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Abstract

We study the probability density function in the stationary state of non-linear oscillators which are subject to L�eevy
stable noise and confined within symmetric potentials of the general form UðxÞ / x2mþ2=ð2mþ 2Þ; m ¼ 0; 1; 2; . . .. For

mP 1, the probability density functions display a distinct bimodal character and have power-law tails which decay

faster than those of the noise probability density. This is in contrast to the L�eevy harmonic oscillator m ¼ 0. For the

particular case of an anharmonic L�eevy oscillator with UðxÞ ¼ ax2=2þ bx4=4, a > 0, we find a turnover from unimo-

dality to bimodality at stationarity.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical problem of Brownian motion has
been a paradigm whose universality had been un-

challenged only until recently [1–6]. Brownian

motion describes the motion of small macroscopic

particles in a liquid or a gas which experience

unbalanced bombardments due to surrounding

atoms, and hence reveals the atomistic structure of

the medium in which the motion occurs.

There exist two alternative approaches to

Brownian motion: (i) the Langevin approach which

mimics the influence of the ‘‘bath’’ of surrounding
molecules in terms of a mean field-type, time-de-

pendent stochastic force; and (ii) the kinetic ap-

proach based on transport equations of the

Boltzmann type in which the collisions are con-

sidered in terms of the cross-section between the

test particle and a given close particle. In what

follows, we concentrate on the Langevin approach.

Classically, the force experienced by the test
particle is assumed to be composed of a deter-

ministic contribution that stems from an external

force and an effective friction force, and a sto-

chastic part which describes fluctuations caused by
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the bath. Usually, the stochastic force is assumed

to be white Gaussian noise, i.e., (i) the correlation

time of the fluctuations is much smaller than the

time scale of the macroscopic motion (e.g., the

correlation times of the velocities and the posi-

tions); and (ii) the interaction with the bath is weak
in the sense that each collision leads to a marginal

change of the velocity and position of the

Brownian particle. Mathematically, the latter

statement is strongly connected with the Central

Limit Theorem which states that the normalized

sum of independent, identically distributed (i.i.d.)

random variables with finite variance converges to

the Gaussian probability distribution [7,8].
In the presence of white Gaussian noise, the

stochastic Langevin equation corresponds to a

Fokker–Planck Markovian deterministic equation

which governs the system equilibration towards

the Gibbs–Boltzmann equilibrium and controls

the relaxation of the probability density function

(PDF) f ðx; v; tÞ in the phase space spanned by the

position and velocity coordinates x and v. Its un-
derdamped and overdamped limits, the Rayleigh

equation and the Einstein–Smoluchowski equation

(ESE), determine the temporal evolution of the

velocity PDF f ðv; tÞ and the position PDF f ðx; tÞ.
The collision integrals in these deterministic

equations are local. The deterministic equations

contain linear differential operators in velocity and

position, respectively.
Over the past two decades it has become obvi-

ous that anomalous random processes and related

anomalous diffusion phenomena are almost ubiq-

uitous in nature [9–12]. Accordingly, the observed

phenomena show clear deviations from ordinary

Brownian motion. In particular, the mean squared

displacement no longer grows linearly in time; in-

stead, it grows slower (subdiffusion) or faster (su-
perdiffusion), or even diverges. There exist

numerous examples of anomalous diffusion in a

broad range of fields, cf. the reviews [10,13] and

the references therein. It is a basic consequence of

such systems that their description should lie be-

yond the traditional Fokker–Planck–Smoluchow-

ski framework. This is due to the fact that some of

the assumptions that lead to classical Brownian
motion are violated, and therefore have to be re-

laxed in order to properly account for such phe-

nomena. In the following, we consider white

(d-correlated) noise whose distribution is L�eevy
stable, i.e., we consider random processes which

are subject to the Generalized Central Limit

Theorem. According to the latter, L�eevy stable

distributions are the limit ones for properly
normalized sums of i.i.d. random variables with

diverging variance [7,14]. Therefore, they are

natural generalizations to the Brownian processes.

L�eevy stable laws possess power-law tails of the

form � jxj�a�1
, where a, the L�eevy index, ranges in

the interval 0 < a < 2. This means that moments

of order qP a diverge. From a physical point of

view, these L�eevy flights are the results of strong
collisions between the test particle and the sur-

rounding environment.

Some mathematical aspects of the L�eevy driven

stochastic differential equations are discussed in

[15–18]. While it might be speculated whether the

use of L�eevy noise within a Langevin-type approach

is an adequate way to grasp peculiarities of the

time evolution and the stationary states of various
systems, it seems clear that the scale-free self-sim-

ilar nature of L�eevy stable distributions gives rise to

the occurrence of large increments of the velocity

and position coordinates during small time incre-

ments, violating the local character of the collision

integrals in the traditional deterministic equations.

Levy flights can be studied therefore as paradigm

systems for going beyond Brownian motion,
keeping in mind that for a massive particle, they

are only an approximation, since such a particle

has a finite maximum velocity and extremely long

jumps should experience a time penalty [11,12,19].

However, the L�eevy approach is able to reproduce

essential features of such systems, and therefore it

is justified to pursue such a study.

The non-local character brought about by the
L�eevy noise leads to the replacement of the local

spatial derivatives in the diffusion term of the ESE

by a fractional derivative [13,20]. The resulting

equation is the fractional ESE (FESE), which is a

representative of the class of fractional Fokker–

Planck equations [13]. Very recently, the funda-

mental solution of space-time fractional diffusion

equation was obtained in terms of Mellin–Barnes
integral representation [21]. We also note that re-

laxation and oscillation type ordinary differential
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equations of fractional order were considered in

[22].

The role of Levy noise in various systems was

investigated earlier [23–26]. A derivation on the

grounds of generalized continuous time random

walks was presented in [20]. It was shown in [27,28]
that the relaxation of an harmonic L�eevy oscillator

tends towards a stable PDF of the same L�eevy in-

dex as the L�eevy noise, i.e., the stationary PDF has

a long tail with slow decay.

In the present paper we consider three types of

overdamped non-linear oscillators driven by L�eevy
noise. The three L�eevy oscillators are characterized

by the following potentials UðxÞ:
Type 1. UðxÞ ¼ bx4=4 (quartic L�eevy oscillator).

Type 2. UðxÞ ¼ ax2=2þ bx4=4; a> 0 (anharmonic

L�eevy oscillator).

Type 3. UðxÞ¼bx2mþ2=ð2mþ2Þ;m¼1;2;...
(strongly non-linear L�eevy oscillator).

Such non-linear oscillators play important roles

in the theory of Brownian motion in open auto-

oscillation systems [29], in the theory of dynamical
chaos [30,31], and they might have various other

applications [32].

The main results of the current work are two

interesting new properties of the stationary states

for non-linear oscillators driven by L�eevy noises: (i)

bimodality of the PDFs, and (ii) power-law as-

ymptotics, which decay faster than the PDF of the

noise, thus providing the finiteness of the variance.
The latter suggests that the non-linear nature of

the L�eevy oscillator leads to the confinement of the

noise. We obtain these properties by analytical

solutions of the FESE as well as numerical solu-

tion of the corresponding Langevin equation. Both

properties, the bimodality and the steep power-law

asymptotics are, in fact, the manifestation of the

L�eevy statistics of the noise and of the non-linearity
of the force field in the FESE.

The paper is organized as follows. In Section 2

the general formulation is introduced, and the

stationary solutions for two particular cases are

recalled; namely, the non-linear Brownian oscilla-

tor and the harmonic L�eevy oscillator. In Sections

3–5 the properties of stationary solutions for the

three types of non-linear L�eevy oscillators are in-
vestigated. In Section 6 the numerical algorithm

and the results of numerical modeling based on the

Langevin equations are presented. Finally, in

Section 7 the main results are summarized.

2. General formulation

Let us start by studying the properties of sta-

tionary PDFs of non-linear overdamped oscilla-

tors exhibiting L�eevy flights. The starting Langevin

equation is

dx
dt

¼ F ðxÞ
mc

þ Y ðtÞ; ð2:1Þ

where F ¼ �dU=dx; U is the potential energy

function, m is the particle mass, c is the friction

coefficient, and Y ðtÞ is a stationary white L�eevy
noise.

Since the L�eevy processes are less known than

their Gaussian counterpart, the term ‘‘white L�eevy
noise’’ requires more comments. At first, we note
that, from the mathematical viewpoint [33], white

Gaussian noise or L�eevy noise are stationary se-

quences of the independent increments of the

Wiener (non-stationary Gaussian) or L�eevy stable

processes, respectively. In physics literature, see,

e.g., [1,2], the white Gaussian noise is defined as a

stationary random process, such that the integral of

it over time is the Wiener process. Similarly, white
L�eevy noise Y ðtÞ can be defined such that the process

LðDtÞ ¼
Z tþDt

t
dsY ðsÞ; ð2:2Þ

which is the time integral over an increment Dt is
an a-stable process with stationary independent
increments [34]. We restrict ourselves to symmetric

probability laws with the characteristic functions

p̂pLðk;DtÞ ¼ expð�DjkjaDtÞ; ð2:3Þ
where a is the L�eevy index, 0 < a 	 2, and the

positive parameter D has the meaning of a mea-

sure of the intensity of the L�eevy noise in the

Langevin equation. In the theory of stable prob-

ability laws, D1=a is called the scale parameter [33].
If a ¼ 2, Eq. (2.3) is a characteristic function of

the Wiener (Gaussian) process, and the kinetic

equation for the PDF f ðx; tÞ is the ESE leading to

the Boltzmann stationary distribution. Instead, the

non-Gaussian L�eevy statistics of the noise in the
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Langevin equation provides us with a simple and

straightforward (at least, from a methodical point

of view) possibility to consider non-Boltzmann

stationary states. Thus, if a < 2, then by applying

the procedure described in [27], we arrive at the

FESE in an external force field:

of
ot

¼ � o

ox
F
mc

f
� �

þ D
oaf
ojxja : ð2:4Þ

The Riesz fractional derivative oa=ojxja (we adopt

here the notation introduced in [35]) is defined for

a ‘‘sufficiently well-behaved’’ function /ðxÞ
through the Liouville–Weyl derivatives [36]:

da

djxja /ðxÞ ¼ � 1
2 cosðpa=2Þ Da

þ/ þ Da
�/

� �
; a 6¼ 1;

� d
dx H/; a ¼ 1;

(

ð2:5Þ
where Da

� are the left- and right-hand side Liou-

ville–Weyl derivatives

Da
þ/ ¼ 1

Cð2� aÞ
d2

dx2

Z x

�1

/ðnÞ dn

ðx� nÞa�1
; 16 a < 2;

Da
�/ ¼ 1

Cð2� aÞ
d2

dx2

Z 1

x

/ðnÞ dn

ðn � xÞa�1
; 16 a < 2

ð2:6Þ
ðD1

� ¼ �d=dx for a ¼ 1Þ. H is the Hilbert trans-

formation operator,

H/ ¼ 1

p

Z 1

�1

/ðnÞ dn
x� n

:

In Fourier space the operators of fractional de-

rivatives have a simple form

ÛUðDa
�/̂/Þ ¼

Z 1

�1
dx expðikxÞDa

�/

¼ ðikÞa/̂/ðkÞ; ð2:7Þ

where ÛU implies the Fourier transformation oper-

ation. /̂/ðkÞ is the Fourier transform of /ðxÞ, and

ðikÞa ¼ jkja exp
�
 ap i

2
sgnk

�
:

Since

ÛUðH/Þ ¼ i sgnk/̂/; ð2:8Þ
then with the use of Eqs. (2.5)–(2.8) we obtain the
following expression, which is valid for the Fourier

transform of the Riesz fractional derivative for all

a’s

ÛU
da/
djxja

� �
¼ �jkja/̂/: ð2:9Þ

In what follows, we use only the Fourier repre-

sentation (2.9) for the Riesz fractional derivative.

It is worthwhile to note that the fractional
generalization of ESE different from Eq. (2.4) was

proposed in [37]. It is derived within the frame-

work of the subordination of random processes

which leads to the L�eevy flights. In this case the

stationary state is given by the Boltzmann distri-

bution. In present paper we concentrate on the

consequences of Eq. (2.4). Thus, we consider

the cases which are adequately described within
the Langevin approach with the L�eevy noise.

If the noise term Y ðtÞ in the Langevin equation

is the white Gaussian one, a ¼ 2, then we are in the

Brownian case and Eq. (2.4) is an ordinary ESE,

whose stationary solution is given by the Boltz-

mann formula:

fstðxÞ ¼ C exp

�
� UðxÞ

kBT

�
; ð2:10Þ

where T is the temperature of the surrounding

medium, and kB is the Boltzmann constant. Here
the Einstein relation between the intensity D of the

noise and the friction coefficient c is used:

D ¼ kBT
mc

: ð2:11Þ

Thus, in the case of the Brownian oscillator
the shape of the stationary PDF is dictated by the

particular form of the potential energy. For the

non-linear oscillators listed in Section 1 the PDFs

are unimodal with their maximum at the origin. It

also follows from Eq. (2.10) that for all the par-

ticular forms of the potential energy stationary

PDFs decay exponentially at large values of the

energy (that is, at large values of x). One could say
that in case of the Gaussian noise, the form of the

stationary PDF is determined by the form of the

potential energy, whereas the role of the noise is

only to change the width of the PDF (by varying

T). As we see in the next sections, the effect of the

L�eevy noise ða < 2Þ can be more radical.
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Now we turn to another known particular case,

namely, the harmonic L�eevy oscillator. The poten-

tial energy function is given here by

U ¼ ax2

2
; ð2:12Þ

where a ¼ mx2, and x is the oscillator frequency.

In dimensionless variables, x0 ¼ x=x0 and t0 ¼ t=t0
(where t0 ¼ mc=a ¼ c=x2 and x0 ¼ ðDt0Þ1=aÞ, Eq.

(2.4) takes the form (note that we omit the prime

signs)

of
ot

¼ o

ox
ðxf Þ þ oaf

ojxja : ð2:13Þ

We are interested in the stationary solution fstðxÞ
of Eq. (2.13). The equation for its characteristic

function f̂fstðkÞ,

f̂fstðkÞ ¼
Z 1

�1
dxeikxfstðxÞ; ð2:14Þ

follows from Eq. (2.13) (note that we omit ‘st’

below):

df̂f
dk

¼ �sgnk � jkja�1f̂f ðkÞ: ð2:15Þ

This equation is solved for the boundary condition

f̂f ðk ¼ 0Þ ¼ 1; ð2:16Þ
which is the consequence of normalization. The

solution of Eq. (2.15) is

f̂f ðkÞ ¼ exp

�
� jkja

a

�
: ð2:17Þ

This is the characteristic function of the L�eevy
stable PDF with the index a and the scale pa-
rameter a�1=a. The PDF is unimodal with a maxi-

mum being at the origin. The asymptotics at large

x are determined by the first non-analytical term in

the series expansion of the exponent in Eq. (2.17):

f ðjxj ! 1Þ � �
Z 1

�1

dk
2p

e�ikx jkj
a

a
¼ C

jxj1þa ; ð2:18Þ

C ¼ sinðpa=2ÞCðaÞ
p

:

In Eq. (2.18) and in the next sections we use the

value of the following improper integral which is

computed by the method of Abel summation [38]:

Z 1

0

dt � taþ2me�it ¼ ð�1Þmþ1 � i e�iðap=2Þ

� Cða þ 2mþ 1Þ;
m ¼ 0; 1; 2; . . . ð2:19Þ

Thus, the stationary PDF f ðxÞ has a slowly de-

caying tail such that the variance
R1
�1 x2f ðxÞ dx

diverges. In the next sections we show how the

properties of unimodality and long tails are mod-

ified for non-linear L�eevy oscillators.

3. Quartic L�eevy oscillator

In this section we deal with the quartic L�eevy
oscillator having the potential

U ¼ bx4

4
: ð3:1Þ

3.1. Starting equations

Introducing dimensionless variables x0 ¼ x=x0;
t0 ¼ t=t0 such that x0 ¼ ðmcD=bÞ1=ð2þaÞ

; t0 ¼ xa
0=D,

we rewrite the FESE in dimensionless variables as

(omitting primes)

of
ot

¼ o

ox
ðx3f Þ þ oaf

ojxja : ð3:2Þ

In order to study the properties of the stationary

solution, we turn from Eq. (3.2) to the equation

for the characteristic function of the stationary

PDF, see Eq. (2.14):

d3f̂f
dk3

¼ sgnk � jkja�1f̂f ðkÞ: ð3:3Þ

When deriving Eq. (3.3) the natural condition is

used that the characteristic function, as well as its

derivatives, tends to zero at k ! �1. The char-

acteristic function also obeys the following condi-

tions:

1. f̂f ð0Þ ¼ 1 (normalization condition).

2. f̂f ðkÞ ¼ f̂f �ðkÞ ¼ f̂f ð�kÞ, where the asterisk im-
plies complex conjugate. The first equality is a

consequence of the Khintchine theorem about

reality of the characteristic function for the

symmetric PDF, whereas the second equality

is the consequence of the Bochner–Khintchine
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theorem about positive definiteness of the char-

acteristic function.

3. Since the integer moments of the PDF (if they

exist) are connected with the derivatives of the

characteristic function at k ¼ 0 through

xph i ¼ 1

ip
df̂f ðpÞð0Þ

dkp
; p ¼ 1; 2 . . .

then

df̂f ðpÞð0Þ
dkp

¼ 0; p ¼ 1; 3; 5; . . . ;

because the PDF is a symmetric function, and
hence, all odd moments are equal to zero.

Conditions (3.1)–Eq. (3.24) are valid for those

odd p, for which the pth moments of the PDF

exist.

3.2. Stationary solution for quartic Cauchy oscilla-

tor

In the particular case of the Cauchy oscillator,

a ¼ 1, the solution of Eq. (3.3) is

f̂f ðkÞ ¼ 2ffiffiffi
3

p exp

�
� jkj

2

�
� cos

ffiffiffi
3

p
jkj
2

 
� p

6

!
:

ð3:4Þ

By an inverse Fourier transformation, we obtain

the stationary PDF for the quartic Cauchy oscil-

lator

f ðxÞ ¼ 1

pð1� x2 þ x4Þ : ð3:5Þ

Note that f ðxÞ has two important properties:

1. Power-tail asymptotics at x ! �1 : f ðxÞ / x�4,

hence, the variance is finite.
2. Bimodal structure of the PDF: it has a local

minimum at xmin ¼ 0 and two maxima at

xmax ¼ �1=2.
These properties are drastically different from the

properties of the stationary solutions for both

the Brownian quartic oscillator and the linear

L�eevy oscillator. Below we see that the steep

power-law asymptotics and the bimodality are
inherent for the solutions with all a’s such that

16 a < 2.

3.3. Asymptotics of the characteristic function at

large values of the argument

Now return to Eq. (3.3) and consider the as-

ymptotics of the solution at k ! 1. For this
purpose, we pass to the equation for the function

gðnÞ ¼ kða�1Þ=3f̂f ðkÞ; n ¼ kðaþ2Þ=3: ð3:6Þ
The function gðnÞ obeys the equation

d3g

dn3
þ A

n2

dg
dn

�
� g

n

�
¼ kg; ð3:7Þ

where A¼ ða� 1Þðaþ 5Þðaþ 2Þ�2
; k¼ ð3=ðaþ 2ÞÞ3.

We are interested in asymptotics of gðnÞ at n ! 1.

The equations of this type are considered in [39]

together with the method of finding asymptotics.

Following this method, we find asymptotics of the

form:

gðnÞ ¼ uðnÞebn: ð3:8Þ
Inserting Eq. (3.8) into Eq. (3.7) we get the equa-

tion for u

d3u

dn3
þ 3b

d2u

dn2
þ 3b2

�
þ A

n2

�
du
dn

þ b3

�
� k � A

n3

�
u

¼ 0: ð3:9Þ

The characteristic equation takes on the form

b3 ¼ k; ð3:10Þ
thus the term of the zeroth order in 1=n in the

coefficient of u is equal zero. Now, the solution of

Eq. (3.9) is taking on the form

u ¼ c0 þ
c1
n
þ c2

n2
þ � � � ; ð3:11Þ

where c0 is an arbitrary constant. Inserting

Eq. (3.11) into Eq. (3.9) we obtain c1; c2; . . . in

terms of c0. The result is

u ¼ c0 1

�
� A

6b2n2
� A

6b3n3
þ � � �

�
: ð3:12Þ

From the roots of Eq. (3.10) one has to take those

which exhibit a negative real part. Note, that if we

take only the first term in the expansion (3.12),

then the exponential solution for gðnÞ can be ob-

tained directly from Eq. (3.7) by retaining only the

third order derivative in the left-hand side. As the
result we get
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gðnÞ ¼ C exp

�
� 3

2ða þ 2Þ n

�
cos

3
ffiffiffi
3

p

2ða þ 2Þ n

 
� H

!
;

ð3:13Þ

where C and h are arbitrary constants. The result

depends on two unknown constants since we use

the boundary condition at infinity, only. Now we

return to the characteristic function by using

Eq. (3.6), and find

f ðkÞ ¼ Ck�ða�1Þ=3 exp

�
� 3kðaþ2Þ=3

2ða þ 2Þ

�

� cos 3
ffiffiffi
3

p
kðaþ2Þ=3

2ða þ 2Þ

 
� H

!
: ð3:14Þ

It follows from Eq. (3.14) that the function f̂f ðkÞ
oscillates and tends to zero at k ! 1 exponen-

tially. We can check this formula for two partic-

ular cases, a ¼ 1 and 2.

1. Cauchy oscillator, a ¼ 1.

By comparing Eqs. (3.14) and (3.4) we get

C ¼ 2=31=2; h ¼ p=6.
2. Brownian oscillator, a ¼ 2.

We explore the asymptotics of the following inte-

gral at large k’s:Z 1

�1
dx � exp ikx

�
� x2m

�

¼ p
mð2m� 1Þ

� �1=2

ð2mÞðm�1Þ=ð2m�1Þ � k�ðm�1Þ=ðm�2Þ

� exp cmk2m=ð2m�1Þ � cos pm
2m� 1

 �
� cos cmx2m=ð2m�1Þ sin

pm
2m� 1

�
� pðm� 1Þ

2ð2m� 1Þ

�
;

cm ¼ 2m� 1

2m
ð2mÞ�1=ð2m�1Þ

:

With the help of this formula we have, for the
Brownian quartic oscillator,

f̂f ðkÞ ¼
Z 1

�1
dxf ðxÞ expðikxÞ

� 210=3
ffiffiffiffiffiffi
3p

p

Cð1=4Þ jkj�1=3
exp

�
� 3

8
jkj4=3

�

� cos
3
ffiffiffi
3

p

8
jkj4=3

 
� p

6

!
:

By comparing with Eq. (3.14) we get

C ¼ 210=3
ffiffiffiffiffiffi
3p

p

Cð1=4Þ ; h ¼ p
6
:

3.4. Series expansion of the characteristic function

at small values of the argument

We return to Eq. (3.7) and construct the solu-

tion in the form of a series in positive powers of n.
We look for the particular solution gl of Eq. (3.7)

in the form

gl ¼ nl
X1
j¼0

aðlÞj n3j: ð3:15Þ

The exponent l is defined as follows. Denoting by

L̂L the operator on the left-hand side of Eq. (3.7),

we find

L̂Lnm ¼ nm�3 mðmf � 1Þðm� 2Þ þ Aðm� 1Þg:
ð3:16Þ

Equating the terms in the parenthesis to zero we

get three roots giving three values of l in Eq.

(3.15):

l0 ¼ 1; lþ ¼ a þ 5

a þ 2
; l� ¼ a � 1

a þ 2
: ð3:17Þ

The three roots (3.17) determine three particular

solutions of Eq. (3.7). Inserting Eq. (3.15) into Eq.

(3.7) we get the recurrent relation between aðlÞj ’s:

aðlÞjþ1ðl þ 3jþ 2Þ ðl½ þ 3jþ 3Þðl þ 3jþ 1Þ þ A�

¼ kaðlÞj : ð3:18Þ

The three series contain arbitrary constants aðlÞ0 ,

which have to be determined using boundary
conditions. With Eqs. (3.15), (3.17) and (3.6) we

pass to the functions

f̂flðnÞ ¼ glðnÞn�l� ¼ nl�l�
X1
j¼0

aðlÞj n3j; ð3:19Þ

where l is equal to l0; lþ or l�. These are the

expressions for the three particular solutions for

the characteristic function. It follows immediately

from the normalization condition f̂f ðn ¼ 0Þ ¼ 1

that aðl�Þ0 ¼ 1. Thus, we have to determine aðl0Þ
0 and

aðlþÞ0 only. Note that, since l0 � l� � 1 < 0, from

the condition f̂f 0ðn ¼ 0Þ ¼ 0 we have aðl0Þ
0 ¼ 0.
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Therefore, only one constant, aðlþÞ0 , remains un-

known, and the general solution is

f̂f ðnÞ ¼
X1
j¼0

aðl�Þj n3j þ n6=ðaþ2Þ
X1
j¼0

aðlþÞj n3j; ð3:20Þ

where aðl�Þj are determined by Eq. (3.18), and

aðl�Þ0 ¼ 1. Turning to the variable k instead of n,
and changing notations slightly we get

f̂f ðkÞ ¼ R1 þ ak2R2; ð3:21Þ

where

R1 ¼
X1
j¼0

aðl�Þj kjðaþ2Þ;

R2 ¼
X1
j¼0

aðlþÞj kjðaþ2Þ;

ð3:22Þ

and aðl�Þj are determined by Eq. (3.18) with

aðl�Þ0 ¼ aðlþÞ0 ¼ 1, whereas l� are determined by

Eq. (3.17). In order to define a, we use the

boundary condition at infinity, f̂f ðk ¼ 1Þ ¼ 0, that
is

a ¼ � lim
k!1

R1

k2R2

: ð3:23Þ

Therefore, in spite of the fact that the particular

solutions R1 and k2R2 grow at infinity, we chose
their linear combination, which tends to zero at

k ! 1. The possibility of this choice is confirmed

by the results of a numerical analysis, which are

shown below.

In Fig. 1 the properties of particular solutions

for the quartic L�eevy oscillator are shown for

a ¼ 1:5. In Fig. 1(a), the two solutions, R1 and

k2R2, are depicted versus k. Both particular solu-
tions grow to infinity at k ! 1, however, their

ratio aðkÞ ¼ �R1ðkÞ=k2R2ðkÞ tends to the constant

value equal to a0. This fact is illustrated in Fig.

1(b), in which the difference jaðkÞ � a0j is shown

versus k in a semi-logarithmic scale. The value of

aðkÞ oscillates and converges to a0; a0 is defined as

a0 � að15Þ ¼ �0:384411398.
To construct the characteristic function nu-

merically, we use the solution (3.21), (3.22), which

is continued with the asymptotics (3.14) for large

k. This continuation method is explained in Fig. 2

for a ¼ 1:5. In Eq. (3.14) we set h ¼ p=6 (as in

cases a ¼ 1 and 2), whereas C is determined by

equating both solutions, Eqs. (3.21) and (3.14), in

the point of the first minimum of the characteristic

function (dotted vertical line). The solid line indi-

cates the solution given by the series (3.21), (3.22)

with a ¼ a0 ¼ að15Þ, the dotted line indicates large
k asymptotics (3.14). It is seen from Fig. 2(b) that

for such a choice of C and h the period and the

phase of oscillations of f̂f ðkÞ coincide with good

accuracy. In particular, we are able to make a

comparison between the positions of zeros of f̂f ðkÞ
estimated by using the asymptotics and the series.

It appears that they coincide with the accuracy

10�3–10�4.
Now we consider two important properties

which have been already discussed for the partic-

ular case of the Cauchy oscillator, namely, power-

law tails and bimodality. Consider power-law tails

Fig. 1. Properties of the particular solutions R1 and k2R2, see

Eqs. (3.21), (3.22): (a) both solutions as the functions of

k; a ¼ 1:5; (b) the difference jaðkÞ � a0j versus k. For the

notations aðkÞ and a0 see Section 3.
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at x ! �1 at first. These asymptotics are deter-

mined by the first non-analytical term in Eq.

(3.21), that is, the term aðl�Þ1 jkjaþ2
. By making an

inverse Fourier transformation of this term, we
get, with using Eq. (2.17),

f ðxÞ � sinðpa=2ÞCðaÞ
pjxjaþ3

; x ! �1: ð3:24Þ

It follows from Eq. (3.24) that the equilibrium

PDF has a power-law tail, f ðxÞ / jxj�ðaþ3Þ
, and,

thus the variance is finite. This behavior is strik-

ingly different from that of a non-linear Brownian

oscillator and of linear L�eevy oscillator. The ‘‘long

tails’’ can be explained qualitatively, if we turn to

the Langevin description of the L�eevy oscillator.

The Langevin approach relevant to the FESE
implies that the non-linear overdamped oscillator

is influenced by ‘‘white L�eevy noise’’ Y ðtÞ, whose

PDF behaves as jY j�1�a
at jY j ! 1. These ‘‘long

tails’’ cause that the large absolute values of the

noise occur frequently, which, in turn, lead to large

increments of the coordinate. However, it is also

clear that the PDF of the coordinate x must fall off

more rapidly at x ! 1 than the PDF of the noise
Y, because of the presence of the potential well,

which prevents from escaping to regions far off the

origin.

In Fig. 3 the stationary PDF is shown by solid

lines in a linear (at the top) and semi-logarithmic

Fig. 2. Illustration of the continuation method for numerical

construction of the characteristic function, a ¼ 1:5. Solid lines

indicate the solution in the form of a series (3.21)–(3.23) in (a)

linear scale, and (b) semi-logarithmic scale. Dotted lines indi-

cate the asymptotics (3.14) with h ¼ p=6, and C determined

from the condition of coincidence of the expressions given by

Eqs. (3.14) and (3.21) in the location of the first minimum. See

Section 3 for more details.

Fig. 3. Solid lines: stationary PDFs for the quartic oscillator in

(a) linear scale, and (b) semi-logarithmic scale, a ¼ 1:5. Dotted

lines: power-law asymptotics (3.24).
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(at the bottom) scales. The PDF is obtained by an

inverse Fourier transformation of the characteris-

tic function shown in Fig. 2, a ¼ 1:5. The dashed

lines indicate asymptotics (3.24). One can see, es-

pecially from the semi-logarithmic plot, that the

asymptotics is a good approximation beginning
from k equal to �2. In this figure the second im-

portant property, namely, bimodality is clearly

seen on a linear scale. In Fig. 4 the profiles of

stationary PDFs (obtained by an inverse Fourier

transformation) are shown for the different L�eevy
indices from a ¼ 1 at the top of the figure up to

a ¼ 2 at the bottom. It is seen that the bimodality

is most strongly expressed for a ¼ 1. With the
L�eevy index increasing, the bimodal profile smoo-

thes out, and, finally, it turns to a unimodal one at

a ¼ 2, that is, for the Boltzmann distribution.

4. Anharmonic L�eevy oscillator

In the previous sections we have seen that in a

linear force field F ðxÞ, the harmonic L�eevy oscilla-

tor, the stationary PDF is unimodal, whereas in
the quartic case the bimodal stationary PDF

arises. In this section, we show the transition from

unimodal to bimodal stationary PDFs, as the pa-

rameters of the oscillator are changed. The an-

harmonic L�eevy oscillator with the potential energy

function

U ¼ ax2

2
þ bx4

4
; aP 0 ð4:1Þ

is considered.

4.1. Bimodal–unimodal transition for anharmonic

Cauchy oscillator

Introducing the same dimensionless variables as
in the previous sections, and setting a0 ¼ at0=mc we

obtain, again omitting primes:

of
ot

¼ a
o

ox
ðxf Þ þ o

ox
ðx3f Þ þ oaf

ojxja : ð4:2Þ

Note that in dimensionless variables we deal with

the potential energy function

U ¼ ax2

2
þ x4

4
; ð4:3Þ

thus, only one parameter, a, remains. The sta-

tionary characteristic function obeys the equation

d3f̂f ðkÞ
dk3

� a
df̂f
dk

¼ sgnkjkja�1f̂f ðkÞ: ð4:4Þ

We solve this equation for the Cauchy case, a ¼ 1,

on the right semi-axis with the boundary condi-

tions

f̂f ð0Þ ¼ 1;
df̂f ð0Þ
dk

¼ 0; f̂f ðk ¼ 1Þ ¼ 0: ð4:5Þ

The solution is

f̂f ðkÞ ¼ 1

z� z�
�
�z�ezk þ zez

�k
�
; ð4:6Þ

where z is the complex root of the characteristic

equation

z3 � az� 1 ¼ 0; ð4:7Þ
Fig. 4. Profiles of stationary PDFs of the quartic oscillator for

different L�eevy indices, from a ¼ 1 (at the top) till a ¼ 2 (at the

bottom).
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that is

z ¼ � uþ w
2

þ i
ffiffiffi
3

p u� w
2

; ð4:8Þ

where

u3 ¼ 1

2
1

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a3

27

r !
;

w3 ¼ 1

2
1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a3

27

r !
:

ð4:9Þ

We are interested in the unimodal–bimodal tran-

sition when the parameter a varies. Let ac be the

critical value, which we determine by using Eqs.

(4.6)–(4.9). The condition for the transition is

d2f
dx2

����
x¼0

¼ 0; ð4:10Þ

or equivalently, defining

JðaÞ ¼
Z 1

0

dk k2f̂f ðkÞ; ð4:11Þ

JðacÞ ¼ 0: ð4:12Þ
If J > 0 the stationary PDF is unimodal; if J < 0,

it is bimodal. Inserting Eq. (4.6) into Eq. (4.11) we
get

J ¼ �2
ðzþ z�Þðz2 þ z�2Þ

jzz�j3
; ð4:13Þ

and, thus

sgnJ ¼ sgn ðz2 þ z�2Þ: ð4:14Þ
Inserting Eqs. (4.8), (4.9) into Eq. (4.14) we find

sgnJ ¼ �sgn u2

�
þ w2 � 4

3
a
�
: ð4:15Þ

Defining f � 41=3ac=3, we get from Eq. (4.15)

4f ¼ 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f3

q �2=3

þ 1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f3

q �2=3

:

ð4:16Þ
The solution of Eq. (4.16) is f ¼ 0:419974 and

therefore

ac ¼ 0:793701: ð4:17Þ
For a > ac the quadratic term in the potential

energy function prevails, and the stationary PDF

has one maximum at the origin. In contrast, for

a < ac the quartic term dominates and dictates the

shape of the PDF. As a result the bimodal sta-

tionary PDF appears with the local minimum at

the origin.
In Fig. 5 the profiles of the stationary PDFs

(obtained by an inverse Fourier transformation)

are shown for the anharmonic Cauchy oscillator

for different values of the coefficient a of Eq. (4.1),

from top to bottom: a ¼ 0, 0.2, 0.4, 0.6, and 0.8.

The PDFs are obtained by inverse Fourier trans-

formation of the characteristic functions (4.6). It is

clear that the bimodality is most pronounced for
a ¼ 0, that is, for the quartic Cauchy oscillator. As

the parameter a increases the bimodal profile

smoothes out, and, finally, it turns to a unimodal

one. It is interesting to note the similarity between

Figs. 4 and 5. However, of course, their meaning is

quite different.

Fig. 5. Profiles of stationary PDFs of the anharmonic Cauchy

oscillator for different values of the parameter a in the potential

energy function, Eq. (4.3), from top to bottom: a ¼ 0; 0:2;

0:4; 0:6, and 0.8.

A. Chechkin et al. / Chemical Physics 284 (2002) 233–251 243



4.2. Bimodal–unimodal transition for anharmonic

L�eevy oscillator

For more general cases different from a ¼ 1 we

start from Eq. (4.4) for kP 0. Using the trans-
formation

gðnÞ ¼ kðx�1Þ=3f̂f ðkÞ; n ¼ kðxþ1Þ=3; ð4:18Þ
we get an equation for gðnÞ:

g000 � kg þ ak2=3 g0
�

� ~mm
g
n

�
n�2~mm þ A

n2
g0
�

� g
n

�
¼ 0;

ð4:19Þ
where

~mm ¼ a � 1

a þ 2
; A ¼ ða � 1Þða þ 5Þ

ða þ 2Þ2
¼ ~mm

a þ 5

a þ 2
;

k ¼ 3

2þ a

� �3

: ð4:20Þ

In the analysis presented below we assume that

~mm � 1; ð4:21Þ
thus, we consider L�eevy indices which are close to

a ¼ 1. However, we note that the maximum value

of ~mm for a ¼ 2 is ~mmmax ¼ 0:25, which is also less than

unity. So, we expect that our consideration is valid
( at least, qualitatively) over the whole region of a
values. Condition (4.21) allows to simplify the

equation for gðnÞ. Indeed, assuming that n � ~mm1=3

we can neglect the last term (containing the pa-

rameter A) in the left-hand side of Eq. (4.19)

relative to the term �kg. On the other hand, as-

suming n � expð1=~mmÞ, we may neglect the factor

n�2~mm. Therefore, within the interval

~mm � n � e1=~mm ð4:22Þ
we can consider the following equation instead of

Eq. (4.19):

g000 � ak2=3g0 ¼ kg: ð4:23Þ
The solution of Eq. (4.23) is

gðnÞ ¼ 1

z� z�
ðzez�n � z�eznÞ; ð4:24Þ

where z is the complex root of the characteristic

equation (compare with Eq. (4.7))

z3 � ak2=3z� k ¼ 0; ð4:25Þ

that is,

z ¼ � uþ w
2

þ i

ffiffiffi
3

p

2
ðu� wÞ; ð4:26Þ

where

u ¼ k
2

� �1=3

1

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a3

27

r !1=3

;

w ¼ k
2

� �1=3

1

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a3

27

r !1=3

: ð4:27Þ

Following the method described in Section 4.1, we

are interested in the sign of

J ¼
Z 1

0

dk � k2f̂f ðkÞ

¼ 3

a þ 2

Z 1

0

dn � nlgðnÞ; ð4:28Þ

where l ¼ ð8� 2aÞ=ða þ 2Þ. Inserting the solution

(4.24) into Eq. (4.28) we get

J ¼ 3Cðl þ 1Þ
ða þ 2Þ Im z � jzjl sin½ðl þ 2Þðp � uÞ�; ð4:29Þ

where u ¼ arg ðzÞ. When deriving Eq. (4.29), we

use the following subsidiary integral:Z 1

0

dn � nlezn ¼ ei pðlþ1Þ

zlþ1
Cðl þ 1Þ:

Since

sgnJ ¼ sgn sin ðl½f þ 2Þðp � uÞ�g; ð4:30Þ
the critical value ac, for which the bimodal–uni-

modal transition occurs, is determined from the

equation

sin ðl½ þ 2Þðp � uÞ� ¼ 0; ð4:31Þ
or

ðl þ 2Þðp � uÞ ¼ lp; l ¼ 0; 1; 2; . . . ð4:32Þ
What value of l must be chosen? We first note that

l ¼ 0 corresponds to the degenerate case u ¼ w. At
l ¼ 2 and a ¼ 1 we get uðl ¼ 2Þ � u2 ¼ p=2,
which is also invalid, since the real part of z must

be negative. Therefore, we choose l ¼ 1, and

u1 � uðl ¼ 1Þ ¼ p
12

ð10� aÞ: ð4:33Þ

On the other hand, it follows from Eqs. (4.26) and

(4.27) that
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cosu1 ¼ � uþ w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2 � uw

p : ð4:34Þ

Since

uw ¼ � k2=3

3
ac; ð4:35Þ

we get from Eqs. (4.34) and (4.35):

u2 þ w2 ¼ 2

3
k2=3ac

1þ 2 cos2 u1

4 cos2 u1 � 1
: ð4:36Þ

Denoting f ¼ 41=3ac=3, and inserting Eqs. (4.27)

into Eq. (4.36) we get

1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f3

q �2=3

þ 1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f3

q �2=3

¼ 2f
1þ 2 cos2 u1

4 cos2 u1 � 1
: ð4:37Þ

Eq. (4.37) defines the value of ac of the parameter a

for which the bimodal–unimodal transition occurs.

In the particular case a ¼ 1 Eq. (4.37) is reduced to

Eq. (4.16).

Eq. (4.37) is solved numerically, and the results
are shown in Fig. 6 on the plane ða–aÞ. The sta-

tionary states with the unimodal PDFs are above

the curve obtained from the equation. The region

marked in gray indicates the stationary states with

the bimodal PDFs. Since ac < 1, one could say

that the bimodal states occur if the non-linear ef-

fects are strong, not being just small corrections to

the linear harmonic term. In other words, the bi-

modality is the effect of a strong non-linearity of

the force field. Small anharmonic corrections to

the linear problem do not lead to the change of the

unimodal shape of stationary PDF for the linear

L�eevy oscillator which is in itself remarkable.

5. Strongly non-linear L�eevy oscillator

In this section we study stationary solutions for

the non-linear L�eevy oscillator with the potential

energy function

U ¼ bx2mþ2

2mþ 2
; m ¼ 0; 1; 2 . . . ð5:1Þ

Choosing dimensionless variables x0 ¼ x=x0;
t0 ¼ t=0 such that x0 ¼ ðmcD=bÞ1=ð2mþaÞ

; t0 ¼ xa
0=D,

we obtain the kinetic equation in dimensionless

variables (omitting primes)

of
ot

¼ o

ox
x2mþ1f
� �

þ oaf
ojxja : ð5:2Þ

As before, we pass to the characteristic function of

the stationary PDF and consider the solution of

the equation following from Eq. (5.2):

d2mþ1

dk2mþ1
f̂f ðkÞ ¼ ð�1Þmþ1

sgnkjkja�1f̂f ðkÞ ð5:3Þ

with the boundary conditions

f̂f ð�1Þ ¼ 0; f̂f ð0Þ ¼ 1;

f̂f 0ð0Þ ¼ f̂f ð3Þð0Þ ¼ � � � ¼ f̂f ð2m�1Þð0Þ ¼ 0:
ð5:4Þ

We look for the solutions of Eq. (5.3) at kP 0 in

the form

f̂f ðkÞ ¼ u0ðkÞ þ
X1
j¼1

kmjujðkÞ; ð5:5Þ

where u0; uj are analytical functions, and m is a

non-integer positive number (if a 6¼ 1; 2Þ. After

inserting Eq. (5.5) into Eq. (5.3) there are no terms
containing integer powers of k in the right-hand

side, thus the condition uð2mþ1Þ
0 ðkÞ ¼ 0 is fulfilled,

and u0ðkÞ is the polynomial of order not higher

than 2m.

Further, since all the odd derivatives of f̂f ðkÞ (if

they exist) are equal to zero at k ¼ 0, the polyno-

mial u0 contains even powers of k only,

Fig. 6. Regions of unimodal and bimodal stationary states for

the anharmonic L�eevy oscillator on the ða–aÞ plane. The domain

of the parameters ða; aÞ, for which the stationary PDFs have

two humps is indicated in gray.
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u0 � u0ðk2Þ. We show that ujðkÞ are also poly-

nomials whose order is not higher than 2m, and

which contain even powers of konly, uj � ujðk2Þ.
For this purpose we insert Eq. (5.5) into Eq. (5.3)

and use the following relations:

d2mþ1

dk2mþ1
kmjujðkÞ ¼

X2mþ1

p¼0

Cp
2mþ1

dpujðkÞ
dkp

d2mþ1�p

dk2mþ1�p
kmj;

and

d2mþ1�p

dk2mþ1�p
kmj ¼ mjðmj� 1Þ � � � ðmj� ð2m� pÞÞ

� kmj�ð2mþ1Þþp:

As a result we obtain

X1
j¼1

X2mþ1

p¼0

Cp
2mþ1k

p d
pujðkÞ
dkp

mj

�ðmj� 1Þ � � � ðmj� 2mþ pÞkmj�ð2mþ1Þ

¼ ð�1Þmþ1ka�1u0ðk2Þ þ ð�1Þmþ1

�
X1
j¼1

kmjþa�1ujðkÞ: ð5:6Þ

After equating the terms with the same powers of k

we get

m ¼ a þ 2m; ð5:7Þ
and

X2mþ1

p¼0

Cp
2mþ1k

p d
pujðkÞ
dkp

jða þ 2mÞ½jða þ 2mÞ � 1� � � �

½jða þ 2mÞ � 2mþ p� ¼ ð�1Þmþ1uj�1ðkÞ: ð5:8Þ

It follows from Eq. (5.8) that since u0 is a poly-
nomial of k2 of order not higher than m, then all

uj’s are also polynomials of k2 of order not higher

than m.

Writing uj as

ujðk2Þ ¼
Xm
l¼1

aðlÞj k2l; j ¼ 0; 1; . . . ð5:9Þ

ðað0Þ0 ¼ 1 due to f̂f ð0Þ ¼ 1Þ, and inserting Eq. (5.9)
into Eq. (5.5) we get

f̂f ðkÞ ¼
Xm
l¼0

k2l aðlÞ0

 
þ
X1
j¼1

aðlÞj kjðaþ2mÞ

!
: ð5:10Þ

The general solution is the superposition of the

particular solutions of the form

k2l 1

 
þ
X1
j¼1

~aaðlÞj kjðaþ2mÞ

!
; ð5:11Þ

where ~aaðlÞj ¼ aðlÞj =aðlÞ0 ; l ¼ 0; . . . ;m:
The coefficients ~aaðlÞj are defined after inserting

Eq. (5.11) into Eq. (5.6)

~aaðlÞj ½jða þ 2mÞ þ 2l�½jða þ 2mÞ þ 2l� 1� � � �

½jða þ 2mÞ � 2ðm� lÞ� ¼ ~aaðlÞj�1ð�1Þmþ1
;

j ¼ 1; 2; . . . ; ~aaðlÞ0 ¼ 1: ð5:12Þ

Eqs. (5.11) and (5.12) completely define the set of

m particular solutions of Eq. (5.3). One may con-

vince oneself that the results for the linear and

quartic L�eevy oscillators follow immediately from

Eqs. (5.11) and (5.12).

Consider the asymptotics of stationary PDFs at

jxj ! 1. They are determined by the non-analyt-
ical term containing the smallest power of k in Eq.

(5.5), that is, the term

að0Þ1 kaþ2m: ð5:13Þ
Making an inverse Fourier transformation and

using Eq. (2.19) we get

f ðxÞ � Ca

jxjaþ2mþ1
; jxj ! 1; ð5:14Þ

where

Ca ¼
CðaÞ sinðpa=2Þ

p
:

It follows from Eq. (5.13) that moment of the or-

der greater than 2mþ 1 diverges. It is also

worthwhile to note that Ca does not depend on m.

The variance however is finite which means that

the potential in Eq. (5.1) confines L�eevy noise of

index a.

6. Numerical simulation

We carry out numerical modeling based on the

solution of the Langevin equation, Eq. (2.1), on a

time grid t0, t1; . . . ; tn; . . ., with a time step dt,
t0 ¼ 0, tn ¼ ndt:
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xnþ1 ¼ xn þ F ðxnÞdt þ ðdtÞ1=aY1ðndtÞ; ð6:1Þ

where F ðxnÞ is the (dimensionless) force field at the

point xn; Y1ð0Þ; Y1ðdtÞ; Y1ð2dtÞ; . . . ;Y1ðndtÞ; . . .�fY1g
is a discrete-time approximation to a white L�eevy
noise with a unit scale parameter, that is, the se-

quence of independent random variables possess-

ing the characteristic function

p̂pðkÞ ¼ expð�jkjaÞ: ð6:2Þ
One of the possible methods for generating the

sequence fY1g is described in [40]. The results of
numerical modeling are presented in Figs. 7–10.

Fig. 7. Left column: the potential energy functions, see Eq. (5.1), b ¼ 1 (solid lines) and their curvatures (dotted lines) for different

types of oscillators, from the linear oscillators, m ¼ 0 (at the top) to the strongly non-linear oscillator, m ¼ 3 (at the bottom). Middle

column: typical sample paths of the Brownian oscillators, a ¼ 2, with the potential energy functions shown on the left. Right column:

typical sample paths of the L�eevy oscillators, a ¼ 1.
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Fig. 7 has an illustrative purpose. Here typical

sample paths are shown for different potential

energy functions in the Langevin equation,

dt ¼ 7� 10�4. In the left column the potential

energy functions with different m indices are

shown by the solid lines. The dotted lines indicate
their curvatures. In the middle and in the right

columns the typical sample paths are shown for

the oscillators driven by the Gaussian noise and

the L�eevy noise with a ¼ 1, respectively. Each row

corresponds to the oscillator with the index m in-

dicated in the left column. It is seen that the typical

sample paths for all the Brownian oscillators are

nearly the same, consisting of small increments of
the coordinate during each time step dt. This is the

consequence of the exponential shape of the sta-

tionary Boltzmann PDFs, which prohibits large

increments. In contrast, L�eevy flights with large

increments of x are clearly distinct in the figures of

the right column. These flights appear due to the

power-law asymptotics of the stationary PDFs,

which permit large values of the increments to

occur. The longest flights are realized in case of the

linear L�eevy oscillator, m ¼ 0, because the PDF of

the linear oscillator has the fattest tails. As it fol-
lows from Eq. (5.13), with m increasing, the

power-law asymptotics become steeper, therefore,

the flights become shorter, that is, the long flights

occur more rarely. This effect is clearly seen in the

right column, when comparing, for example,

sample paths for the linear oscillator (at the top)

with strongly non-linear oscillator (at the bottom).

In Fig. 8 we compare the analytical and nu-
merical results for m ¼ 1 (at the top) and m ¼ 2 (at

the bottom). The black points indicate the PDFs

obtained from numerical solution of the Langevin

equations, a ¼ 1:5. In the left, Figs. 8(a) and (b),

the results at small values of the argument are

Fig. 8. Comparison of analytical calculations with the results of numerical modeling based on the solution of the Langevin equation.

The order of the fractional derivative and the L�eevy index of the white L�eevy noise are equal to 1.5. At the top m ¼ 1, at the bottom

m ¼ 2. For detailed explanation see Section 6.
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presented, where the bimodal character of the

distributions is clearly seen. In the right, Figs. 8(c)
and (d), the results are presented for large argu-

ments, where the power-law asymptotics are

clearly visualized. The potential energy functions

x4/4 (above) and x6/6 (below) as well as their cur-

vatures are shown by the solid lines 1 and dotted

lines 2, respectively (in relative units on the vertical

axis). In Fig. 8(a), the thin solid line indicates the

PDF obtained by inverse Fourier transformation,
using the continuation method, see Section 3. In

Fig. 8(c) the black points are connected by a

smooth solid curve. In Figs. 8(b) and (c) thin solid

lines 3 show the asymptotics (5.13). It is seen that a

good quantitative agreement exists between the

results of the analytical estimates and the numer-

ical simulation for stationary PDFs at small and

large arguments, as well.

In Fig. 9 the PDFs obtained from the numerical

modeling by statistical averaging are shown by
black points in a log–log scale for: (a) m ¼ 0, (b)

m ¼ 1, (c) m ¼ 2, and (d) m ¼ 3. The solid straight

lines fit power-law asymptotics of the PDFs. In the

numerical modeling the L�eevy index is 1.2,

dt ¼ 7� 10�4 for m ¼ 0 and 1, and dt ¼ 10�4 for

m ¼ 2 and 3. For the statistical averaging 103

sample paths are used, each consisting of 5� 103

time steps for m ¼ 0 and 1, and 105 time steps for
m ¼ 2 and 3. The solid straight lines fit power-law

asymptotics of the PDFs. The results of fitting are

summarized in Fig. 10. Here c is the power-law

index in a log–log scale. In the numerical simula-

tion it is defined as a tangent of a slope of the

fitting line in Fig. 9. The values of c are shown by

black points for different a’s and m’s. The straight

lines demonstrate the relation c ¼ a þ 2m, that is,

Fig. 9. Black points: stationary PDFs obtained by numerical solution of the Langevin equation for (a) m ¼ 0, (b) m ¼ 1, (c) m ¼ 2, and

(d) m ¼ 3. The straight lines fit power-law asymptotics of the PDFs obtained by numerical simulation.
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the analytical value of the power-law index in a
log–log scale, see Eq. (5.13). A good quantitative

agreement between analytical and numerical re-

sults is obvious.

7. Results

In this paper we study the properties of sta-
tionary states of overdamped non-linear L�eevy os-

cillators driven by L�eevy stable noise. The potential

energy functions of the non-linear oscillators

considered are UðxÞ ¼ bx2mþ2=ð2mþ 2Þ, where

m ¼ 0 (linear L�eevy oscillator), m ¼ 1 (quartic L�eevy
oscillator), m ¼ 2; 3; . . . (strongly non-linear L�eevy
oscillators), and UðxÞ ¼ ax2=2þ bx4=4, a > 0 (an-

harmonic L�eevy oscillator). Our analytical ap-
proach is based on the solution of the fractional

kinetic equation, which contains fractional space

derivative of the order a; 16 a6 2. Our numerical

approach is based on the numerical solution of the

Langevin equation with L�eevy stable noise having

L�eevy index a which equals the order of the space

derivative in the kinetic equation. The particular
case a ¼ 2 corresponds to Brownian motion. In

this case the kinetic equation has the well-known

Boltzmann stationary solution, which is unimodal

and decays exponentially at large jxj values. The

particular case m ¼ 0 corresponds to the linear

L�eevy oscillator. In this case the fractional kinetic

equation has a L�eevy stable stationary solution,

which is also unimodal and has long power-law
asymptotics, therefore, the variance is infinite. We

find that the properties of stationary probability

for non-linear L�eevy oscillators are radically dif-

ferent from the properties of the two cases men-

tioned above:

1. The stationary probability density functions

have two humps. The bimodality is most pro-

nounced for a ¼ 1. With a increasing, the effect
becomes weaker, and it vanishes at a ¼ 2. On the

other hand, for the anharmonic L�eevy oscillator,

Eq. (4.3), with the parameter a increasing, the bi-

modal shape also smoothes out, and at some

critical value of a it turns into the unimodal one.

2. The stationary probability density functions

have power-law asymptotics, which behave as

jxj�ðaþ2mþ1Þ
at jxj ! 1. Thus, the variance is finite

for non-linear L�eevy oscillators, m > 0. For steeper

potential energy functions the asymptotics decay

more rapidly, and the L�eevy flights become shorter.

The two features demonstrate the unusual sta-

tistical properties of systems driven by L�eevy
noises. They serve as the challenge for thermosta-

tistics trying to explain non-Gibbsian phenomena.

Applications of the theory presented to particular
processes are of great interest, as well.
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