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Tightness of slip-linked polymer chains
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We study the interplay between entropy and topological constraints for a polymer chain in which sliding
rings (slip links) enforce pair contacts between monomers. These slip links divide a closed ring polymer into
a number of subloops which can exchange length among each other. In the ideal chain limit, we find the joint
probability density function for the sizes of segments within such a slip-linked polymer gbaiaknot. A
particular segment is tighsmall in size or loose(of the order of the overall size of the parakndepending
on both the number of slip links it incorporates and its competition with other segments. When self-avoiding
interactions are included, scaling arguments can be used to predict the statistics of segment sizes for certain
paraknot configurations.
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[. INTRODUCTION by electrophoresii vitro [25]. A similar role is played by
topological effects for the translocation of viral and nonviral
Topological constraints decrease the accessible degrees mfoteins[12,2€], and packaging of DNA27]. In supramo-
freedom of a polymer chaifil]. Whether temporary or per- lecular chemistry, molecules with identical bond sequence
manent, they are ubiquitous and affect the typical behavior obut different topology can be produced which exhibit differ-
polymers. For instance, temporary entanglements betweesnt physical properties, and mechanically linked molecules
chains in a solution or melt of polymers give rise to reptationopen up new vistas in information processing or nanoengi-
dynamics as described by the tube mod&B]. Permanent neering[28—-30. Further interest in the theoretical study of
entanglements, in turn, are central for the elastic behavior ahe equilibrium behavior of polymers with a fixed topology
rubber(where they are chemically induced during vulcaniza-arises from new experimental techniques by which single
tion) [4], gels, and Olympic gelg2]. Their influence on the molecules can be probed and manipuldteti-34, provid-
dynamics is reflected by broad relaxation time spefdia ing information on the mechanical behaviors of knotted and
Knots are a particular form of permanent topological en-unknotted biopolymerf35-37.
tanglement: A “knotted” closed chain cannot be reduced to a Mathematical studies of topological structures date back
simple ring (the so-called unkntwithout breaking bonds to Kepler[38], Euler[39], and Listing[40]. Motivated by
[6—9]. One of the few exact results pertaining to the statisticsSThomson’s theory of vertex atonf41], systematic studies of
of knots is that a sufficiently long closed self-avoiding walk knots were undertaken by Tait, Kirkwood, and Little
contains knots with probability [10,11]. Thus, topological [42—45. Knot theory provides a number of so-called knot
constraints are inevitably created during the polymerizatiorinvariants by means of which knots can be classified, such as
of long closed chains and, more generally, knots and permahe Gauss winding number, the number of essential cross-
nent entanglements are a ubiquitous feature of multichaiings, or more refined invariants like knot polynomiffs-9|.
polymer melts and solutions. All permitted configurational changes of a knot can be de-
Topological considerations also play a major role in nu-composed into the three Reidemeister mop&s9]. There
merous biological and chemical systems. For example, thexists a fundamental relation between knots and gauge
chromosomes forming alImb& m of tangled, knotted DNA theory as knot projections and Feynman graphs share the
cannot be separated during mitosis, and the genetic code same basic ingredients corresponding to a Hopf alggtjra
the DNA double helix cannot be fully accessed during tran- Recently, there has been increasing interest in the inter-
scription, in the presence of kndts2—14. Special enzymes, play of topological constraints and thermal fluctuations; the
namely, DNA topoisomerases, are necessary to actively rdatter being ubiquitous for dilute or semidilute polymer solu-
move knots and entanglements under consumption of energions or melts at finite temperatures. Statistical mechanical
from ATP [12-16. The interplay between energy and en-treatments of permanent entanglements and of knots are,
tropy at a fixed topology is relevant to the secondary struchowever, quite difficult since topological restrictions cannot
ture of RNA which consists of paired segments interruptecbe formulated as a Hamiltonian problem but appear as hard
by open loops acting as entropy sour¢&g,18. Similar is-  constraints partitioning the phase sp2¢,46—48. Conse-
sues arise in the helix-coil transition of DNA9-27. Knot-  quently, only a relatively small range of problems have been
ted configurations have even been found in some proteinseated analyticallysee, for instancd49-57).
[23,24]. Dynamically, the presence of knots and their pos- To overcome such difficulties in the context of the en-
sible effects on the mobility of biopolymers are essential totropic elasticity for rubber networks, Ball, Doi, Edwards, and
the understanding of their behaviorvivoor, e.g., as studied co-workers replaced permanent entanglements by slip links
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symmetric(bottom) and an asymmetric configuratigtop).
In the latter case, we can introduce a knot region as that part
of the knot which contains all topological details except for
the one larger simply connected segment, as indicated by the
dashed line. Initial indications of tight knotted regions are
Y \ implicit in three-dimensional3D) Monte Carlo simulations
of Janse van Rensburg and Whitting{62], who studied the
(\ ) a b mean extension of the unknot and several knot types up to
(j six essential crossings. They found that in the scaling form
RS~ (A+BL™2)L?" of the gyration radius both the prefactor
A and the exponent in the leading contribution arade-
and (b) a figure-eight structure in which a slip link enforces a pair pend_entof th.e knot type[62]. In fact, » was found to .be
contact(compare Fig. 2 beloy In both cases, a symmetric and an consistent with _the known value=0.588 of the swelll!'lg
asymmetric configuration are shown. The size of the KR is termed@Ponent of a ring polymeji2,6]. (The confluent correction
/ and the length of the remaining simply connected chain isterm was estimated to decay witt~1/2) Conversely, em-
L—/. ploying a Flory-type argument under the assumption that the
knot is equallyspread oubver the polymer, Quake predicted

[58]. Slip links enforce contacts between pairs of monomerdhat the gyration radius should contain the scaling depen-
but the chain can slide freely through them. Surrogate netdenceRgAaKClB*”LV on the number of essential crossings
works containing slip links have been successful in the prec in the leading order term, i.e., that the amplitudeRyf
diction of important physical quantities of rubber networks decreases with increasing knot complexiBa]. This result
[59]. In a similar fashion, we investigate the statistical be-was supported by his numerical study of knots up 193],
havior of single polymer chains in which a fixed topology is with a different algorithm from that used in R¢62]. Gros-
created by a number of slip links. Suglaraknotscan be  perget al. [54] also make use of a Flory-type approach as-
studied analytically using known results for Gaussian ransuming that in an evenly delocalized knot the topological
dom walks in the ideal chain lim[8,50,60. In the language constraints can be replaced by a tube whose radius can be
of graphs, slip-link contacts represent vertices with four outdetermined from the aspect ratio of a maximally inflated
going legs, enabling us to make use of a scaling approach t&ate. They obtained similar conclusions to Quake, although
determine the leading behavior in the presence of selfthey also remark that thermodynamically a segregation into a
avoiding interactions. The paraknot approach thus complesimply connected ring polymer and a dense knot region
ments our previous study dft knots in which such vertices  might occur{54]. In a later work, Grosberg states that a more
correspond to crossing§1]. powerful approach is needed to decide theoretically between
In the following section, we start with a brief summary of the two optiond52]. More recent numerical studies seem to
conflicting answers to the question of whether the topologicorroborate the independence of the gyration radius of the
cal details in a knotted polymer are localized within a smallknot type in long enough polymers. Thus, in 3D Orlandini
portion of the chain, and thus segregated from an uneret al. calculate in a Monte Carlo study the number of con-
tangled segment. We then introduce the concept of paraknotfyurationsw, of different knot types, reporting thatw .
to study localization effects for polymers with fixed topol- ~ L =3 where bothu and « are independent ok for
ogy. Paraknots are first analyzed for ideal chains in SeGyrime knots, and that an additional factof ~* occurs for
Il A; various contributions to the jOint probablllty denSity Composite knots witm prime Component$63]_ These au-
function (PDF) of segment sizes are easily separated in thishors conclude that one or more tight knot regions can move
case. There is no similar factorization of the PDF for SE|f-a|ong the perimeter of a S|mp|y connected ring p0|ymer' each
avoiding segments, but, as discussed in Sec. Il B, scalingrime component being represented by one knot ref#6h
arguments can be used to infer the IImItIng behavior of theb\n ana|ogous result was obtained in 2D by Guitter and Or-
PDF as one or more segments contract to small size. Thendini [64]. Consistent with these findings, Katritt al.
question of the relative sizes of segments in a paraknot igptained that the knot region is tight in 3D with a relatively
taken up in Section IV. By analyzing the behavior of the high probability[65]. The investigations of Shimamura and
unconditional PDF of a particular segment at small sizes Weyeguchi[66] corroborate this picture in obtaining that the
can infer whether the segment has the tendency to be tighgyration radius is independent of the knot type in some limit
Yet, to describe the actual probability of finding a tight seg-of their model.
ment, one must consider the competition between all seg- why should knots be confined to a small region of the
ments. For example, even in cases where all segments prefgglymer? Entropic effects give rise to long-range interactions
to be tightper se a given segment can still have a finite 35 we demonstrate for the figure-eight structure sketched in

FIG. 1. Depiction of the knot regiotKR) for (a) a trefoil knot

probability of being loose. Fig. 1(b) in which a permanent pair contact is enforced by a
slip link, creating two loops of lengths andL —//, which
Il. EFROM KNOTS TO PARAKNOTS can freely exchange length. In the ideal chain limit, the two

loops correspond to returning random walks, i.e., the PDF
In Fig. 1(a) we depict the projection of a trefoil knot in a p(/) for the size/ becomeg2,67]
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FIG. 2. A collection of different paraknots discussed in the t&xtThe figure-eight paraknot is formed by placing a slip link on a ring
polymer.(b) The next higher order paraknot with two slip links) The figure-eight paraknot with two additional sliding rings, one on each
separated loofdd) Visualization of a slip link: the belt buckle shape allows the chain to slide freely through the slip link without retracting

entirely. The lower part corresponds to the view from the right as indicated by the dsoWhe lowest order open parakndf) Open
paraknot with two slip links(g) Topologically different configuration with two slip linkgh) Paraknot necklace with three slip links.

Pig(/)oc/ "L — /)92, (1) dom of the knot region in which the substructures can ex-
change length among each other. It turns out that the tradeoff

whered is the embedding dimension. The average loop sizéS in favor of localization. _
(/=[5"2d//p(/), wherea is a short-distance cutoff set e propose that slip-link structures grasp some essential
by the lattice constant, is trivially”")=L/2, due to the sym- features of the statistical behavior of real knots and therefore
metry of the structure. However, as the PDF is stronglyc@ll themparaknots Some elementary examples of paraknot
peaked a¥’=0 and/=L, atypical shape consists of one struct.ures wh|g:h vylll be dlscu_ssgd m_the foIIowmg sect|.ons
small (tight) and one largeloose loop. For instance, ind are d|spla_yed in F|g._2. Th_e slip Im_ks in these con_flguratlons
— 3 the mean size of the smaller loép) scales as ca_m_be V|ewe.d as little rings which enforce pair contacts
within the chain such that the loop formed by the slip link is
(/y~aYL2  d=3 ?) not allowed to fully retract. In a simulation, this latter prop-
' ' erty can be included by a belt buckle shape as sketched in
Fig. 2d). In a paraknot, one or several loops may be cut,
creating open chain segments as in Fig®)-22(g). Such
“open” paraknot types can be stabilizede., an open end
prevented from escaping through a slip inky attaching
“stoppers” to the open ends, such as latex microspheres, ring
molecules, or g balls, as known from supramolecular

which corresponds tweak localizationin the sense that the
smaller loop still grows with., but with an exponent smaller
than 1. By comparison, fod>4 one encounter§/)_~a,

corresponding tetrong localizatioras the size of the smaller
loop does not depend dn but is set by the short-distance
cutoff a. On the other hand, fod=2 one finds{(/)_ .
~L/|In(a/L)|, such that the smaller loop is still rathfar>large. chemistry|29,30.

However, we will see in the next section that this is no longer. Paraknots are tractable exactly in the ideal chain limit,
oo e . . .g_ and by scaling theories in the self-avoiding domain. In the
true if we include self-avoiding interactions for the chains; in

that case. the localization fat—2 is even stronaer than for following, we investigate the statistical description and the
d=3 ' N 9 localization properties of several paraknot structures.

Equation(2) shows that the smaller loop, of length of
the figure-eight structure is indeed tightds= 3. In fact, for
flat knots rendered as quasi 2D knot projections, it turns out
that all prime knots become tight, and that their leading scal-
ing behavior corresponds to the figure-eight struc{éd. A general paraknot can be constructed, as shown in Fig. 3,
This localization is the consequence of a delicate interplajrom an arc diagram similar to those used to classify the
between competing effects. Statistically, the confinement o$econdary structure of RNE7,18. Such an arc diagram is
topological details into a localized region of the polymerthe blueprint of the associated paraknot, and it features the
chain is favored entropically as then the topological con-original loop into which slip links are introduced by connect-
straints act on a small portion of the chain, exclusively, andng pairs of monomers through the dashed lines. To simplify
the remaining major part has access to all degrees of freedothe analysis, we consider only paraknots with unconcat-
of a simply connected ring polymer. This tendency towardenated loops, i.e., the arcs are not allowed to intersect each
confinement is counteracted by the internal degrees of freether. In the RNA language, this means that pseudoknots are

Ill. STATISTICAL WEIGHTS OF PARAKNOT
STRUCTURES
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FIG. 4. Polymer networlg with vertices @) of different order
(nl: 5,n3: 4,n4: 3,n5: 1) .

P/ 1, 5, ,/m)oca( L—Zl /)Hl )

where the exponentg; are constructed from the following
contributions[68].

(i) Connectivity factor This factor accounts for the con-
figurational entropy of a given loofor linear segmentof
length/". For a loop, the connectivity factor follows from the
return probability of a Gaussian random walk, which is
~/~92 The absence of any constraint for a linear segment
corresponds to a factor /.

(ii) Sliding entropy A given loop (or linear segmentof
length /" has additional degrees of freedom associated with
the slip links that slide on it. This is due to the relative

FIG. 3. (a) Arc diagram for the construction of a closed paraknot motl_on _Of these slip links allong the segment. The presence of
from a polymer ring(full line). The dotted lines indicate which N SliP links ona loop(or linear segmentthus leads to a
points of the chain are connected to each other by slip ligsThe  factor of /7~ %/(n—1)! (or /"/nl). Additional degrees of
paraknot resulting from this proceduse) Open paraknot obtained freedom in the form of sliding rings confined to a given
by cutting loop 5, creating two open legs. Note that individual con-Seégment as depicted in Fig(c2 enter the PDF analogously.
nectors(dashed linesare not allowed to intersect each other, i.e., (i) Energetic factors If an external force is applied to the
the paraknot contains unconcatenated loops. paraknot, a Boltzmann weight enters the expression for the
size distribution. For instance, if an open paraknot is pulled
with a constant forcé, this weight corresponds to the aver-

not permitted 17,18. With this restriction, the joint PDF for — 20D -
the sizes of various segments simplifies to a product of Con@geexp{,@f- r}=exp[f7fr/(2d)} where the overbar indicates

- . . . _ the average over all end-to-end distances the backbone
tributions fr'om loops, in the case of |deéIBau53|a')1'poly segment, an@=1/(kgT). (Such effects will be relegated to
mers. As discussed next, in the case of self-avoiding walk

only scaling information is available in the limit when seg-smture work[69].
ments contract to small sizes.

B. Self-avoiding chains

If self-avoiding constraints for the chains are included, the
above reasoning for ideal chains, in particular the factoriza-

For ideal chains, analytical calculations are rathertion of the PDF, is no longer valid in general since now every
straightforward for noncrossing arc diagrafesnilar to Har-  loop or segment of the paraknot interacts with all the others.
tree graphgs For instance, consider the paraknot shown inHowever, progress can be made, allowing for quantitative
Fig. 3 for fixed loop lengths’,, ... /5. The key observa- predictions of the leading scaling behavior of a given para-
tion is that for ideal chains the degrees of freedom associatekhot, by employing the scaling theory for self-avoiding poly-
with the individual loops are decoupled from one another, saner networks developed by DuplantigfO], Schder et al.
that the PDF of the paraknot factorizes into the correspond-71], and Ohno and Bind€i72]. This approach has recently
ing loop contributions. Following the above example, a genbeen applied to the study of DNA denaturalization by Kafri
eral paraknot P can be described by the set etal [20,21] and to the study of 2D knof$1].

A. ldeal chains

{/1,/5, .../ m of individual loop lengthgalso including A general polymer networg like the one depicted in Fig.
end-to-end lengths in the case of linear segmamtsler the 4 consists of a number of vertices which are joined. By
constraintL=3;/;, where the contributions from the indi- chain segments of individual lengtls, . . . .Sy  whose total

vidual loops(or linear segmenjsfactorize. In equilibrium, length istE{\ilsi . The number of configurations of such a

these lengths are thus distributed according to the joint PDRetwork scales as70-72
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FIG. 5. Monte Carlo simulation of a figure-eight paraknot in 28.Loop sizes”” andL —/ as a function of Monte Carlo steps for 256
monomers. In the inset, a typical equilibrium configuration is shown. The slip link is made up of the three tethered beads rendered black
which constitute the 2D version of the belt buckle shape depicted in Fi. () Probability density for the siz&” of the smaller loop for
a figure eight with 512 monomers. The inset shows an intermediate configuration reminiscent of the symmetric initial condition.
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In d=2, with v=3/4 ando,= —19/16[20,70,7], we there-
where u is the effective connectivity constant for self- fore find that the small loop scales likeé ¢ where ¢

avoiding walks an@/; is a scaling function. The topology of =2.6875. Ind=3, we obtain the exponemt=2.24 usingy

the network is reflected in the exponent =0.588 ands,~ —0.46[20,70,71,7% The strong localiza-
tion that obtains for botldl=2 andd=3 is thea posteriori
yo=1—dvi+ > nyon, (5) justification of theL —/>/" assumption, and the procedure
N=1 is therefore self-consistent. Note that in the presence of self-

avoiding constraints the localization is stronger in 2D than in

where £=2y=1(N—2)ny/2+1 is the number of indepen- 3D, in contrast with the ideal chain cagee Sec. L
dent loopsny is the number of vertices witN legs, andoy We performed a Monte Carlo analysis of the elementary
is an exponent connected to &hvertex. The PDF of the glip link in 2D with a standard bead-and-tether chain. In Fig.
paraknot then follows from the number of configuratians  5(a), we show the equilibration of a symmetric initial con-
by normalization with respect to the variable segmentiiguration and its fluctuations as a function of Monte Carlo
lengths. steps. Clearly, the separation into two length scales is fast

(i) Connectivity factor To illustrate how the connectivity and fluctuations are relatively small. The size distribution of
factors(of the form~ /=2 and ~/ for closed loops and the small loop is displayed in Fig.(. From the plot, we
linear segments in the Gaussian gaaee modified, let us realize that the scaling behavior is surprisingly well fulfilled,
consider the cases of the figure-eight parak#og. 2@],  and that the predicted value is reproduced in good agree-
and its open counterpdiig. 2(e)]. ment. This result was corroborated experimentally for a

The figure-eight paraknot corresponds to a network withfigure-eight necklace chain on a vibrating plfd].
two loops of lengths” andL — 7, respectively, and one ver-  Compare this finding to the lowest order open paraknot

tex with four legs. We thus obtain (o) sketched in Fig. @). Apart from the vertex with four
y legs, there are two vertices with one leg, one for each of the
wSNML(L_/)ZdV+U4y8< L;/) ©6) two ends of the linear chain segment, thus yielding
' . - L /7
for the configuration number. Now we use thepriori as- wo~p(L— )L dv+2oitogy | | (8)
sumption that. —/>/". Then, the large loop should behave L-7/

like a ring polymer of length. — 7, i.e., it should contribute

to wg in the scaling form L— /) =9 [20]. This can only be We again assuma priori that the open chain segment is the
fulfilled if the scaling function behaves likKE;(x) ~x~ ¢ with  overall dominating structure of size— /. It thus enters into
c=dv—o4. The final result for the number of configuration w, in the form L —/)? wherey=20;+1 is the configura-
of the self-avoiding figure-eight paraknot then becomes  tion exponen{50,70,75, which implies
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Thus, we find the same loop closure exponent as for the
figure-eight structure aboJsee Eq(7)]. This is not surpris-
ing, as the small loop is statistically independent of the large
structure; in other words, the topological exponeptstems
from the nature of the vertex, which islecal quantity.

The closure factor for a loop in such simple geometries as a
the figure-eight or the lowest order open paraknot is there-
fore given by~ /97" 4. the factor for the degrees of free-
dom of the linear chain segment in the latter enters-¢k
/).

(i) Sliding entropy Consider the paraknot shown in Fig.
3(b). It constitutes a polymer network in which four
4-vertices(corresponding to the slip linksare joined by a

number of chain segments with /1=s;, /5=S51+Ss,, b

etc. Since the loops are nonconcatenated, it is possible to

integrate the right hand side of E@) for fixedloop lengths FIG. 6. Arc diagram for(a) the round table configuration with
/1, .../ s over some of the segment lengthsin such a n=3 fringe loops, andb) the necklace paraknot.

way that the resulting expression depends on the loop lengths

only, i.e., if its exponentd; <1, otherwise it is tightand “supertight”

if 6;,>2). We can now distinguish between three different
/ /ey glok_JaI situatipns. _
w(g/)NML/Igl/E/”ng(/—m o /_) (10 (i) There is one loose segment and all others are tight.
5 5 This case occurs if ifP only one segment witld <1 exists,
while all others havey;>1.
where the scaling functiot; depends on ratios of loop (i) There is more than one loose segment and possibly
lengths(again, this procedure would not be possible if thesome tight segments. In this case, the loose segments com-
paraknot contained concatenated Igof$ie superscriptA) pete for the length.. On the average, if there arkt loose
on wg indicates that here the loop lengths, ... /s are  segments, the characteristic length of any specific segment is
fixed. The factors of/5 and /5 in the above expression (/,—>=[(1—Gj)/EiAil(l—ﬁi)]L, which is always larger than
correspond to the sliding entropy already encountered fob and smaller thah. The ratio of characteristic lengths for a

ideal chaindsee(ii) in Sec. Il A]. pair of segmentsj,k is then given by (/j):(/\)=(1
—0)):(1- 6y [76].
IV. TIGHT OR LOOSE (iii ) All segments are tighper sein the sense that al,

1. In this case, a symmetry breaking occurs and one seg-

. . >
When is a certain segment of such a paraknot netwo”ﬁwent becomes large. The unconditional PDF for each seg-

f[ig_ht?A priori, this can be investigated by integration of the ment will have two peaks corresponding to tight or loose
joint PDF over all other segments. The result depends orc.lonfigurations

both the local property of the segment itself, i.e., on its ex- In a paraknot which contains one or multiple open seg-

pqnent in the joint size; distribution, andi its glpbal imerpl".’lyments, the open segments are always loose and therefore
with other segments in the paraknot_m th_elr COOpera.t'Veonly casegi) and(ii) can arise: Depending on the exponents
search for the entropically favored configuration. In practice

th ditional PDF v be obtained for G ~~of the closed loops in such a structure, these loops may be
€ unconditiona _can only be obtain€d 1or Laussiaiy,ar jg9se or tight. Note that cas@ysand (iii) exhibit one

paraknots in which the joint PDF has the mu_ltlpllcatlve form large loop; in(i) this is the loose segment and(iii) it is the

in Eq. (3). Such calculations are not possible for general ne segment that becomes large by symmetry breaking. As

self-avoiding p_a_lraknot_s, as the u_ncondmo_nal PDF comes o Il other segments of paraknots that belong to these classes
from the specific scaling analysis for a given paraknot con-

. . O tight, th ti i f h knots is, to leadi
figuration. We therefore address phantom and self-av0|d|n§:§elrgthe Szr%r;o%rrzdr:ujnoknzng {Zir&hr;%rs ;I)Zra(l)(ni?sd g
cases separately. '

belonging to classi), segments of comparable size make up
the gyration radius. Depending on the details of the structure,
A. Ideal chains the gyration radius should be given by similar expressions to

. - . . those developed in Ref$6,53]. Thus, the gyration radius
Consider the joint PDF in Eq(3) for a given paraknoP decreases with increasing number of loose segments.

with A/ segments. According to the previous section, the ex-
ponentsé; in Eq. (3) are given by#,=d/2—(n;—1) if /; is
a loop or by#,= —n; if it is a linear segment, wherng is the
number of slip links and sliding rings connected to this seg- As mentioned, generalizing the previous classification to
ment. From Eq(3), we consider a segment to be logms se  self-avoiding structures is not straightforward. Let us there-

B. Self-avoiding chains
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fore consider the tightness of segments in a self-avoiding The necklace structure can be closed by an additional slip

paraknot by means of three examples. link connecting the two outer loops. This forms a symmetric
configuration in which all loops are priori equivalent. This
1. The round-table configuration paraknot is equal to the network studied for flat prime knots

n Ref.[61]. Accordingly, the closed necklace structure is, to

This configuration corresponds to arc diagrams in whic _ - ) .
none of the connecting arcs is located inside another arc ading order, contracted to the figure-eight paraknot in both
’ and 3D.

shown in Fig. 6a). The resulting paraknot features a number
n of loops located at the fringe of a central loop, as depicted
to lowest order in Fig. @). As the loops are independent and

are connected to one slip link each, they enter the joint PDF We have presented a systematic study of slip-link struc-
of loop sizes through the loop closure facte%i’d”*”4 as tures which we call paraknots. Paraknots are relatively easy

was found for the figure-eight paraknot. They are thereford0 deal with analytically and may provide information on the
supertight for self-avoiding chains. Conversely, the centrageneric interplay between entropy and fixed topology in
loop has access to additional degrees of freedom stemmirPlymer chains and networks.

from the relative motion of the slip links along its circumfer- _ Paraknots composed of ideal chains are described by
ence such that its exponent beconfesdv—(n—1). Note ~ Gaussian propagators for which calculations are reasonably
that in 2D, the round table configuration corresponds to thétraightforward. Simple paraknots in 2D and 3D are only
leading order behavior of a composite kii6l]. Each fringe margmally or Weqkly localized whe'reas localization is strong
loop, that is, corresponds to a prime component. The addin higher dimensions. More complicated paraknots in which
tional degrees of freedom coming about by the relative moindividual loops are connected to more than one slip link
tion of the fringe loops in this configuration correspond toshow less localization due to the additional degrees of free-

the enhancement of accessible numbers of configurations félom brought about by the relative motion of the slip links or

V. CONCLUSIONS

knotted chains as measured by Orlandihal. [63,64). additional sliding rings on a loop. If self-avoiding effects are
considered, simple paraknots are strongly localized even in
2. The figure-eight cactus with attached loops 2D and 3D. The scaling exponents involved can be obtained

from Duplantier’s theory for general polymer networks. For
the figure-eight paraknot, we have confirmed the scaling ex-
ponent through Monte Carlo simulations. Localization in
self-avoiding paraknots becomes weakened if more than one
substructure has additional degrees of freedom, in analogy to
the ideal chain case. This observation pertains to arbitrary
topological polymer networks.

The tightness of paraknots in 2D quantifies the strong
localization for flat knots observed by Guitter and Orlandini
. ; . . 64]. Whereas we cannot infer definitive statements on 3D
gyration radius of the paraknot is smaller than for a simpl nots from our analysis, the correspondence between figure-

ring OT the same Iength_. In this case, the joint PDF does not eight paraknot and the leading order behavior of prime knots
factorize, but the scaling functiops from Eq. (6) enters. é

i . . . (and between the round table configuration and composite
Depending on the details of the structure, the gyration radiu g P

) e ) ; noty in 2D suggests that similar tightness could be ob-
should be given by similar expressions as developed in REf§“erved in 3D as well. This is consistent with the findings of

[6'5.3]' Note that analogous loosening of loops can k?e‘]anse van Rensburg and Whittingt®®2], Orlandini et al.
achieved for open paraknots of the type sketched in Figig3) and Katritchet al. [65], and it differs from the conclu-
2(9). sions of Quakd53].

Additional energetic effects due to bending and the pres-
ence of (screened electric charges are relevant for many

Finally, let us explore the necklace structure from Fig.systems, especially in biology. In so far as these effects can
2(h) whose corresponding arc diagram is shown in Fi).6  be accommodated by the introduction of a persistence length,
In this configuration, the two end loops are strongly local-they should not affect our results in the long-chain limit.
ized; the othem=n—2 inner loops have two neighbors. By However, they determine the crossover size for the onset of
necessity, one of the inner loops has to be ldssseL), and  the long-chain limit in the polymer. For the particular case of
has sliding entropy with weight L~ 9. On each side of the the 2D trefoil knot the results of our previous analysis sug-
large loop there is a number of other inner loops, arranged igest that the continuum limit is reached for chains with 512
a hierarchy of shapes of the type .0000= strongly local- monomers, whereas for the figure-eight paraknot even chain
ized end loop, & weakly localized loop, O= large inner lengths of 128 seem to be sufficient. Thus, in a DNA double
loop), statistically changing to .0000., etc. If one focuses orhelix for which the persistence length is of the order of 100
one particular inner loop, there is amithance to find this base pairgbp), one may expect to see localization behaviors
loop large with the(integratedd PDF ~L*~9”. Note that a in simpletopologically entangled states for strand lengths of
complete analysis of this relatively simple and symmetricthe order of 10 to 50 kbp, corresponding to a length of 5 to
structure is already quite nontrivial. 25 um [77]. For shorter DNA strands, it is to be expected

Consider a figure-eight paraknot in whichand m addi-
tional (external loops are attached to the two lodm®mpare
Fig. 3(b) in whichn=2 andm=1]. The external loops are
all strongly localized and give rise to additional sliding en-
tropy for the figure-eight loops; by choosing different values
for n and m, one obtains various localization properties for
the figure-eight loops. For instance, far=2 and m
=1, /, is loose and/ 5 is weakly localized; fom,m=2,
both 7/, and/’5 are loose, i.e., proportional ig so that the

3. The necklace
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