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Tightness of slip-linked polymer chains
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We study the interplay between entropy and topological constraints for a polymer chain in which sliding
rings ~slip links! enforce pair contacts between monomers. These slip links divide a closed ring polymer into
a number of subloops which can exchange length among each other. In the ideal chain limit, we find the joint
probability density function for the sizes of segments within such a slip-linked polymer chain~paraknot!. A
particular segment is tight~small in size! or loose~of the order of the overall size of the paraknot! depending
on both the number of slip links it incorporates and its competition with other segments. When self-avoiding
interactions are included, scaling arguments can be used to predict the statistics of segment sizes for certain
paraknot configurations.
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I. INTRODUCTION

Topological constraints decrease the accessible degre
freedom of a polymer chain@1#. Whether temporary or per
manent, they are ubiquitous and affect the typical behavio
polymers. For instance, temporary entanglements betw
chains in a solution or melt of polymers give rise to reptat
dynamics as described by the tube model@2,3#. Permanent
entanglements, in turn, are central for the elastic behavio
rubber~where they are chemically induced during vulcaniz
tion! @4#, gels, and Olympic gels@2#. Their influence on the
dynamics is reflected by broad relaxation time spectra@5#.

Knots are a particular form of permanent topological e
tanglement: A ‘‘knotted’’ closed chain cannot be reduced t
simple ring ~the so-called unknot! without breaking bonds
@6–9#. One of the few exact results pertaining to the statis
of knots is that a sufficiently long closed self-avoiding wa
contains knots with probability 1@10,11#. Thus, topological
constraints are inevitably created during the polymerizat
of long closed chains and, more generally, knots and per
nent entanglements are a ubiquitous feature of multich
polymer melts and solutions.

Topological considerations also play a major role in n
merous biological and chemical systems. For example,
chromosomes forming almost 2 m of tangled, knotted DNA
cannot be separated during mitosis, and the genetic cod
the DNA double helix cannot be fully accessed during tra
scription, in the presence of knots@12–14#. Special enzymes
namely, DNA topoisomerases, are necessary to actively
move knots and entanglements under consumption of en
from ATP @12–16#. The interplay between energy and e
tropy at a fixed topology is relevant to the secondary str
ture of RNA which consists of paired segments interrup
by open loops acting as entropy sources@17,18#. Similar is-
sues arise in the helix-coil transition of DNA@19–22#. Knot-
ted configurations have even been found in some prot
@23,24#. Dynamically, the presence of knots and their po
sible effects on the mobility of biopolymers are essential
the understanding of their behaviorin vivo or, e.g., as studied
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by electrophoresisin vitro @25#. A similar role is played by
topological effects for the translocation of viral and nonvir
proteins@12,26#, and packaging of DNA@27#. In supramo-
lecular chemistry, molecules with identical bond sequen
but different topology can be produced which exhibit diffe
ent physical properties, and mechanically linked molecu
open up new vistas in information processing or nanoen
neering@28–30#. Further interest in the theoretical study
the equilibrium behavior of polymers with a fixed topolog
arises from new experimental techniques by which sin
molecules can be probed and manipulated@31–34#, provid-
ing information on the mechanical behaviors of knotted a
unknotted biopolymers@35–37#.

Mathematical studies of topological structures date b
to Kepler @38#, Euler @39#, and Listing @40#. Motivated by
Thomson’s theory of vertex atoms@41#, systematic studies o
knots were undertaken by Tait, Kirkwood, and Litt
@42–45#. Knot theory provides a number of so-called kn
invariants by means of which knots can be classified, suc
the Gauss winding number, the number of essential cro
ings, or more refined invariants like knot polynomials@7–9#.
All permitted configurational changes of a knot can be d
composed into the three Reidemeister moves@7–9#. There
exists a fundamental relation between knots and ga
theory as knot projections and Feynman graphs share
same basic ingredients corresponding to a Hopf algebra@8#.

Recently, there has been increasing interest in the in
play of topological constraints and thermal fluctuations;
latter being ubiquitous for dilute or semidilute polymer sol
tions or melts at finite temperatures. Statistical mechan
treatments of permanent entanglements and of knots
however, quite difficult since topological restrictions cann
be formulated as a Hamiltonian problem but appear as h
constraints partitioning the phase space@2,6,46–48#. Conse-
quently, only a relatively small range of problems have be
treated analytically~see, for instance,@49–57#!.

To overcome such difficulties in the context of the e
tropic elasticity for rubber networks, Ball, Doi, Edwards, a
co-workers replaced permanent entanglements by slip l
©2002 The American Physical Society03-1



er
e
re
ks
e
is

an

u
h
el
pl

of
g
a
e
no
l-
e

y
th
lf
lin
th
T
t

he
w

ig
g
e
re
te

a

part
or
the

re

p to
rm
r

the
d
en-

gs

s-
cal
n be
ed
ugh
to a
ion
re
een
to
the

ini
n-

ove
ach

r-

ly
d
e
it

he
ns

d in
a

wo
DF

air
n
e
i
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@58#. Slip links enforce contacts between pairs of monom
but the chain can slide freely through them. Surrogate n
works containing slip links have been successful in the p
diction of important physical quantities of rubber networ
@59#. In a similar fashion, we investigate the statistical b
havior of single polymer chains in which a fixed topology
created by a number of slip links. Suchparaknotscan be
studied analytically using known results for Gaussian r
dom walks in the ideal chain limit@3,50,60#. In the language
of graphs, slip-link contacts represent vertices with four o
going legs, enabling us to make use of a scaling approac
determine the leading behavior in the presence of s
avoiding interactions. The paraknot approach thus com
ments our previous study offlat knots in which such vertices
correspond to crossings@61#.

In the following section, we start with a brief summary
conflicting answers to the question of whether the topolo
cal details in a knotted polymer are localized within a sm
portion of the chain, and thus segregated from an un
tangled segment. We then introduce the concept of parak
to study localization effects for polymers with fixed topo
ogy. Paraknots are first analyzed for ideal chains in S
III A; various contributions to the joint probability densit
function ~PDF! of segment sizes are easily separated in
case. There is no similar factorization of the PDF for se
avoiding segments, but, as discussed in Sec. III B, sca
arguments can be used to infer the limiting behavior of
PDF as one or more segments contract to small size.
question of the relative sizes of segments in a parakno
taken up in Section IV. By analyzing the behavior of t
unconditional PDF of a particular segment at small sizes
can infer whether the segment has the tendency to be t
Yet, to describe the actual probability of finding a tight se
ment, one must consider the competition between all s
ments. For example, even in cases where all segments p
to be tight per se, a given segment can still have a fini
probability of being loose.

II. FROM KNOTS TO PARAKNOTS

In Fig. 1~a! we depict the projection of a trefoil knot in

FIG. 1. Depiction of the knot region~KR! for ~a! a trefoil knot
and ~b! a figure-eight structure in which a slip link enforces a p
contact~compare Fig. 2 below!. In both cases, a symmetric and a
asymmetric configuration are shown. The size of the KR is term
l and the length of the remaining simply connected chain
L2l .
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symmetric~bottom! and an asymmetric configuration~top!.
In the latter case, we can introduce a knot region as that
of the knot which contains all topological details except f
the one larger simply connected segment, as indicated by
dashed line. Initial indications of tight knotted regions a
implicit in three-dimensional~3D! Monte Carlo simulations
of Janse van Rensburg and Whittington@62#, who studied the
mean extension of the unknot and several knot types u
six essential crossings. They found that in the scaling fo
Rg

2;(A1BL2D)L2n of the gyration radius both the prefacto
A and the exponentn in the leading contribution areinde-
pendentof the knot type@62#. In fact, n was found to be
consistent with the known valuen50.588 of the swelling
exponent of a ring polymer@2,6#. ~The confluent correction
term was estimated to decay withD'1/2.! Conversely, em-
ploying a Flory-type argument under the assumption that
knot is equallyspread outover the polymer, Quake predicte
that the gyration radius should contain the scaling dep

denceRg;ÃC1/32nLn on the number of essential crossin
C in the leading order term, i.e., that the amplitude ofRg

decreases with increasing knot complexity@53#. This result
was supported by his numerical study of knots up to 81 @53#,
with a different algorithm from that used in Ref.@62#. Gros-
berg et al. @54# also make use of a Flory-type approach a
suming that in an evenly delocalized knot the topologi
constraints can be replaced by a tube whose radius ca
determined from the aspect ratio of a maximally inflat
state. They obtained similar conclusions to Quake, altho
they also remark that thermodynamically a segregation in
simply connected ring polymer and a dense knot reg
might occur@54#. In a later work, Grosberg states that a mo
powerful approach is needed to decide theoretically betw
the two options@52#. More recent numerical studies seem
corroborate the independence of the gyration radius of
knot type in long enough polymers. Thus, in 3D Orland
et al. calculate in a Monte Carlo study the number of co
figurationsvK of different knot typesK, reporting thatvK
;mLLa23 where bothm and a are independent ofK for
prime knots, and that an additional factorLn21 occurs for
composite knots withn prime components@63#. These au-
thors conclude that one or more tight knot regions can m
along the perimeter of a simply connected ring polymer, e
prime component being represented by one knot region@63#.
An analogous result was obtained in 2D by Guitter and O
landini @64#. Consistent with these findings, Katritchet al.
obtained that the knot region is tight in 3D with a relative
high probability@65#. The investigations of Shimamura an
Deguchi @66# corroborate this picture in obtaining that th
gyration radius is independent of the knot type in some lim
of their model.

Why should knots be confined to a small region of t
polymer? Entropic effects give rise to long-range interactio
as we demonstrate for the figure-eight structure sketche
Fig. 1~b! in which a permanent pair contact is enforced by
slip link, creating two loops of lengthsl andL2l , which
can freely exchange length. In the ideal chain limit, the t
loops correspond to returning random walks, i.e., the P
p(l ) for the sizel becomes@2,67#
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TIGHTNESS OF SLIP-LINKED POLYMER CHAINS PHYSICAL REVIEW E65 061103
FIG. 2. A collection of different paraknots discussed in the text.~a! The figure-eight paraknot is formed by placing a slip link on a ri
polymer.~b! The next higher order paraknot with two slip links.~c! The figure-eight paraknot with two additional sliding rings, one on ea
separated loop.~d! Visualization of a slip link: the belt buckle shape allows the chain to slide freely through the slip link without retra
entirely. The lower part corresponds to the view from the right as indicated by the arrow.~e! The lowest order open paraknot.~f! Open
paraknot with two slip links.~g! Topologically different configuration with two slip links.~h! Paraknot necklace with three slip links.
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pid~ l !}l 2d/2~L2l !2d/2, ~1!

whered is the embedding dimension. The average loop s
^l &5*a

L2adl l p(l ), wherea is a short-distance cutoff se
by the lattice constant, is triviallŷl &5L/2, due to the sym-
metry of the structure. However, as the PDF is stron
peaked atl 50 and l 5L, a typical shape consists of on
small ~tight! and one large~loose! loop. For instance, ind
53 the mean size of the smaller loop^l &, scales as

^l &,;a1/2L1/2, d53, ~2!

which corresponds toweak localizationin the sense that the
smaller loop still grows withL, but with an exponent smalle
than 1. By comparison, ford.4 one encounterŝl &,;a,
corresponding tostrong localizationas the size of the smalle
loop does not depend onL but is set by the short-distanc
cutoff a. On the other hand, ford52 one finds ^l &,

;L/u ln(a/L)u, such that the smaller loop is still rather larg
However, we will see in the next section that this is no long
true if we include self-avoiding interactions for the chains;
that case, the localization ford52 is even stronger than fo
d53.

Equation~2! shows that the smaller loop, of lengthl , of
the figure-eight structure is indeed tight ind53. In fact, for
flat knots rendered as quasi 2D knot projections, it turns
that all prime knots become tight, and that their leading sc
ing behavior corresponds to the figure-eight structure@61#.
This localization is the consequence of a delicate interp
between competing effects. Statistically, the confinemen
topological details into a localized region of the polym
chain is favored entropically as then the topological co
straints act on a small portion of the chain, exclusively, a
the remaining major part has access to all degrees of free
of a simply connected ring polymer. This tendency towa
confinement is counteracted by the internal degrees of f
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dom of the knot region in which the substructures can
change length among each other. It turns out that the trad
is in favor of localization.

We propose that slip-link structures grasp some esse
features of the statistical behavior of real knots and there
call themparaknots. Some elementary examples of parakn
structures which will be discussed in the following sectio
are displayed in Fig. 2. The slip links in these configuratio
can be viewed as little rings which enforce pair conta
within the chain such that the loop formed by the slip link
not allowed to fully retract. In a simulation, this latter pro
erty can be included by a belt buckle shape as sketche
Fig. 2~d!. In a paraknot, one or several loops may be c
creating open chain segments as in Figs. 2~e!–2~g!. Such
‘‘open’’ paraknot types can be stabilized~i.e., an open end
prevented from escaping through a slip link! by attaching
‘‘stoppers’’ to the open ends, such as latex microspheres,
molecules, or C60 balls, as known from supramolecula
chemistry@29,30#.

Paraknots are tractable exactly in the ideal chain lim
and by scaling theories in the self-avoiding domain. In t
following, we investigate the statistical description and t
localization properties of several paraknot structures.

III. STATISTICAL WEIGHTS OF PARAKNOT
STRUCTURES

A general paraknot can be constructed, as shown in Fig
from an arc diagram similar to those used to classify
secondary structure of RNA@17,18#. Such an arc diagram is
the blueprint of the associated paraknot, and it features
original loop into which slip links are introduced by connec
ing pairs of monomers through the dashed lines. To simp
the analysis, we consider only paraknots with unconc
enated loops, i.e., the arcs are not allowed to intersect e
other. In the RNA language, this means that pseudoknots
3-3
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not permitted@17,18#. With this restriction, the joint PDF for
the sizes of various segments simplifies to a product of c
tributions from loops, in the case of ideal~Gaussian! poly-
mers. As discussed next, in the case of self-avoiding wa
only scaling information is available in the limit when se
ments contract to small sizes.

A. Ideal chains

For ideal chains, analytical calculations are rath
straightforward for noncrossing arc diagrams~similar to Har-
tree graphs!. For instance, consider the paraknot shown
Fig. 3 for fixed loop lengthsl 1 , . . . ,l 5. The key observa-
tion is that for ideal chains the degrees of freedom associ
with the individual loops are decoupled from one another,
that the PDF of the paraknot factorizes into the correspo
ing loop contributions. Following the above example, a g
eral paraknot P can be described by the s
$l 1 ,l 2 , . . . ,l m% of individual loop lengths~also including
end-to-end lengths in the case of linear segments! under the
constraintL5( i l i , where the contributions from the ind
vidual loops~or linear segments! factorize. In equilibrium,
these lengths are thus distributed according to the joint P

FIG. 3. ~a! Arc diagram for the construction of a closed parakn
from a polymer ring~full line!. The dotted lines indicate which
points of the chain are connected to each other by slip links.~b! The
paraknot resulting from this procedure.~c! Open paraknot obtained
by cutting loop 5, creating two open legs. Note that individual co
nectors~dashed lines! are not allowed to intersect each other, i.
the paraknot contains unconcatenated loops.
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pP~ l 1 ,l 2 , . . . ,l m!}dS L2(
i 51

m

l i D)
i 51

m

l i
2u i , ~3!

where the exponentsu i are constructed from the following
contributions@68#.

(i) Connectivity factor. This factor accounts for the con
figurational entropy of a given loop~or linear segment! of
lengthl . For a loop, the connectivity factor follows from th
return probability of a Gaussian random walk, which
;l 2d/2. The absence of any constraint for a linear segm
corresponds to a factor;l 0.

(ii) Sliding entropy. A given loop ~or linear segment! of
length l has additional degrees of freedom associated w
the slip links that slide on it. This is due to the relativ
motion of these slip links along the segment. The presenc
n slip links on a loop~or linear segment! thus leads to a
factor of l n21/(n21)! ~or l n/n!). Additional degrees of
freedom in the form of sliding rings confined to a give
segment as depicted in Fig. 2~c! enter the PDF analogously

(iii) Energetic factors. If an external force is applied to th
paraknot, a Boltzmann weight enters the expression for
size distribution. For instance, if an open paraknot is pul
with a constant forcef, this weight corresponds to the ave
ageexp$bf•r%5exp$b2f2r2/(2d)% where the overbar indicate
the average over all end-to-end distancesr of the backbone
segment, andb[1/(kBT). ~Such effects will be relegated t
future work @69#.!

B. Self-avoiding chains

If self-avoiding constraints for the chains are included, t
above reasoning for ideal chains, in particular the factori
tion of the PDF, is no longer valid in general since now eve
loop or segment of the paraknot interacts with all the othe
However, progress can be made, allowing for quantitat
predictions of the leading scaling behavior of a given pa
knot, by employing the scaling theory for self-avoiding pol
mer networks developed by Duplantier@70#, Schäfer et al.
@71#, and Ohno and Binder@72#. This approach has recentl
been applied to the study of DNA denaturalization by Ka
et al. @20,21# and to the study of 2D knots@61#.

A general polymer networkG like the one depicted in Fig
4 consists of a number of vertices which are joined byN
chain segments of individual lengthss1 , . . . ,sN whose total
length isL5( i 51

N si . The number of configurations of such
network scales as@70–72#

t

-
,

FIG. 4. Polymer networkG with vertices (d) of different order
(n155,n354,n453,n551).
3-4
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FIG. 5. Monte Carlo simulation of a figure-eight paraknot in 2D.~a! Loop sizesl andL2l as a function of Monte Carlo steps for 25
monomers. In the inset, a typical equilibrium configuration is shown. The slip link is made up of the three tethered beads rende
which constitute the 2D version of the belt buckle shape depicted in Fig. 2~d!. ~b! Probability density for the sizel of the smaller loop for
a figure eight with 512 monomers. The inset shows an intermediate configuration reminiscent of the symmetric initial condition.
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vG;mLsN
gG21YGS s1

sN
, . . . ,

sN21

sN
D , ~4!

where m is the effective connectivity constant for sel
avoiding walks andYG is a scaling function. The topology o
the network is reflected in the exponent

gG512dnL1 (
N>1

nNsN , ~5!

whereL5(N>1(N22)nN/211 is the number of indepen
dent loops,nN is the number of vertices withN legs, andsN
is an exponent connected to anN-vertex. The PDF of the
paraknot then follows from the number of configurationsvG
by normalization with respect to the variable segm
lengths.

(i) Connectivity factor. To illustrate how the connectivity
factors~of the form;l 2d/2 and;l 0 for closed loops and
linear segments in the Gaussian case! are modified, let us
consider the cases of the figure-eight paraknot@Fig. 2~a!#,
and its open counterpart@Fig. 2~e!#.

The figure-eight paraknot corresponds to a network w
two loops of lengthsl andL2l , respectively, and one ver
tex with four legs. We thus obtain

v8;mL~L2l !22dn1s4Y8S l

L2l
D ~6!

for the configuration number. Now we use thea priori as-
sumption thatL2l @l . Then, the large loop should behav
like a ring polymer of lengthL2l , i.e., it should contribute
to vG in the scaling form (L2l )2dn @20#. This can only be
fulfilled if the scaling function behaves likeY8(x);x2c with
c5dn2s4. The final result for the number of configuratio
of the self-avoiding figure-eight paraknot then becomes
06110
t

h

v8;mL~L2l !2dnl 2dn1s4. ~7!

In d52, with n53/4 ands45219/16@20,70,71#, we there-
fore find that the small loop scales likel 2c where c
52.6875. Ind53, we obtain the exponentc'2.24 usingn
50.588 ands4'20.46 @20,70,71,73#. The strong localiza-
tion that obtains for bothd52 andd53 is thea posteriori
justification of theL2l @l assumption, and the procedu
is therefore self-consistent. Note that in the presence of s
avoiding constraints the localization is stronger in 2D than
3D, in contrast with the ideal chain case~see Sec. II!.

We performed a Monte Carlo analysis of the element
slip link in 2D with a standard bead-and-tether chain. In F
5~a!, we show the equilibration of a symmetric initial con
figuration and its fluctuations as a function of Monte Ca
steps. Clearly, the separation into two length scales is
and fluctuations are relatively small. The size distribution
the small loop is displayed in Fig. 5~b!. From the plot, we
realize that the scaling behavior is surprisingly well fulfille
and that the predicted value is reproduced in good ag
ment. This result was corroborated experimentally for
figure-eight necklace chain on a vibrating plate@74#.

Compare this finding to the lowest order open parak
~o! sketched in Fig. 2~e!. Apart from the vertex with four
legs, there are two vertices with one leg, one for each of
two ends of the linear chain segment, thus yielding

vo;mL~L2l !12dn12s11s4YoS l

L2l
D . ~8!

We again assumea priori that the open chain segment is th
overall dominating structure of sizeL2l . It thus enters into
vo in the form (L2l )g whereg52s111 is the configura-
tion exponent@50,70,75#, which implies
3-5
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vo;mL~L2l !gl 2dn1s4. ~9!

Thus, we find the same loop closure exponent as for
figure-eight structure above@see Eq.~7!#. This is not surpris-
ing, as the small loop is statistically independent of the la
structure; in other words, the topological exponents4 stems
from the nature of the vertex, which is alocal quantity.

The closure factor for a loop in such simple geometries
the figure-eight or the lowest order open paraknot is the
fore given by;l 2dn1s4; the factor for the degrees of free
dom of the linear chain segment in the latter enters as;(L
2l )g.

(ii) Sliding entropy. Consider the paraknot shown in Fi
3~b!. It constitutes a polymer networkG in which four
4-vertices~corresponding to the slip links! are joined by a
number of chain segmentssi with l 15s1 , l 55s5,11s5,2,
etc. Since the loops are nonconcatenated, it is possibl
integrate the right hand side of Eq.~4! for fixed loop lengths
l 1 , . . . ,l 5 over some of the segment lengthssi in such a
way that the resulting expression depends on the loop len
only, i.e.,

vG
(l );mLl 1

gG21
l 4

2l 5XGS l 1

l 5
, . . . ,

l 4

l 5
D , ~10!

where the scaling functionXG depends on ratios of loop
lengths~again, this procedure would not be possible if t
paraknot contained concatenated loops!. The superscript (l )
on vG indicates that here the loop lengthsl 1 , . . . ,l 5 are
fixed. The factors ofl 4

2 and l 5 in the above expressio
correspond to the sliding entropy already encountered
ideal chains@see~ii ! in Sec. III A#.

IV. TIGHT OR LOOSE

When is a certain segment of such a paraknot netw
tight? A priori, this can be investigated by integration of th
joint PDF over all other segments. The result depends
both the local property of the segment itself, i.e., on its
ponent in the joint size distribution, and its global interpl
with other segments in the paraknot in their cooperat
search for the entropically favored configuration. In practi
the unconditional PDF can only be obtained for Gauss
paraknots in which the joint PDF has the multiplicative for
in Eq. ~3!. Such calculations are not possible for gene
self-avoiding paraknots, as the unconditional PDF comes
from the specific scaling analysis for a given paraknot c
figuration. We therefore address phantom and self-avoid
cases separately.

A. Ideal chains

Consider the joint PDF in Eq.~3! for a given paraknotP
with N segments. According to the previous section, the
ponentsu i in Eq. ~3! are given byu i5d/22(ni21) if l i is
a loop or byu i52ni if it is a linear segment, whereni is the
number of slip links and sliding rings connected to this s
ment. From Eq.~3!, we consider a segment to be looseper se
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if its exponentu i<1, otherwise it is tight~and ‘‘supertight’’
if u i.2). We can now distinguish between three differe
global situations.

~i! There is one loose segment and all others are tig
This case occurs if inP only one segment withuN<1 exists,
while all others haveu i.1.

~ii ! There is more than one loose segment and poss
some tight segments. In this case, the loose segments
pete for the lengthL. On the average, if there areM loose
segments, the characteristic length of any specific segme
^l j&5@(12u j )/( i 51

M (12u i)#L, which is always larger than
0 and smaller thanL. The ratio of characteristic lengths for
pair of segmentsj ,k is then given by ^l j&:^l k&5(1
2u j ):(12uk) @76#.

~iii ! All segments are tightper sein the sense that allu i
.1. In this case, a symmetry breaking occurs and one s
ment becomes large. The unconditional PDF for each s
ment will have two peaks corresponding to tight or loo
configurations.

In a paraknot which contains one or multiple open se
ments, the open segments are always loose and there
only cases~i! and~ii ! can arise: Depending on the exponen
of the closed loops in such a structure, these loops may
either loose or tight. Note that cases~i! and ~iii ! exhibit one
large loop; in~i! this is the loose segment and in~iii ! it is the
one segment that becomes large by symmetry breaking
all other segments of paraknots that belong to these cla
are tight, the gyration radius of such paraknots is, to lead
order, the same as for an unknot of lengthL. For paraknots
belonging to class~ii !, segments of comparable size make
the gyration radius. Depending on the details of the struct
the gyration radius should be given by similar expression
those developed in Refs.@6,53#. Thus, the gyration radius
decreases with increasing number of loose segments.

B. Self-avoiding chains

As mentioned, generalizing the previous classification
self-avoiding structures is not straightforward. Let us the

FIG. 6. Arc diagram for~a! the round table configuration with
n53 fringe loops, and~b! the necklace paraknot.
3-6
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fore consider the tightness of segments in a self-avoid
paraknot by means of three examples.

1. The round-table configuration

This configuration corresponds to arc diagrams in wh
none of the connecting arcs is located inside another arc
shown in Fig. 6~a!. The resulting paraknot features a numb
n of loops located at the fringe of a central loop, as depic
to lowest order in Fig. 2~b!. As the loops are independent an
are connected to one slip link each, they enter the joint P
of loop sizes through the loop closure factor;l i

2dn1s4 as
was found for the figure-eight paraknot. They are theref
supertight for self-avoiding chains. Conversely, the cen
loop has access to additional degrees of freedom stemm
from the relative motion of the slip links along its circumfe
ence such that its exponent becomesu5dn2(n21). Note
that in 2D, the round table configuration corresponds to
leading order behavior of a composite knot@61#. Each fringe
loop, that is, corresponds to a prime component. The a
tional degrees of freedom coming about by the relative m
tion of the fringe loops in this configuration correspond
the enhancement of accessible numbers of configuration
knotted chains as measured by Orlandiniet al. @63,64#.

2. The figure-eight cactus with attached loops

Consider a figure-eight paraknot in whichn andm addi-
tional ~external! loops are attached to the two loops@compare
Fig. 3~b! in which n52 andm51#. The external loops are
all strongly localized and give rise to additional sliding e
tropy for the figure-eight loops; by choosing different valu
for n and m, one obtains various localization properties f
the figure-eight loops. For instance, forn52 and m
51, l 4 is loose andl 5 is weakly localized; forn,m>2,
both l 4 and l 5 are loose, i.e., proportional toL, so that the
gyration radius of the paraknot is smaller than for a sim
ring of the same lengthL. In this case, the joint PDF does n
factorize, but the scaling functionY8 from Eq. ~6! enters.
Depending on the details of the structure, the gyration rad
should be given by similar expressions as developed in R
@6,53#. Note that analogous loosening of loops can
achieved for open paraknots of the type sketched in F
2~g!.

3. The necklace

Finally, let us explore the necklace structure from F
2~h! whose corresponding arc diagram is shown in Fig. 6~b!.
In this configuration, the two end loops are strongly loc
ized; the otherm5n22 inner loops have two neighbors. B
necessity, one of the inner loops has to be loose~sizeL), and
has sliding entropy with weight;L12dn. On each side of the
large loop there is a number of other inner loops, arrange
a hierarchy of shapes of the type .oOoo.~. 5 strongly local-
ized end loop, o5 weakly localized loop, O5 large inner
loop!, statistically changing to .oooO., etc. If one focuses
one particular inner loop, there is a 1/m chance to find this
loop large with the~integrated! PDF ;L12dn. Note that a
complete analysis of this relatively simple and symme
structure is already quite nontrivial.
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The necklace structure can be closed by an additional
link connecting the two outer loops. This forms a symmet
configuration in which all loops area priori equivalent. This
paraknot is equal to the network studied for flat prime kn
in Ref. @61#. Accordingly, the closed necklace structure is,
leading order, contracted to the figure-eight paraknot in b
2D and 3D.

V. CONCLUSIONS

We have presented a systematic study of slip-link str
tures which we call paraknots. Paraknots are relatively e
to deal with analytically and may provide information on th
generic interplay between entropy and fixed topology
polymer chains and networks.

Paraknots composed of ideal chains are described
Gaussian propagators for which calculations are reason
straightforward. Simple paraknots in 2D and 3D are on
marginally or weakly localized whereas localization is stro
in higher dimensions. More complicated paraknots in wh
individual loops are connected to more than one slip l
show less localization due to the additional degrees of fr
dom brought about by the relative motion of the slip links
additional sliding rings on a loop. If self-avoiding effects a
considered, simple paraknots are strongly localized eve
2D and 3D. The scaling exponents involved can be obtai
from Duplantier’s theory for general polymer networks. F
the figure-eight paraknot, we have confirmed the scaling
ponent through Monte Carlo simulations. Localization
self-avoiding paraknots becomes weakened if more than
substructure has additional degrees of freedom, in analog
the ideal chain case. This observation pertains to arbitr
topological polymer networks.

The tightness of paraknots in 2D quantifies the stro
localization for flat knots observed by Guitter and Orland
@64#. Whereas we cannot infer definitive statements on
knots from our analysis, the correspondence between fig
eight paraknot and the leading order behavior of prime kn
~and between the round table configuration and compo
knots! in 2D suggests that similar tightness could be o
served in 3D as well. This is consistent with the findings
Janse van Rensburg and Whittington@62#, Orlandini et al.
@63#, and Katritchet al. @65#, and it differs from the conclu-
sions of Quake@53#.

Additional energetic effects due to bending and the pr
ence of ~screened! electric charges are relevant for man
systems, especially in biology. In so far as these effects
be accommodated by the introduction of a persistence len
they should not affect our results in the long-chain lim
However, they determine the crossover size for the onse
the long-chain limit in the polymer. For the particular case
the 2D trefoil knot the results of our previous analysis su
gest that the continuum limit is reached for chains with 5
monomers, whereas for the figure-eight paraknot even ch
lengths of 128 seem to be sufficient. Thus, in a DNA dou
helix for which the persistence length is of the order of 1
base pairs~bp!, one may expect to see localization behavio
in simpletopologically entangled states for strand lengths
the order of 10 to 50 kbp, corresponding to a length of 5
25 mm @77#. For shorter DNA strands, it is to be expecte
3-7
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that finite size effects prevail, and thus the knots or ot
topological details will be spread out over a considera
larger part of the entire chain.
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