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Brownian Particle in a Poisson-Shot-Noise Active Bath:
Exact Statistics, Effective Temperature, and Inference

Costantino Di Bello, Rita Majumdar, Rahul Marathe, Ralf Metzler, and Édgar Roldán*

The dynamics of an overdamped Brownian particle in a thermal bath that
contains a dilute solution of active particles is studied. The particle moves in a
harmonic potential and experiences Poisson shot-noise kicks with specified
amplitude distribution due to moving active particles in the bath. From the
Fokker–Planck equation for the particle dynamics, the stationary solution for
the displacement distribution is derived along with the moments
characterizing mean, variance, skewness, and kurtosis, as well as finite-time
first and second moments. An effective temperature is also computed
through the fluctuation–dissipation theorem and show that equipartition
theorem holds for all zero-mean kick distributions, including those leading to
non-Gaussian stationary statistics. For the case of Gaussian-distributed active
kicks, a re-entrant behavior from non-Gaussian to Gaussian stationary states
and a heavy-tailed leptokurtic distribution across a wide range of parameters
are found as seen in recent experimental studies. Further analysis reveals
statistical signatures of the irreversible dynamics of the particle displacement
in terms of the time asymmetry of cross-correlation functions. Fruits of the
work is the development of an compact inference scheme that may allow
experimentalists to extract the rate and moments of underlying shot-noise
solely from the statistics the particle position.

1. Introduction

Following the probabilistic description of Brownian motion by
Einstein and Smoluchowski,[1,2] Langevin introduced the concept
of the fluctuating force,[3] to capture (schematically[4]) themotion
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of a single particle. Fluctuating forces
have meanwhile become a key principle
in the formulation of non-equilibrium
statistical physics.[5–7] We note that the
classically considered systems are con-
nected to a thermal bath, effecting, in-
ter alia, the temperature dependence of
the diffusion coefficient of a Brown-
ian particle embodied in the Einstein–
Smoluchowski relation.[8]

The search for fundamental laws gov-
erning stochastic processes in a non-
equilibrium system is one of the most
active fields of research within statistical
physics. While thermodynamic laws are
well established in the context of equi-
libriummacroscopic systems,[9] their un-
derstanding turns out to be signifi-
cantly more challenging when studying
the erratic motion of microscopic non-
equilibrium systems, such as unicellu-
lar organisms, which lead to fluctuating
transfer of energy and matter. Stochas-
tic thermodynamics is currently playing
a central role in establishing a theoret-
ical framework to study small systems

far from equilibrium, in which fluctuations and randomness play
a significant role.[10,11]

A key goal of contemporary non-equilibrium thermodynam-
ics is to find universal principles governing the behavior of
active matter. Active matter has recently attracted considerable
attention in statistical physics, biophysics, and soft matter.[12–14]

Popular toy-models in statistical physics of active matter are
the so-called (microscopic) active particles, which exhibit self-
propulsion in fluctuating media by consuming and dissipating
internal and environmental sources of energy. Such models have
been very successful in describing experimental records of the
motion of, for example, bacterial suspensions of different types of
bacteria or light or chemical gradient controlled artificial micro-
swimmers.[14,15] Active systems operate away from equilibrium
and thus do not satisfy classical detailed balance nor a fluctuation-
dissipation relation—but follow recently discovered principles
derived in the framework of stochastic thermodynamics.[16–21] It
is customary to describe themotion of active particles using over-
damped Langevin equations, in which an active noise component
is considered along with the thermal Gaussian white noise, giv-
ing rise to non-trivial statistics.[13,14] Examples include Ornstein–
Uhlenbeck noise, run-and-tumble motion, telegraphic, Lévy, and
Poisson shot noise.[22–27] In general, it is not possible to derive
exact analytical expressions for the emerging statistics (e.g.,
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finite-time moments, stationary distribution, etc.) of Langevin
equations with active noise, with the exception of few examples
for which such calculations becomes a formidable task.[28–30]

A fundamental question in statistical physics is the interac-
tion of thermal energy and confinement. At equilibrium, the par-
ticle displacement in a conservative force field is described by
the Boltzmann distribution.[8,9] Of particular interest in physics
is the linear Hookean force field. In a thermal bath this corre-
sponds to the Brownian harmonic oscillator.[6] For colloidal par-
ticles a linear force can be implemented experimentally by op-
tical tweezers.[31] While the relaxation dynamics of the colloidal
particle toward equilibrium may be non-exponential in complex
fluids,[32] the equilibrium distribution typically remains Gaus-
sian in a thermal bath, with an externally tunable width depend-
ing on the force constant of the tweezers trap.
Optical tweezers setups can also be immersed in active reser-

voirs. Such studies showed that the displacement distribution
of the confined particle becomes progressively non-Gaussian
with increasing activity of the (bacterial) bath.[15,33–38] The dis-
tribution of the system exhibits a concentrated central region
with heavier-than-Gaussian tails, thereby enhancing the sys-
tem dynamics.[36,39–47] Under the influence of coloured noise,
two approximations to the stationary probability distribution
for Langevin dynamics with colored Ornstein-Uhlenbeck noise
in conservative potentials are extensively investigated in liter-
ature (Fox[48] and UCNA[49]). Recently, several approximations
have been introduced for stochastic systems that relax to a non-
equilibrium stationary state in the presence of colored noise. In
a 1D active system, the precise stationary probability distribution
is evaluated rarely, for example, for run-and-tumble dynamics.[50]

In a system composed of interacting active particles, the ex-
plicit formula for the non-equilibrium stationary probability dis-
tribution is achieved using the unified colored noise approxima-
tion (UCNA)[51] as well as Fox’s approximation.[52] For active-
Ornstein–Uhlenbeck particles (AOUPs), the steady-state distri-
bution is calculated at a small but finite persistence time. The
particle shows a non-Boltzmann distribution but still maintains
detailed balance.[53]

A plausible model for the noise exerted by a dilute solution
of active systems (e.g., bacteria) to an optically-trapped colloidal
particle is a sequence of active kicks with arrivals at random
Poissonian times. Such noise has also been used to describe
recent experiments in soft[36,54] and granular matter.[29] Ana-
lytically solving the Fokker–Planck equation with such a form
of non-Gaussian active noise poses a considerable challenge.
Thus, in this context, we here address the Fokker–Planck equa-
tion for a linear stochastic model in the presence of both thermal
(Gaussian white) and active Poisson shot noise (PSN), aiming
to calculate the stationary probability density, along with closed-
form solutions for its moments. PSN has recently captured
the interest of the statistical physics community due to its rich
and complex phenomenology.[22,29,58,61–63] One of the key results
of this research line was the derivation of the Fokker–Planck
equation associated with the Langevin description of stochastic
models subject to PSN. In ref. [58] it was shown how PSN can be
seen as the limit of a dichotomous Markov process. In particular,
it was observed that PSN can significantly affect the statistical
properties of a particle in a thermal bath subjected to a periodic
potential, either inducing absolute negative mobility,[22] or

enhancing its transport properties.[59–61] Ref. [62] discusses the
non-Gaussianity of this process and shows how the microscopic
rate of jumps is connected to the macroscopic stationary prob-
ability of the process. The same authors discuss in ref. [63] how
to solve the model with an arbitrary non-linear frictional force. It
was also shown[64] how a systemwith PSN can exhibit a Brownian
yet non-Gaussian behavior having a mean squared displacement
increasing with time while possessing a non-Gaussian distribu-
tion of the position (see also[66] for more details). It has also been
found[65] that a particle in a bath with PSN can have amuchmore
efficient escape rate with respect to the case of pure Gaussian
white noise. These results were illustrated with efficient meth-
ods of simulating stochastic differential equations with PSN
in [67, 68].
In this paper we consider aminimal Langevin dynamicsmodel

for an overdamped Brownian particle that is confined in a har-
monic potential and immersed in diluted solution of active sys-
tems, that is, the particle is simultaneously subject to a thermal
and an active noise, the latter being modeled by a PSN. The PSN
here implies that in an infinitesimal time interval dt there is a
probability rdt that the particle receives a shot, or kick, instanta-
neously shifting its position from x(t) to x(t + dt) = x(t) + shot.
Each kick is considered to be independent of the position at time
t, and all kicks are independent identically distributed (i.i.d.) ran-
dom variables. The intensity of the kicks may come from some
specified probability density function (PDF). For simplicity, we
have assumed instantaneous kicks, see, for example, ref. [70] for
a generalization to PSN with finite duration pulses. The mathe-
matical formulation of such a stochastic process was discussed
in refs. [55, 56], and its steady-state distribution was obtained in
ref. [57].
The rest of this work is organized as follows. In Section 2, we

introduce our setup, a Langevin equation describing the motion
of a trapped Brownian particle that is subject to Gaussian white
and Poisson shot noises, and we establish the Fokker–Planck
equation (FPE) associated with its dynamics. In Section 3 we de-
rive exact analytical expressions for the stationary PDF and the
moments of the particle position from the FPE. To this aim we
solve the FPE in the rather general setting in which the ampli-
tude of the PSN is generated from a specified distribution. Next,
we link our model to a possible experimental scenario, provid-
ing an exact inference method for the PSN kick statistics. Then
we derive general results related to the effective temperature for
our model in terms of the Onsanger regression principle. In Sec-
tion 4 we consider a specific case of the Gaussian distribution of
the PSN and derive analytical results. For this example, we dis-
cuss the notion of the effective temperature and provide insights
about the non-Gaussianity of the process through a detailed anal-
ysis of the excess kurtosis. We conclude in Section 5 with some
remarks in relation with recent soft-matter experiments with ac-
tive matter, and provide insights about irreversibility and dissi-
pation of our model. Details of the derivations, like calculations
of two non-stationary moments and long-time susceptibility, and
details of numerical simulations are relegated to the appendices.

2. Model

We consider a 1D overdamped Brownian particle trapped in the
harmonic potential U(x) = 𝜅x2∕2 of force constant 𝜅 that is in
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simultaneous contact with a thermal bath and an active bath.
The overdamped Langevin equation describing themotion of the
Brownian particle then reads

𝛾Ẋt = −𝜅Xt +
√
2kBT𝛾𝜉t + 𝛾𝜂t (1)

where Xt is the particle position at time t, 𝛾 is the friction coeffi-
cient, kB is the Boltzmann constant, and T is the temperature of
the thermal bath. The stochastic force 𝜉t is a Gaussianwhite noise
with zero mean ⟨𝜉t⟩ = 0 and autocorrelation ⟨𝜉t𝜉t′⟩ = 𝛿(t − t′).
The term 𝜂t is a stochastic force, which models instantaneous
random displacements experienced by the particle as a result of
a kick received from constituent particles of an active bath.We as-
sume that these kicks occur with Poissonian waiting times with
constant rate 𝜔, that is, 𝜂t is a PSN that can be written as[56]

𝜂t =
Nt∑
i=1

Yi𝛿(t − ti) (2)

Here, Yi is the positional displacement experienced by the parti-
cle due to the ith active kick. Furthermore, ti are the arrival times
of a Poisson counting process with rate 𝜔, and Nt is the total
number of kicks occurring up to time t. Hence, the PDF of Nt,
P(n, t) = P(Nt = n), is Poissonian and given by

P(n, t) = exp(−𝜔t)
(𝜔t)n

n!
(3)

As mentioned, we assume that the sequence Yi of kick ampli-
tudes is an i.i.d. process with dimension of length in which each
Yi is sampled from a predefined PDF 𝜌a(y). Under these assump-
tions, it follows that the process 𝜂t has the following statistical
features

⟨𝜂t⟩ = 𝜔⟨Y⟩a, ⟨𝜂t𝜂s⟩ − ⟨𝜂t⟩⟨𝜂s⟩ = 𝜔⟨Y2⟩a𝛿(t − s) (4)

where ⟨Yn⟩a denotes the nth moment of the PDF 𝜌a. Moreover,
we also assume that the two noises 𝜉t and 𝜂t are independent, that
is, ⟨𝜉t𝜂s⟩ = ⟨𝜉t⟩⟨𝜂s⟩ = 0. We finally introduce the characteristic re-
laxation time

𝜏 ≡ 𝛾

𝜅
(5)

which allows us to rewrite Equation (1) in the more convenient
form

𝜏Ẋt = −Xt +
√
2𝜏

kBT
𝜅

𝜉t + 𝜏𝜂t (6)

We may decompose the Langevin Equation (6) into the two
separate component stochastic processes X1,t and X2,t such that
Xt = X1,t + X2,t, allowing us to write

𝜏Ẋ1,t = −X1,t +
√
2𝜏

kBT
𝜅

𝜉t (7)

𝜏Ẋ2,t = −X2,t + 𝜏𝜂t (8)

The initial conditions are such that X0 = X1,0 + X2,0. The formal
solutions of the Langevin equations for X1,t and X2,t read

X1,t = exp(−t∕𝜏)

[
X1,0 +

√
2kBT
𝜏𝜅 ∫

t

0
ds𝜉s exp(s∕𝜏)

]

X2,t = exp(−t∕𝜏)
[
X2,0 + ∫

t

0
ds𝜂s exp(s∕𝜏)

] (9)

Thus, after summation we get

Xt = exp(−t∕𝜏)

[
X0 + ∫

t

0
ds

(√
2kBT
𝜏𝜅

𝜉s + 𝜂s

)
exp(s∕𝜏)

]
(10)

which is precisely the solution of Equation (1). Clearly, this fac-
torization also holds in the stationary state. By denoting with
X = limt→∞ Xt, with X1 = limt→∞ X1,t and X2 = limt→∞ X2,t we ob-
tain that X = X1 + X2. Since X is the sum of two independent
random variables, we can use some simple identities to compute
its moments, variance, skewness and kurtosis, as we will show in
Section 3.
Figure 1 sketches a possible experimental realization of our

model in which a colloidal particle is embedded in a Newtonian
fluid at temperature T and trapped in a static harmonic poten-
tial created, for example, by optical tweezers. The colloid is put
in contact with a non-equilibrium bath of self-propelled bacte-
ria. The bacterial activity may be tuned externally (e.g., by set-
ting a constant concentration of nutrients) in such a way that
both the kick rate 𝜔 and the amplitude distribution 𝜌a(Y) of the
kicks exerted on the particle can be maintained at a steady level.
Furthermore, the particle and bacteria may be trapped in a peri-
odic chamber where fluid flows at a constant speed giving rise to
an asymmetric bacterial kick distribution ⟨Y⟩a ≠ 0 (Figure 1, left
panel), or in a closed chamber for which the bacterial kick dis-
tribution is symmetric around zero ⟨Y⟩a = 0 (Figure 1, middle
panel).
The colloid dynamics shows some exciting behavior as we

change the mean spiking rate 𝜔 or the bacterial activity. Here,
we present some trajectories of the particle driven by the active
noise (Equation (56) and Section 4) for different 𝜔. It is evident
that for small 𝜔 the average value of the position of the colloid
is close to zero, and it behaves like a Gaussian process. As we
increase the rate 𝜔, the jumps in the trajectory become promi-
nent, and the system is far from equilibrium. We also varied the
mean velocity of the bacteria. The green trajectory corresponds to
𝜇 = 0, when a particle is optically trapped in a closed container
filled with bacteria. Similarly, the red trajectory stands for the av-
erage velocity 𝜇 = −1, and the blue trajectory is for 𝜇 = 2, repre-
senting an optically-trapped particle in a bath with bacteria that
experience a homogeneous fluid flow.
It was shown previously[55] that the above system can be de-

scribed by the Fokker-Planck equation

𝜏
𝜕

𝜕t
P(x, t) = 𝜕

𝜕x

[
xP(x, t)

]
+
kBT
𝜅

𝜕2

𝜕x2
P(x, t)

+𝜔𝜏 ∫
∞

−∞
[P(x − y, t) − P(x, t)]𝜌a(y)dy, (11)
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Figure 1. (Left panel) Sketch of a Brownian particle trapped with an optical tweezer within periodic boundary conditions in a dilute solution of active
particles with a nonzero net average drift (𝜇 ≠ 0). (Center panel) The trapped Brownian particle is subject to closed boundary conditions and immersed
in a dilute active bath composed of active particles with zero net drift (𝜇 = 0). (Right panel) Representative stochastic trajectories of the Brownian particle
in the active bath exerting a Poisson shot noise (PSN) on the particle (on top of the thermal noise). In this illustration, the amplitude of the kicks of the
PSN is drawn from a Gaussian distribution given by Equation (56). Different colors represent trajectories for different parameter values varying the rate
𝜔 and mean value of the amplitude 𝜇 of the PSN kicks (see legend).

where P(x, t) = Prob{x ≤ Xt < x + dx} denotes the probability
density over space at time t, with some initial condition
P(x, 0) = P0(x) and with vanishing probability at the extremities,
limx→±∞ P(x, t) = 0. We will not focus on the time-dependent
probability P(x, t) but rather its stationary distribution P(x) ≡
limt→∞ P(x, t). We will use Equation (11) to derive P(x). We will
proceed by deriving the analytical expression for P(x) with its
first and second moments, skewness, and kurtosis, for arbitrary
kick intensity distribution 𝜌a(y). We will then consider the spe-
cific case of Gaussian kick intensities, and conclude with some
results concerning other intensity distributions and with some
future directions of research.

3. Main Results

We now derive the stationary PDF P(x). To this end, rewrite the
FPE Equation (11) in the form

0 = 𝜕

𝜕x

[
xP(x)

]
+
kBT
𝜅

𝜕2

𝜕x2
P(x) − 𝜔𝜏P(x)

+𝜔𝜏 ∫
∞

−∞
P(x − y)𝜌a(y)dy (12)

where we set the left hand side to zero and used the normal-
ization condition of 𝜌a. We notice that the integral term in this
integro-differential equation is just a convolution of two func-
tions, and it is then convenient to apply a Fourier transform.
We denote the respective Fourier transform of P(x) and 𝜌a(y) by
P̂(q) = ∫ ∞

−∞ exp(iqx)P(x)dx and �̂�a(q) = ∫ ∞
−∞ exp(iqy)𝜌a(y)dy, where

i is the imaginary unit. We then obtain

0 = −q 𝜕

𝜕q
(P̂(q)) −

kBT
𝜅

q2P̂(q) + 𝜔𝜏P̂(q)�̂�a(q) − 𝜔𝜏P̂(q) (13)

which is an ordinary differential equation with the boundary con-
dition P̂(0) = 1. After some simple algebra we obtain

q
𝜕P̂(q)
𝜕q

=
(
−
kBT
𝜅

q2 + 𝜔𝜏�̂�a(q) − 𝜔𝜏

)
P̂(q) (14)

from which, in turn, we find

𝜕 ln(P̂(q))
𝜕q

= −
kBT
𝜅

q + 𝜔𝜏

(
�̂�a(q) − 1

q

)
(15)

Hence the stationary PDF in Fourier domain reads

P̂(q) = exp
(
−
kBT
2𝜅

q2
)
exp

(
𝜔𝜏 ∫

q

0

�̂�a(q
′) − 1
q′

dq′
)

(16)

As we can see the previous expression is the product of the two
terms

P̂1(q) = exp
(
−
kBT
2𝜅

q2
)
, P̂2(q)

= exp
(
𝜔𝜏 ∫

q

0

�̂�a(q
′) − 1
q′

dq′
)

(17)

where P̂1(q) is the characteristic function of the random variable
X1, while P̂2(q) is the characteristic function of X2. Therefore, as
stated before, this confirms that X = X1 + X2, since the character-
istic function of the sumof two random variables is the product of
the two characteristic functions. Finally, by inverting the Fourier
transform, P(x) reads

P(x) = ∫
∞

−∞

dq
2𝜋

exp (−iqx) exp
(
−
kBT
2𝜅

q2 + 𝜔𝜏I(q)
)

(18)

where

I(q) ≡ ∫
q

0

�̂�a(q
′) − 1
q′

dq′ (19)

Equation (16) was already derived in ref. [57] through an alter-
native mathematical approach. For a given choice for 𝜌a Equa-
tion (18) can be numerically implemented using the GNU Scien-
tific Library (GSL), see Appendix D for further details. In the next
subsection we will discuss the moments of the random variables
X , X1, and X2.
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3.1. Moments of the Distribution

We now derive the analytical expressions for the lower-order mo-
ments of X in the stationary state. We use the notation

⟨Xn⟩ = ∫
∞

−∞
xnP(x)dx (20)

for the nth moment of the random variable X . In what follows,
we will mainly focus on the variance Var[X ], skewness �̃�3[X ], and
excess kurtosis ex[X ] of the random variable X . The general ex-
pressions for these central statistical quantities, in terms of the
central moments of X , are given by

Var[X ] ≡ ⟨(X − ⟨X⟩)2⟩, �̃�3[X ] ≡ ⟨(X − ⟨X⟩)3⟩
Var[X ]3∕2

,

ex[X ] ≡ ⟨(X − ⟨X⟩)4⟩
Var[X ]2

− 3 (21)

The statistical quantities defined in Equation (21) may be directly
evaluated by expanding the binomials and using the identity

⟨Xn⟩ = 1
in

dn

dqn
P̂(q)

||||q=0 (22)

where P̂(q) is given by Equation (16). After some algebra, we ob-
tain the first four moments of the particle position in the station-
ary state

⟨X⟩ = 𝜔𝜏⟨Y⟩a (23)

⟨X2⟩ = kBT
𝜅

+ 𝜔𝜏

2
⟨Y2⟩a + 𝜔2𝜏2⟨Y⟩2a (24)

⟨X3⟩ = 𝜔𝜏

3
⟨Y3⟩a + 𝜔3𝜏3⟨Y⟩3a

+ 3𝜔𝜏⟨Y⟩a(kBT
𝜅

+ 𝜔𝜏

2
⟨Y2⟩a), (25)

⟨X4⟩ = 𝜔𝜏

4
⟨Y4⟩a + 4𝜔2𝜏2

3
⟨Y⟩a⟨Y3⟩a + 𝜔4𝜏4⟨Y⟩4a

+ 6𝜔2𝜏2⟨Y⟩2a(kBT
𝜅

+ 𝜔𝜏

2
⟨Y2⟩a)

+3
(
kBT
𝜅

+ 𝜔𝜏

2
⟨Y2⟩a)2

(26)

Substituting expressions (23)–(26) into Equation (21) we directly
find the analytical expressions for the stationary variance, skew-
ness, and excess kurtosis associated with the particle position.
We mention an alternative yet insightful way to evaluate the

moments of X through the statistics of X . As mentioned, in the
stationary state X = X1 + X2, with X1 and X2 being independent
random variables. This property implies the compact expressions
of the moments

⟨Xn⟩ = n∑
m=0

(
n
m

)⟨Xm
1 ⟩⟨Xn−m

2 ⟩ (27)

and for the variance, skewness, and excess kurtosis of X in terms
of those of X1 and X2

[69]

Var[X ] = Var[X1] + Var[X2] (28)

�̃�3[X ] =
(

Var[X1]
Var[X1] + Var[X2]

)3∕2

�̃�3[X1]

+
(

Var[X2]
Var[X1] + Var[X2]

)3∕2

�̃�3[X2] (29)

ex[X ] =
(

Var[X1]
Var[X1] + Var[X2]

)2

ex[X1]

+
(

Var[X2]
Var[X1] + Var[X2]

)2

ex[X2] (30)

We proceed by first discussing the moments of X1 and of X2, and
then we will use these moments to extract closed-form expres-
sions for the central moments of X .

3.1.1. Moments of X1 and X2

From Equation (17) it is clear that X1 is a Gaussian random vari-
able with zero mean. Hence, its first two moments are given by

⟨X1⟩ = 0, ⟨X2
1 ⟩ = kBT

𝜅
(31)

while its skewness and excess kurtosis are equal to zero, �̃�3[X1] =ex[X1] = 0.
ForX2, instead, the centralmoments can be found via the iden-

tity

⟨(X2 − ⟨X2⟩)n⟩ = 1
in

dn

dqn

(
exp(−iq⟨X2⟩)P̂2(q)) |q=0

= 1
in

dn

dqn
[
exp

(
𝜔𝜏

(
I(q) − qI′(0)

))] |q=0 (32)

where in the last expression we used that exp(−iq⟨X2⟩) =
exp(−(𝜔𝜏)qI′(0)). It is shown in Appendix A.2 that

⟨X2⟩ = 𝜔𝜏⟨Y⟩a (33)

and that, for n = 2, 3

⟨(X2 − ⟨X2⟩)n⟩ = 𝜔𝜏

n
⟨Yn⟩a, (34)

while for n = 4

⟨(X2 − ⟨X2⟩)4⟩ = 1
4
𝜔𝜏⟨Y4⟩a + 3

4
𝜔2𝜏2⟨Y2⟩2a (35)

From the last two equations we can immediately get the variance,
the skewness, and the kurtosis of X2

Var[X2] =
1
2
𝜔𝜏⟨Y2⟩a, �̃�3[X2] =

√
8

9𝜔𝜏
⟨Y3⟩a√⟨Y2⟩3a ,

ex[X2] =
1
𝜔𝜏

⟨Y4⟩a⟨Y2⟩2a (36)
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3.1.2. Mean, Variance, Skewness, and Excess Kurtosis of X

We can now obtain themean, the variance, the skewness, and the
excess kurtosis of X from expressions (27)–(30), and the results
of Section 3.1.1. Thus

⟨X⟩ = 𝜔𝜏⟨Y⟩a (37)

that is, the average of the position is directly proportional to the
average of 𝜌a and to the rate of kicks 𝜔. The variance reads

Var[X ] =
kBT
𝜅

+ 𝜔𝜏

2
⟨Y2⟩a (38)

Hence, as expected from Equation (28), on the right hand side a
thermal and an active contribution appear. Interestingly, the ac-
tive contribution, which is basically the variance of X2, scales as
𝜔𝜏, just as themean. This linear dependence on𝜔𝜏 is an effect of
the central limit theorem: both the mean and the variance must
scale as the mean number of events in a characteristic time—
which is indeed 𝜔𝜏.
The skewness of the process X reads

�̃�3[X ] =
√

8
9
𝜔𝜏

(
2kBT
k

+ 𝜔𝜏⟨Y2⟩a)−3∕2⟨Y3⟩a (39)

Interestingly, the distribution of X is skewed if and only if X2 is.
Note that having an amplitude distribution of kicks with zero
skewness does not imply that X2 is not skewed as well. Finally,
the excess kurtosis yields in the form

ex[X ] = 𝜔𝜏⟨Y4⟩a(2kBT
𝜅

+ 𝜔𝜏⟨Y2⟩a)−2

(40)

which only depends on positive quantities, thus the distribution
is always leptokurtic. This result is in line with experimental ob-
servations for colloidal particles immersed in bacterial and en-
gineered reservoirs.[15,36] Moreover, when considering T , 𝜅, and
the distribution 𝜌a(y) as fixed, we can find an optimal value of 𝜔
maximizing the excess kurtosis

𝜔∗ =
2kBT

𝜅𝜏⟨Y2⟩a (41)

returning the value ⋆
ex[X ] ≡ ex[X ]|𝜔=𝜔∗

∗
ex[X ] =

𝜅⟨Y4⟩a
8kBT⟨Y2⟩a (42)

In the limit when 𝜔 ≪ 𝜏, when the kicks are rare, both the skew-
ness and the excess kurtosis vanish, and we retrieve the results
of a Brownian particle in a quadratic potential.

3.2. Inferring the Statistics of the Underlying Active Kicks

Let us now establish a link with realistic experimental scenarios.
Both the rate𝜔 and the distribution 𝜌a(y), characterizing the PSN,
are in general not directly measurable from experiments. On the
other hand, the positions of the particles are directly measurable

so it in general possible to have access to the distribution P(x)
and its stationary moments. An interesting connection between
the microscopic quantities 𝜔 and 𝜌a(y) and the distribution P(x)
was obtained by Kanazawa et al. in ref. [62], where the rate 𝜔 was
related to the statistics of X from the relation

𝜔 = − lim
q→∞

[
q
𝜕P̂(q)
𝜕q

+
2kBT
𝜅

q2
]

(43)

From the results derived in Section 3.1.2 we add to the results
of ref. [62] the following relations which allow us to retrieve the
moments of Y from the moments of X

⟨Y⟩a = 1
𝜔𝜏

⟨X⟩ (44)

⟨Y2⟩a = 2
𝜔𝜏

Var[X ] −
2kBT
𝜅𝜔𝜏

(45)

⟨Y3⟩a = 3
𝜔𝜏

�̃�3[X ]Var[X ]
3∕2 (46)

⟨Y4⟩a = 4
𝜔𝜏

ex[X ]Var[X ]
2 (47)

Notably, Equations (43)–(47) provide a useful recipe for experi-
mentalists to extract stationary statistics of the hidden stochastic
process Yt which is generally not possible under the assumption
of more complex dynamics.

3.3. Effective Temperature

For a system described by an overdamped Langevin equa-
tion with active noise, one is often interested in defining an
effective temperature Teff .

[16–18] In close-to-equilibrium passive
isothermal systems an effective temperature can be defined by
using either the equipartition or fluctuation–response theorems.
In active systems however,mapping the non-equilibriumdynam-
ics to an effective equilibrium dynamics is fully reliable whenever
the stationary (or quasistatic) distribution is Gaussian.[73–75]

For non-Gaussian active dynamics, a possible definition of ef-
fective temperature is provided in terms theOnsanger regression
principle.[76,77] We will briefly expose it here, but for a more de-
tailed discussion we refer to refs. [17, 18, 78]. Let us consider that
our system, described by Equation (1), is at stationarity. Any ob-
servable At has an average, that we denote with ⟨At⟩, and a corre-
lation function defined as

CA(t, s) = ⟨AtAs⟩ (48)

Since the system is at stationarity, the average of any observable
does not depend on time, we can actually drop the dependence
on t and write ⟨At⟩ = ⟨A⟩. At time t = 0 we apply on the system
a constant small force 𝛿f that modifies the Langevin equation as
follows

𝜏Ẋt = −Xt +
√
2𝜏

kBT
𝜅

𝜉t + 𝜏𝜂t +
𝛿f
𝜅

(49)

During the relaxation toward a new steady state, any observable
A has a time-dependent average ⟨At⟩f depending on the force 𝛿f .
Onsanger regression principle states that the relaxation of the

Ann. Phys. (Berlin) 2024, 2300427 © 2024 Wiley-VCH GmbH2300427 (6 of 14)

 15213889, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300427 by U

niversitaetsbibliothek, W
iley O

nline L
ibrary on [19/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

perturbed system toward the new steady state can be seen as a
spontaneous equilibrium fluctuation. This translates into a sim-
ple equation[78] connecting the correlation function CA(t, s) and
the time-dependent response function (also known as suscepti-
bility) 𝜒A(t) here defined as

𝜒A(t) = lim
𝛿f→0

⟨At⟩f − ⟨A⟩
𝛿f

(50)

The Onsager relation for isothermal equilibrium systems at tem-
perature T reads

𝜒A(t) =
[
CA(t, t) − CA(t, 0)

]
kBT

(51)

Motivated by Onsager’s relation we can introduce an effective
temperature by the relation

1
kBTeff

=
𝜒A(t)

CA(t, t) − CA(t, 0)
(52)

When the time t is large compared to the typical relaxation time
of the system, in other words in the stationary limit t → ∞, At
and A0 become uncorrelated, that is, ⟨AtA0⟩ = ⟨A⟩2, thus we can
rewrite Equation (52) as

1
kBTeff

= 1
Var[A]

lim
𝛿f→0

⟨A⟩f − ⟨A⟩
𝛿f

(53)

Specializing Equation (52) to the position A = X reads

1
kBTeff

= 1
Var[X ]

lim
𝛿f→0

⟨X⟩𝛿f − ⟨X⟩0
𝛿f

= 1
Var[X ]

lim
t→∞

𝜒X (t) (54)

It is shown in appendix that the long-time susceptibility of the po-
sition reads limt→∞ 𝜒X (t) = 1∕𝜅. Using this result together with
the exact expression for the variance [Equation (38)], we get

Teff = 𝜅

kB
Var[X ] = T + 𝜅𝜔𝜏

2kB
⟨Y2⟩a (55)

In general the result of Teff provided by the fluctuation-
dissipation theory (FDT), is different from the one obtained from
the equipartition theorem. Nevertheless, in the specific case in
which PSN has zero mean, that is, when ⟨Y⟩a = 0, according to
Equation (23) also ⟨X⟩ = 0, and so we have that Var[X ] = ⟨X2⟩.
Thus in this situation, the equipartition theorem leads to the
same effective temperature than the FDT. Therefore, the effective
temperature could be a useful tool to map the second moment
within the PSN into the second moment of an effective isother-
mal nonequilibrium (yet non-Gaussian) system. We remark the
presence of fat (leptokurtic) tails as a footprint of the nonequi-
librium dynamics, as P(X) ≠ exp(−V(x)∕kBTeff ) is not Boltzman-
nian. Even though the variance can be captured by an effective
Gaussian model at temperature Teff , it remains mandatory to
employ a non-Gaussian description to capture higher-order mo-
ments such as skewness and kurtosis.[71,72] Below we now con-
sider a particular case where kick amplitudes are drawn from the
Gaussian distribution, as an application of this general discus-
sion.

4. Gaussian Kicks

For illustrative purposes we now consider a particular form for
the amplitude distribution 𝜌a(y) of the active kicks amplitude,
namely, the shifted Gaussian distribution

𝜌a(y) =
1
Z
exp

(
−
𝛽a𝛾

2

2ma

[
y − 𝜇

𝛾

]2)
(56)

This distribution (56) is analogous to the equilibrium distribu-
tion of a free particle of massma with average momentum 𝜇 and
immersed in a thermal bath with temperature

Ta =
1

kB𝛽a
(57)

Here Ta is an effective temperature as it has the dimensions of
temperature but it is a parameter that is not constrained by any
fluctuation-dissipation relations enforcing a specific relationwith
the friction coefficient 𝛾 of the particle. Similarly, ma can be un-
derstood as an effective mass of the components of the active
bath that kick the Brownian particle. Furthermore, the quantity
Z =

√
2𝜋ma∕𝛽a𝛾2 in Equation (56) is a normalization factor en-

forcing normalization, ∫ ∞
−∞ 𝜌a(y)dy = 1, and can thus be viewed as

an effective partition. For analytical ease it is useful to introduce
the quantities

𝜏a ≡ ma

𝛾
, 𝜆 ≡ 𝜇

𝛾
(58)

Here, 𝜏a is an effective momentum relaxation time scale, and 𝜆

is a length scale given by the mean value of the Gaussian kick
amplitude distribution.
We now use the expressions derived in Section 3.1 to in-

spect the stationary moments of the particle. Specializing Equa-
tions (37) and (38) for the Gaussian PDF (56) we find that the
mean and the variance of the position in this case become

⟨X⟩ = 𝜔𝜏𝜆, Var[X ] =
kBT
𝜅

+ 𝜔𝜏

2

(
kBTa

𝜏a
𝛾

+ 𝜆2
)

(59)

These formulas have a simple interpretation: the average posi-
tion is proportional to the average amplitude 𝜇 of the kicks and
to their occurrence rate. At the same time, it is inversely propor-
tional to the stiffness of the potential: the stiffer the potential is
the more the particle is forced to stay close to the origin. The
variance of the position is given by the sum of two contributions:
kBT∕𝜅 associated with the thermal bath, and the contribution due
to the active kicks. The contribution of the second term can be
manipulated externally by changing the bacterial activity, for ex-
ample, by tuning the rate𝜔 of active kicks, themean amplitude 𝜇,
and variance, which can be controlled via ma and/or Ta. In prac-
tice, a bacterial suspension will be associated with given values
of 𝛽a and ma, that may depend on the bacterial metabolic activ-
ity, division rate, etc. Conversely, 𝜇may be imposed externally by,
for example, pressure-basedmicrofluidic flow-control systems in
fluid chambers with periodic boundary conditions. We note that
it is particularly instructive to consider the most common ex-
perimental setting corresponding to the case of closed boundary
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Figure 2. Excess kurtosisex as a function of themassma of the active particle for different values of 𝛽a, for two different values of the active bath’s mean
kick amplitude: 𝜇 = 0 (left panel), and 𝜇 = 2.0 (right panel). Other simulation parameters were 𝜔 = 2.0, T = 0.5, 𝜅 = 2.0, and 𝛾 = 2.0, total number
of simulations 105, and simulation time step dt = 10−4. In both panels, symbols are obtained from numerical simulations while lines are theoretical
predictions given by Equation (64).

conditions,[15,36] 𝜆 = 0, for which we still get an enhancement of
the variance with respect to the thermal reference value kBT∕𝜅.
As we have shown in Equation (55), the usage of equiparti-

tion theorem in recent experimental work in refs. [15, 36] is well-
suited for the case 𝜇 = 0

Teff =
𝜅⟨X2⟩
kB

(60)

For an equilibrium Langevin dynamics in the external potential
U(x) = 𝜅x2∕2, Teff would be the temperature needed to attain the
value ⟨X2⟩ of the secondmoment observed in the PSN active-bath
model. For the PSN active noise with symmetric Gaussian kick
amplitudes, we get via Equation (59) for 𝜆 = 0 that

Teff = T +
(𝜔𝜏a

2

)
Ta (61)

As expected, the PSN active noise leads to an effective tempera-
ture, that is always larger or equal than the bath temperature, that
is, Teff ≥ T . Equation (61) implies that the effective temperature
defined by Equation (60) is sensitive to two properties of the
active bath, the rate of kicks 𝜔, and the variance ≈ 𝜏aTa ∝ Tama
of the kick amplitudes. For the case of colloidal heat engines in
bacterial reservoirs the effective temperatures derived through
Equation (60) were found to be up to one order of magnitude
larger than the room temperature. For example in ref. [15] the
bath temperature during the isothermal steps was T ≈ 300 K
but the active temperature was found to be Teff ≈ 1000 K.
Such enhancement of the effective temperature was linked
to the efficiency enhancement in theoretical models of active
heat engines[25–27,73,74] where exact non-Gaussian statistics and
fluctuation response were not tackled.
We also compute the skewness of the distribution from Equa-

tion (39)

�̃�3[X ] =
𝜔𝜏𝜆

3

(
3kBTa

𝜏a
𝛾

+ 𝜆2
)(

kBT
𝜅

+ 𝜔𝜏

2

(
kBTa

𝜏a
𝛾

+ 𝜆2
))−3∕2

(62)

This result shows that in the specific case of symmetric or ex-
tremely rare kicks, that is, small 𝜇 and 𝜔, the skewness vanishes,
as it should.
Let us conclude this subsection with the exact analytical ex-

pression for the excess kurtosis [see Equation (40)], which yields
in the form

ex[X ] =
3𝜔𝜏
4

((
kBTa

𝜏a
𝛾

)2

+ 𝜆2

3

(
6kBTa

𝜏a
𝛾

+ 𝜆2
))

(
kBT
𝜅

+ 𝜔𝜏

2

(
kBTa

𝜏a
𝛾

+ 𝜆2
))−2

(63)

Equation (63) confirms that for any parameter valueex[X ] ≥ 0 is
always positive, indicating that the stationary distribution of the
position is always leptokurtic in the case of Gaussian kicks. The
detailed analysis of ex[X ] is presented in Section 4.1 for various
parameter regimes.

4.1. Results for ex and Deviation from the Gaussian
Distribution to Non-Gaussianity and Re-Entry to Gaussianity

This section briefly discusses and concludes the analytical and
numerical results ofex for the particular Gaussian form for the
amplitude distribution 𝜌a(y) given by Equation (56). The behav-
ior of the Brownian particle in the presence of active PSN exhibits
non-Gaussian dynamics. In the steady state, the excess kurtosis
is quantified by Equation (63). In Figure 2 we illustrate the re-
lationship between ex and the mass ma of the active particle
across various values of 𝛽a. Here, we examine two scenarios. In
the left panel in Figure 2, we explore the behavior of the excess
kurtosis in a setup where the particle is optically trapped within
a closed container filled with bacteria. In this configuration, the
active self-propelled bacteria exert net drift (𝜇 = 0) andmove ran-
domly inside the fluid container. The expression of the excess
kurtosis in this case reads,

ex[X ] =
3𝜔𝜏2a
𝜏

(
𝜔𝜏a + 2 T

Ta

)−2

(64)
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Figure 3. (Left panel) Excess kurtosis ex as a function of the kick rate 𝜔 for 𝜇 = 0.0 for different values of 𝛽a. (Right panel) Excess kurtosis ex as a
function of the kick rate 𝜔 for 𝜇 = 2.0. Here other Parameters used are ma = 2.0, T = 0.5, 𝜅 = 2.0, 𝛾 = 2.0, number of simulations 105 and simulation
time step dt = 10−4. In both panels, symbols are obtained from numerical simulations while lines are theoretical predictions given by Equation (64).

We further compare these with the behavior of the kurtosis in
the limits ofma. It is evident that the mass of the bacteria plays a
pivotal role in determining the system’s dynamics. When ma ap-
proaches zero, 𝜏a also tends to zero, resulting in the convergence
to zero of the excess kurtosis ex. Conversely, for large values of
ma and as 𝜏a approaches very large values, the excess kurtosis
converges to 3∕𝜔𝜏.
In the right panel in Figure 2, we consider the scenario of an

optically trapped particle within a bacterial bath under a uniform
fluid flow, as illustrated in Figure 1. At large ma (i.e., in the limit
of 𝜏a → ∞) the value of the excess kurtosis increases and eventu-
ally saturates at the value 3∕𝜔𝜏 for fixed values of Ta and 𝜔. Fur-
thermore, when we increase the active temperature Ta for given
ma and 𝜔, the non-Gaussianity of the system becomes more pro-
nounced.
The preceding analysis thus reveals that the excess kurtosis

reaches its asymptotic large ma limit that is independent on the
external torque 𝜇. Furthermore, the active temperature Ta con-
trols the sharpness of the transition between Gaussian (ex = 0)
to non-Gaussian (ex > 0) behavior; the larger Ta the steeper is
the transition from the minimum to the maximum value of the
excess kurtosis as a function of ma.
Next we analyze in Figure 3 how the excess kurtosis ex de-

pends on the kick rate 𝜔. In the left panel in Figure 3 we ob-
serve that the degree of non-Gaussianity as measured by ex ex-
hibits a non-monotonic dependency with 𝜔. In the limit of 𝜔
small, the system has no active particles and behaves as a ther-
mal system, resulting in a predominantly Gaussian behavior. As
we increase 𝜔, the number of kicks between the Brownian parti-
cle and the active particles becomes significant, effecting a sub-
stantial enhancement of the system dynamics, pushing it out
of equilibrium and increasing the non-Gaussian behavior. In-
terestingly, however, in the limit of 𝜔 large, the Brownian par-
ticle is kicked by the active particles even more frequently and
in a more random fashion. Consequently, the system tends to-
ward Gaussian white noise with finite intensity, restoring Gaus-
sianity. This process illustrates the transition from Gaussian to
non-Gaussian behavior and the subsequent return to Gaussian-
ity, known as re-entry into the Gaussian regime. This signifies
the crossover from passive to active and back to (effectively)
passive behavior.

Furthermore, by keeping T , 𝜅, and the distribution 𝜌a(y) fixed,
it is possible to identify an optimal value of 𝜔 that maximizes the
excess kurtosis. This optimal value for 𝜔 reads

𝜔∗ =
2kBT𝛽a

𝜏a + 𝜆2𝛽a𝛾
(65)

corresponding to the maximum value of ex[X ]

∗
ex[X ] =

⎛⎜⎜⎜⎜⎝
3𝜏2a
𝛽a

+ 6𝜏a𝜆
2𝛽a𝛾 + 𝛽a𝛾

2𝜆4

8𝜏kBT
(
𝜏a + 𝛽a𝛾𝜆

2
)

⎞⎟⎟⎟⎟⎠
(66)

In Figure 4, the left panel illustrates the relationship between
the excess kurtosisex and the rate 𝜔 of kicks for a specific value
of Ta. Here Equation (66) is used to identify the maximum value
∗

ex and the corresponding optimal rate 𝜔∗. In the right panel,
we use the value of 𝜔∗ to examine the displacement PDF of the
Brownian particle and compare it with the Gaussian PDF. The
plot distinctly illustrates that the active distribution exhibits tails
that are significantly wider than in comparison to the shorter tails
of the Gaussian distribution associated with the equilibrium state
𝜔 = 0.

5. Conclusion and Discussion

We presented a combined analytical and numerical approach to
compute higher order moments and the PDF for a colloidal par-
ticle in a thermal bath which experiences additional Poisson-shot
noise in an active environment for the case of a harmonic trap-
ping. Our formulation includes a general amplitude PDF of the
kicks due to the active particles. The latter are considered for
both cases with and without a net drift. In the non-equilibrium
steady state we quantify the skewness and non-Gaussianity of the
emerging PDF and discuss the effective temperature of the sys-
tem. Concretely for a Gaussian amplitude PDF of the shot noise
we obtain exact results for the excess kurtosis and demonstrate
that the stationary PDF is leptokurtic, with a narrow central re-
gion and heavy tails.

Ann. Phys. (Berlin) 2024, 2300427 © 2024 Wiley-VCH GmbH2300427 (9 of 14)
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Figure 4. (Left panel) Excess kurtosis ex as a function of the kick rate 𝜔 obtained from numerical simulations (red circles) and compared with the
theoretical prediction (red solid line, Equation (64)). The vertical dashed purple line is set at the optimal value of the kick rate 𝜔∗ [Equation (65)]
maximizing the excess kurtosis at a value ⋆

ex [Equation (66)]. (Right panel) Probability density for the position of the Brownian particle obtained from
numerical obtained from numerical simulations (red circles). The lines are given by the analytical solution of the stationary density (P(x), red solid line)
and the (Gaussian) equilibrium distribution in the absence of kicks (Peq(x), green dashed line). Other simulation parameters were ma = 2.0, T = 0.5,
𝜅 = 2.0, 𝛾 = 0.2, 𝜇 = 0.0, number of simulations 105, and simulation time step dt = 10−4.

Ourmodel and analysis provides a flexible platform to describe
1D experimental systems that are characterized by nonequilib-
rium stationary states with fat tails. A key advantage with respect
to other solvable models, such as the AOUP, is the fact that the
stationary state of our model is in general non-Gaussian. More-
over, unlike many ad-hoc active-matter accounts, our model rec-
onciles the fluctuation-dissipation theorem and the equipartition
theorem for any active kick distribution with zero mean. This
makes our description of singular interest to experimentalists
who will likely benefit from our inference method developed in
Section 3.2. We expect our approach to impact ongoing research
on stochastic thermodynamics of active systems, for which we
outline some preliminary ideas below.
The analytical approach developed here may find applications

in the stochastic thermodynamics of active matter. We here add
some remarks on some open questions regarding irreversibil-
ity and dissipation associated with the dynamics of the non-
equilibrium stationary state induced by the active PSN. As noted,
since the foundations of stochastic thermodynamics, quantifying
the asymmetry under time reversal of a stationary time series,
provides means to estimate the underlying entropy production
of the physical mechanism generating the time series.[80] Within
this context, it was shown that the rate of irreversibility measured
by the Kullback-Leibler (KL) divergence rate

𝜎 = lim
t→∞

1
t ∫ x[0,t]P(x[0,t]) ln

P(x[0,t])

P(Θtx[0,t])
≥ 0, (67)

provides a lower bound to the steady-state rate of entropy pro-
duction. Equation (67) can be understood as the KL divergence
rate between the probability of trajectories and their time rever-
sal. In other words, P(x[0,t]) = P(X0 = x0,…Xt = xt) is the proba-
bility to observe the sequence x0,… , xt in the time interval [0, t],
and P(Θtx[0,t]) = P(X0 = xt,…Xt = x0) the probability to observe
the time-reversed sequence xt,… , x0 in the same time interval
[0, t], where both P and P(Θt) are evaluated at the stationary state.
Our active-matter model given by Equation (1) displays time ir-
reversibility in the presence of PSN. Indeed by inspection of the
time series shown in the right panel of Figure 1) one finds that

rapid changes in the particle position due to active kicks are often
accompanied by slow relaxations—a dynamics being time irre-
versible even for the case of symmetric PSN with vanishing net
velocity 𝜇 = 0. Thus, in general one has 𝜎 > 0 as a signature of
irreversibility whenever 𝜔 > 0. Conversely, since the dynamics is
bounded by the confining potential, one can show that the par-
ticle energy Ut = (1∕2)𝜅X2

t , which fluctuates over time, is con-
served on average, leading to a vanishing heat dissipation rate.
This leads us to conclude that traditional probes of irreversibil-
ity such as heat dissipation are not sufficient to characterize the
non-equilibrium features of the PSN; instead, one should take
an information-theoretical approach, for example, by evaluating
𝜎 in Equation (67), or using cross-correlation asymmetries as dis-
cussed below.
Evaluating the irreversibility rate (67) for our model is not an

easy task, both analytically and from numerical estimates. We
here discuss some alternatives to quantify the degree of time irre-
versibility. First we note that because the dynamics is 1D andwith
open boundary conditions, the stationary probability current van-
ishes. This implies thatP(xt1 , xt2 ) = P(xt2 , xt1 ); in otherwords, one
cannot detect irreversibility from the autocorrelation function of
the position. In general, however, P(xt1 , xt2 , xt3 ) ≠ P(xt3 , xt2 , xt1 )
even in the absence of a net current in X ,[80] which reveals that
the (n ≥ 3)th time correlators of the particle position ⟨Xt1

…Xtn
⟩

could be used to characterize the irreversibility of our model. Fol-
lowing Steinberg,[81] an alternative approach is to consider two-
time correlators including non-linear functions of the observ-
ables. For example, let us consider the following two-time cross-
correlators of the position and of its third power,

CX,X3

t1 ,t2
≡ ⟨Xt1

(Xt2
)3⟩, CX3 ,X

t1 ,t2
≡ ⟨(Xt1

)3Xt2
⟩. (68)

Figure 5 shows numerical estimates of the correlators CX,X3

t1 ,t2
(red

solid line) and CX3 ,X
t1 ,t2

(green dashed line) for the case of symmet-
ric Gaussian kicks (𝜇 = 0) with zero kick rate 𝜔 = 0 (left panel)
and non-zero kick rate 𝜔 > 0 (right panel). Our analysis reveals
an asymmetry between the X, X3 cross-correlators CX,X3

t1 ,t2
≠ CX3 ,X

t1 ,t2
in the presence of active kicks for all values of t1 and t2 that we
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Figure 5. Cross-correlation asymmetry in the presence of active Poissonian shot noise (PSN) with amplitudes drawn from the Gaussian distribution
(56). Left panel: Comparison between the forward and backward X, X3 cross-correlation functions (68) for an equilibrium dynamics given by Equation (1)
without active PSN (i.e., vanishing rate of kicks 𝜔 = 0). Right panel: Comparison between the forward and backward X, X3 cross-correlation functions
(68) in the presence of PSN with rate of kicks 𝜔 = 10−2. Other simulation parameters are T = 0.5, 𝜅 = 2.0, 𝛾 = 0.2, ma = 2.0, 𝜇 = 0.0, and Ta = 8.0,
number of simulations 105, and simulation time step dt = 10−4.

explored, and vice versa a symmetry CX,X3

t1 ,t2
= CX3 ,X

t1 ,t2
for all t1, t2

in the absence of active noise. Our numerical result reinforces
recent insights from stochastic thermodynamics which have
unveiled the difference of cross-correlators, for example, |CX,X3

t1 ,t2
−

CX3 ,X
t1 ,t2

|, as probes of the degree of non-equilibrium.[82–86] Such re-
sults have provided lower bounds to the rate of irreversibility 𝜎 of
Markovian systems that are directly proportional to the asymme-
try of cross correlators. It will be interesting in the future to relate
our findings to these novel approaches to tackle irreversibility
and dissipation through non-trivial cross-correlation structures.
We finally remark that while the harmonic oscillator is the

most fundamental model in statistical physics, cases of anhar-
monic external potentials should also be considered in the pres-
ence of fluctuating forces different from white Gaussian noise.
Thus, processes with Gaussian yet long-range dependent noises
exhibit non-Boltzmannian stationary PDFs in the presence of
steeper than harmonic potentials or do not possess a stationary
state in shallower than harmonic potentials.[87–89] It will thus be
interesting to see how particles driven by both thermal noise and
PSN perform in anharmonic potentials.

Appendix

Appendix A: Moments of X2

We here prove Equations (33)–(35) introduced in the main text. They can
all be straightforwardly proven using identities (22) and (32). Since those
two identities involve derivatives of I(q) evaluated at k = 0, it will be con-
venient to find first a general expression for dn

dqn
I(q)|q=0.

A.1. Derivatives of I(q)

Derivatives of I(q) can be easily obtained by means of the Taylor series.
First, from the definition of I(q), Equation (19), it is clear that I(0) = 0.
Equation (19) can also be used to find all derivatives of I(q) denoted by
I(n)(0). Let us start from the Taylor expansion of �̂�a(q) around k = 0

�̂�a(q) =
∞∑
n=0

1
n!
�̂�
(n)
a (0)qn (A1)

where �̂�(n)a denotes the nth derivative of �̂�a. The last expression substituted
into Equation (19) gives the first derivative of I(q),

I′(q) =
�̂�a(q) − �̂�a(0)

q
=

∞∑
n=1

1
n!
�̂�
(n)
a (0)qn−1 (A2)

Taking m − 1 derivatives in k we obtain

dm

dqm
I(q) =

∞∑
n=m

(n − 1)(n − 2)… (n −m + 1)
n!

�̂�
(n)
a (0)qn−m (A3)

which, evaluated at q = 0, yields

I(m)(0) = 1
m
�̂�
(m)
a (0) for m ≥ 1 (A4)

The moments of 𝜌a are related to the derivatives of �̂�a through the relation⟨Ym⟩a = 1
im
�̂�(m)(0). Hence

I(m)(0) = im

m
⟨Ym⟩a (A5)

We will make use of this result in the next subsection.

A.2. Moments of X2

We nowprove Equations (33)–(35). For the first we immediately see that

⟨X2⟩ = 1
i
d
dk

P̂2(q)
||||q=0 = 1

i
𝜔𝜏I′(0) = 𝜔𝜏⟨Y⟩a (A6)

where we use expression (17) for P̂2(q) and Equation (A5). To prove Equa-
tions (34) and (35) for simplicity we define f (q) ≡ I(q) − qI′(0); according
to Equation (32) we need to take the derivatives of exp (𝜔𝜏f (q)). The sec-
ond derivative evaluated at q = 0 reads

d2

dq2
exp (𝜔𝜏f (q))|q=0 =

[(
𝜔2𝜏2f ′(q)2 + 𝜔𝜏f ′′(q)

)
exp (𝜔𝜏f (q))

]|q=0
= 𝜔𝜏I(2)(0) (A7)
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since f (0) = f ′(0) = 0 and f (n)(0) = I(n)(0). Using this expression along
with Equations (32) and (A5) we obtain for the second moment

⟨(X2 − ⟨X2⟩)2⟩ = 1
2
𝜔𝜏⟨Y2⟩a (A8)

which proves Equation (34), where n = 2. Analogously, now consider the
third derivative of exp (𝜔𝜏f (q))

d3

dq3
exp(𝜔𝜏f (q))|q=0 =

[(
𝜔3𝜏3f ′(q)3 + 3𝜔2𝜏2f ′(q)f ′′(q)

+𝜔𝜏f ′′′(q)
)
exp(𝜔𝜏f (q))

] |q=0 = 𝜔𝜏I(3)(0) (A9)

Thus the third central moment of X2 reads

⟨(X2 − ⟨X2⟩)3⟩ = 1
3
𝜔𝜏⟨Y3⟩a (A10)

proving Equation (34), where n = 3. To prove Equation (35) we consider
the fourth derivative

d4

dq4
exp (𝜔𝜏f (q))|q=0 =[(𝜔4𝜏4f ′(q)4 + 6𝜔3𝜏3f ′(q)2f ′′(q)

+ 3𝜔2𝜏2f ′′(q)2 + 4𝜔𝜏2f (3)(q)f ′(q) + 𝜔𝜏f (4)(q)
)
exp (𝜔𝜏f (q))

]||||q=0
= 3𝜔2𝜏2

(
I(2)(0)

)2 + 𝜔𝜏I(4)(0) (A11)

Hence, we have

⟨(X2 − ⟨X2⟩)4⟩ = 3
4
𝜔2𝜏2⟨Y2⟩2a + 1

4
𝜔𝜏⟨Y4⟩a (A12)

Which completes our proof.

Appendix B: Time-Dependent Moments

In most of our work, we have just considered the moments of the station-
ary distribution. Since the time-dependent distribution is not available, we
do not have access to the time evolution of the moments of the position.
Nevertheless, starting from the Fokker–Planck equation, we can construct
a set of ordinary differential equations for the finite-time moments ⟨Xn

t ⟩
for n ∈ ℕ. By multiplying Equation (11) by xn and integrating over x we
obtain

𝜏
𝜕

𝜕t
⟨Xn

t ⟩ = −n⟨Xn
t ⟩ + kBT

𝜅
n(n − 1)⟨Xn−2

t ⟩ + 𝜔𝜏
(⟨(Xt + Y)n⟩ − ⟨Xn

t ⟩) (B1)

with the convention that ⟨X−1
t ⟩ = 0, and

⟨(Xt + Y)n⟩ = ∫
∞

−∞ ∫
∞

−∞
(x + y)nP(x, t)𝜌a(y) dxdy (B2)

Equation (B1) can be rewritten using the binomial formula

𝜏
𝜕

𝜕t
⟨Xn

t ⟩ = −n⟨Xn
t ⟩ + kBT

𝜅
n(n − 1)⟨Xn−2

t ⟩ + 𝜔𝜏

n−1∑
m=0

(
n
m

)⟨Xm
t ⟩⟨Yn−m⟩a

(B3)

Therefore, we find a hierarchy of relations for the generic nth moment in
terms of the first to the (n − 1)th moment. A general analytical solution
to Equation (B3) is not straightforward, nevertheless equations governing

the first two moments are relatively simple

𝜏
𝜕

𝜕t
⟨Xt⟩ = −⟨Xt⟩ + 𝜔𝜏⟨Y⟩a (B4)

𝜏
𝜕

𝜕t
⟨X2t ⟩ = −2⟨X2t ⟩ + 2

kBT
𝜅

+ 𝜔𝜏⟨Y2⟩a + 2𝜔𝜏⟨Xt⟩⟨Y⟩a (B5)

thus the first moment reads

⟨Xt⟩ = ⟨X0⟩ exp(−t∕𝜏) + (1 − exp(−t∕𝜏))𝜔𝜏⟨Y⟩a (B6)

while the second moment

⟨X2t ⟩ = ⟨X20 ⟩e−2t∕𝜏 +(
kBT
𝜅

+ 𝜔𝜏

2
⟨Y2⟩a)[1 − exp(−t∕𝜏)] (B7)

+ 2𝜔𝜏⟨Y⟩a⟨X0⟩[exp(−t∕𝜏) − exp(−2t∕𝜏)]

+𝜔2𝜏2⟨Y⟩2a[exp(−2t∕𝜏) − 2 exp(−t∕𝜏) + 1] (B8)

It is then possible to obtain the variance which reads

Var[Xt] =
(
kBT
𝜅

+ 𝜔𝜏

2
⟨Y2⟩a)[1 − exp(−t∕𝜏)] (B9)

Despite the presence of the Poissonian shot noise, the system relaxes to
its stationary state with a characteristic time 𝜏 that does not depend on
the rate of the kicks.

Appendix C: Derivation of Susceptibility

Wewill here expose the analytical derivation of the function 𝜒X (t) (50). The
average of ⟨Xt⟩𝛿f can be obtained with a minimal modification of Equa-
tion (B1)

𝜏
𝜕

𝜕t
⟨Xt⟩𝛿f = −⟨Xt⟩𝛿f + 𝛿f

𝜅
+ 𝜔𝜏⟨Y⟩a (C1)

Clearly, since the perturbation is independent from the noise 𝜂t, the mo-
ments of Y remain unaltered. The susceptibility will then read

𝜒X (t) =
1
𝜅
(1 − exp(−t∕𝜏)) (C2)

which at stationarity becomes

𝜒X = 1
𝜅

(C3)

Appendix D: Numerical Simulations

We conclude the paper with a short discussion on how to simulate the
system. Trajectories evolving with the Langevin equation can be gener-
ated via the Euler–Maruyama scheme described in any textbook on nu-
merical implementation of stochastic differential equations (we refer to
ref. [90]). While the analytical expression (18) can be simulated using the
GNU Scientific Library (GSL) available in many languages (we used the Ju-
lia language[79]). To calculate Equation (18) we proceeded in three steps:
(i) we compute the function I(q) in Equation (19) for a discrete set of val-
ues of q; (ii) we interpolate the resulting values with a cubic spline inter-
polation available in the package Interpolations.jl in order to find a
continuous version of I(q); (iii) we plug this function into formula (18)
and integrate for a range of values of x. All numerical integrations were
performed using the Gauss–Kronrod algorithm available in the package
QuadGK.jl. We simulate the Langevin system 1 using the first-order inte-
grator method. The Gaussian noise 𝜉t is derived from the Wiener process,
and the active kicks are generated at Poisson-distributed times with rate𝜔.
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