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We investigate by analytical means the stochastic equations of motion of a linear molecular motor model
based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by
Mogilner et al. [Phys. Lett. A237, 297(1998)], and averaging over both the two-step internal conformational
fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the
velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are
not readily accessible from numerical solutions. In particular, we find that the model is able to predict physi-
ologically reasonable values for the load-free motor velocity and the motor mobility.
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I. INTRODUCTION

There is currently widespread interest in molecular mo-
tors, from both a biochemical-physiological and a physics
point of view. Whereas the former is mostly concerned with
the molecular structure of motors and their structural inter-
play with the support on which they move, physicists study
the nonequilibrium transport properties of motors and their
physical interactions with the support, such as load-velocity
relations or adhesion forces between motor and support. Mo-
lecular motors, in general, are energy consuming, nonequi-
librium nanoscale engines, which are encountered in various
dynamical processes on the intra- and intercellular level
[1–3]; for a recent review of the more physical aspects see,
for instance, Ref.[4]. Such motors are responsible for intra-
cellular transport of molecules and small vesicles in eukary-
otic cells; they are powering genomic transcription and trans-
lation, cell division (mitosis), and the packaging of viral
DNA into nanoscale transport containers(capsids) [5–10].
Larger assemblies of motors working in unison are respon-
sible for the motility of, e.g., bacteria, they play a role in cell
growth, and they are responsible for muscle contraction lead-
ing to macroscopic motion[1,2,4,11].

Linear motor proteins like myosin, kinesin, dynein, DNA
helicase, or RNA polymerase are driven by the cyclical hy-
drolysis of ATP into ADP and inorganic phosphate and wan-
der along linear, polar biomolecular tracks such as actin fila-
ments, microtubules, RNA, or DNA. The motion is typically
associated with two- or multistep conformational changes in

the motor protein in interaction with ATP and the filament
support, and takes place in a thermal environment subject to
viscous forces.

Modern experimental techniques in biology and biophys-
ics, in particular single biomolecule manipulation by, for ex-
ample, optical tweezers or microneedles, and single particle
tracking methods, have yielded considerable insight into the
mechanism and the relevant physical scales in molecular mo-
tor behavior[12–19]. The typical size of a molecular motor
is of order 10–20 nm, moving with a step size of order
8 nm, e.g., kinesin on microtubules, with one ATP molecule
hydrolyzed on the average per step. The velocities of mo-
lecular motors range from nm/s tomm/s and the maximum
load is of the order of several piconewtons(e.g.,,6 pN for
kinesin on microtubules). However, the latter can reach up to
57 pN for the rotating packaging motor of bacteriophages
[20]. The time scale of the chemical cycle is a few millisec-
onds and the average energy input from the ATP-ADP cycle
is of order 15–20kT.

A biomolecular motor represents an interesting and ubiq-
uitous nonequilibrium system operating in the classical re-
gime and is thus directly amenable to an analysis using stan-
dard methods within nonequilibrium statistical physics.
Physical modeling of molecular motors has thus been studied
intensively in recent years both from the point of view of the
fundamental underlying physical principles and with regard
to specific modeling of concrete motors[9,21–31]. More re-
cently, the concerted action of multiple motors has been con-
sidered, such as the action of elastically[32] and rigidly [11]
coupled motors, for instance, in muscles[33]. Motors inter-
acting with freely polymerizing microtubules or actin fila-
ments give rise to rich pattern formation such as asters[34],
and are responsible for the formation of the contractile ring
emerging during cell division[35,36].
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The most common statistical approach to molecular mo-
tors is that of a ratchet model[4,25], mimicking the periodi-
cally alternating energy landscape(given by the interaction
potential with its support) perceived by the motor during its
mechanochemical cycle. Such ratchet models date back to
Smoluchowski[37] and Feynman[38], and Huxley’s pio-
neering work[39] on motor proteins actually corresponds to
a Brownian ratchet[4]. We note that ratchets play a much
more general role, and real-space ratchets may even be used
on the microscale for particle separation[40–42].

An alternative motor model can be based on protein fric-
tion [22,25,43–46]. This concept relies on the idea that, due
to the weak chemical bonds forming between motor protein
and the polar actin or microtubule track, after elimination of
the detailed degrees of freedom, an effective frictionzp

builds up between motor and track. This protein frictionzp

acts like a linear friction if the associated time scale of mo-
tion is longer than the characteristic time of the kinetics of
motor-track bonds. If not, no protein friction can build up,
and the motor is subject only to the smaller viscous dragzv
due to the environment. The protein friction is therefore
highly nonlinear. On the basis of this scenario, Mogilneret
al. [47] recently studied a simple two-step linear molecular
motor represented by two coupled overdamped oscillators
driven by a two-step Markov process alternating between a
relaxed and a strained state of the oscillators and embedded
in a thermal environment represented by additive white
noise. The two subprocesses are associated with internal con-
formational changes of the motor protein such that one sub-
process is slow, allowing protein friction to be established,
while the other is fast and subject only to solvent friction. By
means of a numerical analysis, Mogilneret al. show that the
system acts like a motor and can carry a load. However,
unlike the ratchet models, which operate with an attachment
to a periodic polar protein filament, the model of Mogilneret
al. needs only a “passive” groove in order to perform di-
rected motion, and the “ratcheting” comes about by assum-
ing the asymmetric internal velocity fluctuations, which are
then rectified by protein friction. In that sense, it is a robotic
model of molecular motors.

In the present paper we reanalyze the motor model of
Mogilner et al. from a purely analytical point of view and
derive explicit expressions for the motion of the motor and
the velocity-load relationship. Using the biological parameter
values quoted by Mogilneret al. we show that the model
gives rise to physiologically reasonable values for the motor
velocity, whereas our analysis leads to a correction of the
maximum load force by an order of magnitude in compari-
son with the numerical results obtained in Ref.[47]. This
discrepancy is associated with a difference in the dynamics
of the analytical model as compared with the numerical
simulation. Allowing for a larger relaxation rate the analyti-
cal result for the maximum load force approaches the bio-
logical regime. The paper is organized in the following man-
ner. In Sec. II we introduce the model. In Sec. III we solve
the model analytically. In Sec. IV we discuss the results and
compare with Ref.[47]. The paper ends with a summary and
a conclusion in Sec. V.

II. MODEL

The motor model based on protein friction which was
introduced in Ref.[47] is defined as follows(compare
Fig. 1). Assume that the mechanochemical cycle of the motor
protein moving along a track made up of an actin filament or
microtubule can be pinned down to the periodical switching
between two states, and that each of these two states can be
described by two motor heads connected by an effective
spring representing the backbone of the motor protein be-
tween these heads. From the strained statesSd, characterized
by a rest lengthLs, the motor protein converges toward a
relaxed statesRd with rest lengthLr .Ls, i.e., the distance
between the motor heads increases. This process is slow

FIG. 1. Molecular motor model showing one mechanochemical
cycle, during which internal fluctuations become directed(“ratch-
eted”) through protein friction. The conformational changes of the
motor protein are represented by two states of an effective spring
with rest lengthsLs for the strained andLr for the relaxed states.
1→2: Slow relaxation of the previously strained spring to assume
the rest lengthLr; due to protein friction, the white working head of
the motor stays attached to the polar biopolymer(actin filament or
microtubule), while the black idle head is free to move. 2→3: As a
consequence of ATP hydrolysis(“power stroke”), the spring con-
tracts so quickly that the protein friction breaks down, and both
heads symmetrically converge to assume the strained configuration
with rest lengthLs. The distance covered per mechanochemical
cycle isD=sLr −Lsd /2. (Adapted from Ref.[47].)
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enough to make sure that the adhesion between the motor’s
“working head”(white circle in Fig. 1) and track stays intact,
in such a manner that asymmetric motion with respect to the
track is achieved(stick). In contrast, during the fast “power
stroke” from the relaxed state back to the strained state after
hydrolysis of ATP, the protein friction is broken and both
heads move under the low Reynolds number conditions of
the environment, such that both heads symmetrically ap-
proach each other and assume the rest lengthLs (slip).

This model can be cast into the two coupled Langevin
equations

zstdẋstd = − f + kstd
ystd − xstd − Lstd

2
+ Nxstd, s2.1d

zvẏstd = − kstd
ystd − xstd − Lstd

2
+ Nystd, s2.2d

in which we have introduced the time-dependent friction co-
efficient zstd in comparison to Ref.[47] for convenience, to
account for the cyclical attachment to the track. In Eqs.(2.1)
and(2.2) the variablesx andy represent the positions of the
two heads of the motor molecule along the track, corre-
sponding to the equations of motion of two coupled, over-
damped oscillators. The coordinate of the idle heady is as-
sociated with a viscous friction drag coefficientzv of order
6phr (Stokes law), whereh is the viscosity of water andr
the size of the motor protein head. The same friction acts on
the working head during the fast conformational changeR
→S, whereas during the slow processS→R, it experiences
the protein friction drag with coefficientzp [22,25,43–46],
corresponding to a stick-slip motion of the working head.
The model equations(2.1) and (2.2) are driven by thermal
noisesNxstd andNystd, with kNx,ystdl=0, representing the am-
bient environment with correlations

kNx,ystdNx,yst8dl = 2kBTzp,vdst − t8d, s2.3d

balancing the friction terms by means of the fluctuation-
dissipation theorem. We note that during the detached strain-
ing step, the role of working and idle heads may be ex-
changed(i.e., the motor heads may be turned around a
common axis), as was recently demonstrated for kinesin mo-
tor heads[48].

The conformational changes of the motor driven by the
ATP-ADP hydrolytic cycle and the cyclical attachment to the
substrate correspond to a continuous two-state Markov pro-
cess for the time-dependent rest lengthLstd, the time-
dependent spring constantkstd, and the time-dependent pro-
tein friction zstd, alternating between stateR with rest length
Lr, spring constantkr, and protein frictionz=zp and stateS
with rest lengthLs, spring constantks, and viscous friction
z=zv. The power stroke conformational transitionR→S
driven by the ATP hydrolysis is characterized by the rategs;
the relaxational conformation changeS→R has the rategr.

The relevant biological parameters quoted in Ref.[47],
entering Eqs.(2.1) and (2.2), are the rate of hydrolysisgs
,103 s−1, the relaxation rategr ,103 s−1, the spring coeffi-
cient in the relaxed statekr ,0.01 pN/nm, the spring coeffi-
cient in the strained stateks,0.5 pN/nm, the rest length in

the relaxed stateLr ,40 nm, the rest length in the strained
state Ls,20 nm, the viscous drag coefficientzv
,10−6 pN s/nm, the protein friction drag coefficientzp,5
310−5 pN s/nm, and the load forcef , ±1 pN. For further
discussion of the model and parameter choices under bio-
logical conditions we refer to Ref.[47]. An important differ-
ence between the model of Mogilneret al. and the present
one in Eqs.(2.1) and(2.2) is that we takezstd=zv during the
entire duration of the strained state S, while Mogilner as-
sumeszstd=zv only in the first short time interval as the
spring contracts(a time interval of ordertslip,zv /ks; in the
simulations of Ref.[47] tslip is taken infinitesimally small),
after which the protein bonds will form and protein friction
take over,zstd=zp. The two models will be similar if the
relaxation timegr

−1 is of the order oftslip.

III. ANALYSIS

In this section, we present a solution scheme for this mo-
tor model. The results obtained are then further analyzed in
the following section.

A. Analytical solution

The motor equations(2.1) and (2.2) are readily analyzed
by (i) solving Eq.(2.1) for ystd and derivingdy/dt, and(ii )
eliminating y in Eq. (2.2) and setting the two expressions
equal to one another. We thus obtain the following equations
for vx=dx/dt andvy=dy/dt:

2szzv/kdv̇x + fz + zv − 2zzvsk̇/k2d + 2żzv/kgvx

=− f„1 − 2zvsk̇/k2d… − zvL̇ + 2zvṄx/k

+ s1 − 2zvk̇/k2dNx + Ny, s3.1d

zvvy = − f − zvx + Nx + Ny. s3.2d

Denoting the initial velocity at timet=0 by vx0 Eq. (3.1) is
readily solved by quadrature and together with Eq.(3.2) we
obtain

vxstd =
kstde−gstd

zstd Fvx0
zs0d
ks0d

−
1

2zv
E

0

t

dt8

3f f̃st8d + zvL̇st8d − Ñst8dgegst8dG , s3.3d

vystd = −
f

zv
−

zstd
zv

vxstd +
1

zv
fNxstd + Nystdg s3.4d

which form the basis for our discussion.

We have introduced the renormalized load forcef̃, the

renormalized noiseÑ, and the integrated spring and friction
constantg:

f̃ = f„1 − 2zvsk̇/k2d…, s3.5d

Ñ = 2zvṄx/k + s1 − 2zvk̇/k2dNx + Ny, s3.6d
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gstd = s1/2zvdE
0

t

kst8ddt8 +E
0

t

kst8d/2zst8ddt8. s3.7d

B. General properties

We note various general features of this solution. First,
both the load forcef and the thermal noisesNx and Ny are
renormalized by the fluctuating spring constantk. Second,
the thermal noise basically enters additively and entails ther-
mal fluctuations of the velocities. Since the stochastic con-
formational changes giving rise to the fluctuations ofk, L,
andz are independent of the thermal fluctuations we can, in
order to monitor the time dependence of the mean motor
velocity, average over the noise with impunity. Note that the
heat bath, of course, still enters through the friction coeffi-
cients. In the long time steady state limit we can ignore the
initial terms and obtain the reduced equations for the ther-
mally averaged velocities

vxstd = −
kstde−gstd

2zvzstd E0

t

dt8f f̃st8d + zvL̇st8dgegst8d, s3.8d

vystd = +
kstde−gstd

2zv
2 E

0

t

dt8f f̃st8d + zvL̇st8dgegst8d −
f

zv
,

s3.9d

which we proceed to discuss.

C. Constant spring constant and rest length

Let us first consider as an illustration the case of a con-
stant spring lengthL, a constant spring constantk, and a
constant protein frictionzstd=zp. In this simple casegstd
=kfszp+zvd /2zpzvgt and the load force is unrenormalized.
We obtain

vx = vy = −
f

zp + zv
. s3.10d

Here the loadf after a transient period drives the idle and
working heads with a constant mean velocity. Defining the
mobility according to

vx = − mf , s3.11d

we infer the mobility in the absence of conformational fluc-
tuations

m =
1

zp + zv
. s3.12d

In the absence of a load forf =0, the mean velocity vanishes
and the system does not move, i.e., we do not have motor
properties. This is also a statement of the second law of
thermodynamics expressing the fact that we cannot extract
work from a system in thermal equilibrium. In the case of
constantk, constantL, and constantz the coupled Langevin
equations describe the temporal fluctuations of a system in
thermal equilibrium. The motor property is thus necessarily

due to the fluctuating spring constantkstd and fluctuating
lengthLstd characterizing the conformational fluctuations in
combination with the cyclical attachment described by the
fluctuating friction coefficientzstd.

D. Fluctuating spring constant, rest length,
and protein friction

The idea behind the model is that fluctuations of the
spring constantkstd=ks,kr skr ,ksd and rest lengthLstd
=Ls,LrsLr .Lsd, modeling the ATD-ADP driven conforma-
tional changes, provide an energy source. In combination
with the synchronized stick-slip mechanism modeled by a
fluctuating protein frictionzstd=zp,zvszp.zvd, this process
can drive the system in the absence of a force. This mecha-
nism is modeled by the two-step Markovian processS↔R
with relaxation ratesgr for S→R and gs for R. The master
equations for this process denoting the corresponding prob-
abilities byPsstd andPrstd thus take the form

dPsstd
dt

= gsPrstd − grPsstd, s3.13d

dPrstd
dt

= grPsstd − gsPrstd, s3.14d

with stationary solutions

Ps =
gs

gs + gr
, s3.15d

Pr =
gr

gs + gr
. s3.16d

The stationary mean value of, e.g., the spring constant, is
thus given by

kst = ksPs + krPr =
ksgs + krgr

gs + gr
. s3.17d

For the present purposes it turns out to be more convenient in
discussing the conformational transitions to focus on the

probability distributionsP̃sstd and P̃rstd characterizing the
residence of the system in either the strained state or the
relaxed state at a timet. The distribution is exponential in
time and we obtain properly normalized

P̃sstd = gre
−grt, s3.18d

P̃rstd = gse
−gst. s3.19d

The mean values of the residence times are then given by

ktls =
1

gr
, s3.20d

ktlr =
1

gs
. s3.21d

The mean value ofk may then be obtained as a time average:
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kkl =
ksktls + krktlr

ktls + ktlr
=

ks/gr + kr/gs

1/gr + 1/gs
, s3.22d

in accordance with Eq.(3.17).

E. The motor property without a load

Here we establish the fundamental motor property of the
model in the absence of a load. Forf =0 we have from Eqs.
(3.8) and (3.9)

vx
0 = −

kstde−gstd

2zstd E
0

t

dt8L̇st8degst8d, s3.23d

vy
0 = +

kstde−gstd

2zv
E

0

t

dt8L̇st8degst8d, s3.24d

At a superficial glance it looks as if the motor heads move in
opposite directions. However, subtracting the velocities and
noting that

ġstd =
kstd
2zstd

+
kstd
2zv

, s3.25d

we obtain

vx
0 − vy

0 = − ġstde−gstdE
0

t

dt8L̇st8degst8d. s3.26d

Finally, assuming ergodicity(to be established later) and
time averaging in combination with partial integrations we
have forT→`

kvx
0l − kvy

0l = −
1

T
E

0

T

dtġstde−gstdE
0

t

dt8L̇st8degst8d

=
1

T
E

0

T

dt
d

dt
fe−gstdgE

0

t

dt8L̇st8degst8d

=−
1

T
E

0

T

L̇stddt = 0, s3.27d

where the last step corresponds to an integration by parts
(note thatgstd is monotonically increasing, and therefore

T−1fe0
t L̇st8dexphgst8d−gstdjg0

T,T−1fLstdg0
T→0), and we con-

clude that the average velocities of the two heads are in fact
identical: The working head and the idle head move together.

Next we derive an explicit expression forkvx
0l. Introduc-

ing the auxiliary fluctuating variable

astd =
kstd
2
F 1

zv
−

1

zstdG , s3.28d

and using the above result we obtain by adding Eqs.(3.23)
and (3.24):

kvx
0l =

1

2
E

0

t

dt8ke−fgstd−gst8dgastdL̇st8dl. s3.29d

Here k¯l denotes an ensemble average with respect to the
conformational fluctuations. SinceLstd, kstd, and zstd are

governed by the same stochastic process, with the valuesLs,
zv, ks, andLr, zp, kr in the strained and relaxed states, respec-
tively, we obtain from the expressions fora and ġ in Eqs.
(3.28) and (3.7)

ar =
kr

2
F 1

zv
−

1

zp
G , s3.30d

as = 0, s3.31d

ġr =
kr

2
F 1

zv
+

1

zp
G , s3.32d

ġs =
ks

zv
. s3.33d

Denoting the jump times for the transitions between the
strained and relaxed state bytn, n=1,2, . . . , andassuming
that the system is in a relaxed state at 0, t, t1 we have

L̇std = sLr − Lsdo
n=1

`

s− 1dndst − tnd, s3.34d

and inserting this in Eq.(3.29) we obtain

kvx
0l =

Lr − Ls

2 o
n=1

N

s− 1dnKastdexpS−E
tn

t

ġst8ddt8DL ,

s3.35d

where tN, t, tN+1. Note that the exponential term is just a
more complicated way to write exph−gstd+gstndj, which will
be useful below. For evenN the system is in the relaxed state
for tN, t8, t with probability Pr. Similarly, for odd N the
motor ends in the strained state which occurs with probabil-
ity Ps. Introducing the time intervaltn= tn+1− tn, noting that
the residence distributions are statistically independent, and
introducing the notation

R= kexps− ġrtdlr =E
0

`

dt P̃rstdexps− ġrtd =
gs

gs + ġr

,

s3.36d

S= kexps− ġstdls =E
0

`

dt P̃sstdexps− ġstd =
gr

gr + ġs

,

s3.37d

the mean velocity can be expressed in terms of geometrical
series,

kvx
0l =

Lr − Ls

2 FPrarRs1 − Sdo
n=0

sSRdn

− PsasSs1 − Rdo
n=0

sSRdnG , s3.38d

or, summing the series(completingN→`),
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kvx
0l =

Lr − Ls

2

PrarRs1 − Sd − PsasSs1 − Rd
1 − RS

. s3.39d

Inserting Pr, Ps, R, and S from Eqs. (3.15), (3.16), (3.36),
and (3.37) we arrive at

kvx
0l =

Lr − Ls

2

grgssarġs − asġrd
sgsġs + grġr + ġrġsdsgs + grd

. s3.40d

First we note that the expression vanishes forastd= ġstd thus
corroborating the validity of the time average in Eq.(3.27)
and establishing ergodicity. Finally, insertingar, as, ġr, and
ġs from Eqs.(3.30)–(3.33), we obtain for the explicit expres-
sion for the motor velocity in the absence of a load

kvx
0l =

sLr − Lsdszp − zvdkrksgrgs

2sgr + gsdf2gskszpzv + krszp + zvdsgrzv + ksdg
.

s3.41d

F. The motor property with load

We next turn to the case of a load force applied to the
motor. First we establish that in the presence of the load the
two heads of the motor move together with the same average
velocity. From Eqs.(3.8) and (3.9) we obtain

vx − vy = vx
0 − vy

0 −
ġstde−gstd

zv
E

0

t

dt8 f̃st8degst8d +
f

zv
.

s3.42d

Inserting f̃ from Eq. (3.5) and averaging over time we have,
using Eq.(3.27),

kvxl − kvyl = −
f

zv

1

T
E

0

T

dte−gstdġstdE
0

t

dt8egst8d +
f

zv

+ f
2

T
E

0

T

dte−gstdġstdE
0

t

dt8
k̇st8d
kst8d2egst8d.

s3.43d

Performing the integrals by partial integration along the
same lines as in the load-free case, the first two terms in Eq.
(3.43) cancel, and we find in the limitT→`,

kvxl = kvyl, s3.44d

i.e., the two motor heads move together with the same aver-
age velocity.

We now turn to the evaluation of the load-velocity rela-

tionship. From Eqs.(3.8) and (3.9) and insertingf̃ we have

vx = vx
0 −

f

2zv
E

0

t

dt8
kstd
zstdF1 + 2zv

d

dt8
S 1

kst8d
DGe−fgstd−gst8dg,

s3.45d

vy = vy
0 −

f

zv
+

f

2zv
E

0

t

dt8
kstd
zv

F1 + 2zv
d

dt8
S 1

kst8d
DGe−fgstd−gst8dg.

s3.46d

From the synchronization of the stochastic processes we ob-
tain the identity

1

kstd
=

1

kr
+

1/ks − 1/kr

ġs − ġr

fġstd − ġrg, s3.47d

and therefore

d

dt

1

kstd
=

1/ks − 1/kr

ġs − ġr

g̈std. s3.48d

Inserting into Eqs.(3.45) and (3.46) and averaging

kvxl = kvx
0l −

f

2zv
K kstd

zstdE0

t

dt8e−fgstd−gst8dgL
− f

1/ks − 1/kr

ġs − ġr
K kstd

zstdE0

t

dt8e−fgstd−gst8dgg̈st8dL ,

s3.49d

kvyl = kvy
0l −

f

zv
+

f

2zv
K kstd

zv
E

0

t

dt8e−fgstd−gst8dgL
+ f

1/ks − 1/kr

ġs − ġr
K kstd

zv
E

0

t

dt8e−fgstd−gst8dgg̈st8dL .

s3.50d

The first integral in Eqs.(3.49) and (3.50) has the form

I1 =KbstdE
0

t

dte−sgstd−gst8ddL
=KbstdE

0

t

dt expS−E
t8

t

dt9ġst9dDL , s3.51d

and is performed by breaking up the integration overġ in the
exponents and averaging over the time segments yielding
again a geometrical series in terms ofSR. We obtain as an
intermediate result

I1 = PrbrS1 − R

ġr

+
Rs1 − Sd

ġs
Do

n=0
sSRdn

+ PsbsS1 − S

ġs

+
Ss1 − Rd

ġr
Do

n=0
sSRdn, s3.52d

and performing the sum and insertingR and S from Eqs.
(3.36) and (3.37),

I1 =
brPrsgr + gs + ġsd + bsPssgr + gs + ġrd

gsġs + grġr + ġrġs

. s3.53d

The second integral has the structure
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I2 =KcstdE
0

t

dt8e−sgstd−gst8ddg̈st8dL , s3.54d

and was performed in the load-free case in Eqs.
(3.35)–(3.40). We found

I2 = −
sġs − ġrdPrPssgs + grdscrġs − csġrd

gsġs + grġr + ġrġs

. s3.55d

It is again convenient to introduce the mobilitym according
to the relation

kvxl = kvx
0l − mf , s3.56d

and we obtain insertingcstd=bstd=kstd /zpstd for kvxl, or
cstd=bstd=kstd /zv for kvyl,

m = +
skr/2zvzpdPrsgr + gs + ġsd + sks/2zv

2dPssgr + gs + ġrd
gsġs + grġr + ġrġs

−
PrPssgs + grdsskr/zpdġs − sks/zvdġrds1/ks − 1/krd

gsġs + grġr + ġrġs

.

s3.57d

IV. DISCUSSION

In this section, we examine more closely our results de-
rived above, and compare them to the analysis in Ref.[47].

A. Free motor

Let us first examine the simple motor properties in the
absence of a cargo, i.e., forf =0. Here the expression in Eq.
(3.41) is at variance with the heuristic expression given by
Mogilner et al. [47],

kvxlM
0 =

gsgr

gr + gs

Lr − Ls

2
, s4.1d

which is solely based on the reaction rates, neglecting the
internal dynamics of the motor. To compare the expression

for the present model, Eq.(3.41), we introduce the dimen-
sionless parameters

qs =
gr

ġs

s4.2d

and

qr =
gs

ġr

, s4.3d

which express the ratio between the spring relaxation times,
ġs

−1 and ġr
−1, and the residence times Eqs.(3.20) in statesS

andR, respectively. In terms of these parameters we obtain

kvx
0l = kvxlM

0 3
zp − zv

zp + zv

1

1 + qs + qr
. s4.4d

The correction factor to the heuristic velocity given by
Mogilner et al. is clearly smaller than 1, but approaches 1 in
the limit of zp@zv andqs!1, qr !1, which are exactly the
conditions under which expression(4.1) was derived.

We note that the velocity vanishes forzp=zv. In this case
the attachment to the track has no effect on the friction and
there is no motion. In the limit of large protein friction com-
pared to the viscous drag coefficient,zp@zv, but qs,1
and/orqr ,1 each conformational cycle does not yield a full
step of lengthDL /2 due to incomplete spring relaxation, and
the average velocity is reduced. In the limit of eitherqs@1
or qr @1 the motor comes to rest, as the relaxation rate or the
hydrolysis rate becomes too large for the spring to change its
average length. The motor would also function under condi-
tions zv.zp or Ls.Lr; it would just move in the opposite
direction.

Inserting the characteristic biological numbers from Ref.
[47] we havezp/zv<50, qr <0.2, andqs<2310−3, and the
correction factor takes a value of about 0.8. This corresponds
to a average velocity ofkvxl0,43103 nm/s. However, un-
der different conditions, the discrepancy between the heuris-
tic result(4.1) and the exact quantity(4.4) may become more
significant.

FIG. 2. Dependence of the mean velocitykvx
0l on the hydrolysis

rategs, exhibiting a maximum at around 2.253103/s. The vertical
dashed line shows the parameter value given in Ref.[47]. For large
values ofgs, the velocity tends to zero.

FIG. 3. Dependence of the mean velocitykvx
0l on the protein

friction zp, reaching a plateau for large valuesszv=10−6 pN s/nmd.
The protein frictionzp=5310−5 nm/s pN used in the calculations
corresponds to the dimensionless value 50 in the plot, indicated by
the dashed line. Note thatkvx

0l=0 corresponds tozp/zv=1.
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In Figs. 2 and 3, we show the dependence of the load-free
velocity on the hydrolysis rategs and the protein frictionzp
(all other parameters fixed at the values of Ref.[47]). Ac-
cordingly, with respect to these values the model motor ve-
locity is close to optimum. The maximum in thegs depen-
dence shows the interplay between on and off rates in the
protein friction model, whereas the final plateau in thezp
dependence indicates the above-mentioned saturation, i.e.,
the motor still works for extremely large values ofzp, as long
as qs and/orqr do not increase to high values as well. We

note that, as expected, the velocity goes to zero for vanishing
hydrolysis rate, and when the protein friction approaches
zp→zv.

B. Motor carrying a load

In the case of a load or cargo we proceed to discuss the
expression for the motor mobility in Eq.(3.57), which can be
rewritten in the more convenient form

m =
2sgr + gsdsPrkr + PsksdsPrzv + Pszpd + krkss1 + Pr + Pszp/zvd

2zvh2gskszp + krsgrzv + ksds1 + zp/zvdj
. s4.5d

In the further discussion of the mobility it is convenient to
introduce the dimensionless parameters in Eqs.(4.2) and
(4.3). The expression(4.5) can then be reduced to the form

m =
sPrzv + Pszpdf2qs + s1 + zv/zpdqrg + s1 + Prdzv + Pszp

2zvszv + zpds1 + qs + qrd
.

s4.6d

Let us investigate this expression in some limiting cases.(i)
In the absence of fluctuations, i.e., the case of a constant
spring constant and rest length, in the relaxed stateR, the
protein friction zstd is locked ontozp, and we havePr =1,
Ps=0 andqr =0. By inspection of Eq.(4.6) we then obtain
the mobility m=1/szp+zvd, as discussed in Sec. III B.(ii )
Similarly, in the strained stateS, the protein frictionzstd is
locked ontozv, Ps=1, Pr =0, andqs=0, and we obtain the
mobility m=1/2zv. (iii ) Finally, in the casezp=zv, we imme-
diately find m=1/2zv, as is also evident from the model

equations(2.1) and (2.2). Interpolating between the limiting
cases(i) and (ii ) above, we introduce the average mobility
according to

mav = Pr
1

zp + zv
+ Ps

1

2zv
=

zv + Przv + Pszp

2zvszp + zvd
, s4.7d

and the mobility in Eq.(4.6) takes the form

m = mav

1 +F2qs + S1 +
zv

zp
DqrG Przv + Pszp

Przv + Pszp + zv

1 + qs + qr
. s4.8d

Inserting the characteristic biological numbers of Mogil-
ner et al. [47], zp/zv=50, qr =0.2, qs=2310−3, andPr , Ps
,0.5, we obtain the average mobilitymav<2.6
3105 nm/ss pNd, while the correction factor in Eq.(4.8) is
0.998, i.e., very close to 1. Hence, this gives rise to the ratio

m

mM
< 13, s4.9d

in comparison with the value estimated in Ref.[47]:

mM =
1

zp
. s4.10d

The origin of the discrepancy between the present result and
that of Ref.[47] is the slight difference between the models.
In the strained state Ref.[47] operates with two characteristic
times, that ofS→R conversion, i.e., the residence time Eq.
(3.20) ktls=1/gr, and the time of the restoration of bonds
between the motor working head and the groove, which is
much smaller. In the present model the two times are as-
sumed equal, corresponding to the assumption that the spring
relaxationS→R is initiated when the working head becomes
attached to the groove again. From a physical point of view
this is equally possible, but implies that the motor spends

FIG. 4. Mobility m and stall forcefstall as a function of the
hydrolysis rategs. The vertical line marks the value from Ref.[47].
Note the different scales.
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much shorter times in stateS than in stateR, or gr @gs, i.e.,
Pr ,1 andPs,0, and the motor becomes much more vola-
tile to the local force during these periods.

From the mobilitym and the zero-load velocitykvx
0l, we

obtain the stall force

fstall =
kvx

0l
m

. s4.11d

In Figs. 4 and 5 we have on the same plots depicted the
values of the mobilitym and the stall forcefstall versus the
hydrolysis rategs and the protein frictionzp. We note that the
stall force exhibits a maximum as a function ofgs close to
the parameter values chosen in our calculations, whereas the
mobility is close to saturation. Similarly, as a function ofzp,
the stall force is close to its maximum value, whereas the
mobility does not change much within the chosen plot range
(note that the ordinate does not reach the origin). In general,
we observe that due to the particular dependence ofm on the
model parameters, its value varies relatively weakly within
large intervals for the individual parameter values. In Fig. 6
we have depicted the mobility and stall force as functions of
the rate of relaxationgr. For largegr we obtain a stall force
of the order of piconewtons, which is in the biological range.

V. SUMMARY AND CONCLUSION

In this paper we have by analytical means solved a mo-
lecular motor model proposed by Mogilneret al. [47]. This
model represents a robotic motor solely based on an effective
static friction interaction between motor and its support
(track). From the underlying Langevin equations, which rep-
resent the synchronized dichotomous processes of friction,
effective spring constant, and distance between the motor
heads, we obtain explicit expressions for the load-free motor
velocity, the mobility of the motor, and the stall force.
Whereas the result for the load-free velocity produces a typi-
cal motor velocity of severalmm/s for physiologically rea-
sonable parameters, the exact solution overestimates the mo-

bility, leading to a value for the stall force that is roughly two
orders of magnitude smaller than physiological values and
significantly smaller than the simulation results reported in
Ref. [47]. This variance is associated with a difference in the
stochastic dynamics underlying the analysis and the dynami-
cal processes implied in the numerical simulation.

A likely explanation relies on an essential feature of an
model, which is the decoupling of the dynamics of the motor
protein–rail biopolymer interaction(chemical bonds forming
and breaking) into a fast, detached process during energy
consumption, and a slow relaxing process in one mecha-
nochemical motor cycle. This purely stochastic picture leads
to situations in which the motor detaches frequently, before
its relaxing step is finished, and therefore the subcycles,
which actually lend themselves to propulsion, are inter-
rupted. Obviously, this leads to the underestimation of the
stall force. In a real system, the fact that chemical bonds are
established ensures that a full propulsion subcycle can be
completed before dissociation takes place for the next load-
ing of the internal motor “spring” in parallel to hydrolysis. In
comparison to the ratchet models in which the motor prop-
erties are represented by fluctuating between two different,
periodic potentials, it appears that the latter rely on fewer
parameters, and therefore their stall force can be adjusted
better to actually observed values.

We finally should like to emphasize that the exact results
obtained allow for an exact and detailed study of the depen-
dence of the motor characteristics on the various parameters
without invoking numerical simulations. Additional features,
such as the low likelihood for detaching from the rail during
the forward motion, could be incorporated into the model
and still be solved explicitly, using the solution schemes de-
veloped here. We therefore believe that this study leads to a
better understanding of molecular motor models.
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FIG. 5. Mobility m and stall forcefstall as a function of the
protein frictionzp (model value 5.0310−5 nm/s pN).

FIG. 6. Mobility m and stall forcefstall as a function of the rate
of relaxationgr. We observe that for large relaxation rate the stall
force enters the biological range.
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