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Fractional diffusion and Fokker-Planck equations are widely used tools to describe anomalous diffusion in
a large variety of complex systems. The equivalent formulations in terms of Caputo or Riemann-Liouville
fractional derivatives can be derived as continuum limits of continuous-time random walks and are associated
with the Mittag-Leffler relaxation of Fourier modes, interpolating between a short-time stretched exponential and
a long-time inverse power-law scaling. More recently, a number of other integrodifferential operators have been
proposed, including the Caputo-Fabrizio and Atangana-Baleanu forms. Moreover, the conformable derivative has
been introduced. We study here the dynamics of the associated generalized Fokker-Planck equations from the
perspective of the moments, the time-averaged mean-squared displacements, and the autocovariance functions.
We also study generalized Langevin equations based on these generalized operators. The differences between the
Fokker-Planck and Langevin equations with different integrodifferential operators are discussed and compared
with the dynamic behavior of established models of scaled Brownian motion and fractional Brownian motion. We
demonstrate that the integrodifferential operators with exponential and Mittag-Leffler kernels are not suitable to
be introduced to Fokker-Planck and Langevin equations for the physically relevant diffusion scenarios discussed
in our paper. The conformable and Caputo Langevin equations are unveiled to share similar properties with
scaled and fractional Brownian motion, respectively.
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I. INTRODUCTION

Power laws and fractional derivatives have a long tra-
dition in the sciences. Thus, Buelffinger modified Hooke’s
law to a general power exponent in 1729 [1,2]. Weber is
credited for having (indirectly) discovered viscoelasticity, fol-
lowing his report of a nonelastic aftereffect in stretched silk
threads in 1835 [3], an effect that initiated the development of
generalized rheological models [4]. An explicit time depen-
dence deviating from the exponential law was proposed by
Kohlrausch in 1847 in the form of a stretched exponential, in-
troducing a fractional power law into an exponential function
[3]. Power-law time dependencies in relaxation phenomena
were reported by Nutting in 1921 [5]. To grasp such a behavior
in a compact dynamic equation, Scott Blair then formulated a
relaxation equation with a fractional derivative [6]. Fractional
rheological models have since been used widely to describe
the viscoelastic or glassy behavior in complex systems [7–11].
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Fractional relaxation processes are also relevant in biological
contexts [12,13].

Fractional derivatives have also found widespread use in
the context of anomalous diffusion, typically defined in terms
of the power-law form [14–18]

〈x2(t )〉 � Kαtα (1)

of the mean-squared displacement (MSD). Here Kα of phys-
ical dimension length2/timeα is the generalized diffusion
coefficient, and the value of the anomalous diffusion exponent
α distinguishes subdiffusion (0 < α < 1) from superdiffusion
(α > 1), including the special cases of normal diffusion (α =
1) and ballistic, wavelike motion (α = 2). A breakthrough
in describing anomalous diffusion came with the work of
Schneider and Wyss [19], who started from the integral ver-
sion of the diffusion equation

P(x, t ) − P0(x) = K1

∫ t

0

∂2

∂x2
P(x, t ′)dt ′ (2)

for the probability density function P(x, t ) to find the test par-
ticle at position x at time t , given the initial condition P0(x) at
t = 0. They then replaced the integral by a Riemann-Liouville
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(RL) fractional integral operator defined for a suitable func-
tion f (t ) as [20,21]

0D−α
t f (t ) = 1

�(α)

∫ t

0

f (t ′)
(t − t ′)1−α

dt ′, (3)

which is a direct generalization of the Cauchy multiple in-
tegral. After differentiation by time once one obtains the
equivalent fractional diffusion equation (FDE) in RL-form
[15],

∂

∂t
P(x, t ) = Kα 0D1−α

t

∂2

∂x2
P(x, t ), (4)

where 0D1−α
t = (d/dt ) 0D−α

t is the RL fractional differential
operator [20,21]. The solution of the FDE (4) can be ob-
tained in terms of Fox H-functions [15,19,22]. The asymptotic
behavior of the PDF P(x, t ) encoded in the FDE (4) has
a stretched Gaussian shape [15,19,23]. FDEs of the above
form can be derived as the continuum limit of continuous-
time random walks (CTRWs) with scale-free waiting time
densities ψ (t ) � t−1−α with 0 < α < 1 and jump length den-
sities with finite variance [15,23–28]. By a single-particle
tracking method, waiting time densities with power-law forms
were revealed, i.a., in protein motion in membranes [29],
colloidal tracer motion in actin networks [30,31], or for
tracers in nonlaminar flows [32]. Power-law waiting time
densities were also identified in dynamic maps [33] or sim-
ulations of drug molecules diffusing in silica slits [34].
When an external potential influences the particle motion, the
FDE (4) can be generalized to the fractional Fokker-Planck
equation [15,23,26,27,35–38]. For transport in groundwater
and other applications, advection terms as well as mobile-
immobile scenarios are considered in generalized versions of
FDEs [39–46]. In the context of FDEs and fractional Fokker-
Planck equations of RL-type, the relaxation of modes follows
the Mittag-Leffler pattern (see below) that interpolates be-
tween an initial stretched exponential and a long-time inverse
power-law [7,15].

Apart from the mentioned RL fractional derivatives, there
exist a wide variety of other types of fractional derivatives
[47–50], many of which are being used in engineering and sci-
ence applications. Possibly the most widely used apart from
the RL definition is the Caputo fractional derivative [51,52].
We note that both definitions are in fact equivalent as long as
the initial values are properly taken into account. Thus, when
we solve the FDE (4) for a specific initial value problem, the
Caputo version of the FDE studied below leads to the same re-
sult. Caputo fractional derivatives are used to model, inter alia,
non-Darcian flow [53], permeability models for rocks [54],
contaminant transport [55], or viscoelastic diffusion [56,57].
Apart from the Caputo or RL derivative based on a power-law
integral kernel with a (weak) singularity, in the past decade
some new nonsingular integrodifferential operators have been
proposed. One option is the Caputo-Fabrizio (CF) integrod-
ifferential operator with an exponential kernel [58]. The CF
operator was employed in a number of areas, for instance fluid
flow [59], virus models [60,61], and a human liver model [62].
Alternatively, the Atangana-Baleanu (AB) integrodifferential
operator based on the Mittag-Leffler function for the memory
kernel [63] aims to describe the full memory effect in systems
since the Mittag-Leffler function combines a stretched expo-

nential shape and a power-law decay at short and long times,
respectively. The AB operator is used in FDEs [64], Cauchy
and source problems for advection-diffusion [65], optimal
control [66], and disease models [67]. Comparisons between
the AB and CF integrodifferential operators are investigated
in relaxation and diffusion models [68], reaction-diffusion
models [69], cancer models [70], heat transfer analysis [71],
and for the Casson fluid [72].

Apart from the nonlocal integrodifferential operators men-
tioned above, a local derivative, the so-called conformable
derivative, has been introduced [73–76] and studied from a
physical point of view [77]. Applications of the conformable
derivative formulation have been discussed for anomalous
diffusion [78], advection-diffusion [79,80], non-Darcian flow
[81], and other differential equations [82–86]. A similar vari-
ant is the Hausdorff derivative proposed earlier by Chen
[87]. This derivative is also employed in diffusion scenarios
[88–92], anomalous diffusion in magnetic resonance imaging
[93], viscoelastic modeling [94], or the Richards’ equa-
tion [95]. It was shown that the conformable derivative is in
fact proportional to the Hausdorff derivative [96,97]. Further
discussions of these derivatives can be found in [98–100].

We scrutinize here the integrodifferential operators re-
cently proposed in the framework of FDEs and generalized
Fokker-Planck equations as well as their applications in gen-
eralizations of the stochastic Langevin equations. Fourier and
Laplace transforms are used to obtain analytical solutions
for the PDFs and the moments to study the dynamics en-
coded in these dynamic equations. In particular, we unveil
the connections between FDEs and fractional Langevin equa-
tions with other well-known stochastic processes, particularly
with scaled Brownian motion (SBM, based on a Langevin
equation with deterministic power-law time dependence of the
diffusion coefficient) and fractional Brownian motion (FBM,
based on a Langevin equation driven by zero-mean Gaussian
noise with long-range, power-law correlations). Our discus-
sion is based on experimentally measurable quantities. These
include the first and second moments, the MSD, and the PDF.
Moments can be directly inferred from measured time series
as either ensemble or time averages [101]. PDFs can also be
reconstructed in many contemporary studies and used, inter
alia, to check for non-Gaussianity features [102].

The paper is structured as follows. In Sec. II we intro-
duce and briefly discuss different integrodifferential operators
and recall the generalized Fokker-Planck and Langevin equa-
tions in describing stochastic processes in complex systems.
In Sec. III we discuss the results of local and nonsingular
integrodifferential operators in Fokker-Planck equations for
the force-free case and for a constant drift. Specifically, we
discuss the extent to which the CF and AB integrodifferen-
tial operators can provide physically meaningful descriptions
in the anomalous diffusion context. The results of the con-
formable and Caputo diffusion equations (with drift) and
SBM (with drift) are compared. In Sec. IV we focus on
generalized Langevin equations for SBM and FBM, as well
as Langevin equations with the four integrodifferential opera-
tors introduced in Sec. II. Specifically, we again discuss the
physical implications of the CF and AB integrodifferential
operators in this context. The related moments, time-averaged
MSD (TAMSD), and autocovariance function (ACVF) are
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considered to assess different Langevin equations. In Sec. V
we summarize and discuss our results. We also present two
tables with the main results for the generalized Fokker-Planck
and Langevin equations discussed in the paper.

II. INTEGRODIFFERENTIAL OPERATORS,
GENERALIZED FOKKER-PLANCK

AND LANGEVIN EQUATIONS

In this section, we provide a brief introduction to four
definitions of integrodifferential operators that are frequently
employed in theoretical modeling and engineering, the Caputo
derivative (note our remarks to the extent these are equivalent
to the RL-derivative) and conformable derivative, as well as
the two recently proposed CF and AB integrodifferential op-
erators. We then introduce them to generalized formulations
of the Fokker-Planck and Langevin equations.

A. Integrodifferential operators

The Caputo derivative of order α ∈ (0, 1] for a suitable
function f (t ) is defined in terms of a power-law kernel
[51,52],

C
0 Dα

t f (t ) = 1

�(1 − α)

∫ t

0

f ′(t ′)
(t − t ′)α

dt ′, (5)

where f ′(t ) = df (t )/dt . The Caputo derivative thus has a
(weak) singularity at t ′ = t . The special feature introduced
by Caputo in his derivative is the fact that the derivative on
the function f (t ), f ′(t ) = df (t )/dt , is contained inside the
integral. This contrasts the definition of the RL fractional
derivative, in which the differentiation is taken after the frac-
tional integration [15,20]. In the Caputo formulation, e.g.,
when using Laplace transform methods to derive the solution,
the initial conditions thus enter in the traditional way. For
0 < α < 1, e.g., the initial value of f (t ) at t = 0 is needed.
This contrasts the RL derivative, for which fractional-
order initial conditions enter [20]. However, this compli-
cation for the RL derivative can be circumvented in the
Schneider and Wyss integral formulation presented above
[7,13–15,19,26,27,35]. In the solution of time-fractional equa-
tions with initial condition given at t = 0, the Laplace
transform

L { f (t )}(s) ≡ f̃ (s) =
∫ ∞

0
f (t ) exp(−st )dt (6)

is of central importance. For the fractional RL-Integral, the
Laplace transform reads L { f (t )} = s−α f̃ (s), and for the
Caputo-fractional operator we have

L
{

C
0 Dα

t f (t )
} = sα f̃ (s) − sα−1 f (0). (7)

Recently, two new definitions of integrodifferential oper-
ators with a nonsingular kernel were proposed. One is the
Caputo-Fabrizio (CF) integrodifferential operator of order α ∈
(0, 1] defined with an exponential kernel [58],

CF
0 Dα

t f (t ) = M(α)

(1 − α)τα

∫ t

0
f ′(t ′) exp

(−α(t − t ′)
(1 − α)τ

)
dt ′,

(8)

where the factor M(α) introduced in [58] is chosen such that
M(0) = M(1) = 1. Note that we introduced the timescale τ

in order to get dimensions correct. The choice τα in the factor
in front of the exponential allows us to take the limits α = 0
[where we get f (t ) − f (0)] and α = 1 (the normal differen-
tial) consistently. The Laplace transform of the CF-operator
reads

L
{

CF
0 Dα

t f (t )
} = s f̃ (s) − f (0)

(1 − α)ταs + ατα−1
. (9)

The other variant for a generalized fractional derivative
is given by the Atangana-Baleanu (AB) integrodifferential
operator with a Mittag-Leffler kernel [63],

AB
0 Dα

t f (t ) = B(α)

(1 − α)τα

∫ t

0
f ′(t ′)Eα

(
−α

(t − t ′)α

(1 − α)τα

)
dt ′,

(10)

where Eα (−z) = ∑∞
k=0(−z)k/�(1 + αk) is the one-parameter

Mittag-Leffler function with expansion around infinity,
Eα (−z) ∼ −∑∞

k=1(−z)−k/�(1 − αk) [103]. In particular,
when α = 1, E1(z) = ez. Note that again we introduced the
timescale τ for dimensional consistency. Moreover, we note
that here B(α) is a normalization function satisfying B(0) =
B(1) = 1 and has the same properties as in the CF operator. To
simplify our notation in the following, we set M(α) = B(α) =
1 [58,63]. The Laplace transform of the AB-operator has the
form

L
{

AB
0 Dα

t f (t )
} = sα f̃ (s) − sα−1 f (0)

(1 − α)ταsα + α
. (11)

All these definitions—Caputo, CF, and AB integrodiffer-
ential operators—correspond to convolutions of the derivative
f ′(t ) with different choices for the kernels, i.e., power-law,
exponential, and Mittag-Leffler functions, respectively. In
contrast, there also exists a local definition of a generalized
derivative, namely, the conformable derivative of order α ∈
(0, 1], defined via [104]

Tα f (t ) = lim
τ̄→0

f (t + τ̄ αt1−α ) − f (t )

τ̄ α
. (12)

Here we used the small variable τ̄ with dimension of time to
housekeep physical dimensions. If the conformable derivative
of f of order α exists in some interval (0, a), a > 0, and
lim

t→0+
Tα f (t ) exists, then we define Tα f (0) = lim

t→0+
Tα f (t ). The

conformable Laplace transform of f (t ) is defined by [73]

Lα{ f (t )}(s) ≡ f̃α (s) =
∫ ∞

0
f (t )tα−1 exp

(
−s

tα

α

)
dt, (13)

generalizing the standard Laplace transform (6). The relation-
ship between the conformable Laplace transform and the ordi-
nary Laplace transform is Lα{ f (t )}(s) = L { f ([αt]1/α )}(s).
The conformable Laplace transform of the conformable
derivative is

Lα{Tα f (t )}(s) = s f̃α (s) − f (0). (14)

The Hausdorff derivative (fractal derivative) of a suitable
function f (t ) with respect to tα [87] is defined as

df (t )

dtα
= lim

t ′→t

f (t ) − f (t ′)
tα − (t ′)α

. (15)

024125-3



WEI, WANG, ZHOU, METZLER, AND CHECHKIN PHYSICAL REVIEW E 108, 024125 (2023)

From this definition we see that the Hausdorff derivative is
also local in nature. The connection between the Hausdorff
derivative and the conformable derivative is given by [96,97]

α
df (t )

dtα
= t1−α df (t )

dt
= Tα f (t ). (16)

B. Generalized Fokker-Planck equations

We now use these operators to generalize the Fokker-
Planck equation [105],

∂

∂t
P(x, t ) =

(
K1

∂2

∂x2
− ∂

∂x

F (x)

mη

)
P(x, t ), (17)

in the presence of a general external force field F (x). Here m is
the particle mass and η the friction coefficient [105]. For the
force, we obtain solutions for vanishing or constant external
force F0. In the latter case, we then use the drift velocity v =
F0/(mη). In the generalization based on the RL derivative, the
fractional Fokker-Planck equation was analyzed for different
linear and nonlinear force fields [14,15,27,35].

We introduce here the four generalized differential op-
erators above and analyze the generalized diffusion equa-
tion (GDE) or generalized diffusion equation with drift
(drift-GDE),

∂α

∂tα
P(x, t ) =

(
Kα

∂2

∂x2
− vα

∂

∂x

)
P(x, t ), (18)

with initial condition P(x, 0) = δ(x) for vα = 0 and vα �= 0
and “natural” boundary conditions P(|x| → ∞, t ) = 0. These
standard initial and boundary conditions will be applied
throughout this work. Note that we introduced the α-
dependent velocity vα for dimensionality housekeeping pur-
poses. This can be achieved by setting vα = vτ 1−α , where τ

is a timescale, such that vα has dimension length/timeα . We
seek solutions of Eq. (18) on the infinite line −∞ < x < ∞,
and the notation ∂α/∂tα represents our four operators.

For our analysis, we also need to introduce SBM [106,107],
whose diffusion coefficient is explicitly time-dependent and
evolves as power-law

Kα (t ) = αKαtα−1 (19)

with α > 0. SBM is a Gaussian self-similar Markovian pro-
cess with independent but nonstationary increments. It finds
applications in turbulence [108], stochastic hydrology [109],
finance [110], granular gases [111], and magnetic resonance
imaging [112], to name a few. The Fokker-Planck equation for
SBM in an external force field is given by [107]

∂

∂t
P(x, t ) =

(
Kα (t )

∂2

∂x2
− ∂

∂x

F (x)

mη

)
P(x, t ). (20)

C. Generalized Langevin equations

Fokker-Planck equations are deterministic equations for
the PDF P(x, t ). A stochastic description of the position of
a test particle in the presence of a fluctuating force is the
Langevin equation [113], the alternative standard description
of diffusive processes [114]. The (overdamped) Langevin
equation corresponding to the Fokker-Planck equation (17)

with P0(x) = δ(x) reads

d

dt
x(t ) = F (x)

mη
+

√
2K1ξ (t ), (21)

with the initial position x(0) = 0. Here ξ (t ) is zero-mean
white Gaussian noise with ACVF 〈ξ (t )ξ (t ′)〉 = δ(t − t ′).

Then, the generalized Langevin equation for the thermal-
ized system in the overdamped approximation reads [115]∫ t

0
γ (t − t ′)

dx(t ′)
dt ′ dt ′ = F (x)

mη
+ ζ (t )

mη
, (22)

where the noise autocorrelation function is coupled to the
frictional kernel by the Kubo-Zwanzig fluctuation-dissipation
theorem (FDT) [116] 〈ζ (t1)ζ (t2)〉 = kBT mηγ (t1 − t2), where
kB is the Boltzmann constant and T is the absolute temperature
of the environment. The noise ζ (t ) obeying the FDT is called
internal. Generalized Langevin equations with FDT and dif-
ferent kernels, e.g., of exponential and Mittag-Leffler shapes,
have been extensively studied before [117–121].

In what follows, we generalize the Langevin equation (21)
via the four operators in Eqs. (5), (8), (10), and (12) in the
presence of a constant force, with the unifying notation

dα

dtα
x(t ) = vα +

√
2Kαξ (t ). (23)

We note that FBM and the generalized Langevin equa-
tions we consider here do not fulfill the generalized
fluctuation-dissipation theorem and thus do not describe equi-
librium systems. Instead, the noise is considered to be external
[122]. This is appropriate for active systems, in which energy
is dissipated, e.g., living biological cells.

We will compare the resulting dynamics with that encoded
by SBM, whose Langevin equation is given by [106,107]

d

dt
x(t ) = F (x)

mη
+

√
2Kα (t )ξ (t ), (24)

which is equivalent to the deterministic equation (20). The
noise ξ (t ) has the same properties as for the standard
Langevin equation (21), i.e., it is zero-mean white Gaussian
noise. In the following, we will consider the cases of zero and
constant force.

As we will see, it will also be of interest to compare our
results to the dynamics of FBM [123], which is stationary in
increments and nearly ergodic [124–126]. As a generalization
of Brownian motion, FBM is an effective stochastic process to
model anomalous diffusion [101]. Its Langevin equation reads
[16,123]

d

dt
x(t ) = F (x)

mη
+

√
2Kαξα (t ), (25)

where ξα (t ) is zero-mean fractional Gaussian noise with
the long-range, power-law ACVF 〈ξα (t1)ξα (t2)〉 ∼ 1

2α(α − 1)
|t1 − t2|α−2 when |t1 − t2| � 1. FBM is defined for the range
0 < α < 2 of the anomalous diffusion exponent, instead of
which the Hurst exponent H = α/2 is often used. From the
noise ACVF we can see that the noise correlations are positive
(persistent) when the motion is superdiffusive, while they are
negative (antipersistent) in the subdiffusive case.

We will characterize the dynamics of the processes that
we consider the moments, the time-averaged MSD (TAMSD)

024125-4



TIME-FRACTIONAL CAPUTO DERIVATIVE VERSUS … PHYSICAL REVIEW E 108, 024125 (2023)

[16,101], and the displacement ACVF of the process. The
TAMSD is important in the analysis of single-particle trajec-
tories measured in modern tracking experiments; it is defined
via

δ2(�) = 1

T − �

∫ T −�

0
(x(t + �) − x(t ))2dt, (26)

where T is the length of the time series (measurement time)
and � is called the lag time. The mean TAMSD is obtained
from averaging over a number N of individual traces δ2

i (�),

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�). (27)

In the Birkhoff-Boltzmann sense, a system is considered er-
godic when ensemble and time averages are equivalent in
the limit of long measurement times. We here consider a
stochastic process nonergodic when the ensemble-averaged
MSD and the TAMSD are disparate in the limit of long
observation times, lim

T →∞
δ2(�) �= 〈x2(�)〉. The displacement

ACVF is defined as

C�(t ) = C�(t ) = 〈[x(t + �) − x(t )][x(�) − x(0)]〉
�2

. (28)

III. GENERALIZED FOKKER-PLANCK EQUATIONS

A. Generalized Fokker-Planck equations in the force-free case

We now first assess the dynamics encoded in the general-
ized Fokker-Planck equation (18) in the absence of an external
force.

1. Caputo and nonsingular differential operators

When F (x) = 0, the generalized Fokker-Planck equa-
tion (18) reduces to the GDE

∂α

∂tα
P(x, t ) = Kα

∂2

∂x2
P(x, t ), (29)

with 0 < α � 1, which we will solve on the interval −∞ <

x < ∞ for the initial condition P(x, 0) = δ(x). Here the
operator ∂α/∂tα represents the Caputo, CF, and AB integrod-
ifferential operators, Eqs. (5), (8), and (10).

Applying the Laplace and Fourier transforms to the GDE
(29), we find

ˆ̃PC (k, s) = sα−1

sα + Kαk2
, (30)

ˆ̃PCF(k, s) = 1

s + Kα[ατα−1 + s(1 − α)τα]k2
, (31)

ˆ̃PAB(k, s) = sα−1

sα + Kα[α + sα (1 − α)τα]k2
. (32)

After inverse Fourier transform, we obtain the PDFs in
Laplace space,

P̃(x, s) = 1

2s
φ(s) exp ( − φ(s)|x|), (33)

where we define

φC (s) =
√

sα

Kα

, (34)

φCF(s) =
√

s

(1 − α)ταKαs + ατα−1Kα

, (35)

φAB(s) =
√

sα

(1 − α)ταKαsα + αKα

, (36)

for the three operators, respectively.
We first recall the PDF of the Caputo fractional diffusion

equation (FDE) based on the Caputo operator (5) in (x, t )-
space,

PC (x, t ) = 1

2
√

Kαtα
Mα/2

( |x|√
Kαtα

)
, (37)

where Mν denotes the Mainardi function [127,128], also
called the M function (of the Wright type), of order ν. Using
the asymptotic representation of Mα/2, the PDF PC (x, t ) can
be shown to have a stretched Gaussian shape [129], corre-
sponding to the above-mentioned results in [15,19,23]. An
alternative representation of the PDF is via Fox H-functions
[15,19]. The MSD of the Caputo-FDE reads

〈x2(t )〉C = 2Kα

�(α + 1)
tα, (38)

and the corresponding kurtosis has the time-independent value

κC = 3α�(α)2

�(2α)
, (39)

demonstrating the non-Gaussian character of PC (x, t ).
To vouchsafe that the solutions of the AB-GDE and the

CF-GDE are proper PDFs, they should be completely mono-
tonic in the Laplace domain [130]. That is, we should first
check the complete monotonicity of the form (33) together
with Eqs. (35) and (36). In Appendix B1, we use the theory of
Bernstein functions to demonstrate that the complete mono-
tonicity is indeed ensured.

We now calculate the long-time limit of the PDF for the
GDEs of CF- and AB-type from the Laplace representation in
Eq. (33) together with Eqs. (35), and (36). In Laplace space,
the long-time limit t → ∞ corresponds to s → 0, for which
we find the asymptotic behaviors

P̃CF(x, s) ∼ 1

2s

√
s

ατα−1Kα

exp

(
−
√

s

ατα−1Kα

|x|
)

, (40)

P̃AB(x, s) ∼ 1

2s

√
sα

αKα

exp

(
−
√

sα

αKα

|x|
)

. (41)

Laplace back-transforming, these forms correspond to the
long-time asymptotes

PCF(x, t ) ∼ 1√
4ατα−1Kαπt

exp

(
− x2

4ατα−1Kαt

)
, (42)

PAB(x, t ) ∼ 1√
4αKαtα

Mα/2

( |x|√
αKαtα

)
. (43)

Equation (42) demonstrates that the CF-GDE describes nor-
mal diffusion at long times, with a Gaussian shape and x
scaling like t1/2. In contrast Eq. (43) for the AB-GDE at
long times is similar to the PDF of the Caputo-FDE. Both
behaviors are expected from the definitions of the respective
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integrodifferential operators: at long times, the CF-operator
includes an exponential cutoff, whereas the AB-operator has
an asymptotic power-law tail equivalent to the kernel in the
Caputo operator.

The short-time limit of the PDFs for the CF- and AB-GDE
can be similarly calculated from their Laplace representations
(33), (35), and (36). For t → 0, corresponding to s → ∞ in
the Laplace domain, we have

P̃CF(x, s), P̃AB(x, s)

∼ 1

2s
√

(1 − α)ταKα

exp

(
− |x|√

(1 − α)ταKα

)
, (44)

from which we obtain the asymptotic short-time result in the
time domain,

PCF(x, t ), PAB(x, t )

∼ 1√
4(1 − α)ταKα

exp

(
− |x|√

(1 − α)ταKα

)
. (45)

This is a remarkable result, showing a finite width of the initial
condition, which we will comment on below. The PDFs of the
Caputo-, CF-, and AB-GDEs are shown for different times in
Figs. 1(a)–1(c). Indeed, for the CF and AB cases the shapes
of the limits for t = 0 correspond to a Laplace distribution.

We now calculate the MSDs for the CF- and AB-GDE,

〈x2(t )〉CF = 2αKατα−1t + 2(1 − α)Kατα (46)

and

〈x2(t )〉AB = 2Kα

�(α)
tα + 2(1 − α)Kατα. (47)

While the long-time behaviors 〈x2(t )〉CF � t and 〈x2(t )〉AB �
tα produce normal and subdiffusive scaling, the values of the
MSDs in the limit t → 0 have finite values, corresponding
to the finite width of the limits (45) of the PDFs. We also
calculated the kurtosis in Appendix B1, Eqs. (B16) and (B17).
At short times, κCF, κAB ∼ 6, this means the CF- and AB-
DE describe non-Gaussian process. At long times, κCF ∼ 3,
i.e., the CF-GDE describes a Gaussian process, while κAB ∼
3α�(α)2/�(2α) = κC , which shows that the AB-GDE is sim-
ilar to the PDF of the Caputo-FDE in this long-time limit. The
kurtosis of these models is shown in Fig. 2. The MSDs of
the GDE with Caputo-, CF-, and AB-operators are shown in
Fig. 3.

From this discussion we see that within the framework
of the GDE considered here with initial value P(x, 0) given
at time t = 0, the CF- and AB-operators produce inconsis-
tent results in the short-time limit. This observation deserves
a separate formal investigation. We note that the same re-
sults for the Fourier-Laplace forms Eqs. (31) and (32) can
be derived from the corresponding integral formulations (see
Appendix A) of these operators.

Next we establish the relation of CF-GDE and AB-GDE in
Eq. (29) to the continuous-time random walk.

2. Relation to the continuous-time random walk

The generalized diffusion equation arises as a long
space-time limit of CTRW, characterized by two PDFs, the
distributions of jumps λ(x) and waiting times ψ (t ). The

jump distribution possesses a finite variance, and this property
leads to the appearance of the second-order space derivative
on the right-hand side of the generalized diffusion equa-
tion. The waiting time distributions determines the kernel
θ (t ) of the integrodifferential operator on the left-hand side.
In Laplace space, this relation obtains a simple form, see,
e.g., [131],

ψ̃ (s) = 1

1 + ταsθ̃ (s)
. (48)

The waiting time PDF together with a Gaussian jump length
PDF with λ̂(k) ∼ 1 − σ 2k2 yield the Fourier-Laplace form of
the Montroll-Weiss relation [132,133], see also [15,134,135]

ˆ̃P(k, s) = 1 − ψ̃ (s)

s

1

1 − ψ̃ (s)(1 − σ 2k2)
(49)

for the PDF. Rewriting Eq. (49) as Eq. (50),

θ̃ (s)[s ˆ̃P(k, s) − 1] = −σ 2

τα
k2 ˆ̃P(k, s), (50)

and taking on the inverse Fourier-Laplace transform, we ob-
tain the generalized diffusion equation∫ t

0
θ (t − t ′)

∂

∂t ′ P(x, t ′)dt ′ = Kα

∂2

∂x2
P(x, t ), (51)

with the memory kernel θ (t ), and Kα = σ 2/τα . The initial
condition is again of the form P0(x) = δ(x), i.e., P̂0(k) = 1.

For the Caputo derivative, CF, and AB operators, see
Eqs. (5), (8), and (10), the corresponding kernels in the GDEs
have the form

θC (t ) = t−α

�(1 − α)
,

θCF(t ) = 1

(1 − α)τα
exp

(
− αt

(1 − α)τ

)
,

θAB(t ) = 1

(1 − α)τα
Eα

(
−α

tα

(1 − α)τα

)
. (52)

We recall here the waiting time PDF for the Caputo FDE.
In Laplace space,

ψ̃C (s) = 1

ταsα + 1
, (53)

which is a completely monotonic function [131]. Then the
corresponding waiting time PDF is

ψC (t ) = 1

τα
tα−1Eα,α

(
− tα

τα

)
, (54)

where Eα,β (−z) = ∑∞
k=0(−z)k/�(β + αk) is the two-

parameter Mittag-Leffler function with expansion around
infinity, Eα,β (−z) ∼ −∑∞

k=1(−z)−k/�(β − αk) [103].
In particular, when β = 1, Eα,1(z) = Eα (z). We note
that ψC (t ) has a weak singularity at t = 0, and in the
long-time limit, with −z�(−z)�(z) = π csc(πz) [149], we
have

lim
t→+∞ ψC (t ) = lim

t→+∞
tα−1

τα
Eα,α

(
− tα

τα

)
∼ �(α + 1) sin(πα)τα

π
t−(1+α), (55)
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FIG. 1. PDF of diffusion equations with initial condition P(x, 0) = δ(x) with different integrodifferential operators for Kα = 1, τ = 1, and
α = 0.5: (a) Caputo-fractional, (b) Caputo-Fabrizio, (c) Atangana-Baleanu, and (d) Conformable. The solutions for the Caputo-FDE, CF-GDE,
and AB-GDE are obtained by applying an inverse Laplace transform to Eq. (33). Note that both PDFs for the CF- and AB-GDE have a Laplace
shape with finite width at t = 0. The solution (75) of the conformable diffusion equation is Gaussian at all times. The shapes are produced
using MATLAB code.
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FIG. 2. Kurtosis κ for the GDEs with different integrodifferential
operators for Kα = 1, τ = 1, and α = 0.5.

that is, at long times, ψC (t ) decays as t−(1+α). We note that
ψC (t ) satisfies normalization, i.e.,

∫ ∞

0
ψC (t ′)dt ′ = 1

τα

∫ ∞

0
(t ′)α−1Eα,α

(
− (t ′)α

τα

)
dt ′

= lim
z→+∞

1

τα
zαEα,α+1

(
− zα

τα

)
= 1. (56)

Now we consider the waiting time PDF for CF and AB
cases, first in Laplace space. According to Eqs. (48) and (52),
we obtain

ψ̃CF(s) = 1 − α

2 − α
+ α

2 − α

1

(2 − α)τ s + α
, (57)

ψ̃AB(s) = 1 − α

2 − α
+ α

2 − α

1

(2 − α)ταsα + α
. (58)

Notice that ψ̃CF(s) and ψ̃AB(s) are completely monotonic
functions, therefore by applying an inverse Laplace trans-
form we obtain functions which are proper PDFs in the time

100 101 102
100

101

102

FIG. 3. MSD for the GDEs with different integrodifferential op-
erators for Kα = 1, τ = 1, and α = 0.5.

domain,

ψCF(t ) = 1 − α

2 − α
δ(t ) + α

τ (2 − α)2
exp

(
− α

τ (2 − α)
t

)
,

(59)

ψAB(t ) = 1 − α

2 − α
δ(t ) + αtα−1

τα (2 − α)2
Eα,α

(
− α

τα (2 − α)
tα

)
.

(60)

One can easily check their normalization,
∫ ∞

0 ψCF(t ′)dt ′ = 1,∫ ∞
0 ψAB(t ′)dt ′ = 1.

From Eqs. (59) and (60), we notice that the waiting time
PDFs of both cases contain the term δ(t ), which means that
the particle jumps at the initial time t = 0, instead of waiting
on site. This observation is in line with the property of having
a nonzero MSD at t = 0; see Eqs. (46) and (47). It may imply
that the use of CF and AB operators in anomalous dynam-
ics requires proper initial conditions that are different from
those used in standard formulations of the diffusion problem
[i.e., P(x, t = 0) = δ(x)] and in standard formulations of the
continuous-time random-walk models, in which the particle
arrives at a site at t = 0, then waits, and then makes a jump.
Such a discussion goes beyond the scope of our paper and
requires further investigation. Here we only conclude that
while CF and AB integrodifferential operators may be useful
for the description of other generalized dynamics, we do not
consider them for the following discussion of GDEs. Below
we show that these two operators also lead to inconsistent
formulations of the generalized Langevin equations.

3. Alternative formulation for the CF-GDE

We digress briefly to shed some light on the delicate issue
of placing specific forms of exponential tempering or other
nonsingular kernels in the integrodifferential operators used
above. We consider the case of the CF-operator. Let us use
the Schneider-Wyss idea and start with the integral form (2)
of the diffusion equation. We naively replace the integral on
the right-hand side with the operator (note that an analogous
choice was made in Ref. [136])

CF
0 D−α

t = τα−1

1 − α

∫ t

0
f (t ′) exp

(
− α(t − t ′)

(1 − α)τ

)
dt ′, (61)

which is an integral operator with exponential tempering sim-
ilar to the formulation of the CF-operator (8). Instead of the
solution (31), for the initial condition P0(x) = δ(x) we then
obtain

P(k, s) = 1 + α/[(1 − α)sτ ]

α/[(1 − α)τ ] + s + Kατα−1k2
. (62)

The normalization is fulfilled, as for k = 0 the Laplace trans-
form reads 1/s. The initial condition can be found from this
equation by setting s → ∞, which is 1/s to leading order.
The inverse Fourier transform indeed reproduces the initial
condition P0(x) = δ(x).

The second moment is obtained by differentiation twice
with respect to k and setting k = 0,

〈x2(t )〉 = 2Kατα (1 − α)

α

[
1 − exp

(
− αt

(1 − α)τ

)]
. (63)
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At short times we find normal diffusion,

〈x2(t )〉 ∼ 2Kατα−1t (64)

with the effective diffusion coefficient Kατα−1, and at long
times the saturation value

〈x2(t )〉 ∼ 2(1 − α)Kατα

α
(65)

is reached. This convergence to a stationary plateau is similar
to what was observed previously for the tempering of FBM,
which effected a behavior consistent with confinement [137].
The inverse Fourier transform of P(k, s) becomes

P(x, s) =
√

π{α/[(1 − α)τ ] + s}/2

s
√

Kατα−1

× exp

(
−|x|√α/[(1 − α)τ ] + s√

Kατα−1

)
. (66)

At s → ∞,

P(x, s) ∼ 1

s
lim

s→∞

√
π/2

Kατα−1/s
exp

(
− |x|√s√

Kατα−1

)

∼ 1

s
δ(x), (67)

where we used the limiting form of the δ-function. Thus,
indeed, this form leads back to the consistent initial value. In
the opposite long-time limit corresponding to s → 0, we have

P(x, s) ∼ 1

s

√
π/2

Kατα (1 − α)/α
exp

(
−|x|√α/(1 − α)√

Kατα

)
.

(68)

We thus have the stationary limit

P(x) ∼
√

π/2

Kατα (1 − α)/α
exp

(
−|x|√α/(1 − α)√

Kατα

)
. (69)

This is a Laplace distribution. We showed here for a simple
modification of the integral form of the diffusion equation us-
ing a CF-type exponential tempering in the integral how the
time evolution of the PDF P(x, t ) will reach a nontrivial sta-
tionary value. Physically, this can be viewed as a consequence
of introducing a finite timescale by the exponential factor in
the integral. Beyond this time, the contributions of the integral
to the dynamics of P(x, t ) become exponentially small.

4. SBM and conformable diffusion equation

SBM in the absence of an external force, F (x) = 0 in
Eq. (20), and for the standard initial condition P(x, 0) = δ(x)
has the Gaussian shape [106,107],

P(x, t ) = 1√
4πKαtα

exp

(
− x2

4Kαtα

)
, (70)

with the associated MSD

〈x2(t )〉 = 2Kαtα. (71)

Concurrently, the GDE based on the conformable deriva-
tive is

TαP(x, t ) = Kα

∂2

∂x2
P(x, t ). (72)

For P(x, 0) = δ(x) and after applying the conformable
Laplace transform together with a Fourier transform

F {g(x)} ≡
∫ ∞

−∞
g(x) exp(ikx)dx, (73)

we find

ˆ̃PTα
(k, s) = 1

s + Kαk2
. (74)

This directly leads to the PDF in (x, t ) space,

PTα
(x, t ) =

√
α

4πKαtα
exp

(
− αx2

4Kαtα

)
. (75)

The Gaussianity of this PDF implies that the kurtosis is
κTα

(t ) = 3. The MSD encoded by the PDF (72) reads

〈x2(t )〉Tα
= 2Kα

α
tα. (76)

Thus, the conformable-GDE has the same PDF, MSD,
and kurtosis as subdiffusive SBM. The PDF (75) of the
conformable-GDE is displayed in Fig. 1(d). The associated
MSD and kurtosis are shown in Figs. 2 and 3. We will now
show that the addition of a constant force (constant drift)
allows one to distinguish between these two models.

B. Generalized Fokker-Planck equation with drift

From Sec. III A 1 we conclude that the CF- and AB-
operators in the formulation of the GDE (18) [for F (x) = 0]
do not provide a consistent formulation. We therefore do not
consider them further here. We therefore limit our discussion
of the anomalous diffusion equation with drift to the Caputo,
SBM, and conformable formulations.

1. Caputo diffusion equation with drift

The Caputo Fokker-Planck equation with drift reads (see
also Ref. [138])

C
0 Dα

t [P(x, t )] = Kα

∂2

∂x2
P(x, t ) − vα

∂

∂x
P(x, t ). (77)

From the CTRW perspective, Eq. (77) appears as the diffusion
(long time and space) limit of a walk with unequal proba-
bilities to jump to the right and to the left [26,139,140]. In
Laplace space the solution of Eq. (77) for the initial condition
P0(x) = δ(x) becomes

P̃C (x, s) = sα−1√
v2

α + 4Kαsα

× exp

(
vαx

2Kα

− |x|
√

v2
α + 4Kαsα

2Kα

)
. (78)
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FIG. 4. PDFs for drift-GDEs with initial condition P(x, 0) = δ(x) of (a) Caputo, (b) SBM, and (c) conformable forms. We use the
parameters α = 0.5, v = vα = 1, and Kα = 1. Note that the position of the maximum of the PDF for the Caputo-FDE is stationary in space,
corresponding to particles that have not moved up to time t . The maximum of the PDF for SBM with drift moves faster than that for the
conformable-GDE.

Applying a numerical inverse Laplace transformation to
Eq. (78), we show this PDF in Fig. 4(a).

The first moment and second moment encoded by the FDE
(77) are

〈x(t )〉C = vα

�(α + 1)
tα (79)

and

〈x2(t )〉C = 2Kα

�(α + 1)
tα + 2v2

α

�(2α + 1)
t2α. (80)

The MSD can then be calculated as

〈(�x)2〉C = 2Kα

�(α + 1)
tα

+
[

2

�(2α + 1)
− 1

�(α + 1)2

]
v2

αt2α. (81)

As is well known from CTRW with a drift [15,132,139], the
MSD contains a term proportional to v2

αt2α , i.e., for 1/2 <

α < 1 an effective superdiffusion occurs. This is due to the
strong separation of particles stuck at the origin from mobile,
advected particles.

2. SBM with drift and conformable diffusion equation with drift

The Fokker-Planck equation for SBM with drift is

∂

∂t
P(x, t ) = Kα (t )

∂2

∂x2
P(x, t ) − v

∂

∂x
P(x, t ), (82)

where Kα is defined in Eq. (19), from which we obtain the
PDF

P(x, t ) = 1√
4πKαtα

exp

(
− (x − vt )2

4Kαtα

)
, (83)
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which is shown in Fig. 4(b). The associated moments are

〈x(t )〉 = vt, (84)

〈x2(t )〉 = 2Kαtα + v2t2, (85)

such that the MSD is

〈(�x)2〉 = 2Kαtα. (86)

In contrast to the Caputo-FDE case, for SBM the Galilean
invariance is preserved, giving rise to the similarity variable
x − vt in the PDF (83).

The GDE with drift based on the conformable derivative
has the form

TαP(x, t ) = Kα

∂2

∂x2
P(x, t ) − vα

∂

∂x
P(x, t ). (87)

Application of the conformable Laplace transform and Fourier
transform yields

ˆ̃PTα
(k, s) = 1

s + (Kαk2 + ivαk)
. (88)

From this form we obtain the PDF in (x, t )-space,

PTα
(x, t ) =

√
α

4πKαtα
exp

(
−α(x − vαtα/α)2

4Kαtα

)
, (89)

which is shown in Fig. 4(c).
The associated first moment is

〈x(t )〉 = vαtα

α
, (90)

and the second moment reads

〈x2(t )〉 = 2Kα

α
tα + v2

α

α2
t2α. (91)

The MSD is then

〈(�x)2〉 = 2Kα

α
tα. (92)

The behaviors of the moments for the Caputo, SBM, and
conformable forms of the generalized motion are shown in
Fig. 5, from which one can distinguish SBM with drift from
the Caputo and conformable drift-GDEs via the first moment:
for SBM the first moment grows linearly in t , while for the
other two cases a scaling with tα occurs. From the MSD
one can then distinguish the Caputo and conformable forms,
respectively, scaling as t2α and tα in the long-time limit.

IV. GENERALIZED LANGEVIN EQUATIONS

We now turn to generalizations of the stochastic formula-
tion of diffusive processes based on the Langevin equation;
see [119,121,124,137,141] for details.

A. Generalized Langevin equations in the force-free case

In the absence of an external force, F (x) = 0, we consider
formulations with different Caputo-, CF-, and AB-operators,
SBM [107], and FBM [123,142].

FIG. 5. (a) First and (b) second moments, and (c) MSD for Ca-
puto, conformable, and SBM forms. We chose α = 0.5, v = vα = 1,
and Kα = 1.

1. Caputo and nonsingular integrodifferential operators

Applying the Caputo, CF-, and AB-operators, we have the
generalized Langevin equation,

dα

dtα
x(t ) =

√
2Kαξ (t ), (93)

for which we impose the initial condition x(0) = 0. Here
dα/dtα represents the Caputo, CF-, and AB-operators. Formal
integration produces

x(t ) =
√

2Kα

∫ t

0
H (t − t ′)ξ (t ′)dt ′, (94)

where the integral kernel H stands for

HC (t ) = tα−1

�(α)
,

HCF(t ) = (1 − α)ταδ(t ) + ατα−1,

HAB(t ) = (1 − α)ταδ(t ) + α
tα−1

�(α)
(95)

for the Caputo-, CF-, and AB-operators, respectively.
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FIG. 6. Simulations and analytical solutions for MSD and mean TAMSD for the (a) Caputo-, (b) SBM-, and (c) conformable-generalized
Langevin equations, for Kα = 0.5.

For the Caputo-fractional Langevin equation, the two-point
correlation function can be obtained in the form

〈x(t1)x(t2)〉 = 2Kαtα
2 tα−1

1

α�(α)2 2F1

(
1 − α, 1; α + 1;

t2
t1

)
, (96)

where we assume (without limitation of generality) that
t1 � t2, and where

2F1(a, b; c; z) = �(c)

�(b)�(c − b)

∫ 1

0

t b−1(1 − t )c−b−1

(1 − tz)a
dt (97)

is the hypergeometric function [see Eq. (B23) in Appendix B 2
for details of the derivation of Eq. (96)]. From Eq. (96), the
MSD follows for t1 = t2 = t , yielding

〈x2(t )〉 = 2Kα

(2α − 1)�(α)2 t2α−1 (98)

for α > 1/2 [143]. We also obtain the mean TAMSD (see
Appendix C 1 for details) in the limit �/T � 1,

〈δ2(�)〉 ∼ 2Kα

�(2α)|cos(πα)|�
2α−1. (99)

While the MSD and the mean TAMSD for the Caputo-
Langevin equation thus have the same scaling exponent 2α −
1, the two expressions have different prefactors. That implies
that the process encoded by the Caputo-Langevin equation is
nonergodic in the Birkhoff-Boltzmann sense. In the notation
of [144], we call such a case ultraweak ergodicity break-
ing. Results of stochastic simulations for the MSD and the
mean TAMSD for the Caputo-Langevin equation are shown
in Fig. 6(a), and we find good agreement with the theoretical
results. Details on the discrete simulations scheme for the
different operators are provided in Appendix D.
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The fact that the Caputo-Langevin equation produces
a nonstationary dynamics can be anticipated from the
autocovariance function (96); see [145] for further dis-
cussion. We finally report the displacement ACVF of
this process, which asymptotically reads C�(t ) ∼ [2(α −
1)Kα/{α�(α)2}]�α−1tα−2; see Appendix C 2 for the deriva-
tion. We note that this behavior is different from the
Caputo-FDE based on CTRW processes, for which the ACVF
is zero beyond t = � [145].

For the case of the CF- and AB-Langevin equations, we
focus on their second moment,

〈x2(t )〉 = 2Kα

∫ t

0
H (t ′)2dt ′, (100)

where for the kernel H the respective forms from Eq. (95)
should be substituted. Noticing that

∫ t
0 δ2(t ′)dt ′ = ∞, this

means that the second moment for both CF- and AB-
formulations diverges. Details of the derivations can be found
in Appendix B 2. Similar to our observations in the case of the
FDE, the formulations in terms of the CF- and AB-operators
lead to inconsistent results, and we will not pursue these
operators further.

2. SBM- and conformable-generalized Langevin equation

The formal solution of the SBM-Langevin equation (24)
when F (x) = 0 is

x(t ) =
√

2αKα

∫ t

0
(t ′)

α−1
2 ξ (t ′)dt ′, (101)

and the two-point correlation function reads

〈x(t1)x(t2)〉 = 2Kα[min{t1, t2}]α. (102)

The MSD then has the power-law form [107]

〈x2(t )〉 = 2Kαtα. (103)

The mean TAMSD grows as [107]

〈δ2(�)〉 = 2Kα[T α+1 − �α+1 − (T − �)α+1]

(α + 1)(T − �)
. (104)

In the limit �/T � 1,

〈δ2(�)〉 ∼ 2Kα�T α−1, (105)

which is linear in the lag time �. SBM is thus weakly
nonergodic in the above Birkhoff-Boltzmann sense [101].
In contrast to the ultraweak situation above, here the mean
TAMSD explicitly depends on the measurement time T . Sim-
ulation results for the MSD and the mean TAMSD for SBM
are shown in Fig. 6(b).

The conformable Langevin equation

Tαx(t ) =
√

2Kαξ (t ) (106)

can be rephrased by using the relation Tα[ f (t )] =
t1−αdf (t )/dt between the conformable derivative and the
first-order derivative,

d

dt
x(t ) =

√
2Kαtα−1ξ (t ), (107)

and thus

x(t ) =
√

2Kα

∫ t

0
(t ′)α−1ξ (t ′)dt ′. (108)

The two-point correlation function is

〈x(t1)x(t2)〉 = 2Kα

2α − 1
[min{t1, t2}]2α−1 (109)

for α > 1/2. Finally, the MSD becomes

〈x2(t )〉 = 2Kα

2α − 1
t2α−1. (110)

For the mean TAMSD we obtain

〈δ2(�)〉 = C1

2α

T 2α

T − �

[
1 −

(
�

T

)2α

−
(

1 − �

T

)2α
]
,

(111)

where C1 = 2Kα/[(2α − 1)�(α)2]. In the limit �/T � 1,

〈δ2(�)〉 ∼ Kα

2α − 1
�T 2α−2. (112)

The conformable-Langevin equation encodes a weakly
nonergodic and nonstationary dynamic. Simulations results of
the MSD and mean TAMSD for the conformable-Langevin
equation (106) with different α are shown in Fig. 6(c). From
Eqs. (102) and (109) it follows that both processes, SBM and
conformable-Langevin equation motion, have independent in-
crements, and thus the ACVFs defined in Eq. (28) vanish
for these processes, C�(t ) = 0. The analysis of the MSDs
(103) and (110) for the two processes shows that they have
the same time-scaling if we take the exponent α for SBM
equal to the exponent 2α − 1 for the conformable-Langevin
equation. A similar conclusion follows from Eqs. (105) and
(112). Therefore, the information encoded in the MSD and
mean TAMSD is insufficient to distinguish between these
two processes. Analogously to the situation considered in
Sec. III B for the SBM- and conformable-diffusion equations,
we will show that adding a constant force (constant drift)
allows us to distinguish between these two Langevin models.

3. FBM

The formal solution of FBM for F (x) = 0 is (25)

x(t ) =
√

2Kα

∫ t

0
ξα (t ′)dt ′, (113)

with the two-point correlation

〈x(t1)x(t2)〉 = Kα

(
tα
1 + tα

2 − |t1 − t2|α
)
. (114)

Thus, the MSD has the power-law form

〈x2(t )〉 = 2Kαtα. (115)

The mean TAMSD of FBM is [124]

〈δ2(�)〉 = 2Kα�α. (116)

We conclude that this free FBM is ergodic and station-
ary. Finally, the normalized autocovariance of FBM can be
represented as C�(t )/C�(0) = [(t + �)α − 2tα + |t − �|α]/
(2�α ) for � �= 0 [123]; see also the examples in [146,147]
for a comparison with data.
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B. Generalized Langevin equations with drift

1. Caputo-fractional Langevin equation with drift

The Caputo-fractional Langevin equation with drift reads

C
0 Dα

t x(t ) =
√

2Kαξ (t ) + vα. (117)

After a Laplace transformation,

x̃(s) = vα

s1+α
+

√
2Kα

ξ̃ (s)

sα
. (118)

Back-transforming to the time domain,

x(t ) = vαtα

�(1 + α)
+

√
2Kα

∫ t

0

(t − t ′)α−1

�(α)
ξ (t ′)dt ′. (119)

The first moment is then given by

〈x(t )〉 = vαtα

�(1 + α)
, (120)

which coincides with the result (79) of the Caputo-FDE. Sim-
ilar to the derivation of Eq. (96), the two-point correlation
function of the Caputo-fractional Langevin equation in the
presence of drift is

〈x(t1)x(t2)〉 = v2
α

�(1 + α)2
(t1t2)α + 2Kαtα

2 tα−1
1

α�(α)2

× 2F1

(
1 − α, 1, α + 1,

t2
t1

)
, (121)

where we assumed that t1 < t2. The second moment is

〈x2(t )〉 = v2
α

�(1 + α)2
t2α + 2Kα

(2α − 1)�(α)2
t2α−1, α >

1

2
(122)

for α > 1/2. We finally obtain the MSD

〈(�x)2(t )〉 = 2Kα

(2α − 1)�(α)2
t2α−1. (123)

The forms of the second moment (122) and the MSD (123)
are different from their counterparts (80) and (81) for the
Caputo-FDE. In the Caputo-fractional Langevin equation, the
drift enters additively and is not affected by the memory in
the fractional operator. In contrast, for the Caputo-FDE the
particles are immobilized during the waiting times represented
by the fractional operator.

2. SBM- and conformable-Langevin equations with drift

The SBM-Langevin equation with drift has the form

d

dt
x(t ) =

√
2Kα (t )ξ (t ) + v, (124)

where Kα is defined in Eq. (19). The moments are readily
calculated, yielding

〈x(t )〉 = vt (125)

and

〈x2(t )〉 = 2Kαtα + v2t2. (126)

Thus the MSD is

〈(�x)2〉 = 2Kαtα. (127)

The conformable-Langevin equation with drift is

Tαx(t ) =
√

2Kαξ (t ) + vα. (128)

With the relation Tα f (t ) = t1−αdf (t )/dt , we obtain

d

dt
x(t ) = tα−1(

√
2Kαξ (t ) + vα ), (129)

and thus

x(t ) =
∫ t

0
(t ′)α−1(

√
2Kαξ (t ′) + vα )dt ′

= vα

α
tα +

√
2Kα

∫ t

0
(t ′)α−1ξ (t ′)dt ′, (130)

and thus the first moment is equivalent to the deterministic
form

〈x(t )〉 = vα

α
tα. (131)

The two-point correlation function becomes

〈x(t1)x(t2)〉 = v2
α

α2
(t1t2)α + 2Kα

2α − 1
t2α−1
2 , (132)

valid for α > 1/2. The second moment follows as

〈x2(t )〉 = v2
α

α2
t2α + 2Kα

2α − 1
t2α−1. (133)

Finally, the MSD has the vα-independent form

〈(�x)2(t )〉 = 2Kα

2α − 1
t2α−1 (134)

for α > 1/2. One can see from Eqs. (125) and (131) that the
response to a constant force is different for SBM-Langevin
and conformable-Langevin equations, thus allowing us to dis-
tinguish between these two anomalous diffusion models.

3. FBM with drift

We finally consider the FBM Langevin equation with drift,

x(t ) =
√

2Kα

∫ t

0
dt ′ξα (t ′) + vt, (135)

such that

〈x(t )〉 = vt . (136)

The two-point correlation behaves as

〈x(t1)x(t2)〉 = Kα

(
tα
1 + tα

2 − |t1 − t2|α
) + v2t1t2. (137)

The second moment encoded in this form is

〈x2(t )〉 = 2Kαtα + v2t2. (138)

Finally, the MSD reads

〈(�x)2(t )〉 = 2Kαtα. (139)

The moments for the different processes are shown in
Fig. 7. From the above discussion we see that the first mo-
ments of the Caputo-fractional and conformable-Langevin
equations with drift have a power-law form, which is distinct
from the linear time dependence in the SBM- and FBM-
Langevin equations.
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FIG. 7. (a) First and (b) second moments, and (c) MSD for
Caputo-fractional, conformable-, SBM-, and FBM-Langevin equa-
tions with drift for v = vα = 1, α = 0.8, and Kα = 0.5. Note that the
results of SBM and FBM fully coincide in all three panels.

V. CONCLUSIONS

Fractional dynamic equations of the relaxation and diffu-
sion types have been used in science and engineering for a
considerable amount of time. Traditionally, these generalized
equations were used in the Riemann-Liouville and Caputo
types. These are particularly suitable for the formulation of
initial value problems posed at t = 0. Other formulations
such as the Weyl-Riesz forms have been used as well, e.g.,
in the context of generalized rheological models for har-
monic driving [9,148]. More recently, additional definitions
of fractional and conformable operators have been proposed
and discussed in the literature. We studied here generalized
diffusion and Langevin equations, comparing the classical
Caputo-fractional forms with the CF-, AB-, and conformable-
generalized differential operators. We also compare these
results to two other anomalous diffusion processes, SBM and
FBM.

In our analysis, we find that the formulations in terms of
the CF- and AB-operators lead to inconsistent results for the
PDFs and MSDs in both the GDE and generalized Langevin
equation cases. While this point requires further analysis from
a more mathematical point of view, here we did not pursue the
formulations in terms of these operators further. A possible
solution for the incorrect incorporation of the initial values
for these two operators in the traditional formulation (note
that the integral formulation as outlined in the Introduction
for the CF- and AB-cases produces the same results) may
be that instead of an initial condition at t = 0, the initial
condition has to be formulated on an interval. We discussed
an alternative formulation similar to the CF-GDE in which
the initial condition is consistently incorporated. The latter
formulation will deserve further analysis in the future.

Results for the moments, the MSD, and the PDF of the
different formulations using Caputo-fractional, conformable-,
SBM-, and FBM-dynamic equations are summarized in
Tables I and II. Generally we see that the first moments in
the presence of drift are identical for both GDE and Langevin
formulations for each of the Caputo-, conformable-, and
SBM-models, while their higher-order moments are different

TABLE I. Central results for the displacement PDFs and moments of the generalized Fokker-Planck equations with Caputo-fractional and
conformable derivatives and SBM for the cases without and with drift.

Fokker-Planck Eq. Caputo (0 < α � 1) Conformable (0 < α � 1) SBM (α > 0)

F (x) = 0 P(x, t ) 1
2
√

Kα tα
M α

2
( |x|√

Kα tα
)

√
α

4πKα tα exp
(− αx2

4Kα tα

)
1√

4πKα tα
exp

(− x2

4Kα tα

)
〈x2(t )〉 2Kα

�(α+1) t
α 2Kα

α
tα 2Kαtα

F (x) = v P(x, t ) L −1[P̃C (x, s)]a
√

α

4πKα tα exp
(− α(x− vα tα

α )2

4Kα tα

)
1√

4πKα tα
exp

(− (x−vt )2

4Kα tα

)
〈x(t )〉 vα

�(α+1) t
α vα

tα

α
vt

〈x2(t )〉 2Kα

�(α+1) t
α + 2v2

α

�(2α+1) t
2α 2Kα

α
tα + v2

α

α2 t2α 2Kαtα + v2t2

〈(�x)2(t )〉 2Kα

�(α+1) t
α + at2αb 2Kα

�(α+1) t
α 2Kαtα

aP̃C (x, s) = sα−1√
v2
α+4Kα sα

exp( vαx
2Kα

− |x|
√

v2
α+4Kα sα

2Kα
).

ba = ( 2
�(2α+1) − 1

�(α+1)2 )v2
α .
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TABLE II. Central results for the moments, mean TAMSD, and autocovariance function of the generalized Langevin equations with
Caputo-fractional and conformable derivatives, SBM and FBM, without and with drift.

Langevin Eq. Caputo ( 1
2 < α�1) Conformable ( 1

2 < α � 1) SBM (α > 0) FBM (0 < α < 2)

F (x) = 0 〈x2(t )〉 2Kα

(2α−1)�(α)2 t2α−1 2Kα

2α−1 t2α−1 2Kαtα 2Kαtα

〈δ2(�)〉 ∼ 2Kα

�(2α)| cos(πα)|�
2α−1 ∼ Kα

2α−1 �T 2α−2 ∼2Kα�T α−1 2Kα�
α

C�(t ), t � � �(α − 1)Kα�
α−1tα−2 0 0 �(α − 1)�α−2

F (x) = v, vα 〈x(t )〉 vα
tα

�(1+α) vα
tα

α
vt vt

〈x2(t )〉 v2
α

�(1+α)2 t2α + 2Kα

(2α−1)�(α)2 t2α−1 v2
α

α2 t2α + 2Kα

2α−1 t2α−1 2Kαtα + v2t2 2Kαtα + v2t2

〈(�x)2(t )〉 2Kα

(2α−1)�(α)2 t2α−1 2Kα

2α−1 t2α−1 2Kαtα 2Kαtα

between GDE and Langevin descriptions for the Caputo and
conformable cases. The Caputo-, conformable-, and SBM-
cases exhibit nonstationarity and nonergodic behavior. The
PDFs are Gaussian in all cases apart from the Caputo-FDE.
We also see that by combining moments in the presence and
absence of a constant drift velocity, the three models can be
distinguished.

Of particular interest here is the formulation in terms of
the conformable derivative. The resulting PDF turns out to be
the same as the PDF for SBM in the force-free case, after a
renormalization of the generalized diffusion coefficient. In the
presence of a drift, both processes differ in the scaling of the
first moment and in the form the drift enters the PDF. Despite
its “local” definition, the conformable-GDE is weakly noner-
godic and shows aging properties. These effects are visible in
the comparison of the MSD with the mean TAMSD as well
as in the two-point correlation function in the conformable-
Langevin equation case.

We also note that we chose to present our analysis in
dimensional units. This requires the use of generalized diffu-
sion coefficients and drift velocities. Including dimensionality
allows for an explicit extraction of the parameters from mea-
surements. It also demonstrates the different ways (local or
with a generalized exponent) the drift enters the different
model dynamics.

Our study should help to assess and compare different
formulations of GDEs and generalized Langevin equations.
A similar analysis should be performed for the case of a
harmonic confinement of the test particle. Moreover, dif-
ferent forms of crossovers to normal dynamics should be
studied.
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APPENDIX A: INTEGRAL VERSIONS
OF CF- AND AB-OPERATORS

To find the inverse operator of Eq. (8), the CF-integral, we
take 0 < α � 1 and consider the equation

CF
0 Dα

t f (t ) = u(t ). (A1)

After a Laplace transform, we obtain

L { f (t )}(s) = 1

s
f (0) + ατα−1

sM(α)
L {u(t )}(s)

+ (1 − α)τα

M(α)
L {u(t )}(s). (A2)

Rearranging and after inverse Laplace transformation, we de-
duce that

f (t ) = (1 − α)τα

M(α)
u(t ) + ατα−1

M(α)

∫ t

0
u(s)ds + f (0). (A3)

Thus, the the CF-integral is defined as

CF
0 Iα

t u(t ) = (1 − α)τα

M(α)
u(t ) + ατα−1

M(α)

∫ t

0
u(s)ds. (A4)

Similarly, the modified AB-integral corresponding to the
operator (10) is

AB
0 Iαt f (t ) = 1 − α

B(α)
τα f (t )

+ α

B(α)�(α)

∫ t

0
f (t ′)(t − t ′)α−1dt ′ (A5)

for 0 < α � 1.

APPENDIX B: INTEGRODIFFERENTIAL OPERATORS
IN DIFFUSION AND LANGEVIN EQUATIONS

1. Integrodifferential operators in diffusion equations

For the Caputo-FDE, the PDF (37) can also be represented
in terms of the Fox H-function [22],

PC (x, t ) = 1√
4Kαtα

H1,0
1,1

[ |x|√
Kαtα

∣∣∣∣(1 − α/2, α/2)

(0, 1)

]
. (B1)

For the PDFs of the CF- and AB-GDEs, we check whether
their PDFs in Laplace space are completely monotonic [130].
To this end we first check the complete monotonicity of
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expressions (33), (35), and (36). First, we introduce the
completely monotone functions (CMFs) and Bernstein func-
tions (BF), as well as some useful properties of these two
types of functions. CMFs can be represented as Laplace
transforms of a non-negative function p(t ), i.e., m(x) =∫ ∞

0 p(t ) exp (−xt )dt . They are defined on the non-negative
half-axis and have the property that (−1)nm(n)(x) � 0 for
all n ∈ N0 and x � 0. The following property holds true for
CMFs [130]:

(i) The product m(x) = m1(x)m2(x) of two CMFs m1(x)
and m2(x) is again a CMF.

The Bernstein functions [130] are non-negative func-
tions, whose derivative is completely monotone. They have
the property that (−1)(n−1)b(n)(x) � 0 for all n ∈ N. The
Bernstein functions have the following two properties:

(ii) A composition b1(b2(s)) of Bernstein functions is again
a Bernstein function.

(iii) A composition m(b(x)) of a CMF m(x) and a Bernstein
function b(x) is a CMF.

From these properties it follows that the function exp ( −
ub(x)) is completely monotone for u > 0 if b(x) is a Bernstein
function.

Now let f1(s) = 1/
√

s(c1s + c2) = 1/[
√

s
√

c1s + c2]. As
1/

√
s is a CMF, 1/

√
c1s + c2 is a CMF, so from property (i)

f1(s) is also a CMF. Let f2(s) = exp ( − √
s/(c1s + c2)|x|).

As
√

s is a BF and s/(c1s + c2) is a BF, then from property (ii),√
s/(c1s + c2) is a BF. As exp(−s) is a CMF, then from prop-

erty (iii), f2(s) is a CMF. Consequently, P̃CF(x, s) = f1(s) f2(s)
is a CMF. Similarly, P̃AB(x, s) is a CMF. From the above we
can ensure that the PDFs of the CF- and AB-GDEs obtained
from Eqs. (33), (35), and (36) represent proper PDFs.

Now we focus on the calculation of the second moment
from the GDE (29),

〈x2(t )〉 =
∫ ∞

−∞
x2P(x, t )dx, (B2)

with initial value 〈x2(0)〉 = ∫ ∞
−∞ x2P(x, 0)dx = 0 for

P(x, 0) = δ(x). It then follows that

dα

dtα
〈x2(t )〉 = Kα

∫ ∞

−∞
x2

[
∂2

∂x2
P(x, t )

]
dx = 2Kα. (B3)

Applying a Laplace transformation to Eq. (B3),

L

[
dα

dtα
〈x2(t )〉

]
= 2Kα

1

s
. (B4)

For the Caputo-derivative,

sα〈x̃2(s)〉C = 2Kα

1

s
, (B5)

and the second moment becomes

〈x2(t )〉 = 2Kα

�(α + 1)
tα, (B6)

which is a familiar result [15].
For the CF-GDE,

s

(1 − α)s + α
〈x̃2(s)〉CF = 2Kα

1

s
, (B7)

such that

〈x̃2(s)〉 = 2Kα (1 − α)
1

s
+ 2Kαα

1

s2
, (B8)

and then

〈x2(t )〉CF = 2Kα (1 − α) + 2Kααt . (B9)

For the AB-GDE,

sα

(1 − α)sα + α
〈x̃2(s)〉 = 2Kα

1

s
, (B10)

such that

〈x̃2(s)〉 = 2Kα (1 − α)
1

s
+ 2Kαα

1

sα+1
, (B11)

and then

〈x2(t )〉AB = 2Kα (1 − α) + 2Kα

tα

�(α)
. (B12)

For the kurtosis, we calculate the third- and fourth-order
moments,

〈x3(s)〉 = −i
∂3

∂k3
ˆ̃P(k, s)

∣∣∣∣
k=0

, (B13)

〈x4(s)〉 = ∂4

∂k4
ˆ̃P(k, s)

∣∣∣∣
k=0

. (B14)

From these we find the kurtosis

κ (t ) =
〈(

x − 〈x〉〈
(x − 〈x〉)2

〉1/2

)4〉
. (B15)

The kurtosis for the CF- and AB-GDEs is

κCF = 6

[
(1 − α) + α t√

2

(1 − α) + αt

]2

(B16)

and

κAB = 6
αt2α

2�(2α) + 2(1 − α) tα

�(α) + (1 − α)2[
tα

�(α) + (1 − α)
]2 . (B17)

2. Integrodifferential operators in the Langevin equation

The generalized Langevin equation with integrodifferential
operators is

dα

dtα
x(t ) =

√
2Kαξ (t ), (B18)

where 0 < α � 1 and dα/dtα represents the Caputo-, CF-,
and AB-operators. Applying a Laplace transformation,

x̃(s) =
√

2Kα

1

sθ̃ (s)
ξ̃ (s), (B19)

where θC (t ) = t−α

�(1−α) , θCF(t ) = 1
(1−α)τα exp (− αt

(1−α)τ ),

θAB(t ) = 1
(1−α)τα Eα (−α tα

(1−α)τα ). After inverse Laplace
transformation, we obtain

x(t ) =
√

2Kα

∫ t

0
H (t − t ′)ξ (t ′)dt ′. (B20)
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The MSD is then

〈x2(t )〉 = 2Kα

∫ t

0
H (t ′)2dt ′. (B21)

Here, HCF(t ) = (1 − α)ταδ(t ) + ατα−1 and HAB(t ) =
(1 − α)ταδ(t ) + α tα−1

�(α) .
For the Caputo derivative,

x(t ) =
√

2Kα

∫ t

0

(t − t ′)α−1

�(α)
ξ (t ′)dt ′. (B22)

The two-point correlation function for the Caputo-fractional
Langevin equation is

〈x(t1)x(t2)〉 = 2Kα

∫ t1

0

(t1 − t ′
1)α−1

�(α)
dt ′

1

×
∫ t2

0

(t2 − t ′
2)α−1

�(α)
dt ′

2〈ξ (t ′
1)ξ (t ′

2)〉

= 2Kα

�(α)2

∫ t1

0
(t1 − t ′

1)α−1dt ′
1

×
∫ t2

0
(t2 − t ′

2)α−1dt ′
2δ(t ′

1 − t ′
2)

= 2Kα

�(α)2

∫ t2

0
(t1 − t ′

2)α−1(t2 − t ′
2)α−1dt ′

2

= 2Kα

�(α)2 tα
2 tα−1

1

∫ 1

0

(
1 − t2

t1
x

)α−1

(1 − x)α−1dx

= 2Kαtα
2 tα−1

1

α�(α)2 2F1

(
1 − α, 1; α + 1;

t2
t1

)
. (B23)

Without restricting generality, we assume here that t1 � t2,
and

2F1(a, b; c; z) = �(c)

�(b)�(c − b)

∫ 1

0

t b−1(1 − t )c−b−1

(1 − tz)a
dt

(B24)

is the hypergeometric function, which for |z| < 1 is defined
by the power series

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
. (B25)

Here (q)n is the (rising) Pochhammer symbol

(q)n =
{

1, n = 0,

q(q + 1) · · · (q + n − 1), n > 0.

Then the MSD is

〈x2(t )〉 = C1t2α−1 (B26)

for α > 1/2, and where C1 = 2Kα/[(2α − 1)�2(α)].

APPENDIX C: TAMSD AND ACVF FOR
THE CAPUTO LANGEVIN EQUATION

1. TAMSD

According to the definition (26) of the TAMSD, the mean
TAMSD of the Caputo-fractional Langevin equation can be

derived in the form

〈δ2(�)〉 =
〈

1

T − �

∫ T −�

0
[x(t + �) − x(t )]2dt

〉
= 1

T − �

∫ T −�

0
[〈x2(t + �)〉 + 〈x2(t )〉 − 2I1]dt

= C1

2α

1

T − �
[T 2α − �2α + (T − �)2α] − 2I, (C1)

where C1 = 2Kα/[(2α − 1)�(α)2] and I = (T − �)−1∫ T −�

0 I1dt . In this latter expression, we used

I1 = 〈x(t + �)x(t )〉

= C2(t + �)α−1tα2F1

(
1 − α, 1; 1 + α;

t

t + �

)
, (C2)

with C2 = 2Kα/[α�(α)2]. We note that in particular when
� = 0, we get 〈δ2(0)〉 = 0.

Now we focus on the case when � �= 0, and, more specifi-
cally, on the limit �/T � 1. We first calculate I in Eq. (C1),
using Eq. (15.3.4) in Ref. [149] for I1 in Eq. (C2). Then

I1 = C2�
α−1tα

2F1

(
1 − α, α; α + 1; − t

�

)
. (C3)

Using the relation between the H-function and the hypergeo-
metric functions, Eq. (1.131) in Ref. [22], we find

2F1

(
1 − α, α; α + 1; − t

�

)
= α

�(1 − α)
H1,2

2,2

[
t

�

∣∣∣∣(α, 1), (1 − α, 1)

(0, 1), (−α, 1)

]
. (C4)

Applying relation 1.16.4 in Ref. [150], we obtain

I = C�2α

(T − �)

∫ T ∗

0
sαH1,2

2,2

[
s

∣∣∣∣(α, 1), (1 − α, 1)

(0, 1), (−α, 1)

]
ds

= C(T ∗)α

�1−2α

× H1,3
3,3

[
T ∗

∣∣∣∣ (−α, 1), (α, 1), (1 − α, 0)

(0, 1), (−α, 1), (−α − 1, 1)

]
, (C5)

where T ∗ = (T − �)/� and C = αC2/�(1 − α). Using rela-
tion 8.3.2.7 in Ref. [150], we then obtain

I = C(T ∗)α

�1−2α
H3,1

3,3

[
1

T ∗

∣∣∣∣(1, 1), (1 + α, 1), (2 + α, 1)

(1 + α, 1), (1 − α, 1), (α, 1)

]
. (C6)

With relation 8.3.2.3 in Ref. [150], in the limit �/T � 1 we
get

I ∼ Kα

α(2α − 1)�(α)2
(T − �)2α−1

+ Kα

�(2α) cos(πα)
�2α−1

+ Kα

(2α − 1)�(α)2
�(T − �)2α−2. (C7)
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We then obtain the leading behavior of the mean TAMSD of
the Caputo-fractional Langevin equation (C1),

〈δ2(�)〉 ∼ 2Kα

�(2α)|cos(πα)|�
2α−1. (C8)

2. ACVF

From the two-point correlation function (96) for the
Caputo-Langevin equation, here we calculate the ACVF. The
general result with t > 0 is

C�(t ) = 2Kα

α�(α)2�2

×
[
�α (t + �)α−1

2F1

(
1 − α, 1, α + 1,

�

t + �

)
−�αtα−1

2F1

(
1 − α, 1, α + 1,

�

t

)]
. (C9)

Using Eq. (15.3.4) in Ref. [149] for the hypergeometric func-
tion 2F1(1 − α, 1, α + 1,�/[t + �]), we obtain

C�(t ) = 2Kα

α�(α)2�2
tα−1�α

×
[

2F1

(
1 − α, α, α + 1,−�

t

)
− 2F1

(
1 − α, 1, α + 1,

�

t

)]
. (C10)

When t = 0, C�(0) = 〈x2(�)〉/�2 = 2Kα

(2α−1)�(α)2 �
2α−3.

Moreover, when t � �, using (B25) we have

2F1

(
1 − α, α, α + 1,−�

t

)
∼ 1 − α(1 − α)

α + 1

�

t
, (C11)

and

2F1

(
1 − α, 1, α + 1,

�

t

)
∼ 1 + 1 − α

α + 1

�

t
, (C12)

and then

C�(t ) ∼ 2(α − 1)Kα

α�(α)2
�α−1tα−2. (C13)

APPENDIX D: SIMULATIONS

We summarize the discretization scheme for the Langevin
equation with Caputo-fractional and conformable derivatives,
as well as for SBM.

1. Caputo Langevin equation

We apply the implicit difference method [151]. Let
t = [t0, tn+1] with uniform step size �t = tk+1 − tk , k =
1, 2, . . . , n. Then the left side of Eq. (93) with the Caputo
derivative is reduced to

dαxn+1

dtα
= 1

�(1 − α)

∫ tn+1

t0

dx(μ)

dμ
(tn+1 − μ)−αdμ (D1)

or

dαxn+1

dtα
= 1

�(1 − α)

n∑
i=0

∫ ti+1

ti

dx(μ)

dμ
(tn+1 − μ)−αdμ,

(D2)

where dx(μ)/dμ can be approximated by the implicit differ-
ence method as

dx(μ)

dμ
= xi+1 − xi

�t
+ O(�t ), (D3)

where μ ∈ [ti, ti+1]. The remaining integral terms can be
solved via∫ ti+1

ti

(tn+1 − μ)−αdμ

= (�t )1−α

1 − α
[(n − i + 1)1−α − (n − i)1−α]. (D4)

Let an−i = (n − i + 1)1−α − (n − i)1−α and a0 = 1. Substi-
tuting Eqs. (D3) and (D4) into (D2), one then has

dαxn+1

dtα
� (�t )−α

�(2 − α)

n∑
i=0

(xi+1 − xi )

× [(n − i + 1)1−α − (n − i)1−α]

= (�t )−α

�(2 − α)

[
−

n∑
i=1

xi(an−i − an−i−1)

− x0an + a0xn+1

]
. (D5)

The right hand side of Eq. (93) with the Caputo-fractional
derivative is

√
2Kα/�tη(i), where η(i) is a zero-mean Gaus-

sian random variable with unit standard deviation. Then

− (�t )−α

�(2 − α)

[
n∑

i=1

xi(an−i − an−i−1) + x0an + a0xn+1

]

=
√

2Dα

�t
η(i) (D6)

and

xn+1 =
√

2Kα (�t )α− 1
2 �(2 − α)η(i)

+ x0an +
n∑

i=1

xi(an−i − an−i−1). (D7)

For x j , j = 1, 2, . . . , n,

x j =
√

2Kα (�t )α− 1
2 �(2 − α)η(i)

+ x0a j−1 +
j−1∑
i=1

xi(a j−i−1 − a j−i−2). (D8)

2. SBM- and conformable-Langevin equation

The Langevin equation of SBM is

dx(t )

dt
=

√
2Kα (t )ξ (t ), (D9)
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where Kα is defined in Eq. (19). With Eq. (D3) we deduce that

xi+1 − xi

�t
=

√
2αKαiα−1

�t
(�t )

α−1
2 η(i), (D10)

that is,

xi+1 = xi +
√

2αKαiα−1(�t )
α
2 η(i). (D11)

For the conformable-Langevin equation (106), the finite-
difference method produces

α
x(t1) − x(t2)

tα
1 − tα

2

=
√

2Kαξ (t1), (D12)

and we finally have

xi+1 = xi +
√

2Kα

α
(�t )α− 1

2 [(i + 1)α − iα]η(i). (D13)
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