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Diffusion on random-site percolation clusters: Theory and NMR microscopy experiments
with model objects

Andreas Klemnt, Ralf Metzler? and Rainer Kimmich
1Sektion Kernresonanzspektroskopie, Univetditin, 89069 Ulm, Germany
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 12-109, Cambridge, Massachusetts 0213
(Received 5 June 2001; revised manuscript received 23 August 2001; published 25 January 2002

Quasi-two-dimensional random-site percolation model objects were fabricated based on computer-generated
templates. Samples consisting of two compartments, a reservois@fgel attached to a percolation model
object, which was initially filled with RO, were examined with nuclear magnetic resonance microscopy for
rendering proton spin density maps. The propagating proton/deuteron interdiffusion profiles were recorded and
evaluated with respect to anomalous diffusion parameters. The deviation of the concentration profiles from
those expected for unobstructed diffusion directly reflects the anomaly of the propagator for diffusion on a
percolation cluster. The fractal dimension of the random veglkevaluated from the diffusion measurements
on the one hand and the fractal dimensihrdeduced from the spin density map of the percolation object on
the other permits one to experimentally compare dynamical and static exponents. Approximate calculations of
the propagator are given on the basis of the fractional diffusion equation. Furthermore, the ordinary diffusion
equation was solved numerically for the corresponding initial and boundary conditions for comparison. The
anomalous diffusion constant was evaluated and is compared to the Brownian cas@d3uneorrection of
the propagator is shown to pay tribute to the finiteness of the system. In this way, anomalous solutions of the
fractional diffusion equation could experimentally be verified.

DOI: 10.1103/PhysReVvE.65.021112 PACS nun)er05.40—a, 82.56.Lz, 47.53:n, 64.60.Ht

[. INTRODUCTION of the (two-dimensiongl percolation threshold[4] p.
=0.592 746. Neighboring occupied sites are connected by

Randomly disordered media are present in many fields gpores with a cross section corresponding to the lattice con-
nature and science. The dynamical properties ruled by thetant or integer multiples of it. The total subset of connected
geometrical structure are of special interest in fields of physilattice sites form a so-called cluster. Fpep., sample-
cal and engineering processes, such as filtering and explor&Panning clusters occur that can be examined with respect to
tion of fossil fuels[1—3]. Percolation theory has proven to be fransport properties. The pore space structure generated by
a powerful tool to model porous systerfts—6. the random-site percol_atlon modgl can be characterized by

The objective of this study is to examine diffusion on fo_ur pa_rameters, that is, _the lattice constantthe fract_al
random-site percolation clusters experimentally and analytidimensionds, the correlation lengtf, and the percolation
cally. There are several numerical simulation studies in therobability P.. [4,6,18. The latter quant“l_ty 1S d?fmed as the
literature suggesting an anomalous displacement behavior rQ-rOb_ab'“W that a site belongs to the m_ﬂmte cluster tra-
lated to the fractal nature of the clustdid-9]. However, versing the wh(_)le sampld.9]. '_I'he cprrelatlon length, Wh'Ch
there is little experimental evidence for the reality and prac-'se?\fvgsrr]t';j loa;iltgfrci‘s; gﬁirti’ é?ui?;?iﬁeaﬁw;gi T:gl?a n d(ij:r,;e_mce
tical detectability of anomalous diffusion so fdr0—12.

The obiecti fth t Kis t loit a diff teter in an infinite cluster In the real percolation model ob-
€ objective ot In€ present work 1S 1o exploit a ditieren jects we are considering here, the minimum lattice constant
experimental strategy. This i®) to generate numerically a

_ : o (or pore diameteris given by the mechanical resolution of
percolation cluster(b) to determine the characteristic param- the fabrication proces&ee below

eters nu_merically(c) to fabricate model objects using the  Random-site percolation clusters are known to display
percolation clusters as templated) to record nuclear mag- fractal properties on a length scale below the correlation

netic resonancéNMR) spin density maps from th@water-  |ength. That is, the volume-averaged porosity scales with the
filled) pore space(e) to evaluate the characteristic cluster probe volume radius, as

parameters on this basis agaif), to study interdiffusion of

heavy anc_j light water in the_ pore s_pace,_aég)jto compare pdde  for a<r,<¢
the experimental interdiffusion profiles with solutions of the px P 0 (1)
fractional diffusion equatiorf13]. In a sense, we are thus Pooxry  for rp>¢.

continuing our previous work in which we had already ex-
plored static and dynamic properties in various three-The Euclidean dimension is denoted &y (equals 2 in the
dimensional and quasi-two-dimensional percolation modepresent cageThe fractal dimension fodz=2 was theoreti-
objects[14-17. cally derived agl;=91/48~1.896[4].

Randome-site percolation structures are defined in the two- The purely structural relationship E€L) is in juxtaposi-
dimensional case by sites on a square lattice. They are occtien to the dynamic property for the mean squared displace-
pied with a probabilityp that is usually chosen in the vicinity ment of a random walker on the cluster
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t?dw  for ta<t<t; time. The technique was ordinary one- or two-dimensional
(f(%)‘x D 2 NMR imaging of concentration profiles, an application for
diffusometry purposes already described in RE36—-37.

wheret . £ is the time the random walker needs to explore The proton density profiles were recorded either in the

the correlation lengtl, andd,, is the fractal dimension of form of one-dimensional spin density maps, or were evalu-
the random walk. The lower time limit of the anomalous &€d from the two-dimensional spin density maps by projec-

diffusion regime is given by the time needed for the displace-tion on the main diffusion direction. The latter variant has the
ment of lengtha, t,. The diffusion coefficient becoming ef- advantage that the signal noise from matrix areas can be

fective in the long-time limitt>t, is denoted byD . Ac- screened off before evaluating the profile data.

et for t>tg,

cording to the Alexander-Orbach conjectuf@0], the The propagation of the proton density profile at half-
quantity d,, is assumed to be related to the fractal clusterr_'e'ght as a function of the time permits one to determine the
dimension as time dependence of the mean squared displacements. Alter-
natively, the profiles themselves at a given time can be ex-
d,=3d; for dg=2. ©) amined with respect to the character of the diffusion process.

In the latter case, the full propagator characteristics, and not
That is the structural parametet; characteristic of the just its second moment, are mattering.
volume-averaged porosity is linked to the dynamic parameter
d, specifying anomalous diffusion. Faz= 2, the diffusion B. NMR tomograph and acquisition parameters
exponent becomesl,~2.87. In this study experimental . . .
evaluations for both quantities have been carried out, so that The one- or two-dimensional proton density maps of the

a comparison becomes possible. Note, however, that3q. water(;ﬂl(ljed .&O:E sp%cef of Nplt\e/lr;otlanon mor:jel ob!etc';ts w;are
is not considered to be an exact relat[dn6,21,22. recorded wi € aid of a omograph consisting of a

Atheoretical problem of intriguing impact is the complete 4.7-T Bruker magnet with 40 cm horizontal room tempera-

propagator description of anomalous diffusion rather than retlre bore and a home made radio frequency console. Typical

L dio frequency and field gradient pulse schemes for spin-
stricting oneself to the second moment of the propagatoFa - : . :
according to Eq(2). In the second part of this paper, the echo NMR imaging can be found in R¢g4], for instance.

analytical treatment based on the fractional diffusion equa:rhe spatial resolution of the images was better than/a00

tion [13,23 is outlined and compared with the interdiffusion Thlf ?qulzlgonegf a tV\;ﬁ-cilmensmnalepl? denS|ty|rr:§1p typi-
profile data acquired in our experiments. cally took 2U~—bU, so that a reasonable ime resolution was

given.
Isotopic dilution by deuterons prolongs the local trans-
Il. TECHNIQUES AND INSTRUMENTS verse and longitudinal relaxation times due to the reduced
A. Methods for measuring diffusion number of dipolar interaction partnefsee Ref[33], for in-
. . . stance. For the evaluation of spin density maps, the spin-
In the model objects to be studied here, the minimum PO cho signals therefore have to be corrected if the repetition

diameter isAr=400um. The_ d|s.plac¢men_t length scale time is not much longer than the longest proton spin-lattice
needed to probe anomalous diffusion, i.e., displacements Ol?élaxation timeT, or if the echo time is not much shorter

structed by the matrix, ig4>Ar. The ordinary pulsed- than the transverse relaxation tirfig.

gtradient. spit?] ecPo tech?iqL(gfeblRe?s[ZA:]ﬁ [23],tfort. in- f Typical echo timesl'e were between 20 and 30 ms. This
stancg is therefore not suitable for the detection o is to be compared with transverse relaxation times of several

anomalies in liquids in _the present situation. seconds in water at room temperature. Signal attenuation on
The much larger displacement rate in gaseous phaseEﬁis basis is, therefore, totally negligible.

would permit such studies in principle. In R¢L5] we have The situation is less clear with the effect of spin-lattice

.StUd'ed diffusion of methane gasina p_ercolatlon model Ob'relaxation. The repetition tim&g typically was 2 s, so that
ject. Although there was some indication of an anomalou

he spin density profiles could be distorted at the low-

behavior, th_e experiment turned' out to be d'ﬁ'CUIF due to Fheconcentration side by saturation effects. In some of the ex-
poor detection sensitivity. In this respect, diffusion studies

ing | larized or th I ariza9x periments, we have, therefore, varied the repetition time be-
using 1aser-polarized or thermally poiariz € are moré  yyeen 0.25 and 12.2 s in order to evaluate the local spin-

lattice relaxation times. The local signal intensities were then
YLorrected correspondingly to provide the true spin density

able [28,29. In any case, there is a diffusion mechanism . L ; : :
e _ R profiles. No significant spin-lattice relaxation effect could be
(Knudsen diffusion relevant in gases, which is different by diagnosedsee the data discussed bejow

nature from the diffusion in liquid§8].

We, therefore, preferred to employ an isotope interdiffu-
sion method. The samples consisted of two compartments
initially filled with H,O (in gel form) and D,O. At the be- In the insets of Figs. 6 and 8, typical two-dimensional
ginning of the experiment the compartments were pressed armndom-site percolation clusters generated on a square lattice
each other in close contact so that interdiffusion was initi-are shown. The occupation probabiljiys slightly above the
ated. The time evolution of the proton spin density maps irpercolation threshold valug,=0.5927 for the Euclidean di-
the D,O compartment was then studied as a function of themensiondz=2 [34]. The volume-averaged porosity was

C. Computer generated percolation clusters
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The objects were filled with heavy water and brought into
contact with reservoirs of 0 gel (Kelcogel, 1.5% by
weight) at timet=0, when the interdiffusion process was to
begin. The reservoirs are schematically shown in the insets
of Figs. 6 and 8. The proton distribution in the objects was
then measured as a function of the time in the form of spin
density maps as described above.

The gel form of the undeuterated moiety of the sample
was needed for stabilization and to prevent flow. On the
other hand, gel stabilization inside the percolation matrix is
unfavorable owing to the tendency of forming voids upon
gelation. It turned out that in this case the stabilizing effect of
the solid matrix is sufficient.

The influence of deuteration and gelation on the bulk wa-
ter self-diffusion coefficient was checked in an ordinary
pulsed-gradient spin-echo experimg@#]. At 20°C and a
gel content of 1.2%, the self-diffusion coefficients ojCH
and DO were found to be 1:8107° and 1.4<10°° m?/s,
respectively. That is, the water self-diffusion coefficient is
slightly reduced both by deuteration and gelation.

An isotope effect is known to show up already without
gelation: Mills [35] reports self diffusion coefficients in
1cm pure HO and DO at 25°C Dh,0=2.3% 10 ° and Dp,o

. . . - =1.87x10"° m?s, respectively. That is, smaller diffusion
FIG. 1. Photograph of a section of a quasi-two-dimensional;efficients are expected with increasing dilutionsf as it
random-site percolation model objdtdp view) (a) and of an entire occurs at the diffusion front.
model object(cross section(b). The model object consists of sev- Furthermore, there may be a difference in the chemical
eral identical quasi-two-dimensional percolation clusters stacked o otential in pur'e HO and pure BO, so that a slight devia-
each other in order to improve the signal intensity. The mechanice&on from the self-diffusion situatior’1 may play a role. On the
res c-)lmion of the fabrication process was 40 m. The adjgsted other hand, no significant influence on the shape.and time
;ggi?%rgzz?egas constant between 1 to 2 mm in the various ob evolution of the interdiffusion profiles was found in the bulk-
to-bulk experiments described below. The conclusion, there-
) fore, is that all these effects are of minor importance or
evaluated using the so-called sandbox metib8l19: N, |51gely compensate each other so thadrtia) deuteration
probe circles of varying radius, are first placed at positions 54 gelation does not perceptibly affect the percolation clus-
r, within the clustgr in such a way that the center of theier characteristics of the propagator to be probed.
probe volume (which actually is an area in the two-  he guasi-two-dimensional model objects were kept in a
dimensional cageis in the pore space. Then the averagenqyizontal position during the whole measuring process in
values of the observables are formed for g voxels at  rqer 10 avoid any convective displacements. In order to im-
positionsr; inside the probe volume. Finally, the arithmetic oy the detection sensitivity, several identical slices were

mean of the data set for the, probe volumes with a given giacked on each othdsee Fig. 1 All experiments were
radiusr, is taken. In other words, the volume-averaged poarried out at room temperature, (21) °C.

rosity is defined as

Np Ny Il. RESULTS
P(rp): N_pkzl N_ij'l P(rj)' 4) A. Volume-averaged porosity

The volume-averaged porosity was evaluated as a func-
tion of the probe volume radius on the basis of & for the
ercolation clusters shown in the insets of Figs. 6 and 8.
orresponding evaluations for experimental spin density
maps lead to equivalent decays as demonstrated in Réf.
The fractal dimension according to E@.) was found to be
D. Model objects and measuring conditions d;=1.87 in both cases. This value will be compared with the

The percolation model objects were fabricated using aexperlmental value fod,, according to Eq(3).

circuit board plottei(for details see Ref$14—16) based on
the computer-generated templates. The mechanical fabrica-
tion resolution wag\r =400 um (see photograph in Fig.)1
The adjusted milling depth ranged from 1 to 2 mm in the In order to test our measuring and evaluation technique,
different objects produced. we have recorded isotopic interdiffusion profiles in a sample

wherer>|rk—rj|. This quantity can also be evaluated from
black-and-white converted, experimental spin density map
as described in Ref14].

B. Isotope concentration profiles for interdiffusion
between bulk water compartments
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consisting of two equal compartments initially filled with H spin density
bulk H,O and DO gels, respectively. In this case, the initial
distribution of the proton density is of the type

Co for x=0
0 for x>0.

C(x,t=0)=[ )

Provided that the diffusion process is normal, that is, in the
absence of obstructions by a matrix, the proton spin density
profiles at later times are given (6]

1
C(x,t)= ECO erfc{ ZL\/E] (6)

whereD is the diffusion coefficient and erfz)(is the comple-
mentary error function. In principle, this solution of the or-
dinary diffusion equation applies to “infinite” systems, that
is, to root mean squared displacements much less than the
extension of the sample.

Figure 2 shows experimental proton spin density maps
measured in a two-compartment samfier an illustration
see inset of Fig. Bas a function of the time after bringing
the compartments into contact with each other. The right and
left compartments were initially filled with bulk 0 and
D,0O gels, respectively. The mean proton spin density pro-
files, i.e., projections of the two-dimensional spin density
maps on the main diffusion coordinate axiare also shown
in diagram form(white lines.

In Fig. 3, these experimental concentration profiles are
compared with those predicted by EG). The fits of Eq.(6)
to the experimental data reproduces the room temperature
value of the diffusion coefficient measured in bulk water
with the pulsed-gradient spin-echo techniglgs,37, D
=2x10° m?/s, very well with the exception of the shortest ~ FIG. 2. Proton spin density maps recorded in a two-
and longest diffusion intervals. compartment sample initially filled with bulk 40 and DO gels

At the shortest diffusion interval, imperfections of the ini- (see the inset picture in Fig).3The echo time wa$g=28 ms, the
tial isotope distribution and the limited time resolution of the repetition time wa§r=2s. The field of view irx direction was 15
(two-dimensional imaging procesare expected to matter. ¢M. The digital resolution was 290m. The times indicate the span
The concentration profiles at the longest diffusion times argfter contacting the two gels. The white lines represent the isotopic
already affected by the finite extension of the sample, Whichnt_erdlffus!on proflles'ln the form of the projection of the proton
conflicts with the assumption in E¢6) of infinite compart- ~ SPin density on the direction.
ments.

Taking together the potential sources of systematic experition that can only imperfectly be described by a step func-
mental errors mentioned before, one can state that the agretmn. The plateau reached at long times is due to the finite
ment between the theoretical and experimental concentraticgxtension of the sample.
profiles in bulk samples is very reasonable so that reliable
evaluations of anomalous diffusion features in the percola-
tion model objects can be expected. This is corroborated by
the determination of the mean square displacement of the
diffusion front in a second experiment. The setup is sche- compartments
matically shown in the inset of Fig. 4. In this case, the half- Equation(6) is based on a Gaussian propagator as ex-
height positions of the concentration profilgsojections of  pected for ordinary diffusion. That is, it does not account for
the two-dimensional spin density maps on the main diffusiordiffusion in a percolation cluster where the second moment
direction were evaluated, squared, and plotted versus timeof the propagator obeys an anomalous diffusion law as given

The middle section of the experimental curve shown inin Eq. (2).

Fig. 4 can nicely be described by a power Ia\i/zoctl'%, Figure 5 shows two-dimensional proton spin density maps
which is very close to the linear mean squared displacemersicquired in an experimental setup schematically shown in
law for normal diffusion. As in the experiment discussedthe inset of Fig. 6. Interdiffusion between a® gel filled

before, the deviations at short times reflect the initial situateservoir and a stack of quasi-two-dimensional percolation

C. Isotope concentration profiles for interdiffusion between
bulk water and water-filled percolation cluster
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7 : — : ! : the initial isotope distribution is matched by the revised ori-
%) 2°m gin of timet. Fitting the exponent of Eq2) for t<t, to the
S 61 3cm data leads tad,,=2.89, which favorably compares to the
S o) 12em Alexander-Orbach conjecture, EB), with the fractal di-
o 5 t{s] |D[10° mes] mensiond; determined from the very same percolation clus-
2 4 213;3 ggg ter according to Eq(1) for a<r,<¢.
g aze60| 192 The isotopic interdiffusion profiles can also be obtained
S 3 oue| 1o > NMR data directly with the aid of one-dimensional imaging along the
c 105300 184 theory main diffusion direction. Figure 7 renders typical profiles
g 2| 147060 171 recorded in this way from an experimental setup schemati-
T 167940]  1.77 cally shown in the inset of Fig. 8. The data are corrected for

i saturation effects due to incomplete spin-lattice relaxation
e——_0 after the repetition interval. From these profiles, the mean

7 —eet T squared proton displaceme(t the percolation cluster moi-
0 20 40 60 80 100 ety) can be evaluated as a function of the diffusion time.
x [mm] Figure 8 shows corresponding data. Details are described in

the legend. With a fitted exponent parametedg# 2.86 the
FIG. 3. Comparison of theoretical and experimental interdiffu-anomalous diffusion character in the percolation cluster is
sion profiles between bulk3#® and QO gels. The data correspond again corroborated in good agreement with the Alexander
to the two-dimensional spin density maps shown in Fig. 2. The solidOrbach conjecture Eq3).
lines represent fits of Eq6) to the experimental data. The fitted

diffusion coefficients are given in the inset table. IV. ANALYTICAL PROPAGATOR TREATMENT BASED

: . . . ON THE FRACTIONAL DIFFUSION EQUATION
model objects was examined. Superimposed on to the spin Q

density maps the mean spin density profilies., projections The propagatofor Green’s functiopfor a Brownian ran-

on thex axis) are shown in Fig. 5 as white lines. dom walk process in one dimension is, of necessity, given in
The half-height positions of these mean concentratiorterms of the Gaussian

profilesx,,, were evaluated, squared, and plotted versus time

as shown in Fig. 6. In the limit of long diffusion times when 1 x2

the imperfections of the initial isotope distribution and the Clx,m)= \/4_ex;< T,

finite time resolution of 26do not matter anymore, the data m

can be described by a power law again. The imperfection ofjye to the central limit theorefi38]. Expressior(7) includes
the &initial condition C(x,0)=48(x) and fulfills natural

; 7

2500 — r v 1 T v T boundary conditions lim_...C(x,t) =0. We use the rescaled
time 7=Dt. The propagato(7) satisfies the diffusion equa-
20007 2 ol ’ ] tion [38]
— 2=1.05£005 “~_ & : ; 2
£ ™ | 5-C=—2C(x7). ®
N
= 10604 - q po Representing the experimental setup shown in the inset of
Fig. 4 by the initial conditionC(x,0)=0 for x>0 and
5004 @MG& H,0 g T through the boundary conditio€(0,7)=C,, we assume
s0mm ] that, due to the comparatively large reservoir, a constant con-
0 —— T centration is kept at the boundaxy=0. The solution of Eq.
g 0 40 6o a0 100 (8) for these initial and boundary conditions is given through
t[h]
X
FIG. 4. Square of the position of the proton concentration profile C(x,71)=Cy erfc( —> , x>0. 9
at half-height in bulk versus diffusion time. The experimental setup 2\/;

consisted of two compartments initially filled with bulk,& and . . .
D,0O gels as shown in the inset picture. The largely asymmetricThe solution given in Eq(9) reaches the plateaG(x, )

sizes of the HO and DO reservoirs ensure a practically constant — Co for X2,< 7. Consequently, the expression in ) is
proton concentration at the entrance of theOcompartment. The NOt normalized. Its mean

cross section of the [D compartment was 1252 cn?. The con- .

ce_ntration .profiles were obtaine_d as projeqtions of t\_/vo-dimensional (1( T)>Ef C(x,7)dx=2C, m (10)
spin density maps on the& axis. The spin-echo time wa$g 0

=32 ms, the repetition time wakz=0.7 s. The field of view irx

direction was 7 cm. A digital resolution of 276m was adjusted. ~grows with the square root in time, and is proportional to the
The total acquisition time for a spin density map was 1 h. concentratiorCy. The second moment becomes
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t=7%h t=116h
| e S —
0 | 10 mm

TH spin density

FIG. 5. Evolution of two-dimensional proton spin density maps (2366 pixels) in a random-site percolation object. The experimental
setup is schematically shown in the inset of Fig. 6. The times indicate the spans after attachin@ thel dompartment to the multistack
percolation model objec¢matrix size 10 100; p— p.=0.029;d;=1.87, porosity of the percolating cluster 0.5353. The time resolution
given by the image acquisition time was'26 he echo time wa$:=23 ms, the repetition time was=0.7 s. The digital resolution of the
maps is 230um. The white lines overlaid to the spin density maps represent the mean proton concentration (proféesions of the
diffusion front on the main diffusion direction

Ty 3007
= 2007
g 1004 19.8h<t<177h |
] S At=39.4h
.
S,
> 257
R7]
c
(V)
©
=
o
)
I
100 T T Ty T T T T T T T T - 0 T T T T T
1 10 100 0 20 40 60 80
t[h] X [mm]

FIG. 6. Square of the position of the proton concentration profile  FIG. 7. Typical isotopic interdiffusion profiles directly measured
at half-height in the percolation cluster shown and described in Figwith the aid of one-dimensional imaging along the main diffusion
5 versus diffusion time. The inset shows the experimental setupdirection. The experimental setup is schematically shown in the
where the percolation clustéwhite) initially is filled with D,O. inset of Fig. 8. The spin-lattice relaxation tirfig(x) was measured
The largely asymmetric sizes of thg® and DO reservoirs ensure  as a function ok by varying the repetition timé&y from 0.2 to 12.2
a practically constant proton concentration at the entrance of the in 15 steps. The signal intensity profiles were then corrected by
D,O compartment, i.e., the percolation cluster. The concentratiomultiplication with a factor(1—exd Tg/T;(X)]) "%, so that any spa-
profiles were obtained as projections of two-dimensional spin dentially dependent saturation effects were eliminated. The spin-echo
sity maps on the axis (see Fig. 5 The time resolution is 26 The  time was 20 ms and the field of view along tkelirection was 15
solid lines represent a fit of E@2) for t<t,. The fitted exponent cm. A diffusion time resolution of 1 h, and a digital space resolution
parameter isl,,=2.89. of 290 um were adjusted.
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ability density function, and therefore the geometry in the
pseudo-one-dimensional process becomes averaged.

In the original geometry, the spreading of the random
walker in space is slowed down in comparison to the free
diffusion, due to the presence of bottlenecks and dead ends
on all length scales, leading to the subdiffusive nature of the
mean squared displacement. In the projection, the trapping in
a small pore of the percolation cluster corresponds to a small
wiggling around some given coordinate. Effectively, the

1 walker in the pseudo-one-dimensional measurement experi-
= <X2>°< 12/ 1 ences a continued multiple trapping process, i.e., it is immo-

0. PR biIi_zc_ad for some “ti_me’.’ spanr governeq by the_so-called
s & ©° 087 L ; waiting “time” distribution ¢(7). According to thisy, the
> T T T T Taee walker is released and moves freely until it is trapped again.
t[h] This is a special case of a continuous time random walk
process, the subdiffusion being reflected in the inverse

FIG. 8. Mean squared proton displacement as a function of th@ower-law formy(r)~A,7~ '~ [42]. According to thisi,
diffusion time in a two-dimensional random-site percolation object,the walker is released and moves freely until it is trapped
the template of which is shown in the inset. The percolation clusteagain, and so forth. This stop-and-go process can be mapped
is initially (t=0) filled with D,O. The characteristic data of the onto the fractional diffusion equatidi3,23
percolation cluster are: matrix size 20@00; occupation probabil-
ity relative to the threshold value— p.=0.030; fractal dimension 2 o= pl-a C(x,7)
d;=1.87; porosity of the percolating clustgpr=0.4845. The mean or 0% 92 T
squared displacement data were evaluated from proton concentra-
tion profiles recorded in the form of one-dimensional NMR imagesthat includes the Riemann-Liouville fractional operator
along thex axis. The proton concentration profiles were used toopi’az dlar(yD, ) with [43]
calculate the mean squared proton displacement in the percolation

<x%(t)> [mm?]

2
(13

cluster moiety. The solid line represents a fit of E2). for t<t,. u _ 1 T, C(x,7")
The fitted exponent parameterdg=2.86. oD; “C(x,7)= T(a) Jo dr (71— Tr)lfa (14)
(x3(7))=8Cor% J. (11  The fractional diffusion equation is equivalent to a general-

ized master equation, and can be derived from a multiple

In normalized form, that is, when the concentration profilestralpplng version of the fundamental Chapman-Kolmogorov

o i ) equation[44].
are divided by the mean given in EQ.0), the mean squared The Riemann-Liouville operator has the important prop-
displacement corresponds to

erty that its Laplace transform igge V" (D, “f(7)dr

) =u"“f(u). By virtue of this property, it can be shown that

(x3(7)) :<X (T)>:f7_ (12) in Laplace space, the solution of the fractional diffusion
" (1(7n) 3 equation, let us call i€ ,(x,7), is connected to the solution

It should be noted that the concentration profiléx, 7) C(x,t)
for the different realization with an infinite reservoir E) 300
differs from the case with constant boundary concentration
Eqg. (9) only by a factor. Systems with constant boundary
concentration and infinite reservoir thus behave congruently.,,,

Let us now address how we can derive the analogous
guantities for the anomalous diffusion data described in Sec s
I C. As mentioned above, the average diffusion in the per-
colation cluster close to the percolation threshold is anoma-100
lous in the sense that the mean squared displacement follow
(x%(7)) 7%, wherea=2/d,, [see Eq(2)], andd,,=2d;/ds 50
[9,39]. Here, the rescaled time=(D,)*t includes the ,
anomalous diffusion constanD, of dimension [D,] 20 40 60 80
=m?/s" [13,40. Thus, the dlffus!on dy_namlcs is controlled FIG. 9. Comparison between the anomalous concentration pro-
by two parameters, the fractal dimensiénand the spectral fije ¢, (x,7), left, and its Brownian analog;(x,7), for a diffu-
dimensionds. Usually, the inequalityd,,>dj is fulfilled so  sjon time intervatt=180 h. We used ;= 1.3x 108 m?/s?3 and
that the anomalous diffusion process is subdiffusive, i.e., b =2x10"2 m%s. The amplitude i<C,=300 in both cases. The
<a<1. In the experiment, the three-dimensional probabilityBrownian profile shows the much more efficient spread of the tracer
density function is projected onto a one-dimensional probsubstance into the medium.

250

x[mm]
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of the Brownian diffusion equatiof8), Cg(x,7), through the tervals. However, it can be realized that the profile falls off
scaling relatiorC ,(x,u) =u® 1Cg(x,u®) [13]. This, in turn,  too fast in comparison to the experimental result. We believe
can be used to find a convenient mapping between ththat this is related to the fact that the investigated cluster is
Brownian solution, and any quantity obtained from it not an ideal fractal since it is finite. This leads to corrections
through linear operations, in terms of the generalizedn the fractional model that we heuristically introduce

Laplace transformatiof5] through a fudge factor as follows. Due to the finiteness of the
systems, there may exist some channels from the left to the
_ (" right of the sample that enable a much faster, essentially

Calx,7) f Ea(s,7)Ca(x,5)ds. (15 Brownian, exchange with the reservoir.

) We, therefore, propose ad hoccorrection, namely, we
In Eq. (15), the functionE (s, 7) is a one-sided Ley distri-  have two additive contributions, the anomalous profile plus a
bution that can be represented in terms of Fax'sunction  correction that is Brownian. That is, the resulting profile be-
[13]. For our purposes, we notice tHaf, has the convenient comes

representation
5 2 4S3 ) C(X’T):Ca(X!Ta)+CB(XiTB)! (19)

Exs(S,7)= —m~775 1F <—;—;__
2e ~Pr(3 v ters 277 where C,, corresponds to the fractional solution with,

= (D9 %% (Table ) andC,= 300, andCy is given in terms

1 7 4 4S8
— W3F—l|:1(—; —— iz) (16) of the Brownian solution given in E¢9) with =Dt and the
TT(=1/3) 6°3" 277 fudge factor amplitud€,=10. The latter was obtained from

the latest curve in Fig. 7 requiring that the value should be
approximately 9 ax=40 mm. This is, of course, a rough
and arbitrary choice regarding the strong noise in the plot,
and its purpose is only to demonstrate the difference in the
profile due to this procedure.

It is obvious from Fig. 1(b) that even for the relatively
small ratioCg(0,75):C,(0,7,) = 5, the profile is shifted to
higher values for largex, and that the expression given in
Eqg. (19) seems to be a good approximation to the experimen-
tal result. It might be argued that this measure violates the

2 requirement that the mean squared displacement should scale
<X2(T)>”:m 723 (17)  proportional tot?. We plotted the mean squared displace-
(213) ment corresponding to the modified profile, EQ.9) in
Fig. 11. It is obvious that the slope is approximatglylue to
the small relative contribution of the Brownian solutigiote
that the integral determining the second moment of the
D,p~1.3x10 8 m?/s? (18 Brownian contribution was cut off at=80 mm since it has
a non-negligible contribution for largei. We expect that the
from the experimental data plotted in Fig. 8 where the ob+elative amplitude of the Brownian contribution decreases
served time interval approximately fulfills the boundary con-with increasing system size, i.e., the finite size effects caus-
dition C(0,7) =C,. To the best of our knowledge, this is the ing the necessity of the Brownian correction should become
first time the anomalous diffusion constant appearing in themaller.
above formalism has been determined experimentally. In the
following, we useD,; to construct the anomalous concen-
tration profile from Eqs(9) and (15).

In Fig. 9, we show the anomalous concentration profile
C.(x,7) for the longest diffusion time intervdk180 h in In addition to the analytical propagator treatment using
Fig. 7, and compare it to the Brownian profile correspondingthe fractional diffusion equation that describes the anoma-
to the same interval. The latter was combined with the dif-ous diffusion as an effective result of the complex boundary
fusion constant X 10 ° m?/s (see Fig. 3. It is obvious that  conditions, we applied numerical finite volume methods
the subdiffusive profile lags far behind the wider spread offFVM) to solve the ordinary diffusion equatiai8) for the
the Brownian counterpart, i.e., within the same time spanexplicit boundary conditions imposed by the geometrical
Brownian diffusion is more efficient. Quantitatively, this cor- structure of the finite model percolation cluster. The commer-

for a=%. This value fora is sufficiently close to the perco-
lation cluster value 0.7, and we choo$as for this rational
number the representation in Ed.6) considerably reduces
the computation time in evaluating the integral of E&p).
In Eq. (16), ,F; represents the confluent hypergeometric
function.

For the normalized mean squared displacement(Ez),
the transformation given in Eq15) yields the exact anoma-
lous behavior

with 7= (D5 [13]. By virtue of this expression, we can
approximate the anomalous diffusion constBnj; as

V. NUMERICAL EVALUATION BASED ON THE
ORDINARY DIFFUSION EQUATION

responds to the rati® /[ DT (5/3)tY3]~ 7.4t~ 13 '3, cial software packag€eLUENT 5.5™ provides the numerical
The subdiffusive diffusion profile sequence given in Fig. basis for this sort of analysis.
7 is juxtaposed to the theoretical curves in Fig(alOlt is The proton spin density distributions displayed in Fig. 5

obvious that the general trend follows the one displayed irwere considered as a solution of the ordinary diffusion equa-
Fig. 7, particularly that the spacing between successivéion for the pore space of the percolation object and the ini-
curves becomes less pronounced for increasing diffusion irtial condition of the experiment. Each lattice site is covered

021112-8
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C(z, ) By

(@)
300
m F
250 |
15}
200 |
150 ¢
100 ¢
20 60 20 FIG. 10. (8) Anomalous concentration profile
50 | for =%, and withD ,;3=1.3x 1078 m%/s?3. The
times increase away from the origin, and are
5 T [mm] taken to be 20, 60, 100, 140, and 180 h, corre-

20 40 60 8 sponding to Fig. 7. The inset shows a zoom into

the plot rangd0, 25]. The conversion between
and the rescaled time is given in Table 1.(b)

C'(:l: 7_) 95 Corrected anomalous concentration profile, Eq.
! (b) (19), with the subdiffusive parametefS,=300
300 and D,3=1.3x10"8 m?/s??, and the Brownian
diffusion constanD=2x10"° m?/s. The fudge
250 | amplitude for the Brownian contribution is 10.
200
150 |
100 |
60 80
501
mm
20 40 60 50 ¥ [n]

by a grid of 55 numerical unit cells. The diffusion process evaluated from the spatial proton density distribution as a
occurring with the ordinary diffusion constant of water at function of the time according to E¢12). As a consequence
room temperature) =1.8x 10" ° m?/s, was treated in a se- of the tortuous diffusion pathways in the percolation cluster,
ries of 20 s intervals. The proton concentration at the interthe time dependence turns out to be anomalous as expected.
face to the reservoir was considered to be constaf,t) That is
=1, for all times.

Figure 12 shows the normalized second mon{&ht)),, (x2(1))y =108 (20)

2 2 L . .
- logyp(z*(t)) [mm?’] The exponent value coincides with the experimental result
within the experimental accuracy, but is slightly higher than
the theoretical expectation for random-site percolation clus-

ters according to the Alexander Orbach conjecture,(Bg.

2.2

logq,t [h
gt [b] TABLE I. Conversion between experimental time scale and res-

caled “time” 7=Dt for Brownian and anomalous case. We e
=2%10"° m?/s andD ,3=1.3x 108 m?/s*®,

t (h) (D% t(1078 m3) Dt (10 * m?)
L4 L 20 0.11 1.44
60 0.33 4.32
FIG. 11. Mean squared displacement corresponding to the modiL00 0.56 7.20
fied profile, Eq.(19), log;y-log;o scale(full line). The dashed line 140 0.78 10.10
represents the mean squared displacement corresponding to theo 1.00 12.96

fractional result, Fig. 8. Both lines are approximately of slépe
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T T namic behavior of an isotopically labeled fluid filled into the
pore space.

- Remarkably, anomalous diffusion was found for displace-
] ments far beyond the correlation length, which is around 20
lattice constants at the occupation probabilities considered in
this study(see Fig. 2 That is, the normal diffusion limit in
Eq. (2) applies only extremely far above. This finding is

in accordance with recent Monte Carlo simulatidds],
where the same conclusion was drawn.

Apart from the mean squared displacement considered
here, it is of interest to compare the whole concentration
profile with theoretical predictions. The concentration profile
in principle contains all information of théanomalous
1 T T TR T T T T e propagator effegtively determining the diffusion properties.

t[h] This is shOV\_/n with _the fanalyncal_propagator treatment bas_ed
on the fractional diffusion equation in Sec. IV. The experi-

FIG. 12. Time dependence of the normalized mean squared dignental concentration profiles for water diffusion in the
placement evaluated from numerical solutions of the ordinary dif-model percolation clusters can be described well on this ba-
fusion equation for the boundary conditions given by the percolasis in the sense that the qualitative behavior of the measured
tion model clustergsee Fig. 5. The numerical procedure is based concentration profile can be reproduced with the solution of
on FVM. The numerical transient time resolution is 20 s. The timethe fractional diffusion equation with a relatively small cor-
evolution is scanned in steps Aft=3600s. The data can be de- rection. In this way, the fractional diffusion equation formal-
scribed by a power lawx*(t) )t ism was verified experimentally.

Additionally, we have evaluated the ordinary diffusion

The explanation is that there is a finite contribution of equation for the boundary conditions given by the percola-
undisturbed Brownian diffusion trajectories through the poretion model cluster. The experimental data and the propagator
space. The channel width relative to the extension of theesults obtained from the fractional diffusion equation coin-
model system considered is not negligible as anticipated igide completely as far as can be judged in the frame of the
the theoretical percolation cluster model. Therefore, a finiteaccuracy of the diverse methods.
fraction of diffusion trajectories unaffected by the pore space

100

n

<x¥(t)> [mm?]

-
o
1al
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