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Diffusion on random-site percolation clusters: Theory and NMR microscopy experiments
with model objects
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Quasi-two-dimensional random-site percolation model objects were fabricated based on computer-generated
templates. Samples consisting of two compartments, a reservoir of H2O gel attached to a percolation model
object, which was initially filled with D2O, were examined with nuclear magnetic resonance microscopy for
rendering proton spin density maps. The propagating proton/deuteron interdiffusion profiles were recorded and
evaluated with respect to anomalous diffusion parameters. The deviation of the concentration profiles from
those expected for unobstructed diffusion directly reflects the anomaly of the propagator for diffusion on a
percolation cluster. The fractal dimension of the random walkdw evaluated from the diffusion measurements
on the one hand and the fractal dimensiondf deduced from the spin density map of the percolation object on
the other permits one to experimentally compare dynamical and static exponents. Approximate calculations of
the propagator are given on the basis of the fractional diffusion equation. Furthermore, the ordinary diffusion
equation was solved numerically for the corresponding initial and boundary conditions for comparison. The
anomalous diffusion constant was evaluated and is compared to the Brownian case. Somead hoccorrection of
the propagator is shown to pay tribute to the finiteness of the system. In this way, anomalous solutions of the
fractional diffusion equation could experimentally be verified.

DOI: 10.1103/PhysRevE.65.021112 PACS number~s!: 05.40.2a, 82.56.Lz, 47.53.1n, 64.60.Ht
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I. INTRODUCTION

Randomly disordered media are present in many field
nature and science. The dynamical properties ruled by
geometrical structure are of special interest in fields of ph
cal and engineering processes, such as filtering and exp
tion of fossil fuels@1–3#. Percolation theory has proven to b
a powerful tool to model porous systems@4–6#.

The objective of this study is to examine diffusion o
random-site percolation clusters experimentally and ana
cally. There are several numerical simulation studies in
literature suggesting an anomalous displacement behavio
lated to the fractal nature of the clusters@7–9#. However,
there is little experimental evidence for the reality and pr
tical detectability of anomalous diffusion so far@10–12#.

The objective of the present work is to exploit a differe
experimental strategy. This is~a! to generate numerically a
percolation cluster,~b! to determine the characteristic param
eters numerically,~c! to fabricate model objects using th
percolation clusters as templates,~d! to record nuclear mag
netic resonance~NMR! spin density maps from the~water-
filled! pore space,~e! to evaluate the characteristic clust
parameters on this basis again,~f! to study interdiffusion of
heavy and light water in the pore space, and~g! to compare
the experimental interdiffusion profiles with solutions of t
fractional diffusion equation@13#. In a sense, we are thu
continuing our previous work in which we had already e
plored static and dynamic properties in various thr
dimensional and quasi-two-dimensional percolation mo
objects@14–17#.

Random-site percolation structures are defined in the t
dimensional case by sites on a square lattice. They are o
pied with a probabilityp that is usually chosen in the vicinit
1063-651X/2002/65~2!/021112~11!/$20.00 65 0211
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of the ~two-dimensional! percolation threshold@4# pc
50.592 746. Neighboring occupied sites are connected
pores with a cross section corresponding to the lattice c
stant or integer multiples of it. The total subset of connec
lattice sites form a so-called cluster. Forp>pc , sample-
spanning clusters occur that can be examined with respe
transport properties. The pore space structure generate
the random-site percolation model can be characterized
four parameters, that is, the lattice constanta, the fractal
dimensiondf , the correlation lengthj, and the percolation
probability P` @4,6,18#. The latter quantity is defined as th
probability that a site belongs to the ‘‘infinite’’ cluster tra
versing the whole sample@19#. The correlation length, which
is of particular interest here, is defined as the mean dista
between two sites of a finite cluster~or the mean hole diam
eter in an infinite cluster!. In the real percolation model ob
jects we are considering here, the minimum lattice cons
~or pore diameter! is given by the mechanical resolution o
the fabrication process~see below!.

Random-site percolation clusters are known to disp
fractal properties on a length scale below the correlat
length. That is, the volume-averaged porosity scales with
probe volume radiusr p as

r}H r p
df2dE for a!r p!j

P`}r p
0 for r p@j.

~1!

The Euclidean dimension is denoted bydE ~equals 2 in the
present case!. The fractal dimension fordE52 was theoreti-
cally derived asdf591/48'1.896@4#.

The purely structural relationship Eq.~1! is in juxtaposi-
tion to the dynamic property for the mean squared displa
ment of a random walker on the cluster
©2002 The American Physical Society12-1
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^r d
2&}H t2/dw for ta!t!tj

Defft for t@tj ,
~2!

wheretj}jdw is the time the random walker needs to explo
the correlation lengthj, anddw is the fractal dimension o
the random walk. The lower time limit of the anomalo
diffusion regime is given by the time needed for the displa
ment of lengtha, ta . The diffusion coefficient becoming ef
fective in the long-time limitt@tj is denoted byDeff . Ac-
cording to the Alexander-Orbach conjecture@20#, the
quantity dw is assumed to be related to the fractal clus
dimension as

dw5 3
2 df for dE>2. ~3!

That is the structural parameterdf characteristic of the
volume-averaged porosity is linked to the dynamic param
dw specifying anomalous diffusion. FordE52, the diffusion
exponent becomesdw'2.87. In this study experimenta
evaluations for both quantities have been carried out, so
a comparison becomes possible. Note, however, that Eq~3!
is not considered to be an exact relation@4,6,21,22#.

A theoretical problem of intriguing impact is the comple
propagator description of anomalous diffusion rather than
stricting oneself to the second moment of the propaga
according to Eq.~2!. In the second part of this paper, th
analytical treatment based on the fractional diffusion eq
tion @13,23# is outlined and compared with the interdiffusio
profile data acquired in our experiments.

II. TECHNIQUES AND INSTRUMENTS

A. Methods for measuring diffusion

In the model objects to be studied here, the minimum p
diameter isDr 5400mm. The displacement length sca
needed to probe anomalous diffusion, i.e., displacements
structed by the matrix, isr d@Dr . The ordinary pulsed-
gradient spin echo technique~see Refs.@24#, @25#, for in-
stance! is therefore not suitable for the detection
anomalies in liquids in the present situation.

The much larger displacement rate in gaseous ph
would permit such studies in principle. In Ref.@15# we have
studied diffusion of methane gas in a percolation model
ject. Although there was some indication of an anomalo
behavior, the experiment turned out to be difficult due to
poor detection sensitivity. In this respect, diffusion stud
using laser-polarized or thermally polarized129Xe are more
promising @26,27#. Also, the use of inert fluorinated gase
possibly at somewhat elevated pressures may be more fa
able @28,29#. In any case, there is a diffusion mechanis
~Knudsen diffusion! relevant in gases, which is different b
nature from the diffusion in liquids@8#.

We, therefore, preferred to employ an isotope interdif
sion method. The samples consisted of two compartm
initially filled with H2O ~in gel form! and D2O. At the be-
ginning of the experiment the compartments were presse
each other in close contact so that interdiffusion was in
ated. The time evolution of the proton spin density maps
the D2O compartment was then studied as a function of
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time. The technique was ordinary one- or two-dimensio
NMR imaging of concentration profiles, an application f
diffusometry purposes already described in Refs.@30–32#.

The proton density profiles were recorded either in
form of one-dimensional spin density maps, or were eva
ated from the two-dimensional spin density maps by proj
tion on the main diffusion direction. The latter variant has t
advantage that the signal noise from matrix areas can
screened off before evaluating the profile data.

The propagation of the proton density profile at ha
height as a function of the time permits one to determine
time dependence of the mean squared displacements. A
natively, the profiles themselves at a given time can be
amined with respect to the character of the diffusion proce
In the latter case, the full propagator characteristics, and
just its second moment, are mattering.

B. NMR tomograph and acquisition parameters

The one- or two-dimensional proton density maps of
water-filled pore space of percolation model objects w
recorded with the aid of a NMR tomograph consisting o
4.7-T Bruker magnet with 40 cm horizontal room tempe
ture bore and a home made radio frequency console. Typ
radio frequency and field gradient pulse schemes for s
echo NMR imaging can be found in Ref.@24#, for instance.
The spatial resolution of the images was better than 300mm.
The acquisition of a two-dimensional spin density map ty
cally took 208– 608, so that a reasonable time resolution w
given.

Isotopic dilution by deuterons prolongs the local tran
verse and longitudinal relaxation times due to the redu
number of dipolar interaction partners~see Ref.@33#, for in-
stance!. For the evaluation of spin density maps, the sp
echo signals therefore have to be corrected if the repeti
time is not much longer than the longest proton spin-latt
relaxation timeT1 or if the echo time is not much shorte
than the transverse relaxation timeT2 .

Typical echo timesTE were between 20 and 30 ms. Th
is to be compared with transverse relaxation times of sev
seconds in water at room temperature. Signal attenuation
this basis is, therefore, totally negligible.

The situation is less clear with the effect of spin-latti
relaxation. The repetition timeTR typically was 2 s, so that
the spin density profiles could be distorted at the lo
concentration side by saturation effects. In some of the
periments, we have, therefore, varied the repetition time
tween 0.25 and 12.2 s in order to evaluate the local sp
lattice relaxation times. The local signal intensities were th
corrected correspondingly to provide the true spin den
profiles. No significant spin-lattice relaxation effect could
diagnosed~see the data discussed below!.

C. Computer generated percolation clusters

In the insets of Figs. 6 and 8, typical two-dimension
random-site percolation clusters generated on a square la
are shown. The occupation probabilityp is slightly above the
percolation threshold valuepc50.5927 for the Euclidean di-
mension dE52 @34#. The volume-averaged porosity wa
2-2
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DIFFUSION ON RANDOM-SITE PERCOLATION . . . PHYSICAL REVIEW E65 021112
evaluated using the so-called sandbox method@14,15#: Np
probe circles of varying radiusr p are first placed at position
r k within the cluster in such a way that the center of t
probe volume ~which actually is an area in the two
dimensional case! is in the pore space. Then the avera
values of the observables are formed for theNV voxels at
positionsr j inside the probe volume. Finally, the arithmet
mean of the data set for theNp probe volumes with a given
radiusr p is taken. In other words, the volume-averaged p
rosity is defined as

r~r p!5
1

Np
(
k51

Np 1

NV
(
j 51

NV

r~r j !, ~4!

wherer>ur k2r ju. This quantity can also be evaluated fro
black-and-white converted, experimental spin density m
as described in Ref.@14#.

D. Model objects and measuring conditions

The percolation model objects were fabricated using
circuit board plotter~for details see Refs.@14–16#! based on
the computer-generated templates. The mechanical fab
tion resolution wasDr 5400mm ~see photograph in Fig. 1!.
The adjusted milling depth ranged from 1 to 2 mm in t
different objects produced.

FIG. 1. Photograph of a section of a quasi-two-dimensio
random-site percolation model object~top view! ~a! and of an entire
model object~cross section! ~b!. The model object consists of sev
eral identical quasi-two-dimensional percolation clusters stacke
each other in order to improve the signal intensity. The mechan
resolution of the fabrication process was 400mm. The adjusted
milling depth was constant between 1 to 2 mm in the various
jects produced.
02111
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The objects were filled with heavy water and brought in
contact with reservoirs of H2O gel ~Kelcogel, 1.5% by
weight! at time t50, when the interdiffusion process was
begin. The reservoirs are schematically shown in the ins
of Figs. 6 and 8. The proton distribution in the objects w
then measured as a function of the time in the form of s
density maps as described above.

The gel form of the undeuterated moiety of the sam
was needed for stabilization and to prevent flow. On
other hand, gel stabilization inside the percolation matrix
unfavorable owing to the tendency of forming voids up
gelation. It turned out that in this case the stabilizing effect
the solid matrix is sufficient.

The influence of deuteration and gelation on the bulk w
ter self-diffusion coefficient was checked in an ordina
pulsed-gradient spin-echo experiment@24#. At 20 °C and a
gel content of 1.2%, the self-diffusion coefficients of H2O
and D2O were found to be 1.831029 and 1.431029 m2/s,
respectively. That is, the water self-diffusion coefficient
slightly reduced both by deuteration and gelation.

An isotope effect is known to show up already witho
gelation: Mills @35# reports self diffusion coefficients in
pure H2O and D2O at 25 °C DH2O52.331029 and DD2O

51.8731029 m2/s, respectively. That is, smaller diffusio
coefficients are expected with increasing dilution of1H as it
occurs at the diffusion front.

Furthermore, there may be a difference in the chem
potential in pure H2O and pure D2O, so that a slight devia-
tion from the self-diffusion situation may play a role. On th
other hand, no significant influence on the shape and t
evolution of the interdiffusion profiles was found in the bul
to-bulk experiments described below. The conclusion, the
fore, is that all these effects are of minor importance
largely compensate each other so that~partial! deuteration
and gelation does not perceptibly affect the percolation c
ter characteristics of the propagator to be probed.

The quasi-two-dimensional model objects were kept in
horizontal position during the whole measuring process
order to avoid any convective displacements. In order to
prove the detection sensitivity, several identical slices w
stacked on each other~see Fig. 1!. All experiments were
carried out at room temperature, (2161) °C.

III. RESULTS

A. Volume-averaged porosity

The volume-averaged porosity was evaluated as a fu
tion of the probe volume radius on the basis of Eq.~4! for the
percolation clusters shown in the insets of Figs. 6 and
Corresponding evaluations for experimental spin den
maps lead to equivalent decays as demonstrated in Ref.@17#.
The fractal dimension according to Eq.~1! was found to be
df51.87 in both cases. This value will be compared with t
experimental value fordw according to Eq.~3!.

B. Isotope concentration profiles for interdiffusion
between bulk water compartments

In order to test our measuring and evaluation techniq
we have recorded isotopic interdiffusion profiles in a sam
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ANDREAS KLEMM, RALF METZLER, AND RAINER KIMMICH PHYSICAL REVIEW E 65 021112
consisting of two equal compartments initially filled wit
bulk H2O and D2O gels, respectively. In this case, the initi
distribution of the proton density is of the type

C~x,t50!5H C0 for x<0

0 for x.0.
~5!

Provided that the diffusion process is normal, that is, in
absence of obstructions by a matrix, the proton spin den
profiles at later times are given by@36#

C~x,t !5
1

2
C0 erfcH x

2ADt
J , ~6!

whereD is the diffusion coefficient and erfc(z) is the comple-
mentary error function. In principle, this solution of the o
dinary diffusion equation applies to ‘‘infinite’’ systems, th
is, to root mean squared displacements much less than
extension of the sample.

Figure 2 shows experimental proton spin density m
measured in a two-compartment sample~for an illustration
see inset of Fig. 3! as a function of the timet after bringing
the compartments into contact with each other. The right
left compartments were initially filled with bulk H2O and
D2O gels, respectively. The mean proton spin density p
files, i.e., projections of the two-dimensional spin dens
maps on the main diffusion coordinate axisx are also shown
in diagram form~white lines!.

In Fig. 3, these experimental concentration profiles
compared with those predicted by Eq.~6!. The fits of Eq.~6!
to the experimental data reproduces the room tempera
value of the diffusion coefficient measured in bulk wa
with the pulsed-gradient spin-echo technique@35,37#, D
5231029 m2/s, very well with the exception of the shorte
and longest diffusion intervals.

At the shortest diffusion interval, imperfections of the in
tial isotope distribution and the limited time resolution of t
~two-dimensional imaging process! are expected to matte
The concentration profiles at the longest diffusion times
already affected by the finite extension of the sample, wh
conflicts with the assumption in Eq.~6! of infinite compart-
ments.

Taking together the potential sources of systematic exp
mental errors mentioned before, one can state that the ag
ment between the theoretical and experimental concentra
profiles in bulk samples is very reasonable so that relia
evaluations of anomalous diffusion features in the perco
tion model objects can be expected. This is corroborated
the determination of the mean square displacement of
diffusion front in a second experiment. The setup is sc
matically shown in the inset of Fig. 4. In this case, the ha
height positions of the concentration profiles~projections of
the two-dimensional spin density maps on the main diffus
direction! were evaluated, squared, and plotted versus tim

The middle section of the experimental curve shown
Fig. 4 can nicely be described by a power lawx1/2

2 }t1.05,
which is very close to the linear mean squared displacem
law for normal diffusion. As in the experiment discuss
before, the deviations at short times reflect the initial sit
02111
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tion that can only imperfectly be described by a step fu
tion. The plateau reached at long times is due to the fin
extension of the sample.

C. Isotope concentration profiles for interdiffusion between
bulk water and water-filled percolation cluster

compartments

Equation ~6! is based on a Gaussian propagator as
pected for ordinary diffusion. That is, it does not account
diffusion in a percolation cluster where the second mom
of the propagator obeys an anomalous diffusion law as gi
in Eq. ~2!.

Figure 5 shows two-dimensional proton spin density ma
acquired in an experimental setup schematically shown
the inset of Fig. 6. Interdiffusion between a H2O gel filled
reservoir and a stack of quasi-two-dimensional percolat

FIG. 2. Proton spin density maps recorded in a tw
compartment sample initially filled with bulk H2O and D2O gels
~see the inset picture in Fig. 3!. The echo time wasTE528 ms, the
repetition time wasTR52 s. The field of view inx direction was 15
cm. The digital resolution was 290mm. The times indicate the spa
after contacting the two gels. The white lines represent the isoto
interdiffusion profiles in the form of the projection of the proto
spin density on thex direction.
2-4
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DIFFUSION ON RANDOM-SITE PERCOLATION . . . PHYSICAL REVIEW E65 021112
model objects was examined. Superimposed on to the
density maps the mean spin density profiles~i.e., projections
on thex axis! are shown in Fig. 5 as white lines.

The half-height positions of these mean concentrat
profilesx1/2 were evaluated, squared, and plotted versus t
as shown in Fig. 6. In the limit of long diffusion times whe
the imperfections of the initial isotope distribution and t
finite time resolution of 268 do not matter anymore, the da
can be described by a power law again. The imperfection

FIG. 3. Comparison of theoretical and experimental interdif
sion profiles between bulk H2O and D2O gels. The data correspon
to the two-dimensional spin density maps shown in Fig. 2. The s
lines represent fits of Eq.~6! to the experimental data. The fitte
diffusion coefficients are given in the inset table.

FIG. 4. Square of the position of the proton concentration pro
at half-height in bulk versus diffusion time. The experimental se
consisted of two compartments initially filled with bulk H2O and
D2O gels as shown in the inset picture. The largely asymme
sizes of the H2O and D2O reservoirs ensure a practically consta
proton concentration at the entrance of the D2O compartment. The
cross section of the D2O compartment was 1.532 cm2. The con-
centration profiles were obtained as projections of two-dimensio
spin density maps on thex axis. The spin-echo time wasTE

532 ms, the repetition time wasTR50.7 s. The field of view inx
direction was 7 cm. A digital resolution of 270mm was adjusted.
The total acquisition time for a spin density map was 1 h.
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the initial isotope distribution is matched by the revised o
gin of time t. Fitting the exponent of Eq.~2! for t!tj to the
data leads todw52.89, which favorably compares to th
Alexander-Orbach conjecture, Eq.~3!, with the fractal di-
mensiondf determined from the very same percolation clu
ter according to Eq.~1! for a!r p!j.

The isotopic interdiffusion profiles can also be obtain
directly with the aid of one-dimensional imaging along t
main diffusion direction. Figure 7 renders typical profile
recorded in this way from an experimental setup schem
cally shown in the inset of Fig. 8. The data are corrected
saturation effects due to incomplete spin-lattice relaxat
after the repetition interval. From these profiles, the me
squared proton displacement~in the percolation cluster moi
ety! can be evaluated as a function of the diffusion tim
Figure 8 shows corresponding data. Details are describe
the legend. With a fitted exponent parameter ofdw52.86 the
anomalous diffusion character in the percolation cluste
again corroborated in good agreement with the Alexan
Orbach conjecture Eq.~3!.

IV. ANALYTICAL PROPAGATOR TREATMENT BASED
ON THE FRACTIONAL DIFFUSION EQUATION

The propagator~or Green’s function! for a Brownian ran-
dom walk process in one dimension is, of necessity, given
terms of the Gaussian

C~x,t!5
1

A4pt
expS 2

x2

4t D , ~7!

due to the central limit theorem@38#. Expression~7! includes
the d-initial condition C(x,0)5d(x) and fulfills natural
boundary conditions limuxu→`C(x,t)50. We use the rescale
time t[Dt. The propagator~7! satisfies the diffusion equa
tion @38#

]

]t
C5

]2

]x2 C~x,t!. ~8!

Representing the experimental setup shown in the inse
Fig. 4 by the initial conditionC(x,0)50 for x.0 and
through the boundary conditionC(0,t)5C0 , we assume
that, due to the comparatively large reservoir, a constant c
centration is kept at the boundaryx50. The solution of Eq.
~8! for these initial and boundary conditions is given throu

C~x,t!5C0 erfcS x

2At
D , x.0. ~9!

The solution given in Eq.~9! reaches the plateauC(x,t)
5C0 for x2!t. Consequently, the expression in Eq.~9! is
not normalized. Its mean

^1~t!&[E
0

`

C~x,t!dx52C0At/p. ~10!

grows with the square root in time, and is proportional to t
concentrationC0 . The second moment becomes

-
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e
p
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FIG. 5. Evolution of two-dimensional proton spin density maps (2563256 pixels) in a random-site percolation object. The experime
setup is schematically shown in the inset of Fig. 6. The times indicate the spans after attaching the H2O gel compartment to the multistac
percolation model object~matrix size 1003100; p2pc50.029;df51.87, porosity of the percolating clusterr50.5352!. The time resolution
given by the image acquisition time was 268. The echo time wasTE523 ms, the repetition time wasTR50.7 s. The digital resolution of the
maps is 230mm. The white lines overlaid to the spin density maps represent the mean proton concentration profiles~projections of the
diffusion front on the main diffusion direction!.
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FIG. 6. Square of the position of the proton concentration pro
at half-height in the percolation cluster shown and described in
5 versus diffusion time. The inset shows the experimental se
where the percolation cluster~white! initially is filled with D2O.
The largely asymmetric sizes of the H2O and D2O reservoirs ensure
a practically constant proton concentration at the entrance of
D2O compartment, i.e., the percolation cluster. The concentra
profiles were obtained as projections of two-dimensional spin d
sity maps on thex axis ~see Fig. 5!. The time resolution is 268. The
solid lines represent a fit of Eq.~2! for t!tj . The fitted exponent
parameter isdw52.89.
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FIG. 7. Typical isotopic interdiffusion profiles directly measure
with the aid of one-dimensional imaging along the main diffusi
direction. The experimental setup is schematically shown in
inset of Fig. 8. The spin-lattice relaxation timeT1(x) was measured
as a function ofx by varying the repetition timeTR from 0.2 to 12.2
s in 15 steps. The signal intensity profiles were then corrected
multiplication with a factor„12exp@TR /T1(x)#…21, so that any spa-
tially dependent saturation effects were eliminated. The spin-e
time was 20 ms and the field of view along thex direction was 15
cm. A diffusion time resolution of 1 h, and a digital space resolut
of 290 mm were adjusted.
2-6
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DIFFUSION ON RANDOM-SITE PERCOLATION . . . PHYSICAL REVIEW E65 021112
^x2~t!&5 8
3 C0t3/2/Ap. ~11!

In normalized form, that is, when the concentration profi
are divided by the mean given in Eq.~10!, the mean squared
displacement corresponds to

^x2~t!&n5
^x2~t!&

^1~t!&
5

4

3
t. ~12!

It should be noted that the concentration profileC(x,t)
for the different realization with an infinite reservoir Eq.~6!
differs from the case with constant boundary concentra
Eq. ~9! only by a factor1

2. Systems with constant bounda
concentration and infinite reservoir thus behave congrue

Let us now address how we can derive the analog
quantities for the anomalous diffusion data described in S
III C. As mentioned above, the average diffusion in the p
colation cluster close to the percolation threshold is ano
lous in the sense that the mean squared displacement fol
^x2(t)&}ta, wherea52/dw @see Eq.~2!#, anddw52df /ds
@9,39#. Here, the rescaled timet5(Da)1/at includes the
anomalous diffusion constantDa of dimension @Da#
5m2/sa @13,40#. Thus, the diffusion dynamics is controlle
by two parameters, the fractal dimensiondf and the spectra
dimensionds . Usually, the inequalitydw.df is fulfilled so
that the anomalous diffusion process is subdiffusive, i.e
,a,1. In the experiment, the three-dimensional probabi
density function is projected onto a one-dimensional pr

FIG. 8. Mean squared proton displacement as a function of
diffusion time in a two-dimensional random-site percolation obje
the template of which is shown in the inset. The percolation clu
is initially ( t50) filled with D2O. The characteristic data of th
percolation cluster are: matrix size 2003200; occupation probabil-
ity relative to the threshold valuep2pc50.030; fractal dimension
df51.87; porosity of the percolating clusterr50.4845. The mean
squared displacement data were evaluated from proton conce
tion profiles recorded in the form of one-dimensional NMR imag
along thex axis. The proton concentration profiles were used
calculate the mean squared proton displacement in the percol
cluster moiety. The solid line represents a fit of Eq.~2! for t!tj .
The fitted exponent parameter isdw52.86.
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ability density function, and therefore the geometry in t
pseudo-one-dimensional process becomes averaged.

In the original geometry, the spreading of the rando
walker in space is slowed down in comparison to the f
diffusion, due to the presence of bottlenecks and dead e
on all length scales, leading to the subdiffusive nature of
mean squared displacement. In the projection, the trappin
a small pore of the percolation cluster corresponds to a sm
wiggling around some given coordinate. Effectively, t
walker in the pseudo-one-dimensional measurement exp
ences a continued multiple trapping process, i.e., it is imm
bilized for some ‘‘time’’ spant governed by the so-called
waiting ‘‘time’’ distribution c~t!. According to thisc, the
walker is released and moves freely until it is trapped aga
This is a special case of a continuous time random w
process, the subdiffusion being reflected in the inve
power-law formc(t);Aat212a @42#. According to thisc,
the walker is released and moves freely until it is trapp
again, and so forth. This stop-and-go process can be ma
onto the fractional diffusion equation@13,23#

]

]t
C50Dt

12a ]2

]x2 C~x,t! ~13!

that includes the Riemann-Liouville fractional operat

0Dt
12a[]/]t(0Dt

2a) with @43#

0Dt
2aC~x,t![

1

G~a!
E

0

t

dt8
C~x,t8!

~t2t8!12a ~14!

The fractional diffusion equation is equivalent to a gener
ized master equation, and can be derived from a mult
trapping version of the fundamental Chapman-Kolmogo
equation@44#.

The Riemann-Liouville operator has the important pro
erty that its Laplace transform is*0

`e2ut
0Dt

2a f (t)dt
5u2a f (u). By virtue of this property, it can be shown tha
in Laplace space, the solution of the fractional diffusi
equation, let us call itCa(x,t), is connected to the solution

e
,
r

ra-
s

ion

FIG. 9. Comparison between the anomalous concentration
file C2/3(x,t), left, and its Brownian analogC1(x,t), for a diffu-
sion time intervalt5180 h. We usedD2/351.331028 m2/s2/3 and
D5231029 m2/s. The amplitude isC05300 in both cases. The
Brownian profile shows the much more efficient spread of the tra
substance into the medium.
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of the Brownian diffusion equation~8!, CB(x,t), through the
scaling relationCa(x,u)5ua21CB(x,ua) @13#. This, in turn,
can be used to find a convenient mapping between
Brownian solution, and any quantity obtained from
through linear operations, in terms of the generaliz
Laplace transformation@45#

Ca~x,t!5E
0

`

Ea~s,t!CB~x,s!ds. ~15!

In Eq. ~15!, the functionEa(s,t) is a one-sided Le´vy distri-
bution that can be represented in terms of Fox’sH function
@13#. For our purposes, we notice thatEa has the convenien
representation

E2/3~s,t!5
1

t2/3G~1/3! 1F1S 5

6
;
2

3
;2

4s3

27t2D
2

1

t4/3G~21/3!1F1S 7

6
;
4

3
;2

4s3

27t2D ~16!

for a5 2
3 . This value fora is sufficiently close to the perco

lation cluster value 0.7, and we choose2
3 as for this rational

number the representation in Eq.~16! considerably reduce
the computation time in evaluating the integral of Eq.~15!.
In Eq. ~16!, 1F1 represents the confluent hypergeomet
function.

For the normalized mean squared displacement Eq.~12!,
the transformation given in Eq.~15! yields the exact anoma
lous behavior

^x2~t!&n5
2

G~2/3!
t2/3 ~17!

with t[(D2/3)
3/2t @13#. By virtue of this expression, we ca

approximate the anomalous diffusion constantD2/3 as

D2/3'1.331028 m2/s2/3 ~18!

from the experimental data plotted in Fig. 8 where the o
served time interval approximately fulfills the boundary co
dition C(0,t)5C0 . To the best of our knowledge, this is th
first time the anomalous diffusion constant appearing in
above formalism has been determined experimentally. In
following, we useD2/3 to construct the anomalous conce
tration profile from Eqs.~9! and ~15!.

In Fig. 9, we show the anomalous concentration pro
Ca(x,t) for the longest diffusion time interval~'180 h! in
Fig. 7, and compare it to the Brownian profile correspond
to the same interval. The latter was combined with the d
fusion constant 231029 m2/s ~see Fig. 3!. It is obvious that
the subdiffusive profile lags far behind the wider spread
the Brownian counterpart, i.e., within the same time sp
Brownian diffusion is more efficient. Quantitatively, this co
responds to the ratioD2/3/@DG(5/3)t1/3#'7.4t21/3 s1/3.

The subdiffusive diffusion profile sequence given in F
7 is juxtaposed to the theoretical curves in Fig. 10~a!. It is
obvious that the general trend follows the one displayed
Fig. 7, particularly that the spacing between success
curves becomes less pronounced for increasing diffusion
02111
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tervals. However, it can be realized that the profile falls
too fast in comparison to the experimental result. We belie
that this is related to the fact that the investigated cluste
not an ideal fractal since it is finite. This leads to correctio
in the fractional model that we heuristically introduc
through a fudge factor as follows. Due to the finiteness of
systems, there may exist some channels from the left to
right of the sample that enable a much faster, essenti
Brownian, exchange with the reservoir.

We, therefore, propose anad hoccorrection, namely, we
have two additive contributions, the anomalous profile plu
correction that is Brownian. That is, the resulting profile b
comes

C~x,t!5Ca~x,ta!1CB~x,tB!, ~19!

where Ca corresponds to the fractional solution withta
5(D2/3)

3/2t ~Table I! andC05300, andCB is given in terms
of the Brownian solution given in Eq.~9! with t5Dt and the
fudge factor amplitudeC0510. The latter was obtained from
the latest curve in Fig. 7 requiring that the value should
approximately 9 atx540 mm. This is, of course, a roug
and arbitrary choice regarding the strong noise in the p
and its purpose is only to demonstrate the difference in
profile due to this procedure.

It is obvious from Fig. 10~b! that even for the relatively
small ratioCB(0,tB):Ca(0,ta)5 1

30 , the profile is shifted to
higher values for largerx, and that the expression given i
Eq. ~19! seems to be a good approximation to the experim
tal result. It might be argued that this measure violates
requirement that the mean squared displacement should
proportional tot2/3. We plotted the mean squared displac
ment corresponding to the modified profile, Eq.~19! in
Fig. 11. It is obvious that the slope is approximately2

3, due to
the small relative contribution of the Brownian solution~note
that the integral determining the second moment of
Brownian contribution was cut off atx580 mm since it has
a non-negligible contribution for largerx!. We expect that the
relative amplitude of the Brownian contribution decreas
with increasing system size, i.e., the finite size effects ca
ing the necessity of the Brownian correction should beco
smaller.

V. NUMERICAL EVALUATION BASED ON THE
ORDINARY DIFFUSION EQUATION

In addition to the analytical propagator treatment us
the fractional diffusion equation that describes the anom
lous diffusion as an effective result of the complex bound
conditions, we applied numerical finite volume metho
~FVM! to solve the ordinary diffusion equation~8! for the
explicit boundary conditions imposed by the geometri
structure of the finite model percolation cluster. The comm
cial software packageFLUENT 5.5™ provides the numerica
basis for this sort of analysis.

The proton spin density distributions displayed in Fig.
were considered as a solution of the ordinary diffusion eq
tion for the pore space of the percolation object and the
tial condition of the experiment. Each lattice site is cover
2-8
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FIG. 10. ~a! Anomalous concentration profile
for a5

2
3 , and withD2/351.331028 m2/s2/3. The

times increase away from the origin, and a
taken to be 20, 60, 100, 140, and 180 h, cor
sponding to Fig. 7. The inset shows a zoom in
the plot range@0, 25#. The conversion betweent
and the rescaled timet is given in Table I.~b!
Corrected anomalous concentration profile, E
~19!, with the subdiffusive parametersC05300
and D2/351.331028 m2/s2/3, and the Brownian
diffusion constantD5231029 m2/s. The fudge
amplitude for the Brownian contribution is 10.
s
at
-
te

s a

er,
cted.

sult
an
us-

od

o

es-
by a grid of 535 numerical unit cells. The diffusion proces
occurring with the ordinary diffusion constant of water
room temperature,D51.831029 m2/s, was treated in a se
ries of 20 s intervals. The proton concentration at the in
face to the reservoir was considered to be constant,C(0,t)
51, for all times.

Figure 12 shows the normalized second moment^x2(t)&n

FIG. 11. Mean squared displacement corresponding to the m
fied profile, Eq.~19!, log10-log10 scale~full line!. The dashed line
represents the mean squared displacement corresponding t
fractional result, Fig. 8. Both lines are approximately of slope2

3.
02111
r-

evaluated from the spatial proton density distribution a
function of the time according to Eq.~12!. As a consequence
of the tortuous diffusion pathways in the percolation clust
the time dependence turns out to be anomalous as expe
That is

^x2~ t !&}t0.8. ~20!

The exponent value coincides with the experimental re
within the experimental accuracy, but is slightly higher th
the theoretical expectation for random-site percolation cl
ters according to the Alexander Orbach conjecture, Eq.~3!.

i-

the

TABLE I. Conversion between experimental time scale and r
caled ‘‘time’’ t5Dt for Brownian and anomalous case. We useD
5231029 m2/s andD2/351.331028 m2/s2/3.

t ~h! (D2/3)
3/2 t(1026 m3) Dt (1024 m2)

20 0.11 1.44
60 0.33 4.32

100 0.56 7.20
140 0.78 10.10
180 1.00 12.96
2-9



o
or
th
d
it
c

nd
-

ta
t

dy

e

e-
20
d in

red
ion
le

s.
sed
ri-
e
ba-
ured

of
r-
l-

n
la-
ator
in-
the

ge-
the
s-

R.
he

d
di
la
d

m
-

ANDREAS KLEMM, RALF METZLER, AND RAINER KIMMICH PHYSICAL REVIEW E 65 021112
The explanation is that there is a finite contribution
undisturbed Brownian diffusion trajectories through the p
space. The channel width relative to the extension of
model system considered is not negligible as anticipate
the theoretical percolation cluster model. Therefore, a fin
fraction of diffusion trajectories unaffected by the pore spa
restrictions contribute, and the exponent will be correspo
ingly larger. Of course, this ‘‘normal’’ contribution is ex
pected to vanish in the limit of infinite system sizes.

VI. CONCLUSIONS AND DISCUSSION

In this study, we have experimentally determined frac
parameters of random-site percolation clusters based on
structural properties of the matrix, and grounded on the

FIG. 12. Time dependence of the normalized mean squared
placement evaluated from numerical solutions of the ordinary
fusion equation for the boundary conditions given by the perco
tion model clusters~see Fig. 5!. The numerical procedure is base
on FVM. The numerical transient time resolution is 20 s. The ti
evolution is scanned in steps ofDt53600 s. The data can be de
scribed by a power laŵx2(t)&n}t0.8.
-

-

.

02111
f
e
e
in
e
e
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namic behavior of an isotopically labeled fluid filled into th
pore space.

Remarkably, anomalous diffusion was found for displac
ments far beyond the correlation length, which is around
lattice constants at the occupation probabilities considere
this study~see Fig. 2!. That is, the normal diffusion limit in
Eq. ~2! applies only extremely far abovetj . This finding is
in accordance with recent Monte Carlo simulations@46#,
where the same conclusion was drawn.

Apart from the mean squared displacement conside
here, it is of interest to compare the whole concentrat
profile with theoretical predictions. The concentration profi
in principle contains all information of the~anomalous!
propagator effectively determining the diffusion propertie
This is shown with the analytical propagator treatment ba
on the fractional diffusion equation in Sec. IV. The expe
mental concentration profiles for water diffusion in th
model percolation clusters can be described well on this
sis in the sense that the qualitative behavior of the meas
concentration profile can be reproduced with the solution
the fractional diffusion equation with a relatively small co
rection. In this way, the fractional diffusion equation forma
ism was verified experimentally.

Additionally, we have evaluated the ordinary diffusio
equation for the boundary conditions given by the perco
tion model cluster. The experimental data and the propag
results obtained from the fractional diffusion equation co
cide completely as far as can be judged in the frame of
accuracy of the diverse methods.
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