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Abstract: We introduce a refined way to diffusely explore complex networks with stochastic resetting
where the resetting site is derived from node centrality measures. This approach differs from previous
ones, since it not only allows the random walker with a certain probability to jump from the current
node to a deliberately chosen resetting node, rather it enables the walker to jump to the node that
can reach all other nodes faster. Following this strategy, we consider the resetting site to be the
geometric center, the node that minimizes the average travel time to all the other nodes. Using
the established Markov chain theory, we calculate the Global Mean First Passage Time (GMFPT) to
determine the search performance of the random walk with resetting for different resetting node
candidates individually. Furthermore, we compare which nodes are better resetting node sites by
comparing the GMFPT for each node. We study this approach for different topologies of generic
and real-life networks. We show that, for directed networks extracted for real-life relationships,
this centrality focused resetting can improve the search to a greater extent than for the generated
undirected networks. This resetting to the center advocated here can minimize the average travel
time to all other nodes in real networks as well. We also present a relationship between the longest
shortest path (the diameter), the average node degree and the GMFPT when the starting node is
the center. We show that, for undirected scale-free networks, stochastic resetting is effective only
for networks that are extremely sparse with tree-like structures as they have larger diameters and
smaller average node degrees. For directed networks, the resetting is beneficial even for networks
that have loops. The numerical results are confirmed by analytic solutions. Our study demonstrates
that the proposed random walk approach with resetting based on centrality measures reduces the
memoryless search time for targets in the examined network topologies.

Keywords: complex networks; random walks; stochastic resetting; node centrality

1. Introduction

Random walks on complex networks as models of stochastic exploration of such
topologies have been applied to study various phenomena such as search and its effi-
ciency [1,2], network structure determination [3,4], link prediction in graphs [5], or ranking
of web pages [6], among others. Various navigation strategies have been proposed to
improve the search efficiency, e.g., biasing [7], use of memory [8] and long-range hops [9],
or stochastic resetting [10]. Here, we combine random walk network exploration with the
concept of stochastic resetting. Resetting, when a stochastic process is returned to its initial
position at random times, is a natural mechanism in many search processes, such as human
behavior of finding resources [11], foraging [12], population dynamics [13], etc. The number
of scientific papers on resetting in diffusion and random search processes [14–23], as well as
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in random searches on complex networks [10,24–29], is increasing rapidly, and it has been
a trending topic in non-equilibrium statistical physics in the last decade. Despite the recent
increase in the interest of random walk exploration of networks with stochastic resetting,
we find that, to our knowledge, previous literature does not address which node is more
favorable to be set as the reset node. In this work, we aim to present a prospective way of
choosing the resetting node based on node centrality measures. Using network science,
we analyze why some nodes have intrinsically more control of information spread than
other nodes. We establish that these nodes are the centers, essential building blocks that are
modular origins of most networks [30]. We show that these center nodes, when used as
resetting node candidates, have a particular minimization effect on the expected number
of steps for the first arrival to a given target node—the Mean First Passage Time (MFPT).
This centrality-based resetting was motivated by operations research literature [31,32],
where the most common problems involve the selection of an optimal site in a network
that minimizes the travel time from the facility to any other node in the network. These
problems are mainly narrowed down to min-max location problems, which end up picking
the site based on a global metric—the geometric center, the set of nodes that minimize the
maximum distance to all nodes. We explore this property of nodes known in graph theory
literature as eccentricity [33]. This effect of eccentricity has been studied on biological
networks [30,34], social networks [35], and computer networks [36]. In biological networks,
for instance a protein signaling network, the eccentricity can be interpreted as the likelihood
of a protein to be functionally linked to all other proteins in the network. Thus, a protein
with high eccentricity, compared to the average eccentricity of the network, will be more
easily influenced by the activity of other proteins (the protein is subject to a more stringent
or complex regulation) or conversely could easily influence several other proteins. In
contrast, a low eccentricity, compared to the average eccentricity of the network, could
indicate a marginal functional role. We explore this way of resetting of the random walk on
several distinct network structures, where from undirected networks we mainly explore
complex networks and special types of graphs (such as barbell, lollipop and balanced trees).
Although for special graphs that are tree-like, the center is located trivially, for networks
with distinct degree distributions, the diffusion and search properties of a random walker
vary considerably. With the use of the already established discrete-time Markov chain
theory [37], we derive the theoretical model for the fundamental matrix for the random
walk with stochastic resetting, from which we obtain the MFPT for each pair of nodes. To
evaluate our theory that the center node plays a crucial role in the utilization and informa-
tion control of the network, we calculate the Global Mean First Passage Time (GMFPT) [38]
from the resetting node to all the other nodes. Based on these findings, we use this measure
to compare different resetting node candidates derived from other node centralities, such as
degree centrality, eccentricity, or closeness centrality. We then compare both the theoretical
and numerical results for all resetting node candidates and conclude that resetting to one
of the centers almost surely reduces the searching ability of the resetting node to all the
other nodes.

2. Materials and Methods
2.1. Random Walk on Networks with Stochastic Resetting

We denote by A the adjacency matrix with entries aij, which are unity when the nodes i
and j are connected, and zero otherwise. The Markov transition matrix P, which is assigned
with a random walk on the network, has elements pij, which represent the probability to
jump from the node i to node j. For an ordinary random walk, the algebra ki denotes the
number of neighbors of the node i, and one has pij = (1/ki)aij. Thus, the transition matrix
is positive, but not symmetric in general.

In the case of a random walk with stochastic resetting, we denote the index of the
fixed resetting node with r, which in general does not need to be the starting node for the
walk. We will assume that the probability γ0 for resetting to the initial node is equal from
all nodes regardless of where the walker is located. Then, for a given ordinary random
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walk (without resetting) determined with the transition matrix with entries pij, one can
determine a related transition matrix for the random walk with resetting with entries
p∗ij = (1− γ0)pij for all j nodes that are different from r. If the resetting node r is a nearest
neighbor to the current node i, besides the probability (1− γ0)pir for an ordinary jump,
there is also a probability γ0 to make a resetting jump. So, the entries in the transition
matrix associated to the random walk with resetting are

p∗ij = (1− γ0)pij + δjrγ0, (1)

where we have used the Kronecker delta symbol δjr to account for the cases when the
resetting node r is a nearest neighbor of the current node i. In this way, jumps to the
resetting node from its neighbors could be the result of an ordinary walk without resetting
or a result of the resetting. The transition matrix P∗ can be more compactly written by
using a diagonal matrix Γ with elements γii = 1− γ0 and a matrix G with all columns
equal to zero except the rth one with elements gir = γ0. To avoid adding resetting from the
resetting node to itself, we set the element grr = 0. Then, one has

P∗r = ΓP + G. (2)

This matrix is used as a transition matrix in the theory for the FPT based on Markov chains.

2.2. Mean First Passage Time

We present in this section the key steps needed to calculate the MFPT of a random
walk with resetting, between pairs of nodes in a given network. The approach pursued
here is based on Markov chain theory. The background for this and another approach based
on generating functions can be found in the literature [2,8,37,39]. For a strongly connected
graph with jump probabilities summarized in the transition matrix P∗r , one first determines
the row eigenvector wr = wrP∗r that corresponds to the largest eigenvalue. The term wj of
the eigenvector wr represents the probability that the walker will be at node j at infinite
time. Thus, this vector contains the stationary occupation probabilities or frequency of
visits of nodes by a perpetual random walk. Next, one constructs a square matrix Wr with
identical rows consisting of the vectors wr stacked one on top of another. The respective
fundamental matrix for a random walk without memory on a complex network is then
given by

Z = (I− P∗r + Wr)
−1, (3)

where I is the identity matrix of the same size as P∗r . One can construct a matrix M with
elements mi,j, that correspond to the MFPT between the starting node i and the target node
j. Its elements are obtained using the fundamental matrix entries, zi,j, from the relationship

mi,j =
zj,j − zi,j

wj
. (4)

As a measure of the searching ability of the random walk with resetting, we use the average
associated with a specific initial (reset) node r with target node j running over all sets of
nodes, the GMFPT

gr =
1
N

N

∑
j=1

mr,j. (5)

2.3. Node Centrality Approach

Network analysis has become one of the most prominent branches of contemporary
complex systems theory [40–42]. Almost all dynamic systems are composed of intercon-
nected actors, and their representation in many cases can be best portrayed in terms of
networks. As a result, in recent years, even highly fashionable topics such as Machine
Learning have turned to this concept of representing problems as networks or graphs,
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as they are commonly referred to in the community [43,44]. Any mapping of structured
relational data onto a graph yields higher performance in numerous domains of Machine
Learning [45]. Networks in many cases very clearly convey the complex information of
the systems they tend to represent. Fundamentally, these representations are composed
of two parts: nodes (actors) and edges (connections). A network representation can be
rather trivial, but it can also incorporate more features. This allows users to build more
sophisticated representations simply by adding meaning to the connections between actors.
This can be performed, for example, by using appropriate weights on the edges or adding
directionality as to which actor influences whom. Nevertheless, describing a system with
networks allows researchers to afterwards explore their problem representation using dif-
ferent network science techniques, and unveil new aspects that were not taken cognizance
of before. One inherent approach to exploring network properties is based on simple
random walks, in which a random walker jumps to the neighbors of a node via the edges.
Random walks are at the core of several methods and algorithms used to uncover certain
properties in networks [46–48]. The real-life problems we tend to represent typically share
this hierarchy of their components, meaning some nodes or edges are more important than
others. For example, in a protein–protein network, one protein may interact with many
other proteins, rendering it essential for many metabolic processes that are running off
within a cell. In contrast, for example, in an airplane network, one edge may be a very
crucial plane connection that associates two continents.

Hence, this concept of importance is generally a big question that scientists ask when
studying networks: What cardinal properties of networks are consequences of individual
nodes or edges, and how does their importance influence the structure of the network
as a whole? This question appears in various fields such as the famous PageRank algo-
rithm for ranking the importance of web pages [49], stock price correlation networks in
economics [50], important accounts in social networks [51,52], forecasting which actors
play a crucial role in information diffusion [53,54], gossip spreading [55], epidemics [56,57],
etc. Although these fields are quite different, there is one commonality: the way in which
we analyze the networks, based on the structural properties of networks as a whole or the
nodes individually.

Hence, in the following part of this subsection, we will briefly introduce the notion of
centrality measures of networks and how one may benefit from their assessment of node
centrality importance. The objective is to display an analysis of why some nodes should
be more favored as starting and resetting node candidates in our random walk model
with stochastic resetting, which we introduced in the previous section. We cover basic
definitions of three established centrality measures, calculate them for all nodes in a given
network (Figure 1), and deduce from these results how they can help us to improve this
memoryless search by resetting.

Firstly, we specify the degree centrality of node i,

CD(i) =
∑j aij

(N − 1)
=

ki
(N − 1)

, (6)

where, as introduced before, aij are the adjacency matrix elements of the network G, N is
the number of nodes, and ki is the number of direct neighbors of node i. From panel (a) in
Figure 1, we see that the degree centrality of nodes in undirected networks shows how well
a node is directly connected (number of neighbors) and does not account for the structure
of the network. Nodes in darker red are well connected, while nodes with brighter colors
are nodes with few neighbors.

Secondly, we specify the eccentricity [33] of node i,

e(i) = max
j∈V(G)

d(i, j), (7)



Entropy 2023, 25, 293 5 of 19

where G is a connected network with a finite non-empty set V = V(G) of nodes together
with a set E = E(G) of edges joining certain pairs of distinct nodes of G. The distance d(i, j)
between nodes i and j is the length of the shortest path joining i and j.

(a) (b) (c)

0.01 0.11 0.21

CD(i)

5 7.5 10

e(i)

0.14 0.23 0.32

CC(i)

Figure 1. Visual representation of centrality measures on a Barabási-Albert (BA) network with N = 100
nodes and 2 average nearest neighbors per node, 〈k〉 ≈ 2: (a) degree centrality; (b) eccentricity; and
(c) closeness centrality.

The eccentricity of any node i intrinsically measures the maximum distance d(i, j) from
i to any of the other nodes. Two attribute lengths that are associated with the eccentricity
are the diameter and radius of a network. The former is defined as D(G), and it is the
maximum eccentricity that a node can have, i.e., the longest of the shortest paths between
two nodes. The latter is defined as r(G), and it is the opposite of the diameter. Hence, it is
the minimum eccentricity among the vertices of G. Both lengths are used to distinguish
two groups of nodes: center and periphery. The first is the group of nodes that are the
center, defined as the set of nodes whose eccentricity equals the radius, e(i) = R(G). The
second is the group of nodes that are the periphery, defined as nodes whose eccentricity
equals the diameter, e(i) = D(G).

Eccentricity is a graph-theoretic metric that has been considered as a classic concept in
operations research problems [31,32]. This global network measure has been proposed as a
standard tool for determining whether certain functions in a network have been optimally
placed. For example, when deciding on placing certain buildings in a city, we may want
to take into account that those buildings should be conveniently reached, such as with
fire stations or hospitals. In effect, the decision is to place them at the center, where this
certain functionality will allow the facility to be within a specific range of all the other
places in a network. The eccentricity is visualized in the middle panel (b) of Figure 1. We
see that i nodes with small e(i) are near the center and are colored as white, whereas nodes
with larger eccentricities are far away from the center and are fully colored in darker gray.
The nodes that are colored black are the periphery of the network (eccentricity equal to
the diameter).

Lastly, we specify the closeness centrality [58] of node i,

CC(i) =
1

∑j d(i, j)
. (8)

Similarly to the eccentricity, this metric is also a global measure. It allows us to see how
close an actor node is, on average, to other nodes in the network (how easily it can reach
all other nodes). Again, it is defined using the shortest path d(i, j), so for each node we
calculate the distance from i to all the other nodes. From panel (c) of Figure 1, we can see
the closeness centrality, considered as the metric that describes the congruent compactness
and organization of one network. From (c), we can exactly see that the nodes in darker
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blue are ones with higher CC, which are nodes that can quickly interact with all other nodes
of the network (well connected), while nodes in the periphery (colored in white) tend to
have lower CC and have longer distances to all other nodes.

In the following parts, we show how these node centralities can be used to improve the
random walk search strategy such that they play a key role in the selection of the starting
and resetting node.

3. Results

In this section, we explore the potential of this centrality-based stochastic resetting
on different network topologies. We present theoretical results that are derived from the
calculations for the GMFPT (5), our central measure for the search efficiency, when the
walker starts and resets to a given node. We also compare the theoretical model with
numerical simulations for random walks with stochastic resetting with different resetting
node candidates to verify the theoretical findings. It is possible that the best nodes for the
proposed centrality metrics may overlap, so when we present the results, we take into
account one curve for these scenarios. Firstly, we provide a comparison for undirected
complex networks, namely, random, scale-free, and small-world networks. Additionally,
for the scale-free complex networks, we analyze the relationship between the diameter,
average node degree and the search efficiency. Secondly, we apply the same comparison
to special graphs including balanced trees, lollipop graphs and barbell graphs. Lastly, we
employ this approach to obtain theoretical expressions for the search efficiency for different
resetting node candidates on large directed real-life networks. Here, we analyze the largest
strongly connected components (LSCC) of three networks: the Arxiv HEP-PH citation
graph, and two separate snapshots of the Gnutella peer-to-peer file sharing networks.

3.1. Complex Networks

Of the known complex network structures, we examined the three most generic
topologies, the scale-free, random, and small-world networks.

Scale-free networks were generated using the Barabási-Albert (BA) model, which
inherently builds a network with a power-law degree distribution. The algorithm for the
BA model [59] is based on two rules, the growth and the preferential attachment rules. The
first is applied when adding new nodes to the initial set of nodes. At every time step, we
add a new node with x edges, such that each new node links to x different nodes already
present in the network. The second rule is embodied in the probability of an added node to
connect to existing nodes. This probability is taken for each node individually, and it is set
to be consistent to its degree.

Random graphs were generated according to the Erdős–Rényi (ER) model, which is
known in graph theory as an evolution model [60]. The algorithm for this model starts with
a fixed set of N isolated nodes and, with a certain probability p, independently connects
a pair of two nodes using an edge. This algorithm develops a graph that corresponds to
the model by the simple successive addition of random edges. For large values of the
probability p to connect two nodes, the generated graph will be extremely dense, and there
will be edges between almost each pair of nodes.

Small-world networks were generated with the Watts–Strogatz (WS) model [61], which
is an interpolation between the regular lattice and the random graph. The model creates a
network with the WS topology from a regular ring lattice N that has k edges per node. It
starts by randomly reconnecting nodes with other nodes with probability p. The algorithm
in this way shrinks the diameter and stimulates the small-world property as it forms pnk/2
long-distance connections from the total number of nk/2 edges. It is interesting to point
out that if we change the probability to p = 0 we have a regular lattice, and for p = 1 we
have a random graph.

In Figure 2, we show one realization of centrality-based stochastic resetting on a
network with a scale-free topology. In Figure 2a, we see the BA network from Figure 1,
where the nodes are colored with a color map that delineates the eccentricity (7) values of
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each node. We can clearly see that the network is quite sparse, with a tree-like structure,
and has one node with the lowest eccentricity, whose circumference is colored in red. This
is the center node, which has an eccentricity of 5 (e(i) = R(G) = 5) and three neighbors.
Additionally, the circumference of the node with the highest degree is colored in green.
This node has an eccentricity of 6 and 20 neighbors. In Figure 2b, we compare the search
times when the walk starts and resets to one of the candidates.

(a)

0.00 0.03 0.06 0.09

γ0

400

600

800

1000

1200

1400

1600

g r

(b)

c, center node

h, highest degree and Cc

5 7 10

e(i) = maxu∈V (G) d(u, i)

Figure 2. Two different resetting node candidates on a BA network: (a) BA network with eccentricity
values; and (b) comparison of GMFPT gr (5) for the center node (red) and the node with highest
degree CD and CC (green).

Based on these results, we define a node candidate. A node in a network is considered
a resetting site candidate if it is set as r in Equation (5), which denotes that it is the resetting
and starting node in our theoretical and numerical calculations. We will show how different
candidate nodes can improve as structural parts of a network, simply by minimizing their
reachability with this stochastic resetting of the walker to a fixed resetting site. Hence,
following the centrality-based approach in Figure 2, we choose the single center as our
first node candidate. On the other hand, for our second node candidate, we choose the
node with the highest degree (6) and closeness centrality (8) accordingly. This selection is
consistent with the node centrality theory we presented in the previous Section 2.3, since we
choose the node with the lowest eccentricity and the node with the highest closeness and
degree centrality. The results of this comparison are shown in Figure 2b. The horizontal axis
represents different resetting probabilities γ0, where for each probability we analytically
(lines) and numerically (markers) calculated the GMFPT gr. Firstly, from the results, we can
see that we have one curve for the node with the highest degree and closeness centrality
(green) and a second curve for the center node (red). We see that resetting does not minimize
gr when r is set as the hub, i.e., the walk starts and restarts to the biggest hub. At first glance,
this choice makes perfect sense. The hub has this massive chunk of the network as a direct
neighbor, has a low eccentricity, and has the highest closeness centrality. However, if it is
chosen as the resetting site, the reachability search to all the other nodes does not minimize.
On the other hand, if we look at the red curve for the center, stochastic resetting does
minimize the GMFPT gr for around 20% from its value without resetting. The existence of
some optimal resetting probability γ0 can be understood by observing that when γ0 → 0,
one has an ordinary random walk, in which the walker can become stuck in a part of the
graph far from the target, while in the other extreme, when γ0 → 1, the walker could hardly
go far from the resetting node. So, for some value of the resetting probability, the walker
avoids being stuck, and has a better chance to explore the network. This leads to smaller
search times from the center, which allow this node to exercise its potential as a geometric
center in the network. We argue that this improvement is due to the fact that the center is
at a radius distance of every node. Hence, enabling the random walker to jump more often
to the center with a certain probability γ0 allows it to reach the other nodes faster. Overall,
our main takeaway from this figure and the latter reasoning lies in the idea of picking one
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of the centers as resetting nodes since the stochastic resetting approach makes even the
center nodes “more central”. This fundamentally enhances their innate power of spreading
information more rapidly to every other node in the network.

On top of the fact that this and previous findings confirm that stochastic resetting
minimizes the global search time to some extent, here we also address exactly which
networks can profit from the centrality-based resetting approach. To our knowledge, this
has not yet been explored. We therefore ask the following question: how can one relate
network structure properties such as the connectivity and eccentricity of a given network
with the gain of using a specific γ0 to implement a stochastic resetting strategy on that
network? In the preceding section, we introduced the concept of eccentricity and the
diameter D(G), the longest shortest path. Here, we additionally introduce the connectivity,
which is expressed using the average node degree 〈k〉 of the network. Having introduced
both concepts, in Figure 3 we explored their relationship with the proposed centrality-based
stochastic resetting. Firstly, in Figure 3a we see a BA network that has 〈k〉 ≈ 2, one center,
and a maximal eccentricity (diameter) of 10. Secondly, in Figure 3b we see another BA
network, but here 〈k〉 ≈ 3, such that the network has significantly more centers and has
a maximal eccentricity (diameter) of 6. Although the networks have fundamentally the
same BA topology, the increase of the average node degree for a notch has resulted in
two completely different networks in terms of structure. The network with more edges
(higher average node degree) has shrunk in diameter and has a higher density, whilst
the networks with few edges are sporadic. Lastly, in Figure 3c we show the relationship
between 〈k〉, D(G) and the GMFPT gr for a large sample of BA networks. On the horizontal
axis, we have different values for the diameters D(G), where each box plot corresponds to
a value of the diameter, and it is filled using 103 independently generated networks that
all have that same diameter. Blue box plots show gr without resetting, while the red box
plots show gr times for resetting using the centrality-based approach for all networks. On
the vertical axis, we plot gr for each network, where r is calculated for the “best” center
for both approaches, with and without resetting. Going back to operations research and
graph theory literature, both have addressed that one of the centers is the solution for the
facility location problem [31]. If there were 10 centers as in Figure 3b, we consider the “best”
center to be the one that has the smallest minimized gr, meaning we calculate gr for all the
centers and pick the smallest. From Figure 3c, we can directly see that BA networks can
have a wide range of diameter values when the networks have a smaller average node
degree. For 〈k〉 ≈ 2, we have diameter values from 7 to 16, while for 〈k〉 ≈ 3, for all of the
generated networks, we only have a diameter of 6. On top of that, we clearly see that for
〈k〉 ≈ 3 (the lowest diameter value of 6), there is visibly no minimization of the GMFPT gr
for all of the generated networks. The results are consistent with previous findings in the
literature [62]: having a compact, strongly connected network has been shown to result
in more beneficial nodes, since information is spreading faster. According to this finding,
when the diameter of the network is small, there are many centers and the density of the
network itself facilitates a faster flow of information, for which essentially no resetting
is needed.

We can observe this feature in Figure 3c by looking at the blue box plots and their
median values, as for diameter 6 the gr are naturally smaller, while for larger diameters, gr
are increasing when r is chosen as the center. From comparison of the median values for gr
with (red box plots) and without resetting (blue box plots), we conclude that resetting to
one of the centers has a shrinking effect on the diameter of those networks. For example,
if we look at the box plots for a diameter of 9 when we have no resetting (blue), we see
that the box plots with resetting to the center (red) act as if they have a diameter of 8.
This shrinking property is even more evidently seen in the drop when the diameter is 16.
As mentioned before, the shrinking diameter property makes networks generally more
beneficial, hence having networks with smaller diameters will most certainly improve the
memory-less search we observe.
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(a) 〈k〉 ≈ 2

5

7

10

e(i)

(b) 〈k〉 ≈ 3
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6

e(i)
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D(G), Diameter
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g r
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(c)

No resetting

With resetting to center

Figure 3. Relationship between the diameter of networks and GMFPTs gr (5): (a) BA network with
〈k〉 ≈ 2; (b) BA network with 〈k〉 ≈ 3; and (c) relationship between the diameter and the GMFPT gr

for multiple generated networks.

Having corroborated the benefits of resetting to one of the centers, and having estab-
lished the need to analyze networks with diminished density, we continue to the analysis
of the other complex networks.

In Figure 4a,b, we analyze another example of a generated BA network with 〈k〉 = 2,
whereas this network has two centers. This means that we have two nodes that have an
eccentricity equal to the radius (R(g) = 6). In Figure 4b, we compare the GMFPTs gr when
r is set as one of three different node candidates: c1 (red)—the center node with higher
closeness centrality (8), c2 (blue)—the center node with lower closeness centrality, and
h (green)—the node with the overall highest CD and CC. Here again there is an overlap
between the node with the highest degree and closeness centrality; therefore, we consider
a single curve for this candidate. We see that, again, the approach when we reset to the
center improves the GMFPT for both the center nodes. Once more, we obtain the same
central result as for the scale-free networks, that resetting to the center allows the search to
reach all the other nodes faster.

In Figure 4c,d, we analyze an ER network with one center and 〈k〉 ≈ 2. Networks that
are generated using the ER model very rarely have a small average node degree and tend
to have small diameters [59], provided that the probability p for connecting nodes is not
too small. This is also the reason why random graphs likely have multiple centers. This
characteristic has been shown in previous findings [30], which state that the ER topology
has an abundance of local centers. In Figure 4d, we also compare two candidates: c (red)—
the center, and h (green)—the biggest hub. We notice that the GMFPTs gr in the absence of
resetting are smaller by a factor of almost 1/2 than the ones for the BA network, whereas
stochastic resetting plays no role in their minimization.
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Figure 4. Comparison of the GMFPTs gr (5) for different complex networks with N = 100 nodes and
average node degree 〈k〉 ≈ 2: (a) BA network; (b) results for BA node candidates; (c) ER network;
(d) results for ER node candidates; (e) WS network; and (f) results for WS node candidates.

In Figure 4e,f, we analyze a WS network with two centers and 〈k〉 ≈ 2. From the
left panel (e), we can see that the largest value for e(i) of any node is 41, which is a quite
large diameter. The algorithm for the WS network has a tendency to stimulate compression
of the diameter, but we generated a network consistent with the previously generated
scale-free and random graph topologies, i.e., one that has connectivity 〈k〉 ≈ 2. The results
for the node candidates for the WS network are shown in Figure 4f, where we have the
same comparison as in the BA example from Figure 4b. We have three candidates for r: c1
(red)—the center node with the higher closeness centrality (8), c2 (blue)—the center node
with the lower closeness centrality, and h (green)—the node with the overall highest CD and
CC. Again we see that resetting to the center improves the search to this topology as well,
making it beneficial to apply to the WS models that have this configuration. Contrary to
the previous two topologies, the WS model with this lower average node degree in practice
produces a network with a rather homogeneous topology, meaning almost all nodes have
the same degree. This equality of nodes makes this central result even more interesting.



Entropy 2023, 25, 293 11 of 19

3.2. Special Graphs

Of the special graph topologies [63], we examined the balanced tree, lollipop graph
and the barbell graph. All of these special graphs are also “geodetic graphs” [64] since they
all possess a unique shortest path between any two nodes.

Balanced tree graphs, also known as complete b-ary trees, are described using two
parameters. The first one is the branching factor b ≥ 2, and the second is the depth d ≥ 1.
Furthermore, the balanced b-tree is a rooted tree structure: a tree graph where one node is
appointed as the root. The root always has b nearest neighbors, the other internal nodes
have a degree of b + 1, and the leaves have a degree of 1. The depth is also embodied by
the leaf nodes, since all of them are at the same distance d from the root. We also consider
how the different depths (sometimes called heights) can play a role in the random walk
with stochastic resetting, since, as the depth increases, we have different characteristics.
For example, for d = 1, we have (d + 1)-star graphs, and for b = 2, we have the balanced
binary tree.

Barbell graphs are graphs constructed by connecting two complete graphs, Ky1 : the
two bells that are connected by a path graph, and Py2 : the bridge between the two bells.
Suitably, the bells have distinguished sets of nodes (Vle f t 6= Vright) where the “left bell”
has Vle f t nodes, and the “right bell” has Vright nodes. The two bells are connected with
y2 bridge nodes as VL − b1 − b2 − . . . − by2 − Vright. Since the complete graphs that are
represented by the bells are of the same order y1, we have a symmetric adjacency matrix in
the barbell: there is no difference of which is left and which is right.

Lollipop graphs are essentially barbells minus one of the two bells. They are acquired
by concatenating the complete graph Km1 : the bell, and the path graph, the set of pendant
Pm2 nodes. These graphs have a total of N = m1 + m2 nodes and a structure of Km1 − p1 −
p2 − . . .− pm2 , where the pendant node pm2 is the only leaf.

Figures 5 and 6 show results for random walks with our centrality-based approach for
specific configurations of the special graphs. Figure 5 is supplemented by Table 1, in which
we detail the GMFPT gr improvement for different depths.
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Figure 5. Comparison of the GMFPT gr (5) for different depths d of the balanced tree with a fixed
branching factor b = 3: (a) illustration of the balanced tree with depth up to d = 3; and (b) analytical
and numerical results for gr for different depths.
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Figure 6. Comparison of the GMFPT gr (5) for different special graphs: (a) balanced tree with
branching factor b = 6 and depth d = 2; (b) results for balanced tree node candidates; (c) lollipop
graph with 5 pendant nodes and a bell of with 50 nodes; (d) results for lollipop graph node candidates;
(e) barbell graph with 5 bridge nodes connecting the two bells of 25 nodes; and (f) results for barbell
graph node candidates.

Table 1. Comparison of gr improvement for balanced trees with different depths, d.

d, Depth N, No. Nodes D(g), Diameter gr Improvement 1

2 13 4 11.1%

3 40 6 25.4%

4 121 8 36.7%

5 364 10 45.2%

6 1093 12 51.7%
1 Percentage of improvement of GMFPT gr for the optimal resetting probability γ0 to the center (r).
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In Figure 5, we analyze the centrality-based stochastic resetting approach on balanced
trees with the same branching factor but different depths. The branching factor is set to
b = 3, while we change the depth d from 2 to 6. Trees have a rather trivial center, which
is the root from which all the branching starts (d = 0). We see from Figure 5a that the
depth is basically the radius, since the root is on a maximal distance of the depth to all
nodes. The results for the GMFPT gr in Figure 5b are calculated results when r is set to be
the root. These findings show that as the depth of the tree increases, gr becomes naturally
larger, making the search from the root to all the other nodes more extensive. Due to these
large values that we see as the depth increases, to appreciate the advantage of the central
resetting strategy, we supplement this figure with Table 1. The table shows that as the
depth increases, the balanced tree algorithm generates a tree with more nodes and a bigger
diameter. The last column is similar to the previous comparisons for improvement, where
we list the percentage of improvement for the optimal resetting probability γ0 for which
the GMFPT gr from the root to all the other target nodes is the smallest. This finding is
consistent with the earlier diameter analysis for the scale-free networks from Figure 3.
Hence, we again see that as the diameter increases, the stochastic resetting approach to the
center improves the search substantially.

Figure 6 shows a comprehensive overview of the special graphs and a comparison
of GMFPTs gr for the selected node candidates. In order to better understand the central
resetting strategy, we supplement Figure 6 with Table 2.

Table 2. Comparison of gr improvement for different special graphs.

Type of Special Graph Resetting Node Candidate gr Improvement 1

Balanced tree c, center/highest CC 20.27%

Lollipop

c, center node 88.49%
p1, pendant node 81.14%
p2, pendant node 65.68%

h, highest degree/CC 78.53%

Barbell

c, center 92.19%
b1, bridge node 90.88%
b2, bridge node 84.30%

h, highest degree 0.00%
1 Percentage of improvement of GMFPT gr for optimal resetting probability γ0 when resetting takes place to the
resetting node candidate (r).

In Figure 6a,b, we analyze once more a balanced tree, but this time with a different
branching factor b = 6 and a shallow depth of d = 2. Similar to the previous tree analysis,
we consider the center node as the resetting node candidate. This node also has the
highest closeness centrality; therefore, we consider a single curve for this candidate. As
we previously mentioned, the depth is equal to the radius; therefore, this center reaches all
nodes relatively quickly. However, it is interesting to see from the last column of Table 2
that even tough the network is small and compact, we do have a decent improvement of gr
of around 20%.

In Figure 6c,d, we analyze a lollipop graph with a bell with m1 = 50 nodes and a
path graph with m2 = 5 nodes. Here we diverge a bit from our previous convention of
picking the center nodes or the node with the highest degree, since we also consider two
of the pendant nodes that are around the center c. These nodes are picked deliberately, as
we wanted to show how their eccentricity plays a role. The node with the highest degree
(green) is again the node with the highest closeness centrality. Then we have the center
node (red), which has an eccentricity of 3 and is located right in the middle of the path
graph. On top of these, here we also have two pendant p1 nodes (blue), located between
the center and the hub, and the p2 (purple) node, right after the center node. Here we have
a small improvement for the hub, but for the other three candidates, the improvements
look similar at the beginning but diverge from one another for larger resetting probabilities
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γ0. We can see from Table 2 that the largest improvement for gr occurs when we reset to
the center, then for p1, then p2, which are all in agreement with the eccentricity values of
the nodes. For the center, since it is the best node, even larger values for γ0 do not worsen
the results that fast, while for the pendant node behind it, right after the optimal reset rate
we have a significant increase in gr.

In Figure 6e,f, we analyze a barbell graph with bells that have y1 = 25 nodes and a
bridge path graph that consists of y2 = 5 nodes. Similarly to the analysis for the lollipop
graph, we consider the single center (red), the middle of the bridge, two bridge nodes, and
the biggest hub (green). Due to the relatively small differences in the closeness centrality
between the resetting node candidates examined for the barbell graph, we do not compare
this metric when analyzing the GMFPTs gr. Since the barbell has a symmetric adjacency
matrix, we consider just one of the sides for the node candidate analysis. The two bridge
node candidates are the ones between the center and the hub. First, the b1 node (blue),
the node right next to the center and the one with the lower eccentricity of the two bridge
nodes are considered. Second, we look at the b2 node (purple), the node that is right next to
the hub. The transition for the GMFPTs gr follows the ranking in terms of the eccentricity,
for both small and larger resetting probabilities γ0. The results show that the best time with
resetting occurs for the center (red), followed by the node with the next smallest eccentricity
b1, then the node b2, and last the candidate h. From the last column of Table 2, we see that
for node h the central-resetting does not achieve any improvement of the GMFPT gr.

3.3. Real Networks

In the following section, we explore our centrality-based stochastic resetting strategy
for directed real networks. Therefore, we need a modified Markov transition matrix P
suitable for directed networks. So, for the uniform random walk, one uniformly chooses
one of the outward links of a node. By denoting with kout

i , we denote the number of links
pointing to other neighbors of the node i—we have a probability of jumping to a neighbor
pij = (1/kout

i )aij only if there is a link from i to j.
We consider three real directed networks that we obtained from the Stanford Large

Network Dataset Collection [65]. The networks are the citation graph Cit-Hepth, and
two different snapshots of the Gnutella hosts sharing network. For all three, we only
considered their LSCC, which is essentially the largest sub-graph for which there exists a
path from each and every one of the nodes.

The Cit-Hepth network is a high energy physics phenomenology citation graph [66]
taken from the e-print arXiv. It covers all citations within a dataset of 34,546 papers with
421,578 edges. If a paper i cites paper j, the graph contains a directed edge from i to j.
If a paper cites, or is cited by, a paper outside the dataset, the graph does not contain
any information about this. The LSCC has a total of 7464 nodes, 116,268 edges, and a
〈kout〉 = 15.57.

The Gnutella dataset [67,68] is a sequence of snapshots of the Gnutella peer-to-peer
file sharing network. The dataset has a total of nine snapshots of the peer-to-peer file
networks collected during August 2002. Each node in the networks represents a Gnutella
host and edges represent connections between the hosts. We consider two snapshots, one
from the 4 of August, and the other from 24 August. The former has a LSCC of 4317 nodes,
18,742 edges, and 〈kout〉 = 4.31, while the latter has a LSCC of 6352 nodes, 22,928 edges,
and a 〈kout〉 = 3.6.

In Figure 7, we analyze the real-life networks, where the left panels show the degree
distributions that suggest a power law decay [69], and the right panels represent the
analytical results for the GMFPTs gr for different resetting node candidates.
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Figure 7. Analytical comparison of the GMFPT gr (5) for different resetting node candidates on
the LSCC of real-life networks: (a) degree distribution of the high-energy physics theory citation
network (Cit-Hepth); (b) results for different resetting node candidates of Cit-Hepth; (c) degree
distribution of the Gnutella peer-to-peer network, 4 August 2002 (Gnutella04); (d) results for
different resetting node candidates of Gnutella04; (e) degree distribution of the Gnutella peer-to-
peer network, 24 August 2002 (Gnutella24); and (f) results for different resetting node candidates
of Gnutella24.

We show the results for the citation network in Figure 7a,b. From panel (a), we can
see that the degree distribution for the network follows a power-law for higher k values,
which reflects the scale-free property of the network. Panel (b) shows a comparison of the
analytical results when r is either the node with the highest degree (green) or the center node
(red). We can see an improvement in both cases, but for the center node, the improvement
between the approach without resetting and with resetting to the center notably reaches
nine orders of magnitude. This center of this citation graph is consequently a far better
starting and resetting point if one has lost some reference in this citation graph. Although
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one might consider often going to the paper that has either the most in-citations (most
cited) or the one that cites the most papers (hub: green line), this result suggests otherwise.

In Figure 7c,f, we analyze two snapshots of the Gnutella peer-to-peer network. The
first snapshot is for 4 August 2002, presented in c and d. We see that, similarly to the
citation graph, this network also has a degree distribution that approximately follows a
power-law, reflecting some scale-free property. Here, we show a comparison of three nodes:
two centers (red and blue), and the biggest hub (green). We see a similar gr ranking results
as in the one for the candidates of Figure 4a,b. For the center, we have a significant drop,
i.e., a minimization of gr, while resetting and starting the search from the hub would not
lead to an improvement of gr. The second snapshot is from 24 August and is presented
in e and f. Again, the degree distribution follows a power-law, although this power-law
exponent is a bit larger [70,71] than the one for the scale-free property. We also have two
candidates, the center (red) and the biggest hub (green). While there is no improvement for
the hub, the resetting to the center again demonstrates the advantage of the centrality-based
stochastic resetting. Analogous to the citation graph, the network topology indicates a
modular organization expressed by its center. Central resetting improves the search to all
the other nodes.

4. Conclusions

In this paper, we investigated the potential of improving the search efficiency on a
network of a random walk with stochastic resetting by looking for the most plausible
resetting site, which would minimize the expected time to find randomly chosen target
nodes. Based on various centrality measures, we found that the node with the smallest
eccentricity in the network, namely the center, is the best resetting node candidate. We
confirmed this by comparing the analytical relationships based on Markov chain theory
with numerical simulations of the random walk on various complex networks, special
graphs, and different real networks. Choosing the center as the resetting site for directed
networks results in significant reductions of the search time by a few orders of magnitude.
Additionally, an interesting result is the observation that the improvement of the random
search ability with resetting is better for rather sparse networks. In other words, resetting
is not beneficial for denser networks, since the distribution of information is faster in such
structures. Including such centralized resetting concepts in AI optimizers for random
search on networks may lead to significant improvements in optimizing network searches.

The model described in this paper could be applied to studying the potential im-
provements of other biased walks, such as biased uniform random walks with geometric
centrality, biased random walks on networks constituted by a random comb [72], and
maximal-entropy bias random walks [28,73]. In future work, it could be of interest to
consider measures beyond the GMFPT. From continuous, finite spaces, it is known that the
density of FPTs spans many orders of magnitude between the geometry-controlled most
likely FPT and the MFPT forming a long-time cutoff [74,75]. The competition between such
defocused statistics with specific network structures and centrality based resetting will
unveil additional features of the search strategy developed here.
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GMFPT Global Mean First Passage Time
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