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Lévy walks are random processes with an underlying spatiotemporal coupling. This coupling penalizes long
jumps, and therefore vy walks give a proper stochastic description for a particle’s motion with broad jump
length distribution. We derive a generalized dynamical formulation foryhwalks, in which thefractional
equivalent of thematerial derivativeoccurs. Our approach is expected to be useful for the dynamical formu-
lation of Levy walks in an external force field or in phase space, for which the description in terms of the
continuous time random walk or its corresponding generalized master equation are less well suited.
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Anomalous diffusion processes are characterized by dd-évy stable pdf, and therefore a diverging mean squared dis-
viations from the traditional linear time depender&é(t)) placementand thus could apply only to rather exotic physi-
=2Kt of the mean squared displacement in the force-freeal processeq1-3,5,1Q, Levy walks(LWs) give a proper
limit. In particular, one distinguishes subdiffusion <&  dynamical description in the superdiffusive domain. The
<1) and superdiffusion>1) for the wide class of systems temporal and spatial variables of LWs are strongly corre-
displaying a power-law anomakx?(t))=2K t“/T'(1+ «); lated, their steps being governed by a joint distribution
here,K, is a generalized diffusion constdrit 2]. A versatile  (x,t), in which waiting time and step length pdig(t) and
framework for the description of anomalous diffusion are\(x) are no longer independent. In LWSs, the occasional long
continuous time random walk€CTRWs, which define a jumps which are typical for Ley flights are penalized
random walk that is governed by two probability density through the introduction of a time cost. This spatiotemporal
functions(pdfs), the jump length and waiting time distribu- coupling can be achieved, in the simplest case, by the choice
tions A(x) and ¢(t) from which the jump lengthx and the  of (x,t) =3 ¥(t) 8(|x| —vt), i.e., by a constant velocity].
waiting time t of each jump are drawf3]. Although the  Such a model arises naturally when describing some limiting
stochastic formulation of the CTRW fully defines the randomcases of molecular collisiof41]; its close relatives are rea-
process and leads to the closed integral equation for the pdionable candidates for describing turbulent disperfid.
of the particle’s positiorP(x,t) in terms of\(x) and ¢(t), A question of fundamental interest is therefore the formula-
its mathematical handling gets awkward as soon as nortion of LWs in terms of deterministic equations. Whereas
natural boundary conditions, the presence of external forcprevious approachekl3,14 in terms of fractional Klein-
fields, or the description in phase space are considered. Th&amers equations could reproduce the lower order moments
same complication holds true for the formulation in terms ofof an LW, they were hampered by the fact that they could not
generalized master equations, which are equivalent tdescribe the full pdf. The main complication on this way is
CTRWs with uncorrelated (x) and ¢(t) [4]. In such cases, the fact, that the overall LW process cannot be immediately
the corresponding deterministic equations of the generalizedonsidered as subordinated to a Wiener @meto a simple
Fokker-Planck type, in which the drift terms occur explicitly random wall; however, as we proceed to show, it is exactly
and which can be attacked with the standard mathematicahe strong correlation of the temporal and the spatial aspects
tools, render a much more amenable description. To finef LWs which makes it possible to provide a description
such equations for anomalous transport statistics has beerbased on a process subordinated to a simple two-state Mar-
focal point in stochastic systems studjé&s. kovian process, cf. Ref15]. In the present work, we derive

For subdiffusion processes, a complete framework othe exactdeterministic evolution equation for LWs which
transport equations has been established, namely, the fraleelds both for the free motion and in a constant force field.
tional Fokker-Planck and Klein-Kramers equatigis-7].  The fact that the corresponding equation does not have a
These are natural generalizations of their Brownian counterform of a Fokker-Planck or a Klein-Kramers equation ex-
parts, and their solution exists, whenever the solution of thelains the failure of previous attempts on the way of dynami-
corresponding regular Fokker-Planck equation exists, as thesal description of Ley walks. In the following, we use res-
correspond to @ubordinationof the analogous normal sto- caled quantities and concentrate on the one-dimensional
chastic procesfs,7-9. case.

The description of superdiffusive processes within the We first define a two-state Markovian random process de-
same framework is still far from being completed. Whereasscribing the velocity switching and then proceed to general-
Levy flights in the absence of an external force display aize it to two different domains of LWs. Thus, let us denote by

P, andP_ the probabilities to move to the right or to the

left, respectively. Probability conservation demands #at
*Electronic address: igor.sokolov@physik.hu-berlin.de +P_=1. Moreover, for simplicity we assume that the ab-
"Electronic adddress: metz@nordita.dk solute value of the velocity of motion to the right and to the
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left is 1. Within the rate description, for a symmetric case,where (Di~ “=(d/dt),D, *, and (D, “ is the fractional

the probabilitiesP .. satisfy the differential equation Riemann-Liouville integral operator defined in terms of
4 _p.—p (1) ~a rr 1

Equation(1) can be readily solved: Taking_=1—-P, we
get (d/dt)P,=1-2P,. The equilibrium situation corre-
sponds toP, =P_=1/2, and the relaxation to this equilib-
rium from the initial conditionP ., =1 is exponential,

with the convenient propertyge "t oD, “f(t)=u"*f(u)

[5,18]. In Eqg. (5), the fractional derivative on the rhs de-

scribes a process which is subordinated to the simple expo-

nential switching, being parametrized by the operational time
P.=1%+Zexp—2t). (2) = the subordination is defined by the \nestable waiting-

time pdf. To see this let us compare two solutions: one using
Let us concentrate first on the switching process describeghe “CTRW” time and another solving Eq5) directly.
by this equation: It is an alternating random process with the From Eq.(5), with the initial conditionsP_ (0)=1 and

waiting-time pdfy(t) =exp(-t). At each “tick” the state is  p_(0)=0, we recover upon Laplace transformation
changed front+1 to —1 and backP . (t) is then the prob-

ability that at timet, the state of the system ist’1,”i.e. that uP,—1=—-ut"*P_+ult *pP_,
the overall number of full step&hanges of signwas even.
The Laplace transform of this probability is uP_=ul"*p,—ult"ep_;

from the second equatioR,_=1/(u“+1)P, , and therefore

F>+<u)=n20 Xzn(U) =T (u) go PP (u) =

ufl+yg(u)]’ we find by insertion into the first,
€
- . : . 1+u”
A similar expression foP _ involves the summation over the y=——, andP.=——o0u (7)
odd numbers of steps. In E(R), the x»,(t) denote the prob- 2u+u® 2u+u“

ability that the walker performsr2direction changes within ) ) ] .

an overall waiting time. The probability of making no steps It is easy to verify that the same result is obtained by com-
is xo(t)=W(t)=1—[Ly(t)dt with Laplace transform bining Eq.(4) with Eq. (3). Equation(7) describes the kinet-
W(u)=u1—y(u)/u [3]. For our exponential function ICS Of moving to the left and to the right.

[y(u)=1/(1+u)], the result becomesP, (u)=1/(2u) We_nqw combine the purely temporal regu_lts R); v_vith
+1[2(2+u)], which is exactly the Laplace transform of the drift mvo_ked by a constant veloc_:lty, distinguishing be-
Eq. (2). tween two different cases. The ensuing propagﬁ?t«nf the
Consider now a long-tailed waiting-time pd(t) assougt_ed symmetrlc_ran_dom walk is qom_blned from a su-
~t~17 of the explicit form[16] perposition of two realizations of the switching process, tak-
ing place with the rate of 1/2 each, one in which the first step
1 goes to the right, and one in which it goes left. This intro-
P(u)= . O<ax<l 4 duces an additional factor of 1/2 in all the following equa-
1+u® tions.

(i) Ballistic regime In the Markovian case, the combina-
tion of proces<2) with a velocity of magnitude 1 introduces
the material derivatived..=(d/dt) = (d/9x). Viewing now
P. as functions ofx and t, the evolution equation for
P (x,t) result,

in Laplace space. This specific form has the following origin
due to subordinatiofil7]. In a system whose relaxation in its
operational time is given by an exponentiap(7)
=exp(—17), we can introduce a coarse graining in which the
operational time is divided into intervals+ (and A = taken

as a new time unit Assume that the duration of the physical d.P.=1(P.—P.) ®)
time interval corresponding td 7 is given by a one-sided =Eo2i s Tk

Lévy distribution. The duration of the physical time corre-

sponding to the intervalr is then a convolution ofn Both together produce the telegrapher’s equation

=7/A7 such distributions, and its Laplace transform is p P P
exp(—nu®). Averaging over n we get (u)~ P+ —pP=—01P (9)
[exp(—nu®)exp(—n)dn, exactly reproducing Eq4). As an a g2 9x?

example we can explicitly determinej(t) for a=3:

P(t) = (mt) ~Y2—elerfeyt, with the asymptotic behaviors also known as the Cattaneo equatj@@], for the quantity of

t~ 2 (t<1) andt %2 (t>1). interest, the propagaté= P+ P_. The Cattaneo equation
With waiting-time pdf(4), Eq. (1) generalizes to the frac- describes a process which at short times behaves ballistically,
tional form (x?(t))~t2, and at long times exhibits normal diffusion,

(x?(t))~t. This derivation was based on the material deriva-
tives d-, whose Fourier-Laplace transform istik. We

d
_p_ = 1-« _p_
P==0Di “(P+=Px), ®) now demonstrate that we reproduce exactly the propagator of

dt
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an LW if we assumead hog that the corresponding frac- the material ones. There is an heuristic way immediately
tional material derivative is defined through leading to the equations: in the Laplace representation, the
system of equations
Flddr “f(x,t)}=(u=ik)*f(k,u). (10
uP,—1=3f(u)(—=P,+P_),
This choice is motivated by the fact that a waiting time is
still coupled to a walk of lengtli=t, and that for anomalous uP_=%f(u)(P,—P_) (15)
transport processes the Fourier-Laplace space is the natural
basis to introduce generalizations. Thus, we obtain leads to the solutionP ,=[2(u+f(u))]/[u(u+2f(u))].
Noting that according to Eq.3), this should correspond to
d.P.=3di *(P+—P.), (1) P ={u[l+(u)]}" % we find the relationy(u)=1/1
+u/f(u)]. If we want a function behaving for smali as
where the fractional material derivatives are to be interpretedy(y)~1—u—ul*# (i.e., one witha=1+ 8 being in the
in terms of Eq.(10). We solve Eq.(11) under the initial  jnterval between 1 and)2we have to choosé(u)=1
condition P, (x,0)=P_(x,0)=6(x)/2 so that, when intro- 4y such thaty(u)=(1+uf)/(1+uf+u) is the desired
ducing the propagatoP=P_+P_ and its counterparQ  pdf. Following along the lines of cag®, we infer the equa-
=P, —P_, we haveP(x,0)=4(x) and Q(x,0)=0. With  tions
the abbreviations , =u+ik and\ _=\* =u—ik, Egs.(12)

can be rewritten in terms of Fourier-Laplace transforrifed d
andQ, as giP==2 (1+Df)(Ps=P.) (16)
A (PxQ)— =71 )\1;“Q_ (12 for the alternating process, and we obtain the equation with

material derivatives,
The solution forP reads

dtPr:%(l"'di)(P:_Pt) (17
ay a—1 ay a—1 a—1 a—1
p= MoA THACAY A A _ (13  for the Levy walk. Using our formal rules, we find in the
NGHENE 2NN Fourier-Laplace representation:
Let us show that this is an exact expression for the LW with INL(PEQ)— 3 =F1(1+\B)Q,

waiting time pdf(4). To this end, note that within the CTRW
the propagator is obtained asP(k,u)=V(k,u)/[1  whose solution is
—(k,u)] in the case of spatiotemporal coupling with

Y1) =3[ S(x—t) + S(x+1) Jih(t) and W(x,t)=3[S(x—1) o 2+ NEANE N N 8
+ 8(x+1)]W(t) [20]. Consequently, we find 2NN AL (LN ) A _(L+0B)
P(u,k)= 3 [¢(u+ik)+g(u—ik)] This corresponds exactly to E(.4) for the newy and again

. . corroborates the recipe to generalize to the fractional ma-
and an analogous expression (u,k), such that we arrive  teria| derivatives? in the Fourier-Laplace domain. The sec-
at the Fourier-Laplace form d#: ond mom(znt gf this Jprocess is obtained @&(u))=2(u

+ BuP)/(u*+ud*A+u), giving rise to the limiting behav-
p— (1= A= NN (14)  iors(x*(t))~t*for t<1 and(x*(t))~2Bt>~#IT'(3— B) for
2=¢(N)—¢(N2) t>1, i.e., a transition from initial ballistic to terminal sub-
i , , ballistic superdiffusive behavior, in an analogy to the CTRW
With ¢(u) given by Eq.(4), Eq. (13) is reproduced and we result[3,20].
have shown that Ec(12) with definition (10) describes an Let us now discuss the coordinate-time representation of
LW. Fr(;m representatiort14), e g'”d the Laplace space tne fractional material derivative. Using the well-known re-
form (x*(u))=2(u*+1—a)/(u®+u"*) of the second mo- |ation £ ~1{F (u+b)}=e PH(t) of the Laplace transforma-
ment, from which we obtain the limiting behaviof?(t))  tion. we obtain after some steps
~t? for t<1 and(x?(t))~(1—a)t? for t>1, i.e., a mere ’
decrease in the amplitude of amerall ballistic process: the dSP(x,t)=D{fP(x£t,t). (19
memory which we introduced by the long-tailed form «»f
leads to an extreme persistence in a given direction on allhat is, the fractional material derivative generalizes the
time scales. There is no turnover to a process with a smalleegular material derivative,d. P(x,t)=(d/dt)P(x*t,t)
exponent oft as in the Cattaneo case. =(dlot£alx)P for =1, through the introduction of the
(i) Subballistic regimeLet us now compare this with the standard(acting ont only) Riemann-Liouville operator act-
better known case of the subballistic domain. We again foling on the entire right hand side.
low our above obtained recipe of formulating two equations For subdiffusion, the major advantage of the fractional
for the direction-switching process with the waiting-time dis- dynamical equation formulation is in the possibility to easily
tribution of interest, and then change the time derivatives fogeneralize to situations with an external force field, which
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led to the fractional Fokker-Planck equati#6]. Here, we  propagatoiP produces a rather complicated expression. This
start with incorporating a constant external force. To this endgcan be circumvented by a different definition of the frac-
let us consider the physical realization of the walk in a split-tional operators, as shown in R¢22]. However, the latter
ting flow: in the upper half plane, the particle moves to thedoes not allow for the incorporation of a bias and is thus not
right; v, =v, for y>0, in the lower half plane it moves to Suited for our purpose. . _

the left: v, = —v, for y<0. The motion in they direction In our approach we were guided by the equivalence be-
dictates the waiting-time distribution. If it is a simple diffu- Ween positiorx and timet in the LW framework, enforced
sion, the overall process is & e walk with w=1/2 [1].  BY the 8-coupling ¢(x,t) =3 5(|x| —t) ¢(t), which could in
Imagine now, we have a force acting in tkelirection. The fact be rewritten in terms of the jump length distribution with

force causes a sliding of the particle with respect to the flowtn€ appropriate long-tailed form for [3]. This equivalence
so that nOWv+=vo+,uf for y>0 andv; = — v+ uf for gives rise to the occurrence of the material derivative, in
X X

y<0. This corresponds to changirdf to the constructs _complete analogy to the Brpwnian Cattaneo case. However,
corrés onding to - in the presence of long-tailed temporal correlations of the
P 9 kind (t)~t~1~¢, the fractional variant of the material de-

@ P(x,1)=oDIP(x+ (uf+v)t,t) (200 rivative emerges, with its simple representations in both
f, = ) ot pt=v)L,L), . . : .
Fourier-Laplace andx(t) domains. This treatment is ame-
whose Fourier-Laplace transform produces nable for the case of a constant external force. Whether there
_ is a similar treatment for arbitrary ford€x) is not clear at
df . —[u+i(ufxo)k]® (21)  present. The representation of LWs in terms of the left-right

. . . processe® . reveals a surprisingly simple structure for the
This can be verified by the comparison of the CTRW resuliyenerajization of the material derivative, and therefore we
for a constant forcg6]. That is, in both the force-free and the 56 confident that it is the right direction towards including a
constant force cases, we observe some type of generahz%@nerm external forcé(x).

d’Alembert principle reflecting thed coupling of x and t
[21]. Translating the dynamic equatio&0) and (17) with We are happy to acknowledge fruitful discussions with
the fractional material derivatives into an equation for theYossi Klafter.
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