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A non-Markovian generalization of the Chapman-Kolmogorov transition equation for continuous time random
processes governed by a waiting time distribution is investigated. It is shown under which conditions a long-
tailed waiting time distribution with a diverging characteristic waiting time leads to a fractional generalization
of the Klein-Kramers equation. From the latter equation a fractional Rayleigh equation and a fractional
Fokker-Planck equation are deduced. These equations are characterized by a slow, nonexponential relaxation
of the modes toward the Gibbs-Boltzmann and the Maxwell thermal equilibrium distributions. The derivation
sheds some light on the physical origin of the generalized diffusion and friction constants appearing in the
fractional Fokker-Planck equation.

I. Introduction

The Klein-Kramers equation1-6

is a bivariate Fokker-Planck equation describing the motion
of a passive Brownian test particle of massmunder the influence
of an external force fieldF(x) ) -V′(x) in phase (position-
velocity) space.η denotes the friction constant andkBT the
Boltzmann temperature. The Klein-Kramers equation (1)
determines the temporal change of the probability density
function (pdf) W(x, V, t). On the right-hand side of eq 1, the
first term describes the spatial drift due to the velocity of the
test particle, the second term accounts for the friction and
external force feedback to the velocity as expressed through
the corresponding Langevin equation, and the third term
represents the entropy-based velocity diffusion, i.e., the spread-
ing of the pdfW(x, V, t) on the (x, V) field in the course of time.

The stochastic differential equation corresponding to eq 1 is

or, equivalently, the Langevin equationm d2x/dt2 ) -ηm dx/dt
+ F(x) mΓ(t), Γ(t) being a Gaussian,δ-correlated noise.5,7 The
stationary solution of the Klein-Kramers equation (1),Wst(x,
V) ≡ limtf∞ W(x, V, t), is the Gibbs-Boltzmann equilibrium
distribution

whereâ ≡ (kBT)-1 is the Boltzmann factor,E ) (mV2/2) +
V(x), andN is a normalization constant depending onV(x).

The distribution in velocity space, related to eq 1 and without
the external potential, is governed by the Rayleigh equation6

with the corresponding Langevin equation dV/dt ) -ηV +
Γ(t). The Rayleigh equation controls the diffusion of the test
particle in velocity space which is confined by the Ornstein-
Uhlenbeck termη(∂/∂V)VW(V,t) corresponding to the velocity
damping term-ηV in the Langevin equation. Equation 4 thus
describes the relaxation of the pdfW(V,t) toward the stationary
Maxwell distributionWst(V), eq 3, withE ) mV2/2 andN )
(âm/2π)1/2.

In the high friction limit, one may neglect the inertial term
in the corresponding stochastic differential equation (2), to obtain
dx/dt ) (F(x)/mη) + (1/η)Γ(t), or the monovariate Fokker-
Planck equation, often referred to as the Smoluchowski equation

Equation 5 determines the diffusion of the test particle in
position space under the influence of the external force field
F(x).5,6,8,9Formally, the stationary solutionWst(x) of the Fokker-
Planck equation (5) given by eq 3 can be obtained from the
equilibrium solutionWst(x, V) of the Klein-Kramers equation
(1) by integration over the velocity variable. However, in passing
from the Klein-Kramers equation (1) itself to the Fokker-
Planck equation (5), the additional term (1/η)(∂2W/∂t2) occurs
which can only be neglected in the long-time, high friction limit,
t . η-1;10 see also below.

The Klein-Kramers equation (1) and the Fokker-Planck
equation (5) describe a Brownian test particle the mean squared
displacement of which follows, in the force-free limit, the linear
time dependence〈x2〉0 ) 2Kt. Hereby, the diffusion coefficient
is defined throughK ≡ kBT/[mη], by virtue of the Einstein-
Stokes relation.5,6,11This property of Brownian motion is often
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violated by observing a mean squared displacement of the
form11-15

which is the hallmark of anomalous diffusion, with subdiffusion
corresponding to 0< R < 1 and superdiffusion occurring for
R > 1. The dimension of the generalized diffusion coefficient
is [KR] ) cm2 s-R. Anomalous transport processes characterized
through eq 6 are related to Le´vy-type distributions and the
validity of the generalized central limit theorem.11,16-18

Previous extensions of the Klein-Kramers equation (1) have
been proposed on the basis of the stochastic differential equation
(2) with a Lévy noiseΓ(t).19-23 An alternative derivation for
quantum Le´vy processes has been presented recently.24 The
Lévy flight models lead to nonequilibrium solutions, and the
mean squared displacement diverges in the force-free limit.25

Therefore, this approach is not considered further in the present
account.

In the following, the discussion concentrates on the subdif-
fusive case 0< R < 1. Throughout this paper, the derivation is
restricted to one-dimensional svstems.

II. Toward a Fractional Klein -Kramers Equation

In analogy to the description of a Brownian test particle in
an external force field through the Fokker-Planck equation (5),
it has been suggested to model a test particle which displays
subdiffusion through the fractional Fokker-Planck equation26-28

The generalized friction constantηR has the dimension [ηR] )
sR-2. In the fractional Fokker-Planck equation (7), the fractional
Riemann-Liouville operator0Dt

1-R ) (∂/∂t)0Dt
-R is defined by

the convolution29

Consequently, eq 7 includes a slowly decaying memory with a
power-law kernel.27,28 Fractional Fokker-Planck equations of
the type (7) are thus prototype model equations for many
complex systems which are dominated by non-Markovian
memories.11-15,30,31 In deriving the fractional Fokker-Planck
equation (7), a waiting time pdfw(t) is introduced from which
the waiting time spans between single jumps are drawn. In this
continuous time formulation,32,33a waiting time pdf possessing
a finite first moment, the characteristic waiting time

leads back to the classical Brownian formulation whereas in
the case of a diverging characteristic waiting time, the fractional
Fokker-Planck equation (7) emerges from a generalized master
equation.27,28,33

In order to incorporate such subdiffusive mechanisms into
the Klein-Kramers formalism, note that the standard derivation
of the Klein-Kramers equation is based on the Chapman-
Kolmogorov equation for a Markovian process

which describes the temporal evolution of the pdfW(x,V,t)
through the incremental transition from the pdfW(x - ∆x,V -
∆V,t) to W(x,V,t + ∆t) during the average time step∆t.2 The
transfer kernel in eq 10 is thereby given through

in Chandrasekhar’s notation.2 The kernelΨ and its factorized
counterpartψ describe the distribution of transitions with the
velocity increment∆V for the field variablesV andx where the
position increment is connected with the mean time step∆t
through∆x ) V∆t. Note that in the latter relation expressed by
theδ-function in eq 11,∆t is assumed to be a small parameter
andV is not allowed to be very large, in order for the friction
assumption in eq 2 to hold. Thus,∆x is on average small.
Similarly, ∆V must remain small in the Langevin approximation.
This implies thatΨ is sharply peaked aroundx andV.

The integration over the increment∆x of eq 10 employs the
delta function defined in eq 11. Taylor expansions in∆V and
∆t, taking along terms of order∆t, lead to the Klein-Kramers
equation (1). The coefficients

are determined by the stochastic differential equation (2).2

Suppose now that successive jumps do not occur after
equidistant time steps∆t but that the waiting time elapsing from
one motion event until the next is drawn from a pdfw(t), the
waiting time pdf.32 In this continuous time case, the transition
from W(x - ∆x,V - ∆V,t′) to W(x,V,t) is ruled by the generalized
Chapman-Kolmogorov equation33

where the transfer kernelΨ(x - ∆x,V - ∆V;∆x,∆V) has yet to
be specified. Note that the transition from the discrete jump
time ∆t to the continuous time description based on the waiting
time pdfw(t) causes the explicit occurrence of the initial value
term W0(x,V) ≡ limtf0 W(x,V,t). This is due to the possibility
that the particle does not execute any jump up to timet, with
the cumulative probabilityφ(t) ) ∫t

∞ dt′ w(t′).32 Accordingly,
the transfer kernelΨ is modified, generalizing the relation∆x
) V∆t for the position increment. For short times, it is assumed
that the growth of the covered distance,∆x, is proportional to
time: ∆x ) Vt. For longer times, a cutoff timeτ* is introduced.
For timest > τ* the covered distance is kept constant, according
to the relation∆x ) Vτ*. The physical meaning of this cutoff
time τ* and its connection to a trapping mechanism will be
discussed below, and it will be shown that it has an intuitive
interpretation. With these preliminaries, the transfer kernel splits
up into the two parts:
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and

In the Markov limit w(t) ) δ(t - ∆t), ∆t e τ*, the
characteristic waiting time isT ) ∆t, and one findsφ(t) ) 0,
t > ∆t; φ(t) ) 1, t e ∆t for the probabilityφ(t) that no jump
has occurred up to timet. This means that, fort e ∆t, W(x,V,t)
) W0(x,V) the system is still in the prepared stateW0(x,V), and
for t > ∆t the influence of the initial condition has already
relaxed, as is typical for a Markovian renewal process. This
Markov limit leads consequently back to the original Chapman-
Kolmogorov equation (10) and to the Klein-Kramers equation
(1). Moreover, in the long-time limit, it is enough that a
characteristic waiting timeT < ∞ exists, in order to recover
the Brownian picture. Conversely, if the first moment of the
waiting time pdf, the characteristic waiting time, does not exist,
T f ∞, the related random process drops out of the basin of
attraction of the central limit theorem. In such a case one
recovers a subdiffusive, anomalous time evolution, manifest as
fractional dynamics.11,14,15,27,28,32This is illustrated in the
following.

For timest > τ*, eq 13 in the cutoff time approximation can
be rewritten according to

Suppose that the waiting time pdf has the long tail inverse
power-law asymptotics

with 0 < R < 1 and the internal time scaleτ. For this choice,
the characteristic waiting timeT diverges. A typical feature of
such a broad distribution is the occurrence of large waiting times
with a comparatively high probability. This leads to the
dominance of the second integral in eq 16 in the long-time limit
t . max(τ,τ*). In this case, the process is governed by the
generalized Chapman-Kolmogorov equation:

By the Laplace transformation of eq 18 and insertion of
the long-time analoguew(u) ∼ 1 - (uτ)R of the waiting
time pdf in Laplace space, one obtains an equation which
contains noninteger powers of the Laplace variableu. In
the inverse Laplace transformation, the latter lead to the
fractional Riemann-Liouville operator due to the relation
L{0Dt

-RW(x,V,t)} ) u-RW(x,V,u). Neglecting terms of order
τ2R, (τ*) 2, τRτ*, and higher, one finds the fractional Klein-
Kramers equation

In this long-time approximation, the first integral in eq 16 plus

the error in shifting the lower integral limit in the second integral
can be estimated to be of the orderτRτ*/ t1+R.34

Equation 18 demonstrates thatτ* takes on the roˆle of the
mean time step∆t in the standard derivation of the Klein-
Kramers equation (1). Thus it is legitimate to assume that the
motion events are characterized by the moments (12). Conse-
quently, one arrives at the fractional Klein-Kramers equation:
35

whereV* ≡ Vτ*/τR with [V*] ) cm s-R, η* ≡ ητ*/τR with [η*]
) s-R, and F*(x) ≡ F(x)τ*/τR with [F*] ) cm g s-1-R. In
passing to eq 20,∆t was set equal toτ*. This step is not
necessary but facilitates the notation and corresponds to the
interpretation given in the next section. Note that the Stokes
operator ((∂/∂t) + V ∂/∂x) from the standard Klein-Kramers
equation (1)2 is replaced by the operator ((∂/∂t) + 0Dt

1-R V*
∂/∂x) which shows the nonlocal drift response.

III. Some Remarks on the Derivation

In the above derivation it has been assumed that for short
timest < τ* the test particle moves with velocityV in a given
direction, and thus covers the distance∆x ) Vt. For longer times
t > τ*, another mechanism comes into play which was described
by the cutoff time assumption. Consequently, the continuous
time version of the Chapman-Kolmogorov equation, eq 13,
splits into the two contributions in eq 16. Two different physical
realizations of the mechanism in the case of finite and infinite
characteristic waiting times are now discussed.

A. The Case of a Finite Characteristic Waiting TimeT <
∞. The first integral in eq 16 refers to the initial regime featuring
the linear growth in time of the traveled distance,∆x ) Vt. This
contribution is relevant to processes with a finite characteristic
time scale. For such Markovian processes, it has been argued
that the standard description in terms of the Klein-Kramers
equation (1) is recovered in the long-time limitt . max{T,τ*},
up to a scaling factor in time which accounts for the fact that
the generalized model considers a multitude of individual steps
in respect to∆t, combined to one superstep. Accordingly, the
mean time step∆t occurring in the stochastic differential
equation (2) corresponds either to the characteristic waiting time
T if T < τ* or to the cutoff timeτ*.

A physical picture corresponding to this process is a particle
which moves in the velocity modeV for a certain time drawn
from the pdf w(t). Then, the particle changes direction and
initiates a new motion event with a different velocity. If such a
walking time however exceeds the threshold timeτ* during one
of these motion events, the particle pauses at the current position
until the time span drawn fromw(t) is over and a new motion
is initiated. The average direction of motion is thereby deter-
mined through the external fieldF(x).

Such a scenario might be of relevance for the biophysical
problem of a bacterium or an amoeba that roams along in the
external fieldV(x) which might represent a food tracer field, or
an electrical or chemical guiding field in studies of taxis which
has received some interest; see for instance ref 37. After such
microorganisms wander around for a certain time, either they
change their direction, following a new signal input, or they
take a pause for reorientation, respiration, or simply recreation.
Thus, if the pdfw(t) features aT < τ*, it corresponds to a highly
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active creature which barely pauses; conversely, it spends a
considerable portion of its time at rest ifT > τ*.

B. The Case of a Diverging Characteristic Waiting Time
T f ∞. In such cases where the characteristic waiting time
diverges,T f ∞, it was argued that the first regime with time-
proportional growth of the covered distance can be neglected,
and the transport process is dictated by the long tail of the
corresponding waiting time pdf (17). The generalized Chap-
man-Kolmogorov equation that is valid for this kind of process
is eq 18, which leads to an interesting physical interpretation
of the underlying process leading to subdiffusion and its
description in terms of fractional Klein-Kramers and Fokker-
Planck equations.38

According to eq 18 and its derivation, the mean distance
traveled per average motion event is given by∆x ) Vτ*. Thus,
after exploring its environment for the average timeτ*, the test
particle encounters a position where it gets immobilized. The
particle is only released after some waiting time which is drawn
from the waiting time pdfw(t). In this multiple trapping
scenario,36 the test particle moves according to the Markovian
stochastic differential equation (2), interrupted through trapping
events. The relation∆x ) Vτ* consequently characterizes an
average transition between two successive trapping events and
as such is a measure for the average distance between two
adjacent traps. Note that such trapping is known from the motion
of charge carriers in amorphous semiconductors.36 Thus, the
fractional Klein-Kramers equation (20) describes systems in
which some kind of disorder occasionally interrupts the Markov-
style motion of the test particle. The overall dominance of the
long tail of the waiting time pdf is manifest in the fractional
time evolution.

C. The Rôle of the Langevin Equation (2).The two cases
discussed are tailored such that the Langevin equation (2) which
provides the expansion coefficients in the Taylor expansion with
respect to the velocity increment∆V in the Chapman-
Kolmogorov equation remains valid. In the Markovian case
discussed in section IIIA, the average step time corresponds to
eitherT or τ*, and in the subdiffusive case referred to in section
IIIB it is given by τ*. Note that in either case, the kinetic energy
of the particle during a trapping-detrapping event is assumed
to be conserved.

The Langevin equation provides the dynamics foundation for
the transport process under consideration in that it is the physical
equation from which the information on the averaged velocity
increments〈∆V〉 and〈(∆V)2〉 is obtained. Especially, the friction
constantη, its connection to the diffusion coefficient, and the
external forceF(x) enter through this stochastic differential
equation whose noise averagem d2〈x〉Γ/dt2 ) -η〈V〉Γ + F(x)
corresponds to Newton’s equation of motion. It is exactly this
dynamics foundation of the fractional Klein-Kramers and
Fokker-Planck equations and the coefficients occurring therein
which adds to earlier derivations from a kinematics-stochastic
approach in terms of waiting time and asymmetric jump length
distributions presented in refs 27 and 28. It thus offers some
physical insight into the origin of fractional dynamics for
systems which exhibit multiple trapping such as the aforemen-
tioned charge carrier transport in amorphous semiconductors,36

the motion of excess electrons in liquids,39,40or the phase space
dynamics of chaotic Hamiltonian systems,41 or it may be viewed
as the source for the nonstandard dynamics encountered in
protein folding.42

IV. Discussion of the Fractional Klein-Kramers
Equation

In the following discussion of the fractional Klein-Kramers
equation (20), the generalizations of the two limiting equations
of the Rayleigh and Fokker-Planck types are derived. Thus,
integration of the fractional Klein-Kramers equation (20) over
∫dV and over∫V dV leads to two independent equations whose
combination produces the equation

from which, in the high friction limit, one is led to the fractional
Fokker-Planck equation (7), which was discussed in detail in
ref 26 and was derived from a generalized master equation and
a nonhomogeneous random walk in refs 27 and 28. The
constantsηR and KR introduced in this derivation are now
defined as

These relations show that the generalized coefficients are based
on the proper dynamical quantities,η, m, andτ*, and that the
fractional dimensions emanate from the rescaling withτR or, in
other words, through the introduction of a fractal waiting time
distribution, eq 17. Moreover, the generalized Einstein-Stokes
relation connectingKR with ηR now follows directly from the
derivation. The Brownian limit of eqs 19-22 is easily obtained,
and it coincides with the known standard equations. Note that
τ* ) τ does not necessarily have to be fulfilled as a rescaling
of variables can account for an additional factor in time.
Equation 21, forR ) 1, is of the telegrapher’s or Cattaneo
equation10,43 type. The force-free analogue of eq 21 is called
the generalized or fractional Cattaneo equation and, for arbitrary
0 < R < 1, was discussed and derived from a continuous time
flux model in ref 43.

The fractional counterpart of the Rayleigh equation (4)
corresponding to the fractional Klein-Kramers equation (20)
can be obtained by the integration∫dx in the force-free limit,
the result being

The fractional Rayleigh equation (23) is equivalent to the
fractional Fokker-Planck equation (7) with a linear force and
therefore corresponds to the subdiffusive Ornstein-Uhlenbeck
process.15 This process has been discussed elsewhere;15,26 the
first two moments of eq 23 are calculated below.

V. Discussion of the Fractional Klein-Kramers Equation
Continued

Regarding eqs 7, 20, and 23, all of these evolution equations
derived from the generalized Chapman-Kolmogorov equation
(13) are of the form

where the linear operatorL denotes the appropriate Klein-
Kramers, Fokker-Planck, or Rayleigh operators. Equation 24
relates the momentary change∂W/∂t of the pdfW to the previous
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history of the dynamical evolution of the system, through the
fractional Riemann-Liouville operator0Dt

1-R. Employing stan-
dard theorems of fractional calculus,29 eq 24 can be rewritten
in the equivalent form

which explicitly includes the initial valueW0 and thereby
underlines its slowly decaying contribution following the inverse
power law t-R.28 Note that in the Brownian limitR ) 1, the
Γ-function in eq 25 diverges: limRf1 Γ(1 - R) ) ∞, and thus
the usual expression∂W/∂t ) LW is recovered.

Besides Fourier-Laplace techniques, equations of the type
(24) can be solved by the separation of variables. With a
separation ansatz of the typeW(x,V,t) ) T(t) æ(x,V), one obtains
the eigenequations26,27,46

for a given eigenvalueλn,R. The full solution is then the sum
over all eigensolutions. Whereas the spatial part depends on
the special form of the operatorL, the explicit temporal
eigensolution is expressed in terms of the Mittag-Leffler
function47 by

The series expansion for the Mittag-Leffler function

shows the close relation to the exponential function:E1(-λn,1t)
) exp(-λn,1t). Note that with λn,R

/ ≡ λn,R/Γ(1 + R),
ER(-λn,RtR) ∼ exp(-λ*n,RtR) for t , 1/(λn,R

/ )1/R; namely, for
short times, the Mittag-Leffler function evolves in a stretched
exponential manner. Conversely, for long times, the Mittag-
Leffler function (28) follows the inverse power-law tail
ER(-λn,RtR) ∼ [λn,RΓ(1 - R)tR]-1, t . 1/(λn,R)1/R. Therefore,
the effect of the fractional operator0Dt

1-R in the fractional
Klein-Kramers equation (20), as well as in the fractional
Fokker-Planck equation (7) and the fractional Rayleigh equa-
tion (23) deduced from it, is the nonexponential relaxation of
single modesn, reflecting the relatively slower decay of the
initial condition, as has been seen from eq 25. Due to the
considerably longer waiting times experienced by the test
particle, the equilibration of the system is decelerated in
comparison to the analogous Brownian system. This is now
exemplified by the moments derived from these evolution
equations.

The moments of a kinetic equation of the type (24) can be
derived through integration which leads to simple fractional
differential equations for the desired moment. For instance, to
obtain 〈V〉 from the fractional Rayleigh equation (23), the
integration∫V dV leads to the equation

from which, through integration by parts, one recovers the

fractional relaxation equation45

As in eq 27, the solution of eq 30 is given in terms of the
Mittag-Leffler function

By help of the fundamental relation

for any realq, p, moments of any order can be obtained from
the evolution equations. For the fractional Rayleigh equation
(23), the following result for the second-order moment is
obtained:

with 〈V2〉eq ) limtf∞ 〈V2〉eq ) kBT/m. In this fractional Rayleigh
process, the first moment, eq 31, decays slowly towards the
symmetric value limtf0 〈V〉 ≡ 0. The second moment, eq 33,
relaxes in the Mittag-Leffler pattern toward the thermal
equilibrium value〈V2〉eq. In eqs 31 and 33, the subscript 0
denotes the initial value determined byW0(V). In the force-free
limit, the mean squared displacement of the fractional Fokker-
Planck equation (5) reads〈x2〉 ) 2KRtR/(Γ(1 + R)), in agreement
with eq 6. Further properties of the fractional Fokker-Planck
equation (7) were discussed in ref 26.

Due to its phase space nature, the calculation of moments
for the fractional Klein-Kramers equation (20) leads to several
cases, including joint moments. For example, forF ) 0, ∫dx
∫V dV and∫dx ∫V2 dV lead to the fractional Rayleigh equation
results (31) and (33), respectively.∫x dx ∫dV reveals the relation

from which

follows. The double means〈〈‚〉〉 in eqs 34 and 35 denote the
averaging over bothx andV. Note that eq 34 seems to contradict
the Newton-type relation d/dt〈〈x〉〉 ) 〈〈V〉〉 known in the regular
case. This “violation” results from the camouflaging effect of
the introduction of the long-tailed waiting time pdfw(t).

For the subdiffusive case 0< R < 1, all results are dominated
by the Mittag-Leffler functions and noninteger power laws.
In the Brownian limit, the usual exponential behaviors and
integer power laws are recovered. Finally, the equilibriaWst-
(x,V), Wst(V), and Wst(x) of the fractional Klein-Kramers
equation, the fractional Rayleigh equation, and the fractional
Fokker-Planck equation are defined through eq 3, with the
corresponding expressions for the Boltzmann energies. They
are thus equivalent to the Boltzmann-Gibbs or Maxwell
equilibria found in the normal Brownian-Markovian cases.5,6

VI. Conclusion

A formal extension of the Chapman-Kolmogorov equation
has been discussed. For a broad waiting time pdf with diverging
characteristic waiting time, the fractional Klein-Kramers equa-

0Dt
RW -

W0

Γ(1 - R)
t-R ) LW (25)

dTn(t)

dt
) -0Dt

1-Rλn,RTn; Læn(x,V) ) -λn,Ræn (26)

Tn(t) ) ER(-λn,RtR) (27)

ER(-λn,RtR) ) ∑
ν)0

∞ (-λn,RtR)ν

Γ(1 + Rν)
(28)

d
dt

〈V〉 ) ∫dV 0Dt
1-Rη*[ ∂

∂V
V +

kBT

m
∂

2

∂V2]W(V,t) (29)

d
dt

〈V〉 ) -0Dt
1-Rη* 〈V〉 (30)

〈V〉 ) 〈V〉0ER(-η* tR) (31)

0Dt
ptq )

Γ(1 + q)

Γ(1 + q - p)
tq-p (32)

〈V2〉 ) 〈V2〉eq + (〈V2〉0 - 〈V2〉eq)ER(-2η* tR) (33)

d
dt

〈〈x〉〉 ) 0Dt
1-Rτ*

τR〈〈V〉〉 (34)

〈〈x〉〉 ) 〈〈x〉〉0 +
〈〈V〉〉0

η
[1 - ER(-η* tR)] (35)
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tion has been derived. Thereby, the cutoff time assumption was
introduced which follows from the assumption that individual
sojourns of the test particle are of finite distance and are ruled
by the Langevin equation with Gaussian,δ-correlated noise.
The presented model should therefore apply for particles which
eventually get stuck in position space. Consequently, the
dynamics specified by the moments of the velocity changes,
eq 12, remain unchanged. From the resulting fractional Klein-
Kramers equation a fractional Rayleigh equation and the
subdiffusive fractional Fokker-Planck equation have been
deduced. The latter was independently derived from a general-
ized master equation.27 The present approach is close to thermal
equilibrium and leads to an understanding of the physical nature
of the generalized friction and diffusion coefficients occurring
in this fractional Fokker-Planck equation.

An interpretation which might be of relevance for biophysical
problems has been discussed for such cases where the waiting
time pdfw(t) possesses a finite first momentT. Accordingly, a
microorganism explores the space in the presence of an external
field V(x) which corresponds to a distribution of food, or an
externally applied chemical or electrical field.

The alternative case when the particles lock onto a given
velocity direction, i.e., move ballistically for time spans with a
diverging characteristic time, has been considered by Barkai
and Silbey.44 These authors find an intermediate, superdiffusive
long-time behavior of the mean squared displacement according
to 〈x2〉 ∼ Aât2-â with 0 < â < 1. Therefore, their model is
equivalent to continuous time collision models, and the resulting
fractional Fokker-Planck equation is different from the sub-
diffusive fractional Fokker-Planck equation obtained here.
However, the velocity distribution of this model is governed
by the same fractional Rayleigh equation found in the present
approach. The microscopic distinction between both models lies
in the times spent in individual velocity modes, leading to
considerably different distances covered by the test particle.

It should finally be stressed that the fractional approach which
is of an overall non-Markovian nature differs from the general-
ized Langevin approach in which a temporal convolution is
assumed in the underlying stochastic differential equations.31

In this case the resulting deterministic Klein-Kramers and
Fokker-Planck equations arelocal in time: the generalization
of the Langevin equation is transferred to time-dependent
coefficients.48
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