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We investigate the statistical behavior of wyeflights confined in a symmetric, quartic potential well
U(x)cx?. At stationarity, the probability density function features a distinct bimodal shape and decays with
power-law tails which are steep enough to give rise to a finite variance, in contrast to frgdigbts. From
a S-initial condition, abifurcation of the unimodal state is observedtat-0. The nonlinear oscillator with
potentiaIU(x)=ax2/2+ bx*/4, a,b>0, shows a crossover from unimodal to bimodal behavior at stationarity,
depending on the ratia/b.
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Lévy flights (LFs) in a homogeneous environment consti- discussion of LFs in the quartic potentid(x) =bx*4, the
tute a Markovian random process whose probability densitgimplest form for which the unusual properties of the PDF
function (PDP is a Levy stable law,f(x,t) of index 0<a«a can be recovered, before moving on to the general @@se

<2, defined in terms of the characteristic functibgk,t) ~ Which the relative strength of harmonic and quartic terms,
=7 f(x,t)e*dx=e Pk \where D of dimension &P, can be tuned. . - .
cn/sec is the generalized diffusion constdat-5]. The For stochastic processes whose underlying statistics satis-
most prominent property of LFs is the clustel(édictéb na. fies the conditions of the central limit theorem, the con-
ture of their points of visitation, intimately related to the tinuum desquptl_on in the external force fiele(x)= .
power-law asymptotic behavidi(x,t)~Dt/|x|1* and the —dU(x)/dx is given th_rough the F_okker-PIanck equation
ensuing divergence of the varianee(t)). LFs fall into the (FPB [17], whose stationary solution correspands to the
basin of attraction of the generalized central limit theoremIB’C)ltzrr1"’.mn distribution. In cqntrast, the Spat"”." correlgtlons
[1-4], and have been recognized as the signature of a varie derlying LFs can be des'cnbed' by a Langgv[n equation for
of systems ranging from turbulent plasma dynamics to spec-n overdamped test particle driven by whiteviestable

| diffusion in sinal lecul f - I_no.ise[9—1_2,1!3. On the Ievellof the co_rresponding dete_zrmin-
tr;a(l)tic:)lnutzl(irqemalsl;r;gt]rgsrg?li(;ﬂ: eszge(;tr;sclg géy]rog;] g a:gc_erla istic equation, the PDFF(x,t) is determined by the fractional

erences therein, or to impulsive noise in signal processin!;:c’kkeppl"’ka equatioFFPB [5,10-13,15,1p

a

its behavior in external fields. Although the stage has been at ax my D | x|*

set for the study of such properties of LFs, only very limited

information is available. ThUS, LFs have been StUdied, botr\)\lherery is the friction constantm is the mass of the test

analytically and numerically in the framework of Langevin particle,D is a measure for the intensity of theé \lyenoise,

and Fokker-Planck equatio}5,9-16. For the case of an and the Riesz fractional derivative df(x,t) is defined

harmonic potentiall (x) =ax?/2, one finds that the station- through its Fourier transform asF(9%f(x,t)/d|x|*)=

ary PDF Js given by dunimoda) Levy stable law; in par- —|k|*f(k,t) [18]. (Note that this is just a formal way of

Flcu]ar,<x (1)) —ee [1.2’15' A question arises on thg bghav- writing the fractional spatial derivative; it reduces to the

ior in steeper potentials. In the present communication, W&:-ndard second derivativé/dx in the limit a=2 but does

investigate the dynamic evolution_of the stationary PDF un+ ot correspond t@/ax for a=1.) Equation(2) is linear inf

der the nonlinear oscillator potential and reduces to the standard FPE in the liawit 2 [19].

Introducing dimensionless variables—x/xq, t—t/t,
U(X):EX2+ EX4, a.b>0, (1  with x0.=(myD/b)1/(2+.“) andto=x5/D, anda—ato/my,
2 4 Eq. (2) is transformed into the equation for the characteristic
function f(k,t),

and show that this process exhibits, depending on the ratio of

a andb, hitherto unknown bifurcations between the unimo- 9. A A 53 P

dal initial condition and a final bimodal state. The potential —f+ K| T=Uf, Ue=k———ak. ®)

(1) combines the famed harmonic form of the Ornstein- Jt ak K

Uhlenbeck potential exerting a restoring linear force on the R

test particle, with the quartic term. After a brief introduction The initial conditionf(k,t=0)=1 corresponds to @ con-

to fractional Fokker-Planck equations, we start off with thedition in x space. The solution of E(3) is a real even

[8].
An important point in understanding a random process is of ( d F(x) f(x.) )
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function obeying the following boundary conditiongi)

f(ot)=1, (i) 9f(0)/9k=0, and(iii) f(k— =o,t)=0.
Consider first the stationary quartic Cauchy oscillagor,

=0, a=1, andaf/at=0, for which Eq.(3) can be readily

tionary PDF
fxX)=m Y1-x>+x%"1 (4)
behaviorf(x) x4, and therefore finite variance, with a bi-

modal structure: there is a local minimumat0 and two
global maxima atxm=t1/\/§. Let us now show that the

steep power-law asymptotics and the bimodality are inherent

for the stationary PDF for all lxg/ noise exponents < «
<2 of the quartic oscillatorg=0). Due to symmetry, we
consider the positive semiaxik=0. With the transforma-
tion 7(&)=k(*" VR (k), where é=k(®*2” the stationary
Eqg. (3) can be converted into an equation fp¢¢), whose
asymptotics for largef can be found by known methods
[20,21]. The leading term of the asymptotics is obtained
from the equatioml®7/d&3=\ 5, wherex =27/(2+ a)3. We
obtain for the characteristic function

F(k)~Ck(a—1)/3 _ Y at2)3
f(k)=~Ck exp( 2(2+a)k )
3V3
(a+2)/3_
8 COS( 22+ a) ‘9) ®)

for k—. C and # are unknown constants, since we make
use of the boundary condition at infinity, only. For smhll

the stationary solutiofi(k) of Eq. (3) for a=0 can be rep-
resented in the form of a series as

f(k)=S,—AK’S,, (6)

where S;=37_ oa;|k[!(**2) and S,= 7 b;|k[!(**?), and
the coefficientsa; and b; are determined by the recurrent
relations ajj(a+2)(ja+2j—1)(ja+2j—2)=a;_,, and
bjj(a+2) (ja+2j+1)(jat+2j+2)=Dbj_; (j=1,a,=Dby
=1) [22]. The asymptotics of the PDF at- =« are deter-
mined by the first nonanalytical term in E), i.e., by
a,|k|*"2. By inverse Fourier transformation, using the Abel
method of summation for the improper integfaB], we ob-
tain

FOO)=Calx| 773, [x[—e, ()

where C,=sin(ma/2)['(a)/ 7 [24]. This is consistent with
Eq. (4) for «=1. Although the Lgy noise has a diverging

L 1.0 ]
integrated. By inverse Fourier transform, we obtain the sta-
1.2
This PDF combines the distinct steep asymptotic power-law 1.4
1.6
1.8

oL=2.0

1 A 1 A 1 A 1 A 1
-2 -1 0 1 2
X

FIG. 1. Profiles of the stationary PDFs of the quartic oscillator
for different Levy indices, froma=1 (top) to =2 (bottom).

for large k. The PDF is then obtained by inverse Fourier
transformation. In Fig. 1, the profiles of the stationary PDFs
are shown for the different vy indices in the range € «

<2 and fora= 2, the bimodality being most pronounced for
a=1. With the Lery index increasing, the bimodal profile
smoothes out, and, finally, it turns into the unimodal one at
a=2, that is, for the Boltzmann distribution. Besides ana-
lytical estimates, we use two methods of numerical simula-
tion: one, based on numerical solution of the Langevin equa-
tion, with the subsequent construction of the PDF, and
another one based on numerical solution of E), where

the fractional derivative is expressed through” @Gvald-
Letnikov operatorg26]. Both methods produce comparable
results. In Fig. 2, we show a comparison of analytical and
numerical results for the stationary PDF of the quartic oscil-
lator, demonstrating a good agreement. Qualitatively, the oc-
currence of the bimodal structure can be understood as a
trade-off between the relatively high probability for large
amplitude of the Ley noise, and the sharp increase in the
slopex|x|* of the quartic potential relative to the harmonic

variance, the stationary PDF has a steep power-law tail, angBSe-

hence the variancg?) is finite. Thus, the effect of the quar-
tic potential is toconfinethe flights and lead to a finite vari-
ance PDF. The nature of confinedweflights is, of course,
different from truncated ey flights [25] which have finite
moments.

To construct the characteristic function numerically, we
use solution(6), which is continued with the asymptotics)

Since the harmonic vy oscillator has one hump at the
origin, and its quartic counterpart exhibits two humps, one
expects that the unimodal-bimodal crossover occurs when
the ratioa/b is varied. Leta, be the critical value, in the
rescaled coordinates of E), which we determine from the
condition d?f(0)/dx?=0 at a=a.. Equivalently, J(a.)
=0, whered(a)= [5dkif(k). If 3>0, the stationary PDF
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FIG. 2. The dots show the stationary PDF for the quartic oscil-
lator obtained from numerical evaluation of the underlying Lange- .1

vin equation fora=1.5. Left: the solid line indicates the PDF ob-
tained from Eqs(5) and (6) after inverse Fourier transformation.
Right: the solid line indicates the asymptotieg|x|~*2 on a log-
log scale.

is unimodal; ifJ<O0, it is bimodal. We consider the transi-
tion for the anharmonic Cauchy oscillatat=1. For this
particular case, the stationary solution of E) is
f(K)=(z&¥" *—z*e?(z—2*) 1, z being the complex root
of the characteristic equationz*-az—1=0, i.e.,
z=—(u,+u_)/2+iy3(u,—u_)2, where u.=(1
+/1-4a%27)/2*®. Inserting these expressions ini¢a),
we get sgnd) =sgn(z?+z*2) = —sgn? +u? —4a/3). De-
fining (=4%ay/3, we obtain 4=(1+1-7°%*+(1
—J1-3)%3 from which {=0.420, and thereforea,
=0.794, follow. Fora>a., the quadratic term in the poten-

I

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 67, 010102ZR) (2003

a ] ™" b
1.5 0.4
\1.0 2\
0.2
0.5
ﬂ .
-2 -1 [1] 1 2 *

Xm

X
o
-0.% k 0.5
0.8 .0 I 1.z 1.4

FIG. 4. (a)—(d): The thick lines show the time evolution of the
PDF obtained from numerical solution of the FFPE using the
Grunwald-Letnikov representation of the fractional Riesz deriva-
tive. The thin lines indicate the Boltzmann distribution. Dimension-
less times:t,=0.06,t,=0.39,t.=0.83 (at the bifurcation timg
andty=1.33. (¢) Locationsx,, of the two maxima of the PDF vs
time. (f) Transition timet, versus order of the lwy exponent. The
solid line represents the theoretical curve, which is in qualitative
agreement to the results of the numerical solution of the FFPE
indicated by the dots.

tial energy function prevails, and the stationary PDF has one
maximum at the origin. In contrast, f@<a., the quartic
term dominates and dictates the shape of the PDF. As a re-
sult, the bimodal stationary PDF appears with the local mini-
mum at the origin. Returning to the dimensional variables,
we can rewrite the condition of transition in terms of a criti-
cal value b, of the quartic term amplitude:b,
=a%/0.794(myD)?. This relation implies that increasing
noise requires smaller anharmonicity to cause the bimodal
stationary PDF. Thus, the bimodality results indeed from the
combination of the [ey character of the noise and the an-
harmonicity of the potential well. In Fig. 3, the profiles of the
stationary PDFs are shown for the anharmonic Cauchy oscil-
lator for different values of the dimensionless coefficiant
the bimodality being most pronounced fa=0.

Let us now turn to the nonstationary properties. The for-
mal solution of Eq.(3) can be obtained after rewriting it in
the equivalent integral form,

-2

a

X

2

f(k,t)=pg(k,t)+ fothf)a(k,t—r)ka(k,T), (8)

FIG. 3. Stationary PDFs of the anharmonic Cauchy oscillatorwhere p,,(k,t)=exp(—|k|t) is the characteristic function of

for different values of the dimensionless parametén the poten-
tial energy function .=0.794).

the Levy stable process. Equatid8) can be solved by itera-
tions,
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) s ) mationsf,(k,t), fo(k,t), ... from EQ.(9). In Fig. 4f), the
f(k’t):;_:o Pa(* UkPa)", (9 solid line demonstrates the second approximatioty, tes «
- for the quartic oscillator, using Maple6.

where * implies convolution. The bimodality of the station-  In summary, we have investigated some interestingand
ary PDF stems from a unimodal-bimodal bifurcation in time, priori unexpected statistical properties of systems driven by
if the initial condition is given by the function at the origin.  Lévy noise. In particular, we have shown thawyenoise can
In Figs. 4a)—4(d), the time evolution of the propagator is be confined by a quartic external potential and that the sta-
obtained by numerical solution of E@2) for the quartic tionary distribution is characterized by a bimodality which
oscillator, «=1.2. The initial state disperses and, &t  occurs at a critical time. We suggest that external potentials
=0.833, the transition occurs. Figuréeishows the location  of the form|x|¢, c>2, confine Ley noise, leading to bimo-
Ixm| of the two maxima of the PDF. After the transition, a dality and to a finite variance of the stationary PDF.
valley is formed between the maxima, and the PDF ap-
proaches the stationary state. The bifurcation ttjean be The authors thank F. Mainardi and R. Gorenflo for stimu-
determined from the condition?f(0t=t.)/dx?=0, which lating discussions and G. Voitsenya for help in numerical
implies the appearance of the inflection point during timesimulation. This work was supported by the INTAS Project
evo|uti0n_ |ntr0duc|ng](t):f:gdksz(k,t), th|s iS equiva_ No. 00-0847. R.M. aCknOWledgeS the DFG and A.C. ac-
lent to the condition)(t;) =0, from which one can get suc- knowledges the DAAD, for financial support, and the School

cessive approximations t by inserting iterative approxi- ©0f Chemistry of the Tel Aviv University, for hospitality.
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