Relaxation in filled polymers: A fractional calculus approach
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In recent years the fractional calculus approach to describing dynamic processes in disordered or
complex systems such as relaxation or dielectric behavior in polymers or photo bleaching recovery
in biologic membranes has proved to be an extraordinarily successful tool. In this paper we apply
fractional relaxation to filled polymer networks and investigate the dependence of the decisive
occurring parameters on the filler content. As a result, the dynamics of such complex systems may
be well-described by our fractional model whereby the parameters agree with known
phenomenological models. @995 American Institute of Physics.

I. INTRODUCTION This rather simple model exhibits a nonzero instant modulus,
Gt Ge, involves creep for intermediate times and shows

Relaxation processes deviating from the classical Debyes',olid behavior with the equilibrium modulus, for large

or exponential behavior include dielectric relaxation, Stres%imest«r But for complex systems a more sophisticated
0.

relaxation, stress—strain relations, NMR relaxation or diffu- " . . .
S . L N approach is required. There, stress and strain are, in general,
sion in materials like liquids, liquid crystals, polymer melts . :
dependent on all strains and stresses at all times

and solutions, amorphous polymers, rubbers or biopolymer%, < (0...1), respectively, i.e. they are functionals of the form
The deeper physical understanding of non-exponential relax- e T

ation processes belongs to the many unresolved problems in

physics, as well as other topics occurring when one deals o(t)=>" [eb)], @
with such complex systems: the glass transition, the Vogel— 3
Tamann—Fulcher(VTF) behavior for viscosity or the e(t)=2¢ [o(t)]. ©)

Williams—Landel-Ferry (WLF) relation for viscoelastic
quantities or physical aging of polymers.

Non-exponential relaxation implies memory. A natural
way to incorporate such memory effects is fractional calculu
as shown by Glokle and Nonnenmach®&? and Friedrich
and Braun'® Via the involved convolution integral the
present state of the underlying system is influenced by al
states at earlier times =0..t. In recent papers® the frac-
tional relaxation concept with consideration of initial values _d7 (1)
was introduced and a physical interpretation of the paramg(t)_"0+70 qW
eters involved was given. Here, we first give a short sum-

mary of this concept before applying it to relaxation pro- wd“‘e(t)
cesses in filled polymers. =Gemo " T (Cmt Ge)(e(t) ~ €) (4)

The functional dependence usually finds expression in a
Boltzmann integrat! A special case of such an integral re-
lation is given by involving a power law kernémemory
%eading to fractional derivatives. The background of such a
kernel is discussed in Ref. 7. Thus a possible generalization
f Eq. (1) can be acquired by the formal substitution of
integer-order by fractional-order derivatives leading to

in the formulation as a fractional integral equatibe, and
Il. FRACTIONAL RELAXATION o, are the initial strain and stress, respectively. Here, the Ihs
of Eqg. (1) was generalized by a fractional powgy the rhs
involves w, say. Two different fractional parameters are in-
troduced as in general stress and strairpriori possess
do(t) de(t) _memori_e_s of different st_rengths. Both_ parame_ters fulfill _the
o(t)+ TOT=(Gm+Ge)TOT+Gee(t) (1) inequalities G=q,u<1, i.e. play an intermediate role in
between Hooke's d«(t)=Ee(t)) and Trouton’s
describing the stress—strain relationship. Here, the charactefe(t) = ne(t)) laws!! q and x must obey the additional
istic time constanty=G,,/ n,, was introducedsee Fig. 1 restrictionq= u for sake of monotonically decreasing relax-

We start off from the well-known standard solid or Zener
model(see Fig. 1 with the constitutive equation
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? it features a slow creep for larger times, an issue in direct
consequence of the assignment of unequally strong memo-
ries (the strain has a “weaker” memory and thus relaxes
faster than the strain causing a fluid-like behayido over-
G G come this feature, the formal addition of a term
m € G..7, %~ 9/dt Y¢(t) involving a memory of strengtly is

necessary to balance the strain for latgery. Thus one
results in
M | L= ~d7 (1)
" |__| TOqT,g-i-O'(t)—oo
é o dtHe(t)
:(Gm+Ge+G°°)(€(t)_€0)+GeTOMW
FIG. 1. Standard solid or Zener model. _d7 (1)
+Goo7'0 qW (5)

This model is called fractional solid model. It reduces to the
ation functions’ Whether such restrictions for the fractional fractional Zener model above Ed4) for G.—0. For
parameters are readily implied via the Kramers—Kronigq,u—1 one recovers a normal Zener model with an equilib-
relations—which must be valid as the fractional model basesium modulus given byG,=G.+G., .
on a linear response theory—is topic of current investiga- Several experimentally relevant functioriselaxation
tions. and retardation function, complex modulus and compliance,

Schiessel and Bluméhand more recently Heymans and relaxation and retardation time spectrum etoay be calcu-
Bauwen$® use hierarchical model analogues of springs andated via the Laplace—Mellin transform technique and can be
dashpots to motivate fractional derivatives. expressed in closed form by use of Fossfunction®5814

For g=u one arrives at a fractional formulation of the Here we are interested in describing a stress-strain experi-
Cole—Cole model whereas f@.=0 the fractional Maxwell ment with a harmonic external force. Hence we need the
model discussed by Nonnenmachir recovered which re- complex modulus which is given via
duces to the ;tandard Maxwgll model fpr-1. _ . (Gt G) + Geli wrg) *

But there is one shortcoming issue. As our starting point, G*(w)=
the standard Zener model, describes a solid system the frac-
tional model should also display solid-like behavior. For thefor the non-transient regime. The storage modulus thus be-
fractional integral Eq(4) this does not hold true fay>w but  comes

+G. (6)

1+(i(1)70)7q

. m . (0~ ) . -2 T
GmequOS?q'FGewq MCOS%-FGmequ-FGequ #cos—-

G'(w)= + G, 7
.2 - 7q
@09+ 2wqc057 +1

and the loss modulus is

T o - T
Gpmeddsin 7q +G@9 *#sin M —G@29 #sin TM

G"(w)= : (8)
~2 - mq
9+ quCOST +1

where the abbreviation®s= w1y andG,,.= G, + G, were introduced.
The relaxation time spectrurhis given by’

Gmd 7 79)9sin wq— G 7/ 79)#sin wu+ Gg( 7/ 79)* " Isin w(q— w)
(71 79)%9+ 2(7/ 1) 9c0s 7+ 1

1
H(r)== ©
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FI—GO 2-05595‘37”(‘;"1:(7) Ifofrt ?m:t9vbGtet: 1 ar(;d tju(e) ;ra_crtrl]on?lnplf_arameters FIG. 4. SpectrurH(7) for G,,=9, G.=1 and the fractional parameters
4=0.3,0.5,0.7,0.9from left top to bottom and x=0.7. The full line cor- q=0.8,4=0.65(—), q=0.6,4=0.5(- - -), q=0.52, u=0.515(—--), and
responds taj= . q=p=0.45(---)

~ ®=q >1. ' . . . .
and shows a power law ta (7) ~(7/7) for r/ro>1 unfilled polymers and want to investigate its usefulness if

learly, for u—q th rnover poin he final lon il . . . - .
Clearly, fo L the turnover point o the fina ong t_a applied to filled systems. We will show that it is also working
power law is shifted towards,,—. The spectrum is dis- . .2

. , .. well there and thus serves as a phenomenological description
played for various values of the fractional parameters in Figs. L
; . ~-0f the dynamics involved.
2 and 3. Fig. 4 shows the change of the spectrum for simul- : ; '
taneously decreasedand u with the additionally decreasing The increased strain energy of filled networks bases on
K two main issues: On the one hand adhesional contacts be-

difference of both. The “hill” flattens and the shift of the tween polymer chains and filler surface create additional
turnover point is obvious. This mirrors the actual situation in : : :
the experiments discussed here. crosslinks and thus enlarge the elastic moduli. On the other
hand the accessible volume of the polymer matrix is reduced
by the space occupied by the filler leading to a higher intrin-
sic stress in the network:*°In that course the involved pa-
Since the discovery of vulcanization of natural rubber byrameters should also vary with changing filler content, and,
Charles Goodyear in 1839 and the patent for the first pneu byeversely—if experimentally measured—should retain cer-
the Belfast veterinary John Boyd Dunlop in 1888 one hagain information on the filler content itself.
been interested in improving the mechanical properties of The dynamics in complex systems are discussed paral-
rubber, not at least for safety and economy in automobilismlelly to the glass forming process in Ref. 17.
The mechanical properties of polymer networks are mas-
sively influenced by the addition of certain filling substances;, rgsuLTs

(fillers).’> Whereas the quasistatic behavior of filled net- _ . _
works is fairly well understodd it is the dynamics that still Four different series of specimens were measured by

- ‘ 118 : : ; i
lacks adequate descriptions. Here, we introduced our fracSchick;” two apiece filled with carbon black and silicates,

tional model which provides a pretty good description offespectively. Here we concentrate on the silica filled series
labeled NR32237 and the carbon black filled series S10 in-

lll. FILLED POLYMERS

G/

FIG. 3. SpectrunH(7) for G,,=9, G.=1, and the fractional parameters
g=0.7 andx=0.3,0.5,0.7,0.9from right top to bottom The full line cor- FIG. 5. Storage modulus for NR32237 with a varying filler content
responds t@= u. F=0,20,40% phi(from bottom to top curve
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FIG. 6. Loss modulus for NR32237 with a varying filler content FIG. 8. Relaxation time spectrum for S10. Filler content: 0,20,40,60% phr.
F=0,20,40% phi(from bottom to top curve The higher the filler content the more the power law tail is shifted to higher
vertical values.

volving seven and four different filler degrees respectively. ] o )
The experimental measurement is seriously sensitive t§Pr Py our model considerably effect the dissipation. In Fig. 8

preparation and handling. Thus some of the data pointgqe spectra.for a carbon black.filled series., S10, are plotted,
—especially of the two series not considered here—had to bfr comparison. Clearly, for increased filler content the
discarded. Nevertheless there remain enough for a meaningl@xima of the spectra are slightly shifted to higher time
ful discussion. Filler content was varied from 0 up to 60 phrconstants and—the major effect indeed—the center hill is
(chemical mass concentratiomeaning relative mass frac- flattened and the slope of the long ta_ll is de_creased showing
tions in the range 0...37.5%. Via harmonic stress-strain ext'€ more and more enhanced relative existence of slower
periments the complex modulus was measured. By construcélaxation processes. This means that added filler particles
tion of a master curve one obtains the modulus in af@using a successively higher degree of structural inhomoge-
frequency window from approximately 18° to 102 c/sec. nei.ty broadgn the spgctrum ;ignificantly. The range over
Data fits are done by use of the standard simple%"’hwh H(7) is plotted is .optlmlstlcally chosen to be Wlder.
algorithm?® simultaneously executed f@’ andG”. Typical than the correctly described range _of the master curves in
fits of the loss and storage moduli according to H@sand ~ °rder to make the changes utterly visible.
(8) for three different filler contents are displayed in Figs. 5 o
and 6. The relaxation time spectra of the series correspond- Eauilibrium modulus
ing to these figures are displayed in Fig. 7. In principle, there  Figure 9 shows the equilibrium modulu, for all
is similar behavior for silicate and carbon black filled net- specimengexcept altogether 3 discarded data poinEach
works, only the absolute magnitude of some of the characseries ofG, is normalized in respect to its own zero value
teristic quantities is differentsee below. As can be seen G, (F=0) whereF denotes the filler content in the chemical
G’ is correctly described over a range of 15 decades in timenass fraction phr. Note that some points may represent more
whereasG” can simultaneously fitted over about 10 decadesthan one specimen. All normalized data show satisfying data
only, indicating that there additional processes not accountegbllapsing indicating the independence of the actually under-
lying specimen’s matrix. Thus having at hand these data on
G, it is not possible to distinguish between silica and carbon
H(r) black filled systems. That a difference of the fit parameter

G/G(F =0)

17.5

R — A 2
FIG. 7. Relaxation time spectrum for NR32237. Filler content: 0,30,60%
phr. The higher the filler content the more the power law tail is shifted to
higher vertical values. FIG. 9. Normalized equilibrium modulus vs filler content.
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FIG. 10. Normalized equilibrium modulus vs filler content for the series FIG. 11. Difference of the fractal parameters=q—u for the series
s10. NR32237 fitted by modified VTF law foF;=0.936 phr and 0.798 phr

(dashed

Feri of about 10 phr does not affect the fit's quality signifi- centage near 30%. These poles may be assigned critical point
cantly is due to the nonlinear connectionuigy (see below  exponent® of g=—2.5 or —2 for Brinkman’s and Eilers
that is not too much affected in this special range of variaand van Dijck’s formulas, respectively. This observation en-
tion. Fig. 10 shows the same for the series S10, exclusivelgbles one to speak of critical filler concentrations in the per-
(as it occurs to be the best measured of the four series  colation scheme: given a certain amount of filler worked into
Two models are employed to fit these data: Brinkman'sthe polymer sample it will form clusters. Near the critical

formula’® concentratiorf;; the largest cluster expands in a power law
G, F |25 divergence, the filler percolates. This causes the existence of
G, =( “Eo , (100  a critical point in the dependence Gf, on F. A comparison
0 rit with the percolation threshold for a three-dimensional simple
and Eilers’ and van Dijck’s formufd?? cubic lattice of about 31% shows a reasonable agreement.
G E 2 For further discussion see Ref. 16. The formation of a filler
—€_ ( 1+ 1_25—) , (11 cluster running through the whole specimen massively stiff-
Go 1=F/Fei ens the sample and causes a flattened relaxation time spec-
whereGy,=G(F=0) is the modulus of the unfilled specimen trum.
of the actual series, arfd.; is a free fit parameter. For the Concluding this subsection it is worth remarking that by

few data points one cannot distinct upon the use of eithethe relatively clear dependence Gf on F—if samples are
function. Also for S10 which shows the most accurate depencarefully handled—our model paramet&, may be well
dence both formulas do their job well. The critical filler con- bequested to render information &nif compared toGg.
tent is listed in Table | where fov; the critical volume

fraction of the filler an gpeu-pre conversion factor was ap- B. “Homogeneity” a=q—pu

plied. . L . :
Now both of these formulas show some common and Besides the modulus, one is interested in the relaxation

very appealing features. For low values Bf(and F =1 time spectrum, especially the power law regions. In spite of

for Brinkman’s they reduce to the theoretically predicted the datg collapglng foG, |nd|cat|ng. a general phy§|cal
Einstein—Smallwood relatii2* mechanism of fillers upon the equilibrium modulus, is

strongly dependent on the very single series, i.e. the under-
lying network. « is very sensitive on the accuracy of the
Gy 100 constructed master curves. For the NR32237 series the data
. . . . . points show the clear behavior plotted in Fig. 11. Fig. 12
vahq for ideal balls in suspension. For the influence of thedisplays the data for the carbon black filled series S10. For
particle shape see Ref. 16. Both formulas show a pole fo

FF f about 0.8..0.9 ding t | fhe silica filled samples the variation is much more signifi-
= Ferir OF @bOUL ©.6...U.5 corresponding 1o a volume per- .. than for the carbon black series. The last could in fact

also be fitted by an exponential. Nevertheless all data points
displayed in Fig. 11 are side-checked to be reliable and, in
addition, both kinds of fillers should cause a similar effect.
Formula(13) is thus applied to both of them showing nice

G F
—2=1+125— (12)

TABLE I. Critical parameters for the equilibrium modulus.

Formula Series F erit U rit
agreementeven for Fig. 12 this is a meaningful statement
Eilers and van Dijck all 0.798 028  despite of the use of three fit parameters to merely four data
Brinkman S;I? 8:322 g:gg points as Eq(13) issues a very unique behavioFor F=0
s10 0.901 031 « bears its largest valugmaximum presence of polymer

Addition of filler causes a decreasing aefand forF—F;
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a teristic quantity of the free network exclusively. Both of the
0.124 single fractional parameterg,and u, decay with increasing
filler content andy ranges in between ca. 0.8...0.5. The frac-
0.11 tal parameters influence the whole shape of the modulus over

the frequency axis so that both underlying network and filler
F[phr] are responsible for their actual quantities. The range over

which g ranges for silica filled samples is approximately of a
0.09 factor of 2 in comparison to both of the carbon black series.
It is thus a reliable differentiation upon the filler type if a
0.08 whole series or-=0,...F=F; is available.G,, is always
relatively small—mostly even less than one—so that it is
only relevant for small filler concentrations where it is about
a factor of 4 less thais.. It determines the slope of the
storage modulus for low frequencies, is merely a horizon-
FIG. 12. Difference of the fractal parameters=q—u for the series S10.  tal shift in the log—log plot. It does vary within one order of
Fit by modified VTF law forF;=0.901 phr and 0.805 pHdashedl magnitude. AG,, is é—peu—p?e constanty,, is varied in-

versely proportional ta.

10 30 40 50 60

only a small constant value responsible for the polymer oc-

cupying the remaining space in between the percolating filleW. CONCLUSIONS
should be left whereas the filler's contribution vanishes iden-
tical to zero. A possible function fulfilling these requirements
is the modified Vogel-Tamann—Fulch@fTF) relation:

The concept of fractional relaxation was successfully ap-
plied to describing filled polymer networks. Despite the
growing structural inhomogeneity with the addition of filler
material this homogeneous phenomenological concept does
= Qremt Qvar™ Arem™ @oXP=— 13 provide an appropriate tool to modeling relaxation dynamics.
o et N The equilibrium modulus shows a critical behavior in
where e, denotes the remaining polymer for the critically ¢onsistence with a simple percolation picture. The functional
filled system and varying., is caused by polymer succes- form follows well-known relations developed by Eilers and
sively replaced by filler material. Equatidd3) has a hori- yan pijck and Brinkman. In this scheme of percolation the
zontal asymptote issuing the critical behavior in the vicinity fjjjer constitutes clusters the correlation length of which di-
of F;. The value of the critical filler concentration is taken verges in the vicinity ofF ;. By the same time the relax-

from the G, fit. ation time spectrum becomes more and more flat involving a
ag is about 0.025 for NR32237 and 0.074 for S10. Thusygatively higher percentage of longer relaxation times. The

ag may be a candidate parameter to distinguish betweeﬂependence af=q— u onF may be described by a Vogel—
filler types. Of course this statement needs verification byrsmann—Fulcher law with an additional constant.

further experimental results not accessible to us so far. A clear dependence oF is exhibited by bothG, and
~ This way, for the description of both quantities, equilib- , pyt they do not give knowledge about the type of the filler
rium modulus andr altogether 4 fit parameters are ”eeded-particles. This is provided by the range of variance of the

a may be interpreted as a measure of homogeneity. FOr SUgractional parameteq being of a factor of about 2 for silica
cessively added filler, i.e. for increasing structural '”homo'particles in comparison to carbon black.

geneity, « is decreasing. Botls, and o show clear behav-
iors in their variance upor- and vary in an expected
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