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From a Generalized Chapman-Kolmogorov Equation to the Fractional Klein —Kramers
Equation®

Ralf Metzler* and Joseph Klafter*
School of Chemistry, Teludv University, 69978 Tel Aiv, Israel
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A non-Markovian generalization of the Chapmdafolmogorov transition equation for continuous time random
processes governed by a waiting time distribution is investigated. It is shown under which conditions a long-
tailed waiting time distribution with a diverging characteristic waiting time leads to a fractional generalization

of the Klein—Kramers equation. From the latter equation a fractional Rayleigh equation and a fractional
Fokker—Planck equation are deduced. These equations are characterized by a slow, nonexponential relaxation
of the modes toward the Gibb8oltzmann and the Maxwell thermal equilibrium distributions. The derivation
sheds some light on the physical origin of the generalized diffusion and friction constants appearing in the
fractional Fokket-Planck equation.

I. Introduction The distribution in velocity space, related to eq 1 and without

The Klein-Kramers equatich® the external potential, is governed by the Rayleigh equétion

aw_[ 9 +a( _F::)) nkeT 2 ’— +——W( ) (4)

It - &U E) nv TQ_ W( Z/t) (1)

with the corresponding Langevin equation/dt = —nv +
I'(t). The Rayleigh equation controls the diffusion of the test
particle in velocity space which is confined by the Ornstein
Uhlenbeck termy(a/dv)v\W(v,t) corresponding to the velocity
damping term—»v in the Langevin equation. Equation 4 thus
describes the relaxation of the pdfv,t) toward the stationary

is a bivariate FokkerPlanck equation describing the motion
of a passive Brownian test particle of massinder the influence

of an external force field=(x) = —V'(X) in phase (positioft
velocity) spaces denotes the friction constant akgdT the
Boltzmann temperature. The KletiKramers equation (1)
determines the temporal change of the probability density AR ; )
function (pdf)W(x, », t). On the right-hand side of eq 1, the MaxwellllémstnbutlonWst(u), eq 3, withE = my%/2 andN =

first term describes the spatial drift due to the velocity of the (Brv2m) =

test particle, the second term accounts for the friction and In the high friction limit, one may neglect the inertial term
external force feedback to the velocity as expressed throughin the corresponding stochastic differential equation (2), to obtain
the corresponding Langevin equation, and the third term dx/dt = (F(x)/my) + (1/7)['(t), or the monovariate Fokker
represents the entropy-based velocity diffusion, i.e., the spread-Planck equation, often referred to as the Smoluchowski equation
ing of the pdfW(x, v, t) on the &, v) field in the course of time.

The stochastic differential equation corresponding to eq 1 is
( ) + kBT_ W(x.t) ()
at mn
&y P+ T @ | _ . -
dt dt Equation 5 determines the diffusion of the test particle in

) ) ) position space under the influence of the external force field
or, equivalently, the Langevin equatiomd®x/dt? = —7m dx/dt F(x).5689Formally, the stationary solution(x) of the Fokker
+ F(x) mI(t), I'(t) being a Gaussiam-correlated noisé.’ The Planck equation (5) given by eq 3 can be obtained from the

stationary solution of the KleinKramers equation (1\s(Xx, equilibrium solutionWs(X, v) of the Klein—Kramers equation
u) = Ilmﬁw W(X, v, t), is the Gibbs-Boltzmann equilibrium (1) by integration over the velocity variable. However, in passing
distribution from the Klein-Kramers equation (1) itself to the Fokker
Planck equation (5), the additional term{(p®\W/at?) occurs
W, = N exp(-SE) 3) which can only be neglected in the long-time, high friction limit,
t > 571,10 see also below.
wheref = (kgT)"! is the Boltzmann factorE = (mv%/2) + The Klein—Kramers equation (1) and the Fokke?lanck
V(x), andN is a normalization constant depending \B(x). equation (5) describe a Brownian test particle the mean squared

displacement of which follows, in the force-free limit, the linear
T Part of the special issue “Harvey Scher Festschrift”. Dedicated to Prof. time dependencﬁk% = 2Kt. Hereby, the diffusion coefficient
Harvey Scher on the occasion of his 60th birthday. . . B T . .
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*E-mail: klafter@post.tau.ac.il. Stokes relatio:811 This property of Brownian motion is often
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violated by observing a mean squared displacement of thewhich describes the temporal evolution of the pafx,u,t)

formt1-15

X0 ~ K t* (6)
which is the hallmark of anomalous diffusion, with subdiffusion
corresponding to 6< oo < 1 and superdiffusion occurring for

o > 1. The dimension of the generalized diffusion coefficient

is [Kq] = cn? s™*. Anomalous transport processes characterized

through eq 6 are related to \yetype distributions and the
validity of the generalized central limit theorel6-18

Previous extensions of the KleifKramers equation (1) have
been proposed on the basis of the stochastic differential equatio
(2) with a Levy noiseI'(t).19"23 An alternative derivation for
qguantum Ley processes has been presented recéhflhe
Lévy flight models lead to nonequilibrium solutions, and the
mean squared displacement diverges in the force-free 3imit.

through the incremental transition from the piifx — Ax,v —
Avt) to W(x,v,t + At) during the average time steft.? The
transfer kernel in eq 10 is thereby given through

W(X — AX,v — Av;AX,Av) =
PY(X — Ax,v — Av;Av) O(AX — vAt) (11)

in Chandrasekhar’s notatidnThe kernel® and its factorized

counterparty describe the distribution of transitions with the

velocity incrementv for the field variables andx where the

rposition increment is connected with the mean time si¢p

throughAx = vAt. Note that in the latter relation expressed by
the o-function in eq 11 At is assumed to be a small parameter
andv is not allowed to be very large, in order for the friction

assumption in eq 2 to hold. Thu&x is on average small.

Therefore, this approach is not considered further in the presentSimilarly, Av must remain small in the Langevin approximation.

account.
In the following, the discussion concentrates on the subdif-

This implies that¥ is sharply peaked aroundandv.
The integration over the incremeAk of eq 10 employs the

fusive case 0< a. < 1. Throughout this paper, the derivation is  delta function defined in eq 11. Taylor expansionsAin and
restricted to one-dimensional svstems. At, taking along terms of ordekt, lead to the Kleir-Kramers

. . . equation (1). The coefficients
Il. Toward a Fractional Klein —Kramers Equation

In analogy to the description of a Brownian test particle in A= — B @ At
an external force field through the FokkePlanck equation (5), v n m ’
it has been suggested to model a test particle which displays kT
subdiffusion through the fractional FokkePlanck equatioty28 MAv) = WM +O([A1%) (12)
_ F(X 2
%\/: thl “[ %# +K aa— W(x,t) @) are determined by the stochastic differential equatior? (2).
X

Suppose now that successive jumps do not occur after
equidistant time stepAt but that the waiting time elapsing from

The generalized friction constany, has the dimensiom|] = ! ' )
one motion event until the next is drawn from a pdt), the

=2, In the fractional FokkerPlanck equation (7) the fractional

Riemann-Liouville operatorsD}® = (3/at)oD; ® is defined by waiting time pdf? In th'is continuous time case, the transition
the convolutioR? from W(x — Ax,v — A t') to W(x,o,t) is ruled by the generalized
Chapman-Kolmogorov equatiof?
_ W(xt)
D “W(x,t) = t 8 w o
oDi WXD = F(a) BtL (t—t)- ® W(x,0,t) = fo‘dt' Jod@A) [T d(Aan) WX — Axw —

Avt") (X — AX,v — Av;AXAv) wt—t") + ¢(t) Wy(x,2)
13)

Consequently, eq 7 includes a slowly decaying memory with a
power-law kerne?’-28 Fractional FokkerPlanck equations of
the type (7) are thus prototype model equations for many
complex systems which are dominated by non-Markovian where the transfer kern&f(x — Ax,v — Av;Ax,Av) has yet to
memories:1-153031|n deriving the fractional FokkerPlanck be specified. Note that the transition from the discrete jump
equation (7), a waiting time pdf(t) is introduced from which time At to the continuous time description based on the waiting
the waiting time spans between single jumps are drawn. In this time pdfw(t) causes the explicit occurrence of the initial value
continuous time formulatiof?-23a waiting time pdf possessing  term Wo(X,0) = limo W(X,v,t). This is due to the possibility
a finite first moment, the characteristic waiting time that the particle does not execute any jump up to timeith
the cumulative probabilityp(t) = /¢ dt' w(t').32 Accordingly,
the transfer kernel is modified, generalizing the relatiohx
= pAt for the position increment. For short times, it is assumed
leads back to the classical Brownian formulation whereas in that the growth of the covered distaneex, is proportional to
the case of a diverging characteristic waiting time, the fractional time: Ax = ut. For longer times, a cutoff time* is introduced.
Fokker—Planck equation (7) emerges from a generalized master For timest > 7* the covered distance is kept constant, according
equatiorr”28.33 to the relationAx = v7*. The physical meaning of this cutoff
In order to incorporate such subdiffusive mechanisms into time 7* and its connection to a trapping mechanism will be
the Klein—Kramers formalism, note that the standard derivation discussed below, and it will be shown that it has an intuitive

of the Klein—Kramers equation is based on the Chapman interpretation. With these preliminaries, the transfer kernel splits
Kolmogorov equation for a Markovian process up into the two parts:

T= [ dtw), 9)

W t+AD) = (7 dAx) [7 d(Ar) Wx — Ax,
v— Avt) W(X — AX, v — Av; AX, Av) (10)

AX,v — Av;AX,Av) =
WYX — Ax,v — Av;Av) O(AX — ot) (14)

W .(Xx—
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and the error in shifting the lower integral limit in the second integral
can be estimated to be of the ordé&r*/t1**.34
Wi (X = AXv — Av,AXAv) = Equation 18 demonstrates thet takes on the te of the
WYX — Ax,v — Av;Av) O(Ax — vr*) (15) mean time stepAt in the standard derivation of the Klein
Kramers equation (1). Thus it is legitimate to assume that the
In the Markov limit w(t) = o(t — At), At < 7*, the motion events are characterized by the moments (12). Conse-
characteristic waiting time i$ = At, and one findsp(t) = 0, qguently, one arrives at the fractional KletiKramers equation:

t > At; ¢(t) = 1, t < At for the probability¢(t) that no jump 35
has occurred up to time This means that, far< At, W(x,,t)
= Wp(x,v) the system is still in thg .plrepared.s.tMB(x,u), and W 1 9 9 F*(x)\  7*ksT 52
for t > At the influence of the initial condition has already ot oDr | 5("‘ 9 U m + m a2
relaxed, as is typical for a Markovian renewal process. This e
Markov limit leads consequently back to the original Chapman W(x.v,t) (20)
Kolmogorov equation (10) and to the KleiiKramers equation ) )
(1). Moreover, in the long-time limit, it is enough that a Wherev* = vz*/z* with [v*] = cm s7¢, * = y7*/7* with [11]
characteristic waiting im@ < o exists, in order to recover = S % andF*(X) = F(x)*/z* with [F¥] = cm g s In
the Brownian picture. Conversely, if the first moment of the Passing to eq 20At was set equal ta*. This step is not
waiting time pdf, the characteristic waiting time, does not exist, Neécessary but facilitates the notation and corresponds to the
T — o, the related random process drops out of the basin of interpretation given in the next section. Note that the Stokes
attraction of the central limit theorem. In such a case one Operator (§/dt) + v 9/dx) from the standard KleinKramers
recovers a subdiffusive, anomalous time evolution, manifest ase€duation (13 is replaced by the operatora(ft) + oD; * v*
fractional dynamicdl1415272832This s illustrated in the  9/0X) which shows the nonlocal drift response.
following.

For timest > 7*, eq 13 in the cutoff time approximation can  Ill. Some Remarks on the Derivation
be rewritten according to

In the above derivation it has been assumed that for short
timest < * the test particle moves with velocityin a given

Wxot) = [ dt' [~ d(Av) Wx — ot v — Avt) x direction, and thus covers the distarice= ut. For longer times
P(X — ot v — A Av)W(t — t) + t> 7%, another mechanism comes into play which was described
t ., o , by the cutoff time assumption. Consequently, the continuous

St [ d(Av) Wx — v, 0 — Awt') x time version of the ChapmarKolmogorov equation, eq 13,

Y — vt*,0 — Av;Av) W(t — t') + B(t) Wy(x,0) (16) splits into the two contributions in eq 16. Two different physical
realizations of the mechanism in the case of finite and infinite

Suppose that the waiting time pdf has the long tail inverse characteristic waiting times are now discussed.

power-law asymptotics A Thg Case of a_Finite Characteristic_Waiting _TimeT <
o, The first integral in eq 16 refers to the initial regime featuring
W(t) ~ it (17) the linear growth in time of the traveled distande,= vt. This

contribution is relevant to processes with a finite characteristic
with 0 < o. < 1 and the internal time scate For this choice, time scale. For such Markovian processes, it has been argued

the characteristic waiting time diverges. A typical feature of ~ that the standard description in terms of the Kiekramers
such a broad distribution is the occurrence of large waiting times €guation (1) is recovered in the long-time lirhit- maxT,z*},

with a comparatively high probability. This leads to the UP10a sca_llng factor in time which accounts f(_)r t_h(_e fact that
dominance of the second integral in eq 16 in the long-time limit the generalized model considers a multitude of individual steps
t > max@,*). In this case, the process is governed by the N respect toAt, combined to one superstep. Accordingly, the

generalized ChapmarKolmogorov equation: mean time stepAt occurring in the stochastic differential
equation (2) corresponds either to the characteristic waiting time

oo i * i *
W) = [idt [ d(Ae) Wix— v7,0 — Avit) x TiFT <7 or to the cutoff imez*. . .
o A physical picture corresponding to this process is a particle
Y(X — vt v — Av;Av) Wt — t') + ¢(t) Wy(X,v) (18) which moves in the velocity mode for a certain time drawn
from the pdfw(t). Then, the particle changes direction and
By the Laplace transformation of eq 18 and insertion of initiates a new motion event with a different velocity. If such a
the long-time analoguev(u) ~ 1 — (ur)* of the waiting walking time however exceeds the threshold teheuring one
time pdf in Laplace space, one obtains an equation which of these motion events, the particle pauses at the current position
contains noninteger powers of the Laplace variableln until the time span drawn from(t) is over and a new motion
the inverse Laplace transformation, the latter lead to the is initiated. The average direction of motion is thereby deter-
fractional RiemanstLiouville operator due to the relation mined through the external field(x).

L{oD, *W(x,z,)} = u®W(x,v,u). Neglecting terms of order Such a scenario might be of relevance for the biophysical
2%, (7%)?, t%r*, and higher, one finds the fractional Klein problem of a bacterium or an amoeba that roams along in the
Kramers equation external fieldV(x) which might represent a food tracer field, or
an electrical or chemical guiding field in studies of taxis which
W e o M0y 1 [Av)*0 52 has received some interest; see for instance ref 37. After such
ot oDt _”Fa_x - -~ 9 2 - o2 W(x2,) microorganisms wander around for a certain time, either they
(19) change their direction, following a new signal input, or they

take a pause for reorientation, respiration, or simply recreation.
In this long-time approximation, the first integral in eq 16 plus Thus, if the pdfw(t) features & < 7*, it corresponds to a highly
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active creature which barely pauses; conversely, it spends alV. Discussion of the Fractional Klein—Kramers
considerable portion of its time at restTif> t*. Equation

B. The Case of a Diverging Characteristic Waiting Time In the following discussion of the fractional KleirKramers
T — o. In such cases where the characteristic waiting time equation (20), the generalizations of the two limiting equations
diverges,T — oo, it was argued that the first regime with time- of the Rayleigh and FokketPlanck types are derived. Thus,
proportional growth of the covered distance can be neglected,integration of the fractional KleinKramers equation (20) over
and the transport process is dictated by the long tail of the /dv and over/v dv leads to two independent equations whose
corresponding waiting time pdf (17). The generalized Chap- combination produces the equation
man-Kolmogorov equation that is valid for this kind of process )
is eq 18, which leads to an interesting physical interpretation M_,_ Dl+uiW= Die| KA F(X) +K 0° W) (21)
of the underlying process leading to subdiffusion and its ot % ' #* ot axmy, ol
description in terms of fractional KleirKramers and Fokker
Planck equation® from which, in the high friction limit, one is led to the fractional
Fokker—Planck equation (7), which was discussed in detail in

traveled per average motion event is give — ot Thus ref 26 and was derived from a generalized master equation and
P 9 giveroy : ’ a nonhomogeneous random walk in refs 27 and 28. The

afterexplorlng Its enwronr_n_ent for the gveraggtwﬁethgtest constantsy, and K, introduced in this derivation are now
particle encounters a position where it gets immobilized. The defined as

particle is only released after some waiting time which is drawn

According to eq 18 and its derivation, the mean distance

from the waiting time pdfw(t). In this multiple trapping n® o ke T -
scenario’® the test particle moves according to the Markovian 74 = e [, =5 Ky = — [KJ]= cnfs @
stochastic differential equation (2), interrupted through trapping ¢ (22)

events. The relatiol\x = v7* consequently characterizes an

average transition between two successive trapping events and hese relations show that the generalized coefficients are based
as such is a measure for the average distance between tw®@n the proper dynamical quantitieg, m, andz*, and that the
adjacent traps. Note that such trapping is known from the motion fractional dimensions emanate from the rescaling whtbr, in

of charge carriers in amorphous semiconducirhus, the other words, through the introduction of a fractal waiting time
fractional Klein—Kramers equation (20) describes systems in distribution, eq 17. Moreover, the generalized EinsteStokes
which some kind of disorder occasionally interrupts the Markov- rélation connecting, with 7, now follows directly from the

style motion of the test particle. The overall dominance of the derivation. The Brownian limit of eqs 122 is easily obtained,
long tail of the waiting time pdf is manifest in the fractional and it coincides with the known standard equations. Note that

time evolution 7 = r does not necessarily have to be fulfilled as a rescaling
o ) ] of variables can account for an additional factor in time.
C. The Rde of the Langevin Equation (2).The two cases  Equation 21, fora. = 1, is of the telegrapher's or Cattaneo

discussed are tailored such that the Langevin equation (2) whichequatiod®43 type. The force-free analogue of eq 21 is called
provides the expansion coefficients in the Taylor expansion with the generalized or fractional Cattaneo equation and, for arbitrary
respect to the velocity incrememv in the Chapman 0 < a < 1, was discussed and derived from a continuous time
Kolmogorov equation remains valid. In the Markovian case flux model in ref 43.

discussed in section IllA, the average step time corresponds to The fractional counterpart of the Rayleigh equation (4)
eitherT or 7*, and in the subdiffusive case referred to in section corresponding to the fractional KleirKramers equation (20)
IIB it is given by 7*. Note that in either case, the kinetic energy can be obtained by the integratigidx in the force-free limit,

of the particle during a trapping-detrapping event is assumed the result being

to be conserved.
. . . : . W g o KT @
The Langevin equation provides the dynamics foundation for — =D v+ — Wb (23)
LY

the transport process under consideration in that it is the physical o O dw
equation from which the information on the averaged velocity
incrementsAvCand[{Av)?Cis obtained. Especially, the friction
constanty, its connection to the diffusion coefficient, and the
external forceF(x) enter through this stochastic differential
equation whose noise averaged?X{/dt> = —5G + F(X)
corresponds to Newton'’s equation of motion. It is exactly this
dynamics foundation of the fractional Kleikramers and v/ pjscussion of the Fractional Klein—Kramers Equation
Fokker-Planck equations and the coefficients occurring therein continued

which adds to earlier derivations from a kinematissochastic
approach in terms of waiting time and asymmetric jump length
distributions presented in refs 27 and 28. It thus offers some
physical insight into the origin of fractional dynamics for
systems which exhibit multiple trapping such as the aforemen- IW o

tioned charge carrier transport in amorphous semicondutors, ot oDy LW (24)
the motion of excess electrons in liqui#s'®or the phase space

dynamics of chaotic Hamiltonian systefigr it may be viewed where the linear operatdr denotes the appropriate Klein
as the source for the nonstandard dynamics encountered inkKramers, FokkerPlanck, or Rayleigh operators. Equation 24
protein folding?? relates the momentary chang&/at of the pdfWto the previous

The fractional Rayleigh equation (23) is equivalent to the
fractional Fokket-Planck equation (7) with a linear force and
therefore corresponds to the subdiffusive Ornstéihlenbeck
process? This process has been discussed elsewtefehe
first two moments of eq 23 are calculated below.

Regarding eqgs 7, 20, and 23, all of these evolution equations
derived from the generalized Chapmafolmogorov equation
(13) are of the form
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history of the dynamical evolution of the system, through the
fractional RiemansLiouville operatorthlf“. Employing stan-
dard theorems of fractional calculé®seq 24 can be rewritten
in the equivalent form

Wo

—t Y =LW
ra-o)

tha W~ (25)

which explicitly includes the initial valueAy and thereby
underlines its slowly decaying contribution following the inverse
power lawt~®.28 Note that in the Brownian limit. = 1, the
I'-function in eq 25 diverges: lip.1 I'(1 — a) = o, and thus
the usual expressiodW/ot = LW is recovered.

Besides FourierLaplace techniques, equations of the type

J. Phys. Chem. B, Vol. 104, No. 16, 2008855

fractional relaxation equatidh

%DJ/D= — DY B0 (30)

As in eq 27, the solution of eq 30 is given in terms of the
Mittag—Leffler function

0= BE(—n7*t) (31)
By help of the fundamental relation
ra+ _
OD{th = J q-p (32)
Il+q-p)

(24) can be solved by the separation of variables. With a for any realq, p, moments of any order can be obtained from

separation ansatz of the ty@éx,v,t) = T(t) ¢(x,v), one obtains
the eigenequatioR%2746

dT(t) o
dt :_ODt ’ln,aTn; LgDn(X'U)Z_/ln,a(pn

(26)

for a given eigenvalué,,. The full solution is then the sum

the evolution equations. For the fractional Rayleigh equation
(23), the following result for the second-order moment is
obtained:

0= B, + (27 — DPYE,(—27*t%)  (33)
with [20dq = lim—. [3°ldq= ksT/m. In this fractional Rayleigh
process, the first moment, eq 31, decays slowly towards the

over all eigensolutions. Whereas the spatial part depends onsymmetric value lim-o @O0= 0. The second moment, eq 33,

the special form of the operatdr, the explicit temporal
eigensolution is expressed in terms of the Mittagffler
functiort” by

To(t) = Eg(—4,4t%) (27)
The series expansion for the Mittageffler function
a (At
E (At =Y — (28)
V= F(l + (XV)

shows the close relation to the exponential functi&—An, 1t)

= exp(—inat). Note that with A7, = An/T(1 + o),
Eo(—Anat®) ~ expEA*ngt®) for t < 1/(4; ) namely, for
short times, the MittagLeffler function evolves in a stretched
exponential manner. Conversely, for long times, the Mittag
Leffler function (28) follows the inverse power-law tail
Eo(—nat® ~ [Ana(1 — o)t~ t > 1/(An )Y Therefore,
the effect of the fractional operateD; ® in the fractional
Klein—Kramers equation (20), as well as in the fractional
Fokker—Planck equation (7) and the fractional Rayleigh equa-
tion (23) deduced from it, is the nonexponential relaxation of
single modex, reflecting the relatively slower decay of the

relaxes in the MittagLeffler pattern toward the thermal
equilibrium value@?ldy In egs 31 and 33, the subscript 0
denotes the initial value determined W(v). In the force-free
limit, the mean squared displacement of the fractional Fokker
Planck equation (5) read#’(= 2K t%/(T'(1 + a)), in agreement
with eq 6. Further properties of the fractional Fokk&lanck
equation (7) were discussed in ref 26.

Due to its phase space nature, the calculation of moments
for the fractional Kleir-Kramers equation (20) leads to several
cases, including joint moments. For example, For= 0, fdx
Jv dv and fdx /22 dv lead to the fractional Rayleigh equation
results (31) and (33), respectivelix dx fdv reveals the relation

d T*

— (= ,D; “—3m

& " (34)

from which

a1
Ui

follows. The double meanBEin eqs 34 and 35 denote the

averaging over botk andv. Note that eq 34 seems to contradict

the Newton-type relation didX= [M¥[Tknown in the regular
case. This “violation” results from the camouflaging effect of

X=Xy + [1 - E,(—#*t%)] (35)

initial condition, as has been seen from eq 25. Due to the the introduction of the long-tailed waiting time puft).

considerably longer waiting times experienced by the test

particle, the equilibration of the system is decelerated in

For the subdiffusive case® a. < 1, all results are dominated
by the Mittag-Leffler functions and noninteger power laws.

comparison to the analogous Brownian system. This is now |n the Brownian limit, the usual exponential behaviors and

exemplified by the moments derived from these evolution
equations.

integer power laws are recovered. Finally, the equilitwig
(x,v), Ws(z), and Wg(x) of the fractional Kleir-Kramers

The moments of a kinetic equation of the type (24) can be equation, the fractional Rayleigh equation, and the fractional

derived through integration which leads to simple fractional

Fokker—Planck equation are defined through eq 3, with the

differential equations for the desired moment. For instance, to corresponding expressions for the Boltzmann energies. They

obtain @0from the fractional Rayleigh equation (23), the
integration /v dv leads to the equation

E 1-a, ﬂ Ea_z
2= Jdv D%y [avw m 7 W(rt)  (29)

are thus equivalent to the Boltzman@Gibbs or Maxwell
equilibria found in the normal BrowniarMarkovian case&®
VI. Conclusion

A formal extension of the ChapmatKolmogorov equation
has been discussed. For a broad waiting time pdf with diverging

from which, through integration by parts, one recovers the characteristic waiting time, the fractional KlettKramers equa-
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tion has been derived. Thereby, the cutoff time assumption was

introduced which follows from the assumption that individual

sojourns of the test particle are of finite distance and are ruled

by the Langevin equation with Gaussiahcorrelated noise.

The presented model should therefore apply for particles which
the ClassesZschokke, |., Ed.; Reidel: Dordrecht, 1986.

eventually get stuck in position space. Consequently,

dynamics specified by the moments of the velocity changes,

eq 12, remain unchanged. From the resulting fractional Kiein
Kramers equation a fractional Rayleigh equation and the
subdiffusive fractional FokkerPlanck equation have been

deduced. The latter was independently derived from a general-

ized master equatiot.The present approach is close to thermal
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(14) Hughes, B. DRandom Walks and Random#monments Oxford
University Press: Oxford, 1995; Volume 1: Random Walks.

(15) Metzler, R.; Klafter, J. Submitted for publication.

(16) Levy, P.Theorie de I'addition dewariables alatoires Gauthier-
Villars: Paris, 1954. Gnedenko, B. V.; Kolmogorov, A. Nmit Distribu-
tions for Sums of Random Variabjégldison-Wesley: Reading, MA, 1954.

(17) Klafter, J.; Shlesinger, M. F.; Zumofen, Bhys. TodayLl996 49

equilibrium and leads to an understanding of the physical nature (2), 33.

of the generalized friction and diffusion coefficients occurring
in this fractional FokkerPlanck equation.
An interpretation which might be of relevance for biophysical

(18) Shlesinger, M. F.; Zaslavsky, G. M.; Klafter,Nature1993 363
31.

(19) West, B. J.; Seshadri, \Physical982 113A 203.
(20) Peseckis, FPhys. Re. A 1987, 36, 892.

prob|ems has been discussed for such cases where the Wamng _(21) The fractional Kleir-Kramers equation derived in ref 20 can be

time pdfw(t) possesses a finite first momehtAccordingly, a

microorganism explores the space in the presence of an external

field V(x) which corresponds to a distribution of food, or an
externally applied chemical or electrical field.

The alternative case when the particles lock onto a given
velocity direction, i.e., move ballistically for time spans with a

diverging characteristic time, has been considered by Barkai

and Silbey** These authors find an intermediate, superdiffusive

long-time behavior of the mean squared displacement according

to B0~ Agt?? with 0 < 8 < 1. Therefore, their model is
equivalent to continuous time collision models, and the resulting
fractional Fokker-Planck equation is different from the sub-
diffusive fractional FokkerPlanck equation obtained here.
However, the velocity distribution of this model is governed

by the same fractional Rayleigh equation found in the present

Written in the forn3°

)0 F®

W_ W (8 p
p [ . + (77 5" " 30 m )+ bV ]W(X,y,t)

whereV# denotes the WeylRiesz operator defined throud# V«f(x)} =
—|k|“f(K). From the above equation, it is easy to derive the fractional

telegrapher’s-type equation
+ V“E-]W
my

W 1AW _
a o

_9F
ox my

via integration. Neglecting the second-order time derivative in the high
friction limit, one recovers the fractional FokkePlanck equation which
was inferred in ref 22 for Ley flights in a random environment, discussed
in some detail in ref 23. This type of fractional KletiKramers equation

approach. The microscopic distinction between both models lies and its related fractional FokkePlanck equation, i.e., the kg noise

in the times spent in individual velocity modes, leading to
considerably different distances covered by the test particle.
It should finally be stressed that the fractional approach which
is of an overall non-Markovian nature differs from the general-
ized Langevin approach in which a temporal convolution is
assumed in the underlying stochastic differential equafibns.
In this case the resulting deterministic KleiKramers and
Fokker-Planck equations aflecal in time: the generalization

of the Langevin equation is transferred to time-dependent

coefficients?®
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