors can then be written [46] as

Q p = (1, χ1(ηp), . . . , χM (ηp)), (B.10)

with

χm(η) = (t−(1) · · · t−(m))−1(�̄m(η) − t−(m)�m−1(η)). (B.11)
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The general procedure for obtaining the eigenvalues and eigenvectors is hence: solve
equations (B.8) and (B.9) in order to obtain the polynomials �̄0(η), . . . , �̄M(η). By thereafter
solving equation (B.6), the M + 1 eigenvalues η0, . . . , ηM are obtained. Based on the set
{�̄m(ηp)}M

m=0, the eigenvectors are constructed using equations (B.10) and (B.11).
In particular, it is straightforward to show, using the results above, that

η0 = 0 (B.12)

corresponds to the eigenvector

Q0 =
(

1,
t+(0)

t−(1)
,

t+(0)t+(1)

t−(1)t−(2)
, . . .

t+(0) · · · t+(M − 1)

t−(1) · · · t−(M)

)
. (B.13)

Assuming that the coefficients satisfy detailed balance, t+(m)/t−(m + 1) = Z(m + 1)/Z(m),
we have

Q0 =
(

1,
Z(1)

Z(0)
,

Z(2)

Z(0)
, . . . ,

Z(M)

Z(0)

)
, (B.14)

which is the proper equilibrium solution of the master equation, as it should be [27].

Appendix C. Adiabatic elimination of fast variables

In this appendix, we derive a reduced one-dimensional master equation starting from a two-
dimensional master equation, of the form given in equation (1), under the assumption that the
rate constant q for protein unbinding is much larger than the rate constant k for DNA zipping.
That is, we assume that γ = q/k 
 1. This adiabatic elimination procedure is performed on
a ‘triangular-like’ lattice (as illustrated in figures 2 and A.1), which requires a certain care.

Let us consider equation (1) in the limit γ 
 1, i.e., for the case that propagation in
the ‘n-direction’ is much faster than the motion in the ‘m-direction’. The aim is to eliminate
the fast variable n, and derive a reduced master equation in terms of the slow variable m. In
particular, we seek an equation for the probability distribution of having a bubble of size m at
time t :

P̃(m, t) =
nmax(m)∑

n=0

P(m, n, t). (C.1)

The procedure we follow here is to be considered as the discrete counterpart of the elimination
procedure outlined in [49] for the case of a continuous multivariate Fokker–Planck equation;
we will point out differences between the discrete and continuous elimination procedure at the
appropriate places. We start by introducing the eigenvalue equation associated with the fast
variable n according to

r+(m, n − 1)qp(m, n − 1) + r−(m, n + 1)qp(m, n + 1)

− (r+(m, n) + r−(m, n))qp(m, n) = −�p(m)qp(m, n), (C.2)

where the bubble size m is a fixed parameter. We label the eigenvalues such that �0 =
0 < �1 < · · · < �nmax(m). Equation (C.2) is a matrix equation, whose associated matrix
is of size (nmax(m) + 1) × (nmax(m) + 1) (since 0 � n � nmax(m)). The eigenvector
q0(m, n) corresponding to �0 is the equilibrium probability distribution. The eigenvectors
are orthogonal (in the van Kampen sense [27]), and we choose the normalization according to

nmax(m)∑

n=0

qp′(m, n)qp(m, n)

q0(m, n)
= δp′ p Peq(m), (C.3)
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where we introduced the equilibrium probability for a given m,

Peq(m) = Z(m)

Z
. (C.4)

Here,

Z(m) =
nmax(m)∑

n=0

Z(m, n) (C.5)

as before, and Z = ∑M
m=0 Z(m). The reason for choosing the normalization constant as is

done in equation (C.3) is that (letting p = 0 in this equation) we then obtain
nmax(m)∑

n=0

q0(m, n) = Peq(m), (C.6)

i.e., q0(m, n) is the normalized equilibrium distribution14. We proceed by expanding the
probability distribution P(m, n, t) in terms of the eigenvectors qp(m, n):

P(m, n, t) =
nmax(m)∑

p=0

cp(m, t)qp(m, n). (C.8)

Inserting this expansion into equation (1), multiplying by qp′(m, n)/q0(m, n), summing the
resulting equation over n, and making use of the orthogonality relation (C.3), we get
{

∂

∂ t
+ γ ηp′(m)

}
cp′(m, t)Peq(m) =

nmax(m)∑

p=0

{L+
p′ p(m − 1)cp(m − 1, t)

+ L−
p′ p(m + 1)cp(m + 1, t) − L0

p′ p(m)cp(m, t)}, (C.9)

where we introduced

L+
p′ p(m) =

nmax(m+1)∑

n=0

qp′(m, n)

q0(m, n)
t+(m, n)qp(m, n),

L−
p′ p(m) =

nmax(m−1)∑

n=0

qp′(m, n)

q0(m, n)
t−(m, n)qp(m, n),

L0
p′ p(m) =

nmax(m)∑

n=0

qp′(m, n)

q0(m, n)
(t+(m, n) + t−(m, n))qp(m, n).

(C.10)

We point out that equation (C.9) is exact. As we are only interested in processes occurring
on a timescale larger than (γ�1(m))−1, we can therefore neglect the time-derivative in the
equations with p′ � 1. Then, following exactly the same steps as in [49], we find that the
equation to lowest order in γ −1 becomes

∂c0(m, t)

∂ t
Peq(m) = L+

00(m − 1)c0(m − 1, t) + L−
00(m + 1)c0(m + 1, t) − L0

00(m)c0(m, t).

(C.11)

14 In [49], the following normalization is used instead:

nmax (m)∑

n=0

qp′ (m, n)qp(m, n)

q0(m, n)
= δp′ p . (C.7)

We notice that if m < λ then nmax = 0, and the left-hand side of equation (C.7) becomes
∑0

n=0 q0(m, n) = q0(m, n =
0). However, the right-hand side of equation (C.7) equals one. Thus, for a triangular-like lattice (with λ � 2), the
normalization of the type given in equation (C.3) is the most appropriate.
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Making use of the definition (C.1) and equation (C.3), we find that we can write

P̃(m, t) = c0(m, t)Peq(m), (C.12)

which is the quantity of interest. Notice that we need to have c0(m, t) → 1 as t → ∞. Using
equation (C.12) and defining t̃±(m) ≡ L±

00(m)/Peq(m), as well as t̃0(m) ≡ L0
00(m)/Peq(m),

we obtain the relation

∂ P̃(m, t)

∂ t
= t̃+(m − 1)P̃(m − 1, t) + t̃−(m + 1)P̃(m + 1, t) − t̃0(m)P̃(m, t) (C.13)

for the probability distribution of having a bubble of size m in the presence of fast binding
SSBs at time t . Notice that the results above are general and independent of any particular m-
dependence on nmax(m) (i.e., the results above apply to any kind of lattice boundary). Using
the boundary conditions from equations (5) and (9), we can change the upper limit in the
expression for t̃+(m) and t̃−(m) such that

t̃+(m) =
nmax(m)∑

n=0

t+(m, n)
Z(m, n)

Z(m)
,

t̃−(m) =
nmax(m)∑

n=0

t−(m, n)
Z(m, n)

Z(m)
,

t̃0(m) = t̃+(m) + t̃−(m).

(C.14)

We point out that imposing the boundary condition (5) is crucial in order to make sure that the
upper summation limits in the expression for t̃+(m) and t̃−(m) are the same; these boundary
conditions therefore also guarantee that the t̃0(m) can be written as the sum of the t̃+(m) and
the t̃−(m). In the continuum derivation given in [49], no such explicit incorporation of the
boundary conditions were needed. Equation (C.13) together with equation (C.14) is the final
equation for the time evolution of P̃(m, t).

We stop to point out that boundary conditions (5) and (9) are also necessary for the detailed
balance condition

t̃+(m − 1)Z(m − 1) = t̃−(m)Z(m) (C.15)

to be satisfied, as is straightforward to show using equation (C.14).

Appendix D. Partition function for a clamped dsDNA

In this final appendix, we outline some details of the calculation of the partition function for
a dsDNA, that is clamped at both ends. The melting of a finite-sized DNA usually occurs by
melting from the ends, simply because of the less severe restrictions on the random walk at
the ends, where no entropy loss due to loop closure occurs (see, for instance, [11]). Thus,
the properties of a finite-sized dsDNA, that is clamped at its ends, is therefore different than
for unclamped DNA molecules. We here give the details of the calculation of the partition
function.

In general, the partition function for a DNA-segment of length M can be written as

Z(M) = 1 +
∑

(statistical weight for 1 bubble)

+
∑

(statistical weight for 2 bubbles) + · · · . (D.1)

The statistical weight for a bubble consisting of m broken bonds is

S(m) = σ0g(m), (D.2)
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Figure D.1. Correspondence between DNA bubble counting problem and that of binding onto a
finite lattice.

with

g(m) = um(1 + m)−c. (D.3)

In order to calculate the partition function, equation (D.1), we count in how many ways one or
several bubbles of different sizes can be placed along the DNA: consider the case where there
are q bubbles along the chain. There are ki bubbles of type i [i = 1, . . . , q], where a bubble
of type i is defined by its size mi (i.e., consisting of mi broken base-pair bonds). The ki have
to satisfy the relation15

q =
q∑

i=1

ki . (D.4)

We now require that m1 < m2 < · · · < m N , in order to avoid double counting below. Using
equations (D.1) and (D.2), we can rewrite the partition function as

Z(M) = 1 + σ0

∑

k1,m1

g(m1)
k1 QM (k1; m1)

+ σ 2
0

∑

k1,m1

∑

k2,m2

g(m1)
k1 g(m2)

k2 QM (k1, k2; m1, m2) + · · ·

+ σ
q
0

∑

k1,m1

· · ·
∑

kq ,mq

g(m1)
k1 · · · g(mq)

kq QM (k1, . . . , kq; m1, . . . , mq) + · · · ,

(D.5)

where QM (k1, . . . , kq; m1, . . . , mq) is the number of configurations for given sets {ki}
and {mi}. In order to proceed, we note that the present problem of calculating
QM (k1, . . . , kq; m1, . . . , mq) can be mapped onto the problem of binding to a finite lattice;
the problem of placing bubbles of size mi (i.e., bubbles consisting of mi broken base-pairs) on
a region consisting of M internal base-pairs is in fact identical to the one of placing binding

15 For instance, in the third term of equation (D.5) proportional to σ 2
0 , we can have the three combinations (k1 = 1,

k2 = 1), (k1 = 2, k2 = 0) and (k1 = 0, k2 = 2).
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Figure D.2. Equilibrium probability of having 0, 1, or 2 bubbles as a function of u for two different
DNA region sizes. Top: the chain length is M = 40. Bottom: the chain length was taken to be
M = 400. In both graphs, the cooperativity parameter was σ0 = 10−3 and the loop correction
exponent c = 1.76.

particles of size m̄i = mi +1 onto a lattice consisting of M̄ = M +1 lattice sites, as is illustrated
in figure D.1. The latter problem was worked out in [43]. One should remember the constraint
that the number of occupied lattice units cannot exceed the lattice size, thus

q∑

i=1

ki(mi + 1) � M + 1. (D.6)

Let us recapitulate the results from [43]. We introduce q binding particles (i.e., q bubbles)
with ki particles of type i (where a type-i particle has size m̄i = mi + 1) onto a lattice of size
M̄ = M + 1. The number of unoccupied binding sites is then

Iu = M + 1 −
q∑

i=1

ki(mi + 1), (D.7)
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and the number of binding particles is q = ∑q
i=1 ki . The number of ‘individuals’ to be

permuted becomes Iu + q , and hence for given sets {ki} and {mi}, the number of configurations
is

QM (k1, . . . , kq; m1, . . . , mq) = (Iu + q)!

Iu!
∏q

i=1 ki !
= [M + 1 −∑q

i=1 mi ki ]!

[M + 1 −∑q
i=1(mi + 1)ki ]!

∏q
i=1 ki !

. (D.8)

The partition function is thus given by equations (D.2), (D.5) and (D.8) in general, where the
summation limits are determined by the constraints contained in equations (D.4) and (D.6).

Using the results above, we straightforwardly find that the partition function to second
order in the number of loops becomes

Z(M) = 1 + σ0 Z (1)(M) + σ 2
0 Z (2)(M) + · · · , (D.9)

with

Z (1)(M) =
M∑

m1=1

(M − m1 + 1)g(m1),

Z (2)(M) = 1
2

M−1∑

m1=1

g(m1)I (m1),

I (m1) =
M−m1−1∑

m2=1

(M − m1 − m2 + 1)(M − m1 − m2)g(m2).

(D.10)

The probability of having zero bubbles is P(0) = 1/Z(M). The probability of having one
bubble corresponds to P(1) = σ0 Z (1)(M)/Z(M), and the probability for the simultaneous
occurrence of two bubbles becomes, similarly, P(2) = σ 2

0 Z (2)(M)/Z(M). These quantities
are plotted as a function of u in figure D.2 for chain lengths M = 40 and 400. Notice that
the probability of having two bubbles is relatively small due to σ0 � 1, but increases with
the chain length (i.e., as we go from M = 40 to 400). It naturally rises closer to the melting
temperature.
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