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Lévy flights in steeper than harmonic potentials have been shown to exhibit
finite variance and a critical time at which a bifurcation from an initial mono-
modal to a terminal bimodal distribution occurs (Chechkin et al., Phys. Rev. E
67:010102(R) (2003)). In this paper, we present a detailed study of Lévy flights
in potentials of the type U(x) 3 |x|c with c > 2. Apart from the bifurcation into
bimodality, we find the interesting result that for c > 4 a trimodal transient
exists due to the temporal overlap between the decay of the central peak around
the initial d-condition and the building up of the two emerging side-peaks,
which are characteristic for the stationary state. Thus, for certain system
parameters there exists a transient trimodal distribution of the Lévy flight.
These properties of Lévy flights in external potentials of the power-law type can
be represented by certain phase diagrams. We also present details about the
proof of multimodality and the numerical procedures to establish the proba-
bility distribution of the process.

KEY WORDS: Random walks and Lévy flights; stochastic processes; classical
transport; stochastic analysis methods (Fokker–Planck, Langevin, etc.).

1. INTRODUCTION

Lévy flights (LFs) are stochastic, Markov processes, which differ from
regular Brownian motion by the occurrence of extremely long jumps,
whose length is distributed according to a Lévy stable law with the long tail
’ |x|−1 − a, such that its second moment diverges. (1–5) This property strongly
contrasts the classical Gaussian description of diffusion processes which
possess finite moments of any given order. (6, 7) Given their Markov nature,



the divergence of the variance of an LF might disqualify them as physically
meaningful model processes for diffusing particles with a finite mass. Yet,
LFs have important applications to processes, in which no finite velocity is
required, such as in the energy diffusion in single molecule spectroscopy. (8)

An impressive experimental evidence of Lévy processes was reported by the
group of Walther in the study of the position of a single ion in a one-
dimensional optical lattice, in which diverging fluctuations could be
observed in the kinetic energy. (9) From a phenomenological point of view,
LFs have been used to describe the dynamics observed in plasmas (10) or in
molecular collisions. (11) They have also been successfully applied to describe
the statistics encountered in the spatial gazing patterns of bacteria, (12) alba-
tross birds, (13) or even spidermonkeys. (14) Probably the earliest application
of LFs, however, may be in the modelling of financial markets. (15) LFs were
shown to give rise to surprisingly rich band structures in periodic poten-
tials. (16) Reverse engineering methods have been developed to construct a
Langevin system with Lévy noise to produce a pre-defined steady state. (17)

We also note that the stationary state of LFs in a confining external
potential is expected to approach to the one of Lévy walks for long
times (18, 19) (the spatiotemporally coupled version of LFs which have con-
verging moments of any order), and therefore the more straightforward
determination of the solution for LFs might be used to gain insight into
Lévy walks.

The theory of homogeneous LFs is well understood: Thus, LFs in the
continuum limit can, inter alia, be described by continuous time random
walks with long-tailed, asymptotic power-law jump length distributions, (18)

or alternatively by a Langevin equation with d-correlated, Lévy noise. (20–22)

Both descriptions can be mapped onto the (space-) fractional diffusion
equation (21, 23–26)

“f
“t

=D
“

a

“ |x|a
f(x, t), (1)

where the fractional Riesz operator “
a/“ |x|a is most easily defined in terms

of its Fourier transform (27)

F
.

−.

e ikx “
a

“ |x|a
f(x, t) dx — − |k|a f̂(k, t); (2)

here, 0 < a [ 2. In the following we restrict our analysis to the range
1 [ a [ 2. In the limit a=2, naturally, Eq. (1) reduces to the classical dif-
fusion equation, which describes Gaussian transport. From the Fourier
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transform of Eq. (1), “f/“t=−D |k|a f̂(k, t), we conclude that the char-
acteristic function is

f̂(k, t)=exp(− Dt |k|a), (3)

i.e., exactly the characteristic function of a symmetric Lévy stable law of
index a. (3, 4) In position space, expression (3) can be represented exactly in
terms of Fox H-functions, (25, 28) but for our purposes in what follows, it
is enough to remember that for large |x|, we find f(x, t) ’ Dt/|x|1+a, such
that the variance diverges: Ox2(t)P=.. Also the general formulation of
LFs in external potentials and in phase space seems well founded, in terms
of fractional Klein–Kramers equations; see, e.g., refs. 24, 29–31.

However, much less is known about the actual behaviour of LFs in
external potentials U(x), i.e., about the properties of the probability
density function (PDF) f(x, t) in the presence of such a U(x). One of the
few solved examples is the one of LFs in a harmonic potential, (32) whose
solution always follows the same stable law of index a, like in the regular
Ornstein–Uhlenbeck process the PDF always stays Gaussian. In general,
LFs in the presence of an external potential field in the overdamped
case are governed by the (space-) fractional Fokker–Planck (or Einstein–
Smoluchowski) equation (21, 23–25)

“f
“t

=1 “

“x
UŒ(x)

mg
+D

“
a

“ |x|a
2 f(x, t), (4)

which has the characteristic property that the drift term enters with the
usual first order derivative and thus preserves its additive quality such that
for a constant force F(x)=Vmg the solution is given by the drift-free PDF
taken at the similarity variable x − Vt, and for a general external potential
the stationary solution differs from the Boltzmann distribution. This latter
property is in contrast to an alternative LF model suggested in ref. 33.

An unexpected behaviour of LFs was obtained recently as solution
of the fractional Fokker–Planck equation (4), namely the occurrence of
bimodal solutions (PDFs with two maxima) and the finiteness of the
second moment in the presence of superharmonic potentials of the
form (34, 35)

U(x)=
ax2m+2

2m+2
, m=1, 2,... . (5)

Note that the amplitude a > 0 has dimension [a]=g · cm−2m/sec2. Thus,
for a potential of the form U(x)=ax2+bx4 with a, b > 0, a turnover can
be tuned from the properties of the solution of the harmonic problem
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(monomodal/unimodal, diverging variance) to a finite variance and
bimodal solution by varying the ratio b/a. (35) If such bimodality occurs, it
results from a bifurcation at a critical time tc. (35) A typical result is shown
in Fig. 1, for the quartic case m=1 and Lévy index a=1.2: from an initial
d-peak, eventually a bimodal distribution emerges. Note that we use
dimensionless quantities in the plots, as introduced below. The location of
the global maximum/maxima is displayed in Fig. 2, where the bifurcation
is a distinct mark. In the same figure, the value of the PDF f at the newly
emerging humps is compared to the value at the origin.

Fig. 1. Time evolution of the LF-PDF in the presence of the superharmonic external poten-
tial (5) with c=4 (quartic Lévy oscillator) and Lévy index a=1.2, obtained from the numeri-
cal solution of the fractional Fokker–Planck equation, using the Grünwald–Letnikov repre-
sentation of the fractional Riesz derivative (full line). The initial condition is a d-function at
the origin. The dashed lines indicate the corresponding Boltzmann distribution. The transition
from one to two maxima is clearly seen. This picture of the time evolution is typical for
2 < c [ 4 see below. The corresponding location of the maximum/maxima as a function of
time is shown in Fig. 2.
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Fig. 2. Bifurcation diagrams for the case c=4.0, a=1.2, corresponding to the PDF shown
in Fig. 1. Left: the thick lines show the location of the maximum, which at the bifurcation
time t12=0.84 ± 0.01 turns into two maxima. Right: the value of the PDF in the maxima
location (thick line) and the value in the minimum at x=0 (thin line).

In what follows, we briefly review the description of LFs in external
fields in terms of the Langevin equation with white Lévy noise and the
space-fractional Fokker–Planck equation, as well as the properties of LFs
in superharmonic potentials; and we present two proofs, for both the finite
variance in these cases and the existence of multimodality. We then proceed
to show that for potentials steeper than (5) with m=1, even a trimodal
PDF can be obtained. In two phase diagrams, we can classify the existence
of the different n-modal states in dependence of the potential exponent
c and the Lévy index a; and the critical bifurcations between different
n-modal domains as a function of time t and potential exponent c. In the
appendix, we discuss the numerical methods from which the PDFs are
obtained.

2. STARTING EQUATIONS

In this section, we formulate the dynamical description of LFs on the
stochastic differential (Langevin equation) and the deterministic (fractional
Fokker–Planck equation) levels. For the latter, we also discuss the corre-
sponding form in Fourier space.

2.1. Starting Equations in Real Space

2.1.1. The Langevin Equation with Lévy Noise

On the level of the stochastic description, our starting point is the
overdamped Langevin equation (20, 21, 38)

dx
dt

=
F(x)
Mc

+Ya(t), (6)
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where F=−dU/dx is an external force with potential

U(x)=
a |x|c

c
, (7)

with a > 0 and c \ 2, M is the particle mass, c the friction coefficient,
and Ya(t) represents a stationary white Lévy noise with Lévy index a

(1 [ a [ 2).
We employ the white Lévy noise Ya(t) such that the process

L(Dt)=F
t+Dt

t
Ya(y) dy, (8)

i.e., the time integral over an increment Dt, is an a-stable process with sta-
tionary independent increments. Restricting ourselves to symmetric Lévy
laws, this implies the characteristic function

p̂L(k, Dt)=exp(− D |k|a Dt). (9)

The constant D in this description has the meaning of the intensity of the
Langevin source, and [D]=cma/sec.

In Fig. 3, we show realisations of white Lévy noises for various values
of a. The sharply pronounced ‘‘outliers,’’ due to the long-tailed nature of
the Lévy stable distribution, are distinct, in comparison to the Gaussian
case a=2.

2.1.2. Fractional Fokker–Planck Equation

The Langevin equation (6) is still of the Markov-type, and it is there-
fore fairly straightforward to show that the corresponding fluctuation-
averaged (deterministic) description is given in terms of the space-fractional
Fokker–Planck equation (4). (20, 21, 34) In what follows, we derive the solution
of Eq. (4) for the d-initial condition

f(x, 0)=d(x). (10)

The space-fractional derivative “
a/“|x|a occurring in the fractional

Fokker–Planck equation (4) is called the Riesz fractional derivative,
defined through

daf
d|x|a

=˛ −
Da

+f+Da
− f

2 cos(pa/2)
, a ] 1

−
d

dx
Hf, a=1,

(11)
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Fig. 3. White Lévy noises with the Lévy indexes a=2, 1.7, 1.3, 1.0. The ‘‘outliers’’ are
increasingly more pronounced the smaller the Lévy index a becomes. Note the different scales
on the ordinates.

where we use the following abbreviations:

(Da
+f)(x)=

1
C(2 − a)

d2

dx2 F
x

−.

f(t, t) dt

(x − t)a − 1 , (12)

and

(Da
− f)(x)=

1
C(2 − a)

d2

dx2 F
.

x

f(t, t) dt

(t − x)a − 1 (13)

for, respectively, the left and right Riemann–Liouville derivatives (1 [ a < 2);
and (36)

(Hf)(x)=
1
p

F
.

−.

f(t) dt

x − t
(14)

is the Hilbert transform. Note that the integral is to be interpreted as the
principal value. The definitions for “

a/“ |x|a demonstrate the strongly
nonlocal property of the space-fractional Fokker–Planck equation, i.e.,
strong correlations in x.
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2.1.3. Rescaling of the Dynamical Equations

Passing to dimensionless variables

xŒ=x/x0, tŒ=t/t0, (15)

with

x0=1MDc

a
21/(c − 2+a)

, t0=
xa

0

D
, (16)

the starting equations take the form (we omit primes below)

dx
dt

=−
dU
dx

+Ya(t) (17)

instead of the Langevin equation (6), and

“f(x, t)
“t

=
“

“x
dU
dx

f+
“

af
“ |x|a

(18)

instead of the fractional Fokker–Planck equation (4), and

U(x)=
|x|c

c
. (19)

2.2. Starting Equations in Fourier Space

If f̂(k, t) denotes the characteristic function (CF), i.e., Fourier trans-
form of f(x, t), we write

f(x, t) ÷ f̂(k, t), (20)

where we use the sign ÷ to denote a Fourier transform pair. Since (27)

(Da
± f)(x, t) ÷ ( + ik)a f̂(k, t), (21)

and

(Hf)(x, t) ÷ i sign(k) f̂(k, t), (22)

we obtain

“
af

“ |x|a
÷− |k|a f̂(k, t), (23)
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for all a’s. The equivalent of the fractional Fokker–Planck equation (18)
for the CF then follows immediately,

“f̂
“t

+|k|a f̂=Ukf̂, (24)

with the initial condition

f̂(k, t=0)=1, (25)

and the normalisation

f̂(k=0, t)=1. (26)

The external potential U(x) turns into the linear differential operator in k,

Ukf̂=F
.

−.

e ikx “

“x
1dU

dx
f2 dx

= − ik F
.

−.

e ikx sign(x) |x|c − 1 f(x, t) dx. (27)

Next, making use of the following ‘‘inverse’’ expressions

(± ix)a f(x) ÷ (Da
± f̂)(k), (28)

and

− i(sign(x) f(x) ÷ (Hf̂)(k), (29)

we obtain the explicit expression for the external potential operator,

Ukf̂=˛ k
2 cos(pc/2)

(Dc − 1
+ − Dc − 1

− ) f̂, c ] 3, 5, 7,...

(−1)m k
d2m

dk2m Hf̂, c=3, 5, 7,... .
(30)

Note that for the even potential exponents c=2m+2 , m=0, 1, 2,..., we
find the simplified expression

Uk=(−1)m+1 k
“

2m+1

“k2m+1 , (31)
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in terms of regular derivatives in k. We see that the force term can be
written in terms of fractional derivatives in Fourier space, and therefore it
is not straightforward to calculate even the stationary solution of the frac-
tional Fokker–Planck equation (18) in the general case c ¨ N. In particular,
in this latter case, the nonlocal Eq. (18) in x-space translates into a nonlo-
cal equation in k-space, where the nonlocality shifts from the diffusion to
the drift term.

3. ANALYTICAL RESULTS

In the preceding section, we discussed some elementary properties of
the space-fractional Fokker–Planck equation for LFs, in particular, we
pointed out the spatially nonlocal character of Eq. (18), and its Fourier
space counterpart (24). In this section, we determine the analytical solution
of the fractional Fokker–Planck equation. We start with the exactly solv-
able stationary quartic Cauchy oscillator, to demonstrate directly the
occurring bimodality, and then move on to the general case. The major
results will be the determination of n-modality, finite variance, and the
parametric dependence of the associated bifurcations.

3.1. The Stationary Quartic Cauchy Oscillator

Let us first regard the case of the stationary quartic potential with
c=4 for the Cauchy-LF with a=1, i.e., the solution of the equation

d
dx

x3fst(x)+
d

d |x|
fst(x)=0, (32)

or,

d3f̂st(k)
dk3 =sign(k) |k| f̂st(k) (33)

in Fourier space. Its solution is

f̂st(k)=
2

`3
exp 1 −

|k|
2
2 cos 1`3 |k|

2
−

p

6
2 , (34)

whose inverse Fourier transform results in the simple analytical form

fst(x)=
1

p(1 − x2+x4)
. (35)
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Fig. 4. Stationary PDF (35) of the Cauchy-LF in a quartic (c=4) potential. Two global
maxima exist at xmax=± `1/2, and there is a local minimum at the origin.

As shown in Fig. 4, this solution has two global maxima at xmax=± 1/`2
apart from a local minimum at the origin (the position of the initial condi-
tion, that is) and its variance

Ox2P=1 (36)

is finite, due to the long-tail asymptotics fst(x) ’ x−4. These two distinct
properties for LFs will turn out to be a central theme in the remainder of
this work.

3.2. Formal Solution of Eq. (18)

Returning to the general case, we rewrite Eq. (24) in the equivalent
integral form,

f̂(k, t)=p̂a(k, t)+F
t

0
dy p̂a(k, t − y) Ukf̂(k, y) (37)

where

p̂a(k, t)=exp(−|k|a t) (38)

is the CF of a free (homogeneous) LF. This relation follows from Eq. (24)
via formally treating it as a nonhomogeneous linear differential equation of
first order, where Uk plays the role of the nonhomogeneity. Then, (24) is
obtained from variation of constants. (Differentiate Eq. (37) to return
to (24).)
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Equation (37) can be solved formally by iterations: Let

f̂ (0)(k, t)=p̂a(k, t), (39)

then

f̂ (1)(k, t)=p̂a(k, t)+F
t

0
dy p̂a(k, t − y) Ukf̂ (0)(k, y), (40)

f̂ (2)(k, t)=p̂a(k, t)+F
t

0
dy p̂a(k, t − y) Uk p̂a(k, y)

+F
t

0
dy F

y

0
dyŒ p̂a(k, t − y) Uk p̂a(k, y − yŒ) Uk p̂a(k, yŒ), (41)

etc. Invoking the definition of the convolution,

A f B=F
t

0
dy A(t − y) B(y)=F

t

0
dy A(y) B(t − y), (42)

and using

A f B f C=(A f B) f C=A f (B f C), (43)

we arrive at the formal solution

f̂(k, t)= C
.

n=0
p̂a( f Uk p̂a)n. (44)

This procedure is analogous to perturbation theory, Ukf̂ playing the role
of the interaction term, see, for instance, ref. 37, Chapter 16.

Applying a Laplace transformation,

f̃̂(k, s)=F
.

0
dt exp(−st) f1(k, t), (45)

to Eq. (37), we obtain

f̃̂(k, s)=p̃̂a(k, s)+p̃̂a(k, s) Uk f̃̂(k, s), (46)

where

p̃̂a(k, s)=
1

s+ka
(47)

1516 Chechkin et al.



is the Fourier–Laplace transform of the homogeneous Lévy stable PDF
(note that p̃̂(k, s) is even in k). Thus, we obtain the equivalent of solution
(44) in (k, s)-space:

f̃̂(k, s)= C
.

n=0
[p̃̂a(k, s) Uk]n p̃̂a(k, s). (48)

This iterative construction scheme for the solution of the fractional
Fokker–Planck equation will turn out to be useful below.

3.3. Existence of a Bifurcation Time

For the case of the unimodal initial condition f(x, 0)=d(x) we now
prove the existence of a finite bifurcation time t12 for the turnover from
unimodal to bimodal PDF. At this time, the curvature at the origin will
vanish, i.e., be an inflection point:

“
2f

“x2
:
x=0, t=t12

=0. (49)

Introducing

J(t)=F
.

0
dk k2f̂(k, t), (50)

Eq. (49) is equivalent to (note that the CF is an even function)

J(t12)=0. (51)

The bifurcation can now be obtained from the iterative solution (48);
we consider the specific case c=4. From the first order approximation

f̃̂1(k, s)=
1

s+ka
11+Uk

1
s+ka

2 , (52)

and we have

Uk=k
“

3

“k3 . (53)
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Combining these two expressions, we produce

f̃̂1(k, s)=
1

s+ka
+a(a − 1)(2 − a)

ka − 2

(s+ka)3

+6a2(a − 1)
k2a − 2

(s+ka)4 − 6a3 k3a − 2

(s+ka)5 , (54)

or, after inverse Laplace transformation,

f̂1(k, t)=e−kat 31 −
a3

4
t4k3a − 2+a2(a − 1) t3k2a − 2+a(a − 1)(2 − a)

t2

2
ka − 24 .

(55)

The first approximation to the bifurcation time t12 is then determined via
Eq. (50), i.e., we calculate

F
.

0
dk k2f̂1(k, t (1)

12 )=0, (56)

to obtain

t (1)
12 =1 4C(3/a)

3(3 − a) C(1/a)
2a/(2+a)

. (57)

In Fig. 5, we show the dependence of this first approximation t (1)
12 as a

function of the Lévy index a (dashed line), in comparison to the values
determined from the numerical solution of the fractional Fokker–Planck

Fig. 5. Bifurcation time t12 versus Lévy exponent a at external potential exponent c=4.0.
Black dots: bifurcation time deduced from the numerical solution of the fractional Fokker–
Planck equation (18) using the Grünwald–Letnikov representation of the fractional Riesz deriva-
tive (see appendix). Dashed line: first approximation t(1)

12 ; solid line: second approximation t(2)
12 .
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equation (18) shown as the dotted line. The second order iteration for the
PDF, f̂2(k, t), can be obtained with maple6, from which, in turn, the
second approximation for the bifurcation time is found in analogy to above
procedure. The result is displayed as the full line in Fig. 5. The two
approximate results show in fact surprisingly good agreement with the
numerical result of the full PDF. Note that the second approximation
appears somewhat worse than the first, however, it captures the minimum
of the t12 behaviour over a.

3.4. Proof of Non-Unimodality of Stationary Solution for c>2

In this subsection we demonstrate that the stationary solution of the
kinetic Eq. (18) has a non-unimodal shape. For this purpose, we use an
alternative expression for the fractional Riesz derivative (compare, e.g.,
ref. 27),

daf(x)
d |x|a

— C(1+a)
sin(ap/2)

p
F

.

0
dt

f(x+t) − 2f(x)+f(x − t)
t1+a

(58)

valid for 0 < a < 2. In the stationary state (“f/“t=0), we get from
Eq. (18):

d
dx

(sgn(x) |x|c − 1 fst)+
dafst

d |x|a
=0. (59)

Thus, it follows that at c > 2 (strict inequality)

dafst

d |x|a
:
x=0

=0, (60)

or, from definition (58) and taking into account that fst(x) is an even
function,

F
.

0
dt

fst(t) − fst(0)
t1+a

=0. (61)

From this latter relation, we can immediately obtain proof of the non-
unimodality of fst, which we produce in two steps:

(1) If we assume that the stationary PDF fst(x) is unimodal, then
due to the symmetry x Q − x, it necessarily has one global maximum at
x=0. In this case the integrand in Eq. (61) must be negative, and therefore
contradicts Eq. (61). Therefore, fst(x) is non-unimodal.
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(2) We can in addition exclude f(0)=0, as in this case the integrand
will be positive, which is again in contradiction with Eq. (61).

Since f(x) Q 0 at x Q ., basing on statements (1) and (2), one may
conclude that the simplest situation is such that t0 > 0 exists with the
property

F
.

t0

dt
f(t) − f(0)

t1+a
< 0, (62)

and,

F
t0

0
dt

f(t) − f(0)
t1+a

> 0, (63)

i.e., the condition for two-hump stationary PDF for all c > 2. At intermit-
tent times, however, we will show that also a trimodal state may exist.

3.5. Power-Law Asymptotics of Stationary Solutions for c \ 2, and

Finite Variance for c>2

We now derive the power-law asymptotics of the stationary PDF
fst(x) for external potentials of the form (5) with general c \ 2. To this end,
we note that at x Q +., it is reasonable to assume

Da
− fst ° Da

+fst, (64)

since the region of integration for the right-side Riemann–Liouville deriva-
tive (Da

− fst)(x), (x, .), is much smaller than the region of integration
for the left-side derivative (Da

+fst)(x), (−., x), in which also the major
portion of fst(x) is located. Thus, at large x we get for the stationary state,

d
dx

1dU
dx

fst
2−

1
2 cos(pa/2)

d2

dx2 F
x

−.

fst(t) dt

(x − t)a − 1 5 0. (65)

Equivalently, this corresponds to the approximative equality

xc − 1fst(x) 5
1

2 cos(pa/2)
d

dx
F

x

−.

fst(t) dt

(x − t)a − 1 . (66)

We are seeking asymptotic behaviours of fst(x) in the form f(x) % C1/xm

(x Q+., m > 0). After integration of relation (66), we find

2C1 cos(pa/2) C(2 − a)
− m+c

x−m+c 5 F
x

−.

fst(t) dt

(x − t)a − 1 . (67)
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The integral on the right hand side can be approximated through

1
xa − 1 F

x

−.

fst(t) dt 5
1

xa − 1 F
.

−.

fst(t) dt=
1

xa − 1 . (68)

Thus, we identify the powers of x and the prefactor, with the results

m=a+c − 1 (69)

and

C1=
sin(pa/2) C(a)

p
. (70)

By symmetry of the PDF we therefore recover the general asymptotic form

f(x) %
sin(pa/2) C(a)

p |x|m
, x Q+. (71)

for all c \ 2. This result is remarkable, for various reasons:

(i) despite the approximations involved, the asymptotic form (71) for
arbitrary c \ 2 matches exactly previously obtained forms, such as the
exact analytical result for the harmonic LF (linear Lévy oscillator), c=2
reported in ref. 32; the result for the quartic Lévy oscillator with c=4
discussed in refs. 34 and 35; and the case of even power-law exponents
c=2m+2 (m ¥ N0 ) given in ref. 34.

(ii) The prefactor C1 is independent of the potential exponent c; in
this sense, C1 is universal.

(iii) For each value a of the Lévy index the ‘‘critical’’ value

ccr=4 − a (72)

exists such that at c < ccr the variance Ox2P is infinite, whereas at c > ccr the
variance is finite.

(iv) We have found a fairly simple trick to construct stationary solu-
tions at large x in the form of inverse power series.

4. NUMERICAL RESULTS

In this section, we show results for the PDF of the fractional Fokker–
Planck equation (18) obtained via two different numerical techniques, one
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being the Grünwald–Letnikov method, which is based on an iterative solu-
tion of the deterministic dynamical equation (18) by replacing the Riesz
fractional derivative with Grünwald–Letnikov operators; the other being
the Langevin method, in which the Langevin equation with Lévy noise,
Eq. (6) is integrated numerically. Both methods lead to analogous results,
and they also produce results for the PDF which are in perfect agreement
with above analytical results. We present the numerical results in two sub-
sections, devoted to the two numerical methods. These methods themselves
are discussed in the appendix.

Fig. 6. Time evolution of the PDF governed by the fractional Fokker–Planck equation (18)
in a superharmonic potential (5) with exponent c=5.5, and for Lévy index a=1.2; obtained
from numerical solution using the Grünwald–Letnikov method explained in the appendix.
Initial condition is f(x, 0)=d(x). The thin lines indicate the corresponding Boltzmann dis-
tribution. The transitions between 1 Q 3 Q 2 humps are clearly seen. This picture of time
evolution is typical for c > 4. On a finer scale, we depict the transient trimodal state in Fig. 7.
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4.1. Results from the Grünwald–Letnikov Method

4.1.1. Trimodal Transient State at c > 4

Before, we have proved the existence of a bimodal stationary state for
the quartic (c=4) Lévy oscillator. This bimodality emerges as a bifurca-
tion at a critical time tcr, at which the curvature at the origin vanishes. This
scenario is replaced for c > 4, as displayed in Fig. 6. Thus, there obviously
exist two timescales, the critical time for the emergence of the two off-
centre maxima, which are characteristic of the stationary state; and a
second one, which corresponds to the relaxing initial central hump, i.e.,
the decaying initial distribution f(x, 0)=d(x). The formation of the two
off-centre humps while the central one is still present, is detailed in Fig. 7.
This existence of a transient trimodal state was found to be typical for all
c > 4.

In Figs. 8 and 9, we show additional details of the trimodal state.
Thus, Fig. 8 depicts a bifurcation diagram for the process described earlier;
the initial monomodal PDF bifurcates to a trimodal one, before it finally
becomes bimodal. In Fig. 9, these two turnover times are displayed as

Fig. 7. The transition 1 Q 3 Q 2 from Fig. 6 on a finer scale (c=5.5, a=1.2).

Lévy Flights in a Steep Potential Well 1523



Fig. 8. Bifurcation diagrams for the case c=5.5 and a=1.2 corresponding to Figs. 6 and 7.
Left: positions xmax of the maxima (global and local, thick lines); the thin lines indicate the
positions of the minima (at the first bifurcation time, there is a horizontal tangent at the site
of the two emerging off-centre maxima. The bifurcation times are t13=0.75 ± 0.01 and
t32=0.92 ± 0.01. Right: values of the PDF at the maxima (thick lines); the thin line indicates
the value of the PDF in the minima.

function of the Lévy index a. Clearly, there is always a gap between these
two time scales, leaving the intermittent time for the trimodal state, and for
a Q 2, this region shrinks, both curves converge to infinity, as in the regular
Gaussian case no such bifurcation exists.

4.1.2. Phase Diagrams for n-Modal States

The above findings can be put in context with the purely bimodal case
discussed earlier. A convenient way of displaying the n-modal character of
the PDF in the presence of a superharmonic external potential of the
type (19) is the phase diagram shown in Fig. 10. There, we summarise

Fig. 9. Bifurcation times t13 versus a ( lower curve) and t32 (upper curve) for the external
potential exponent c=5.5.
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Fig. 10. (c, a)-map showing different regimes of evolution of the PDF, and the stationary
states. The region with infinite variance is shaded. The region c < 4 covers the transition from
1 to 2 humps during time evolution. For c > 4, a transition from 1 to 3, and then from 3 to 2
humps occur. For all c’s there are two maxima in the stationary state. Compare Fig. 11.

the findings that for 2 < c [ 4 the bifurcation occurs between the initial
monomodal and the stationary bimodal PDF at a finite critical time,
whereas for c > 4, a transient trimodal state exists. Moreover, we also
include the shaded region, in which c is too small to ensure a finite
variance. Complementarily, in Fig. 11, the temporal domains of the
n-modal states are graphed, and the solid lines separating these domains
correspond to the critical timescales. Again, the transient nature of the
trimodal state is distinct.

Fig. 11. (c, t)-map showing states with different number of maxima, and the transitions
between them during time evolution. Region 1: PDF has 1 hump; region 2: PDF has 2 humps;
region 3: PDF has 3 humps. At c < 4 there is only a transition 1 Q 2, whereas at c > 4 there
are two transitions: 1 Q 3 and after the transient trimodal regime, 3 Q 2.
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4.2. Langevin Method

As explained in the appendix, this method directly integrates the
Langevin equation for white Lévy noise, the latter being portrayed in
Fig. 3. Typical results for the sample paths under the influence of an
external potential (19) with increasing superharmonicity are shown in
Fig. 12 in comparison to the Brownian case (i.e., white Gaussian noise).
For increasing external exponent c, the long excursions, which are typical
for homogeneous LFs are increasingly suppressed. In the harmonic case

Fig. 12. Left column: the potential energy functions U=xc/c, (solid lines) and their curva-
tures (dotted lines) for different values of c: c=2 ( linear oscillator), and c=4, 6, 8 (strongly
nonlinear oscillators). Middle column: typical sample paths of the Brownian oscillators, a=2,
with the potential energy functions shown on the left. Right column: typical sample paths of
the Levy oscillators, a=1. It is seen that with m increasing the potential walls become steeper,
and the Lévy flights become shorter; in this sense, they are ‘‘confined.’’

1526 Chechkin et al.



c=2 still present (in this case, the variance is diverging), they are clearly
confined for c > 2. Note the comparable ordinate windows in comparison
to the significantly different scale in the homogeneous case of Fig. 3. For
all displayed cases, however, the qualitative behaviour of the noise under
the external potential is different from the Brownian noise even in this case
of strong confinement. In the same figure, we also show the curvature of
the external potential. Additional investigations have shown that the
maximum curvature is always very close to the positions of the two
maxima, leading us to conjecture that they are in fact identical.

The latter observation is further investigated in Fig. 13. On a linear
scale, the potential well and its curvature are compared to the stationary
PDF, clearly demonstrating the proximity of maximum curvature and the
two maxima. Figure 13 also corroborates on the basis of the Langevin
method the asymptotic inverse power-law behaviour derived in Eq. (71).

Finally, in Fig. 14, we display the time evolution of the PDF in the
three different modality-regimes according to Fig. 11. The comparatively
noisy result is due to a small number of trajectories used for the statistical
average, due to the rather computation intensive program.

5. CONCLUSIONS

By combining analytical and numerical results, we discussed LFs in a
superharmonic external potential of power c. Depending on the magnitude
of this exponent c, different regimes could be demonstrated. Thus, for
c=2, the character of the Lévy noise imprinted on the process, is not
changed by the external potential: the resulting PDF has Lévy index a, the
same as the noise itself, and will thus give rise to a diverging variance at all
times. Conversely, for c > 2, the variance becomes finite if only c > ccr=
4 − a. This is due to the fact that the PDF leaves the class of Lévy stable
PDFs and acquires an inverse power-law asymptotic behaviour with power
m=a+c − 1. Obviously, moments of higher order still diverge. Apart from
the finite variance, the PDF is distinguished by the observation that it
bifurcates from the initial monomodal to a stationary bimodal state. If
c > 4, there exists a transient trimodal state. This richness of the PDF both
during relaxation and at stationarity, depending on a competition between
Lévy noise and steepness of the potential is in contrast to the universal
approach to the Boltzmann equilibrium, solely defined by the external
potential, in classical diffusion.

One may ask for the exact kinetic reason for the occurrence of the
multiple humps. Due to the observation that the non-transient humps seem
to coincide with the positions of maximum curvature of the external
potential, which at these points changes almost abruptly for larger c from a
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rather flat to a very steep slope, one may conclude that the random walker,
which is driven towards these flanks by the anomalously strong Lévy dif-
fusivity, is thwarted, thus accumulating close to these points. Apart from
this observation, we do not have a more intuitive argument for the exis-
tence of the humps and their bifurcations.

Fig. 13. Stationary PDF fst(x) on linear ( left) and double-logarithmic (right) scale,
obtained from the Langevin equation for (a) c=4.0, (b) c=5.7, and (c) c=6.5. The thin lines
on the left show the potential wells and their curvatures. The solid lines on the right show the
asymptotics as given by Eq. (71).
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Fig. 14. Time evolution of the PDF f(x) obtained from the Langevin equation for c=5.5,
a=1.2; an additional time averaging, together with statistical averaging has been used to
present this figures: (a) inside the region of a single peak, t < t13 (t=0.40 − 0.60); (b) inside
the region of three peaks, t13 < t < t32 (t=0.75 − 0.90), (c) inside the region of two peaks,
t > t32 (t=1.10 − 1.50). The regions of time averaging are chosen on the basis of Fig. 11.

The different regimes for c > 2 can be classified in terms of critical
quantities, in particular, the bifurcation time(s) tcr and the critical external
potential exponent ccr. LFs in superharmonic potentials can then be con-
veniently represented by phase diagrams on the (c, a) and (c, tcr) plains.

The numerical solution of both the fractional Fokker–Planck equation
in terms of the Grünwald–Letnikov scheme used to find a discretized
approximation of the fractional Riesz operator shows reliable convergence,
as corroborated by direct solution of the corresponding Langevin equation.
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Our findings have underlined the statement that the properties of LFs,
in particular under nontrivial boundary conditions or in an external poten-
tial are not fully understood. The general difficulty, which hampers a
similarly straightforward investigation as in the regular Gaussian or the
subdiffusive cases, is connected with the strong spatial correlations of the
problems, manifested in the integrodifferential nature of the Riesz fractional
operator. For this reason it is already nontrivial to determine the stationary
solution of the process, or its first passage time density. (43) We expect,
by the fact that diverging fluctuations appear to be relevant in physical
systems, a range of yet unknown properties of LFs remain to be dis-
covered.

APPENDIX A. NUMERICAL SOLUTION METHODS

In this appendix, we briefly review the numerical techniques, which
were used in this work to determine the PDF from the fractional Fokker–
Planck equation (18) and the Langevin equation (17).

A.1. Numerical Solution of the Fractional Fokker–Planck Equation

(18) via the Grünwald–Letnikov Method

From a mathematical point of view, the fractional Fokker–Planck
equation (18) is a first-order partial differential equation in time, and of
nonlocal, integro-differential kind in the position co-ordinate x. It can be
solved numerically via an efficient discretisation scheme following Grünwald
and Letnikov. (39–41)

Let us designate the force component on the right hand side of
Eq. (18) as

F̄(x, t) —
“

“x
1dU

dx
f2 ; (A.1)

and the diffusion part as

D̄(x, t) —
“

af
“ |x|a

. (A.2)

With these definitions, we can rewrite Eq. (18) in terms of a discretisation
scheme as

fj, n+1 − fj, n

Dt
=F̄j, n+D̄j, n, (A.3)
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where we encounter the term

F̄j, n=xc − 2
j

5(c − 1) fj, n+xj
fj+1, n − fj − 1, n

2 Dx
6 , (A.4)

which is the force component of the potential U(x)=|x|c/c. Here, Dt and
Dx are the finite increments in time and position, such that tn=n dt and
xj=j Dx, for n=0, 1,..., N and j=0, 1,..., J, and fj, n — f(xj, tn). Due to
the inversion symmetry of the kinetic equation (18), it is sufficient to solve
it on the right semi-axis. In the evaluation of the numerical scheme, we
define xJ such that the PDF in the stationary state is sufficiently small, say,
10−3, as determined from the asymptotic form (71).

In order to find a discrete time and position expression for the frac-
tional Riesz derivative in Eq. (A.2), we employ the Grünwald–Letnikov
scheme, (39–41) according to which we obtain

D̄j, n=−
1

2(Dx)a cos(pa/2)
C
J

q=0
tq[fj+1 − q, n+fj − 1+q, n] (A.5)

where

tq=(−1)q 1a

q
2 , (A.6)

with

1a

q
2=˛a(a − 1) · · · (a − q+1)/q!, q > 0

1, q < 0,
(A.7)

and 1 < a [ 2. Note that in the limiting case a=2 only three coefficients
differ from zero, namely, t0=1, t1=−2, and t2=1, corresponding to the
standard three-point difference-scheme for the second order derivative,
d2g(xj)/dx2 % (gj+1 − 2gj+gj − 1)/(Dx)2. In Fig. 15, we demonstrate that
with decreasing a, an increasing number of coefficients contribute signifi-
cantly to the sum in Eq. (A.5). This becomes particularly clear in the loga-
rithmic representation in the bottom plot of Fig. 15. We note that the
condition

m — Dt/(Dx)a < 0.5 (A.8)

is needed to ensure the numerical stability of the discretisation scheme. In
our numerical evaluation, we use Dx=10−3, and therefore the associated
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Fig. 15. Coefficients tq in Grünwald–Letnikov approximation for different values of the
Lévy index a=1.9, 1.5, and 1.1.

time increment Dt ’ 10−5 · · · 10−6, depending on the actual value of a. The
initial condition for Eq. (A.3) is f0, 0=1/Dx.

In Fig. 16, the time evolution of the PDF is shown together with the
evolution of the force and diffusion components defined by Eqs. (A.1)
and (A.2), respectively. Accordingly, at the initial stage of the relaxation
process, the diffusion component prevails. The force term grows in the
course of time, until at the stationary state F̄ Q− D̄. This is particularly
visible at the bottom right part of Fig. 16, which corresponds to the sta-
tionary bimodal state shown to the left.

A.2. Numerical Solution of the Langevin Equation (6)

An alternative way to obtain the PDF is to sample the trajectories
determined by the Langevin equation (6). To this end, Eq. (17) is
discretized in time according to

xn+1=xn+F(xn) Dt+(Dt)1/a Ya(n Dt), (A.9)
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Fig. 16. Further details of the Grünwald–Letnikov scheme. Left: Time evolution of the PDF
as obtained by numerical solution of Eq. (A.3) at c=4 and a=1.2. Right: Time evolution of
the diffusion component (A.2) (thick lines), and the force term (A.1) (thin lines).
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with tn=n Dt for n=0, 1, 2,..., and where the force F(xn) is the dimen-
sionless force field at position xn. The sequence {Ya(n Dt)} is a discrete-time
approximation of a white Lévy noise of index a with a unit scale param-
eter. That is, the sequence of independent random variables possessing the
characteristic function p̂=exp(− |k|a). To generate this sequence {Ya(n Dt)},
we used the method outlined in ref. 42.
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