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Abstract
Cell membranes phase separate into ordered Lo and disordered Ld domains depending on their compositions. This membrane 
compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. 
However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in Lo and Ld 
domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of 
milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation 
into Lo and Ld domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in 
molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by 
crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the Lo 

domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular 
concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be 
controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems 
but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.
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Significance Statement

Spatiotemporal complexity emerging from multicomponent systems is fundamental in biological systems. The cellular plasma mem
brane is a mesoscopic quasi-two-dimensional system, where tens to hundreds of nanoscale domains are spatiotemporally organized 
via phase separation. The heterogeneous environment causes fluctuations in molecular diffusivity and is expected to regulate reac
tions and functions. Here, using a mesoscale computational approach we quantitatively evaluate the diffusion and partitioning of 
proteins in heterogeneous biological membranes. We demonstrate that the protein localization into nanoscale domains is determined 
by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration.
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Biological membranes are composed of various kinds of proteins 
and lipids. Differences in the molecular composition relate to 
rich patterns of phase separation (1–5). Mixtures of saturated 
and unsaturated lipids generally cause phase separation into 
liquid-ordered (Lo) and liquid-disordered (Ld) domains (6–8). 
Specifically, the Ld domain is rich in unsaturated lipids and of 
high fluidity, while the Lo domain is rich in saturated lipids and 
of low fluidity. Lo domains, enriched in sphingolipids and choles
terol, are often referred to as lipid rafts (9), and are thought to play 
a crucial role in a variety of cellular processes such as cell signal
ing and trafficking. Lipid rafts are generally considered to be 
small, heterogeneous, and highly dynamic domains of several 

tens of nanometers size with estimated life time 0.1–102 s (10– 
13). The coexistence of Lo and Ld domains has been observed in 
synthetic model membranes under external stimuli or specific 
thermodynamic conditions. Direct imaging of cell-derived plasma 
membranes of giant plasma membrane vesicles has also con
firmed the presence of nanodomains (14–20) at or near physio
logical temperature. Although there has been a longstanding 
debate regarding the nature and biological role(s) of these do
mains in living cells (21, 22), a large number of recent studies 
have provided evidence for the coexistence of these domains in in
tact cells (23–29). These studies investigated the recruitment and 
exclusion of various probes associated with clustered proteins 
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within cell membranes, and demonstrated that the concentration 
of probes in clusters reflects the partitioning observed in phase- 
separated domains. The Lo domains are formed not only by lipids 
but also by protein–lipid complexes, where the detailed proper
ties, such as size, lifetime, and stability, depend on their compos
ition and interaction with scaffolding proteins (21, 22).

In terms of lateral diffusion of membrane proteins, phase sep
aration may be considered as presenting an inhomogeneous field 
in which the protein molecules diffuse. The diffusivities of mole
cules in such inhomogeneous fields are known to be nonuniform 
in time and space (30, 31). Experimental techniques, such as 
stimulated emission depletion (STED) microscopy combined 
with fluorescence correlation spectroscopy and single-particle 
tracking, have revealed dynamically heterogeneous motion of 
proteins in biological membranes (12, 32–40). Particularly, the local 
diffusivity of tracers fluctuates significantly with time due to the in
fluence of heterogeneity in the field, e.g. intermittent trapping in 
domains (12, 32), transient interactions with partners (34, 38), or 
slow-active remodeling of the underlying cortical actin network 
(35, 37). However, due to the difficulty of simultaneous measure
ment of molecular motion and field heterogeneity, the precise 
effects of membrane heterogeneity on molecular diffusion and 
distribution remain obscure. Although many theoretical models 
on molecular diffusion with fluctuating diffusivity have been pro
posed to explain the characteristics of non-Gaussian behavior 
and anomalous diffusion (41–55), it is important to understand 
the origin of fluctuations at the molecular level, specifically how 
phase separation, modeled as an inhomogeneous field, affects pro
tein diffusivity and promotes protein crowding, or how molecular 
crowding induces phase separation and expands nanoscale do
mains. This understanding will help to clarify the role of protein– 
lipid and protein–protein interactions in the signaling process.

Molecular dynamics (MD) simulations have provided molecu
lar details on protein diffusion in biological systems (56–62), and 
revealed temporal fluctuating of the protein diffusivity due to pro
tein–protein and protein–lipid interaction (60, 61). However, it re
mains a challenge for simulations to directly inform molecular 
dynamics on a spatiotemporal scale comparable to experiments. 
Here, using a mesoscale simulation technique, we unveil diffusion 
properties and distributions of molecules in heterogeneous bio
logical membrane models. This coarse-grained level, combining 
Langevin dynamics simulations and phase-field methods, cap
tures the motion of individual molecules in heterogeneous mem
branes at several tens of milliseconds timescales. We show the 
existence of fluctuating diffusivity and a distribution of molecules 
in heterogeneous membranes depending on various parameters 
such as heterogeneity of fields, molecular concentrations, and do
main preference of molecules. This coarse-grained approach al
lows us to disentangle the effects of individual parameters on 
the observed protein motion, e.g. the diffusivity difference be
tween the two membrane phases, the area density covered by pro
teins, or the protein affinity to a specific membrane domain. These 
results will be important to inform future experiments in real 
membrane systems in which some effects may be obscured by 
the complexity of the system.

Results
Fluctuating diffusivity of an isolated molecule in 
heterogeneous biological membrane models
In our analysis, we focused on three distinct phase-separated het
erogeneous biological membrane models described in previous 
studies (63). The phase separation process is measured in terms 

of the field c(r, t), the deviation of the local composition from the 
critical composition (see Materials and Methods section for the 
simulation details). The ordered (c < 0) and disordered (c > 0) 
phases denote the raft (Lo) and nonraft (Ld) domains, respectively. 
The distribution c(r, t) can be obtained by solving the reaction- 
diffusion equation. The specific model choices for the parameters 
induce clear phase separation and represent lipid raft formation; 
(model 2) interface pinning by immobile membrane proteins (64, 
65), (model 4) immiscible lipid systems, and (model 5) coupling 
to lipid reservoir (1, 66, 67) (see Fig. 1A). Considering the free en
ergy term F, the phase separation is classified as “Mixed”, 
“Nucleation”, and “Spinodal Decomposition” (see Fig. 1B). Since 
the Lo and Ld domains have different compositions, diffusion co
efficients of the biomolecules are different (12, 13). To describe 
the diffusion of target protein molecules in such heterogeneous 
media, we considered the Langevin equation with fluctuating dif
fusivity,

dr(t)
dt

=
������������

2D(r(t), t)
􏽱

w(t), (1) 

where r(t) is the position of a diffusing molecule at time t, and w(t) 
is white Gaussian noise with 〈w(t)〉 = 0. The diffusion coefficient 
D(r(t), t) varies depending on the field composition, 

D(r(t), t) = (cb + c(r(t), t))D0, where c(r(t), t) is the normalized order 
parameter field (0 < c < 1) (see Fig. 1C and D for a sample trajec
tory). For a single molecular system, cb = 1 and D0 = 1 were used 
in each model, i.e. D(r(t), t) fluctuates in the range of 1–2. The 
simulation time step dt = 0.001 and D0 = 1 correspond to the phys

ical quantities of 1 ns and 1 μm2/s, respectively. In the simula
tions, the system size L corresponds to 256 nm with periodic 

boundary conditions. Simulations were performed for 107 steps 

corresponding to 10 ms and analyzed after 106 steps (1 ms) of 
reaching equilibrium. Because the lifetime of the raft domain is 

0.1–102 s (10–13), we here fixed the field variation and focused on 
timescales shorter than the field variation. This can allow us to 
evaluate the effect of spatial heterogeneity on the molecular dy
namics, specifically elucidating how the (preexisting) raft do
mains affects the behavior of other molecules.

First, we calculated the time-averaged mean squared displace
ment (TAMSD) as a quantity that characterizes the global diffusiv
ity (see Fig. 2A),

δr2(Δ; t) =
1

t − Δ ∫
t−Δ

0
[r(t′ + Δ) − r(t′)]2dt′, (2) 

where Δ is a lag time and t is a measurement time. Individual 
TAMSDs increase linearly and show some amplitude scatter. 

The probability density function (PDF) of TAMSDs at Δ = 10−2 ms 
is found to have a distribution with roughly two peaks. This scat
ter is considered to be an effect of the inhomogeneity of the con
centration distribution in the field.

In order to quantitatively evaluate the effect of different pat
terns of heterogeneity on the diffusivity fluctuations, the relative 
standard deviation (RSD) of the TAMSDs was analyzed,

RSD =

�������������������������������

〈δ2(Δ; t)
2〉 − 〈δ2(Δ; t)〉2

􏽲

〈δ2(Δ; t)〉 . (3) 

It is known that RSD decays as t−0.5 in ergodic diffusion, e.g. 
Brownian motion. In the case of nonergodic diffusion processes, 
e.g. the continuous-time random walk (68, 69), the RSD converges 
to a nonzero value for all Δ ≪ t as t→∞. In fluctuating diffusivity 
models (43–45, 70), the RSD exhibits a crossover from a plateau to 
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a t−0.5 decay with a long crossover time. Here, the RSD shows a 

plateau in the time region t ∼ 10−4–10−1 ms (see Fig. 2B), which im
plies that the instantaneous diffusivity fluctuates intrinsically on 
the corresponding timescale. Fluctuations of the diffusivity are 
negligible at the short and long timescales, where the RSD decays 

with t−0.5. The short timescale depends on the initial diffusivity 
D(t = 0), while the long timescale relates to the relaxation time 
of the effective diffusivity. In a fluctuating diffusivity model where 
diffusivity dichotomously fluctuates between fast and slow states 
(44, 45), the magnitude of the RSD depends on the difference in dif
fusion coefficients between the two states and the mean residence 
time of states. The magnitudes of the RSD of models 4 and 5 are 
higher than that of model 2.

To clarify the origin of the difference in RSDs, Fig. 2C shows the 
PDFs of the c for each model. The PDFs of models 2, 4, and 5 have 
two peaks and result in large diffusivity differences between Lo 

and Ld domains. Fig. 2D shows the PDFs of the residence times of 
the molecules in the Lo and Ld domains for each model. The resi
dence times exhibit a power-law distribution with an exponential 
cutoff P(t) ∝ t−β exp ( − t/τ). The power-law exponents for each 
model are almost the same, β ≈ −1.5. The cutoff in the residence 
time relates to the relaxation time in the RSD at which the cross
over from the plateau to the t−0.5 decay occurs. Longer residence 
times of the molecule in each domain translate into longer relax
ation times of the RSD. Note that the first passage time (FPT) distri
bution of one-dimensional Brownian motion, starting from the 
origin at 0 and passing a certain point x, is given by the distribution 

Px(t) = |x| exp ( − x2/4Dt)/
�������
4Dπt3
√

, that is proportional to t−1.5 

(t→∞) (71), where D is the diffusion coefficient. When considering 
a finite-sized domain, the distribution t−1.5 has an exponential cut
off depending on the two-dimensional domain size. The general 
shape of the FPT distribution is similar for many scenarios (72).

We confirmed that slow variation of the concentration field affects 
little on the fluctuation of the diffusivity (see online supplementary 
Figs. S1 and S2). Since the timescale of the varying field is much lon
ger than the simulation times, the domain boundaries change slight
ly in equilibrium states. In systems where the field varies faster than 
the timescale that particles move through the regions, a time-varying 
field may have a significant effect on the degree of the fluctuating dif
fusivity. In addition, we note that RSDs do not depend on the field pat
terns (see online supplementary Fig. S3).

Clustering effect of molecules on the fluctuating 
diffusivity in heterogeneous membranes
Cell membranes are crowded with a variety of proteins occupying 
30–50% of the membrane area (73). In previous studies, a concen
tration dependency of protein subdiffusion, 〈δr2(Δ; t)〉 ∝ Δα with 
α < 1, was observed in biological membranes (58, 60). Switching 
off the protein–protein interactions changes the subdiffusive be
havior (α = 0.84) to normal diffusion (α = 1.0) (34), dynamical corre
lations in the motions due to frequent molecular collisions may 
enhance subdiffusive motion (73). In any finite system, the subdif
fusive regime will ultimately cross over beyond some correlation 
time, see, e.g. Ref. (74).
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Fig. 1. Diffusivity fluctuations in heterogeneous biological membrane models. (A) Snapshots of normalized c field configuration, 0 < c < 1, from 
phase-field simulations of heterogeneous biological membrane models (1, 63), (model 2) interface pinning by proteins, (model 4) recycling in immiscible 
system, and (model 5) coupling to lipid reservoir. Red and blue colored regions represent Lo and Ld domains, respectively. (B) Phase diagram for the 
models; the temperature difference Λ from the critical temperature at which phase separation occurs vs. c. Considering a free energy term F with α = 0 in 
Eq. 5, the phase separation is classified as “Mixed”, “Nucleation”, and “Spinodal Decomposition”. (C) Trajectory and (D) the corresponding fluctuating 
diffusivity of a molecule depending on the c field. The red and blue colors represent slow and fast diffusive states in Lo and Ld domains, respectively. 
Averaged diffusion coefficients are shown for each state.
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To explore the effect of membrane crowding, we evaluate the dif
fusivity of molecules in molecular crowded systems with Np = 64, 
128, 256, 512, 1024, and 2048 particles corresponding to an area occu
pancy of 1.4, 3.5, 7.8, 16.6, 34.0, and 59.1% of the Lo domains, respect
ively. In the following, we mainly focus on model 5 (results for other 
models are shown in online supplementary Fig. S4). In this mem
brane state, the separation of Lo and Ld domains is most pronounced 
and thus best accessible in experiments. Fig. 3A shows the aggrega
tion of molecules with different area occupancy (see online 
supplementary Movie S1). Even in the absence of molecular field pref
erence, we find that as Np increases, molecules tend to aggregate in 
the Lo domain, where the diffusion coefficient of molecules is smaller 
than in the Ld domain. This aggregation affects the diffusive behavior 
of molecules. Ensemble-averaged TAMSDs become smaller and ex
hibit subdiffusion when the area occupancy increases (see Fig. 3B). 
The power-law exponent of the TAMSD decreases from α = 1.0 to 
0.85, depending on the molecular concentration, up to a timescale 
of ∼0.1 ms. This trend is similar to that of MD simulations reporting 
transient subdiffusion of proteins in a molecular concentration- 
dependent manner (58, 60). Coarse-grained MD simulation for 0.1  
ms (60) showed that subdiffusive motion of proteins in a noncrowded 
membrane changes to Brownian motion at Δ > 10 ns attributed to the 

viscoelasticity of lipids (75–78), while in a crowded membrane signifi
cant subdiffusive regimes α ∼ 0.8–0.9 extends until tens of microsec
onds (>0.01 ms is not conclusive due to the limited simulation time). 
Similar transient subdiffusion induced by molecular crowding was 
also observed for hard-core particles (79).

Here, we discuss the effect of the concentration and the inter
action strength of the tracer molecules. Molecular concentration 
has little effect on the magnitude of RSD, and the relaxation 
time increases slightly with increasing molecular concentration. 
The molecular concentration differences have little effect on the 
fluctuation of the diffusivity (see Fig. 3B). Moreover, we evaluated 
the effect of the interaction strength ϵ between molecules (see Eq. 
9 in Materials and Methods section). When the molecular inter
action becomes stronger, the magnitude of the TAMSD becomes 
small and α decreases (see Fig. 3C). An increase in the interaction 
strength has little effect on the RSD.

Preference of the domain affects the diffusivity in 
heterogeneous membranes
It is known that the differences in lipid compositions in Lo and Ld 

domains generate a preferential partitioning of membrane 
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Fig. 2. Diffusion of an isolated protein molecule in heterogeneous biological membrane models. (A) TAMSDs of 100 trajectories of a molecule duffuising 
in the model 5 membrane for measurement time t = 10 ms. The histogram shows the distribution of TAMSDs at Δ = 10−2 ms. (B) RSDs of TAMSDs for three 
different membrane models with Δ = 10−6 ms. The RSD was calculated from 100 trajectories for each model. (C) Distribution of normalized order 
parameter c. The red colored line is the boundary defining Lo (c < 0.5) and Ld (c ≥ 0.5) domains. (D) Distribution of residence time of the particle in Lo and Ld 

domains following the power-law trend t−1.5 with a log time cutoff at around 10−2 ms. Dashed lines are shown as a reference for power-law decay.
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proteins in either domain. The protein domain preference, espe
cially of transmembrane proteins, is determined by its palmitoyla
tion, hydrophobic length, and surface area of its transmembrane 
region (80, 81).

In our simulations, the preference was modeled using a reflect
ive wall at the boundary between Lo and Ld domains (see details in 
Materials and Methods section). We evaluate the effect of prefer
ence of the Lo domain (Loχ) (Fig. 4A) or the Ld domain (Ldχ) (Fig. 4B) 
on the diffusive dynamics, where χ is the degree of the domain 
preference. As shown in Fig. 4A, molecules are localized more in 
the Lo domain with strong Lo domain preference. According to 
an increase of χ, the TAMSD decreases, and the molecules exhibit 
more pronounced subdiffusion with smaller anomalous expo
nents α = 0.8–1.0. In the case of Ld domain preference, molecules 
are localized more in the Ld domain, and the TAMSD increases 
with higher χ (Fig. 4B). Molecules exhibit subdiffusion with anom
alous exponents α = 0.9–1.0. Note that the crossover of α < 1 to nor
mal diffusion is not observed for larger Loχ in the studied time 
window (Fig. 4A). This means that the caging effect of molecules 
in narrow regions strongly influences anomalous diffusion, sig
nificantly more than the crowding effect with high concentrations 
(timescale of ∼0.1 ms in Fig. 3).

The magnitude of the RSDs for both Loχ and Ldχ becomes small
er upon increase of χ (Fig. 4). This is thought to be due to the fact 

that high χ increases the confinement of molecules to a preferable 
domain, which leads to a decrease in the fluctuation of diffusivity. 
Moreover, the area of the Ld domain is larger than that of the Lo 

domain in model 5. The residence time of the molecule increases 
with growing domain area, and the diffusivity of the molecule re
mains the same, resulting in a smaller RSD value. Note that in 
model 2 and model 4 membranes, where the areas of Ld and Lo do
mains are the same (see Fig. 2C), the change in RSD when domain 
preference is changed is almost the same for Loχ and Ldχ (see 
online supplementary Fig. S4).

Confinement of molecules to one domain due 
to membrane heterogeneity
A nanoscale domain in membranes increases local molecular 
concentrations and molecular collisions, which are relevant to 
biological reactions. To see this, the distribution of molecules in 
the heterogeneous membrane was analyzed. Fig. 5 shows ratios 
of molecules confined in the Lo domain examined for each param
eter, such as Np, ϵ, and domain preference. Randomly distributed 
particles at the initial time (t = 0) diffuse and start to enrich in the 
Lo domain times of t = 0.01 to 0.1 ms. The confinement ratio 
changes like a sigmoidal curve and reaches a plateau (equilib
rium) after 0.1 ms (see Fig. 5A and B). Although there is no 

A

B

C

Np = 512Np = 256Np = 128 Np = 1024

R
SD

Np = 1024
Np = 512
Np = 256
Np = 128
Np = 64

Np = 2048
 0.8

 0.9

 1.0

 1.1

a

 0.8

 0.9

 1.0

 1.1

a

e = 0.5
e = 1.0
e = 2.0

R
SD

Np = 1024
Np = 512
Np = 256
Np = 128
Np = 64

Np = 2048

~D1.0

e = 0.5
e = 1.0
e = 2.0

~D1.0

t [ms]D [ms]
10-1 10010-210-310-4 10-6 101

103

105

10-2

10-1 10010-210-310-410-5

T
A

M
SD

 [n
m

2 ]

10-6 10110-1 10010-210-310-410-5

D [ms]

101

10-1

10-3

10-1

100

103

105

T
A

M
SD

 [n
m

2 ]

101

10-1

10-3

10-2

10-1

100

10-5

t [ms]D [ms]
10-1 10010-210-310-4 10-6 10110-1 10010-210-310-410-510-6 10110-1 10010-210-310-410-5

D [ms]
10-5
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preferential domain for molecules (Lo0 and Ld0), molecules are 
more likely to stay in the Lo domain, where the diffusion coeffi
cient is lower than in the other domain, and aggregate with sur
rounding molecules there. An increase in molecular 
concentration enhances the speed of the ratio increase and the 
equilibrated ratio because of high encounter rates at high concen
trations (see Fig. 5A). The confinement into the Lo domain is also 
enhanced by the interaction strength ϵ between molecules (see 
Fig. 5B). The strength of ϵ does not affect the speed of the ratio in
crease but increases the ratio at the plateau (t > 1 ms) as a high 
interaction strength stabilizes the cluster of molecules.

We now examine the effect of domain preference, Loχ or Ldχ. 
According to an increase in the degree of preference χ, once the 
molecules enter the preferable domain, molecules cannot easily 
exit from the domain. Fig. 5C shows that an increase of χ of Lo do
main increases both the equilibrated ratio and the speed of the ra
tio. While an increase of χ of Ld decrease the ratio of molecules in 

the Lo domain with a crossover around χ ∼ 60 (see Fig. 5D). The 
preferential distribution of molecules to the domain of low diffu
sivity is inverted by the affinity strength between molecules and 
the domain of high diffusivity.

Discussion
Visualizing small and highly dynamic domains in cell membranes 
can be challenging due to the reduction in binary contrast of the 
heterogeneity when averaging over time. Despite prolonged de
bate (21, 22), recent studies have provided compelling evidence 
for the coexistence of Lo and Ld domains in living cells (23–29). 
The mobility and aggregation of membrane proteins in cell mem
branes are closely linked to the local lipid order, i.e. phase separ
ation is an organizing principle for membrane protein partitioning 
(27). Recent experiments using a broad range of fluorescent probes 
with various membrane anchors, which have different lipid 
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domain preferences, show the existence of segregated domains 
selectively partitioning membrane proteins according to their af
finity for the Lo or Ld domain (29). Some membrane proteins are 
enriched in the nanoscale region surrounding the clustered recep
tors. Although these studies on multicomponent systems provide 
us with insights into macroscopic biological regulation through 
heterogeneity in membranes, the underlying intricate mecha
nisms regulating the molecular dynamics in such complex sys
tems have not been fully dissected. A theoretical understanding 
is crucial to gain insights into the precise factors that control mo
lecular diffusion and localization within inhomogeneous fields. 
Such a quantitative model is also indispensable for data analysis 
in membrane systems with advanced assimilation methods based 
on prior training (82, 83).

In this study, we have used a well-defined in silico setup simu
lating molecules with fluctuating diffusivity in phase-separated 
fields with Lo (low diffusivity) and Ld (high diffusivity) domains. 
This coarse-grained approach allows us to disentangle the various 
effects conspiring in the complex observed motion. We showed 
that the degree of fluctuating diffusivity depends on the magni
tude of the difference in molecular diffusivity between domains 
and the residence time in domains. Our results suggest that mo
lecular localization within Lo (low diffusivity) domains spontan
eously occurs in heterogeneous membranes even when there is 
no domain preference, and subdiffusive behavior is observed 
due to molecular collision via molecular crowding in Lo domains. 
Domain preference extends the timescale of the subdiffusive re
gime via molecular confinement into the preferential domains. 
The effect of heterogeneity on protein partitioning was also quan
titatively evaluated. We demonstrated that the localization of 
molecules is determined by the difference in molecular diffusivity 

between domains, molecular preference of domain, and molecu
lar concentration.

The aforementioned results were obtained under the condition 
of a fixed field variation to dissect the effect of preexisting raft do
mains on the molecular behavior. Membrane proteins possess the 
ability to modify their surrounding lipid environment, leading to 
the formation of functional protein–lipid complexes. Our ap
proach could also be applicable in scenarios where protein–lipid 
interactions promote or alter the functional domains within the 
membrane. To model such effects, we conducted simulations 
under two distinct conditions: one representing a scenario where 
macroscopic phase separation does not occur spontaneously 
without proteins (near the miscibility critical point, Λ = −0.01) 
(Fig. 6A), and another representing a state where macroscopic 
phase separation occurs spontaneously without proteins (under 
the miscibility critical point Λ = −1) (Fig. 6C). Fig. 6A shows snap
shots of the phase-separated field driven by diffusing proteins. 
Even at a condition where the macroscopic phase separation 
does not occur spontaneously, from a uniformly distributed state 
of the field and proteins, the formation of small-scale clusters of 
proteins leads to local Lo domains. At this simulation condition, 
the normalized c has clear one distinct peak around ∼0.6 (Ld) 
and rudder point at c < 0.5 (Lo) (Fig. 6B). Note that the contrast be
tween Ld and Lo and the domain size depend on the protein–pro
tein and protein–lipid interaction strength.

At a condition under the critical miscibility temperature, 
macroscopic phase separation into Ld and Lo occurs with marked 
contrast (Fig. 6C). The PDF of c has two peaks around ∼0.8 (Ld) and 
∼0.2 (Lo) (Fig. 6E). This relates to a scenario of the recruitment of 
additional proteins to the existing functional domains and their 
subsequent alteration of the domain configuration and function. 
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Interestingly, the presence of diffusing molecules causes the dis
torted domain configuration, while the absence of molecules re
sults in the formation of spherical domains (Fig. 6D). In addition, 
diffusing molecules cause the extension and fusion of the do
mains (Fig. 6F). Such recruitment can alter the thermodynamic 
stability of the membrane domains without a change in the lipid 
composition.

MSD (Fig. 6G) and RSD (Fig. 6H) are consistent with the previous 
results (fixed field variation) that magnitude of the RSD depends 
on the difference in diffusion coefficients between the Lo and Ld 

domains.
In realistic biological membranes, lipid compositions vary sig

nificantly for different cell types. External ions and biomolecules 
further moderate the heterogeneity in the signaling and traffick
ing processes. These factors regulate the heterogeneity of the 
phase-separated membrane and formation of functional multi
protein units in membranes (84). Interaction with the underlying 
actin cytoskeleton also regulates condensation of the phase along 
the actin filament by pinning elements to a preferred phase (85). In 
suitable conditions, the field-dependent diffusive behavior of mol
ecules is expected to regulate the search time of partners and re
action rates (86). Protein condensation on the phase-separated 
membrane surfaces is a key role in downstream signaling (87, 
88). A quantitative and qualitative elucidation of the nature of 

molecular behaviors in heterogeneous media is critical to under
standing cellular behavior.

Our approach presented here is quite general and can be ap
plied to fundamental questions on molecular dynamics in a 
variety of heterogeneous media in biology, soft matter, solid- 
state physics, etc. Our model could also be extended to more 
realistic biological membrane models including, e.g. dynamic 
modulation of protein domain preferences via phosphorylation 
by interaction with regulatory proteins (89), protein remodel
ing through conformational changes, complex inhomogeneous 
interaction between molecules and clusters, the partitioning 
by an actin filament mesh (37, 90), alternation of membrane 
composition in signaling events, and the partitioning regula
tion of membrane signaling (91). Moreover, the parameters of 
this mesoscale simulation can be determined bottom-up 
from MD simulations, allowing comparison of mesoscopic mo
lecular behavior at the intersection of simulations and experi
mental spatiotemporal scales. Concurrently, advanced single 
particle tracking studies provide massive new data on protein 
dynamics in membranes that can be scrutinized by our ap
proach and advanced methods for data analysis (82, 83). This 
could open a new direction to delineate the role of heterogen
eity in the membranes with more complex multicomponent 
systems in a more physiological setting (92, 93).

A

C

F G H

D E

B

Fig. 6. Field modification by diffusing protein molecules: A scenario where the protein–lipid interaction induces the nanoscale phase separation and 
creates functional domains in the membrane. Snapshots of the phase-separated field after 1, 10, and 40 ms have elapsed from the initially homogeneous 
mixed state at 0 ms, and distribution of the normalized c field: (A, B) a state where macroscopic phase separation does not occur spontaneously without 
molecules (Λ = −0.01), (C, E) a state where macroscopic phase separation occurs spontaneously without molecule (Λ = −1). The initial c field was set to be 
homogeneous with a Gaussian distribution with mean 0 and variance 1. Diffusing molecules are represented with yellow colored circles. (D) Comparison 
of the c field after 40 ms, considering the influence of diffusing molecules on the field (left) and not considering the influence (right). The initial 
homogeneous c field was given with a Gaussian distribution of mean 0.3 and variance 1. (F) Expansion and fusion of domain regions caused by diffusing 
molecules. (G) Ensemble averaged TAMSDs for measurement time t = 30 ms and (H) RSDs of TAMSDs of 512 diffusing molecules in the fields shown in (A) 
and (C).
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Materials and methods
Simulation models
We used five models of phase separation in cell membranes as de
scribed in Ref. (63). The specific choices for the parameters re
present lipid raft formation (model 1) by thermal fluctuations 
near the critical temperature, (model 2) by pinning of the inter
facial composition of immobile membrane proteins (64, 65), (mod
el 3) in miscible or (model 4) immiscible lipid systems, and (model 
5) by exchange with lipid reservoirs (1, 66, 67). These five models 
are expressed using a Cahn-Hilliard equation (63, 94, 95) for the or
der parameter field c(r, t),

∂c(r, t)
∂t

= −
1
τr

(c − cr) + M∇2 δF
δc

+ η(r, t). (4) 

The first term on the right-hand side is the term for the lipid res
ervoir in model 5, where τr is a parameter representing the relax
ation time due to coupling to the lipid reservoir, and cr is the 
average compositions imposed by the lipid reservoir. The second 
term on the right-hand side is the modified Ginzburg-Landau 
free energy term in the usual Cahn-Hilliard equation, where M is 
the mobility and F is the free energy,

F = ∫ W2

2
[1 − αρ(r)](∇c)2 +

Λc2

2
+

c4

4

􏼚 􏼛

dr, (5) 

where the parameter Λ > 0 (Λ < 0) is a relative temperature to the 
mean-field critical temperature T > Tc (T < Tc). W is a parameter to 
control the line tension between the raft and nonraft phases. α is a 
parameter that explain the local reduction in the line tension due 
to immobile membrane proteins. The local concentration ρ(r) of N 
immobile membrane proteins in model2 can be expressed as

ρ(r) = πσ−2
IMP

􏽘N

i

exp −
|r − ri|

2

2σ2
IMP

􏼒 􏼓

. (6) 

η(r, t) in Eq. 4 denotes a Gaussian noise term (94),

η(r, t) = F−1 (H
���
Δt
√

/Δx)l|q|
����������
1 + q2l2

􏽰 × ξ̂(q, t)

􏼢 􏼣

, (7) 

where H can be related to either the temperature of the system or 
the rate at which lipids are removed and added to the leaflet due to 
vesicular and nonvesicular lipid trafficking events, l denotes the 
recycling length over which spatial redistribution of lipids takes 

place (96), and ξ̂(q, t) is the Fourier transform of the white 
Gaussian noise with mean 0 and variance 1. Here, we used 

cr = 0.3, M = 1, σIMP = 1/
��
2
√

, W = 1, and the values of each param
eter in each membrane model are shown in Table 1 (63). The or
dered (c < 0) and disordered (c > 0) phases denote the raft (Lo) 
and nonraft (Ld) domains.

The system was simulated using the phase-field method under 
periodic boundary conditions with a grid point size of 256 × 256 
(256 nm × 256 nm in physical dimensions). The lattice point width 
was set to Δx = Δy = 1 (1 nm for physical quantities). The time step 
was set to dt = 0.005 for dimensionless numbers, which 

corresponds to 10−5 s for physical quantities. The number of simu
lation steps for each model is shown in Table 1. The initial c field 
was set to be homogeneous with a Gaussian distribution with 
mean 0 and variance 1.

Single-particle system
The diffusive particles in each membrane model are modeled by 
the Langevin equation 1 with fluctuating diffusivity. The diffusiv
ity of the particle, D(r(t), t) = (cb + c(r(t), t))D0, fluctuates depending 
on the normalized order parameter field c(r(t), t) (0 < c < 1). We 
used c(r(t), t) in equilibrium after running simulations for each 
number of steps in Table 1. The single-particle simulations were 
performed 100 times with different initial coordinates of the par
ticles for the same phase-separated field. The parameters cb = 1 
and D0 = 1 (1 μm2/s) were used in each model. Simulations were 
performed for 107 steps (10 ms) with dt = 10−3 (1 ns), and the tra
jectories of the particles were analyzed after 106 steps (1 ms) of 
reaching equilibrium.

Multiparticle system
For multiparticle interactions, we performed simulations includ
ing particle–particle interactions,

dr(t)
dt

= −
D(r(t), t)

kBT
dU(l)

dl
+

������������

2D(r(t), t)
􏽱

ω(t), (8) 

where kBT = 1, and Lennard-Jones potential was used,

U(l) = 4ϵ
σ
l

􏼐 􏼑12
−

σ
l

􏼐 􏼑6
􏼚 􏼛

, (9) 

where l was the distance between two interacting particles, size of 
the particle σ was 3.0. The depth of the potential well ϵ was set as 
0.5, 1.0, 2.0. The number of particles in the system Np was set to 

Np = 64, 128, 256, 512, 1, 024, 2, 048 to compare the effect of par

ticle concentration on the diffusivity. For multiple particle sys

tems, we used cb = 0.1 and D0 = 1 in D(r(t), t) = (cb + c(r(t), t))D0.
We used cdview (https://polymer.apphy.u-fukui.ac.jp/~koishi/ 

cdview.php) for visualization of the simulations.

Nanoscale phase separation model modified 
by diffusive particles
For a scenario where protein–lipid interaction induces nanoscale 
phase separation and creates functional domains in the mem
brane, we conducted a simulation in which diffusing particles 
change the field. For phase separation, we considered the follow
ing expression:

∂c(r, t)
∂t

= ∇ M∇ −∇2c + Λc + c3 + g(r, t)
􏼂 􏼃􏼈 􏼉

+ η(r, t), (10) 

where M = 1, g(r, t) is a term of short-ranged protein–lipid inter
action,

g(r, t) =
αg (r ≤ σ),

αg exp −
r − σ

rg

􏼒 􏼓

(r > σ),

⎧
⎨

⎩
(11) 

g(r, t) was considered at the positions of the diffusing particles. 
Here, we set the intensity of field modification by proteins as 
αg = 0.5 and its relaxation length as rg = 2.

The particles were simulated using Eqs. 8 and 9 with parame
ters σ = 3.0, ϵ = 2.0, and Np = 512. The c field was updated every 
10 steps of the Langevin simulation (Eq. 8). Simulations were per
formed for 4 × 107 steps (40 ms) with dt = 10−3 (1 ns), and the tra
jectories of the particles were analyzed after 107 steps (10 ms).

Table 1. Values of the parameters in each model (63).

Model tr Λ l H α N Number of steps

1 ∞ −0.001 0.1 0.0283 0 0 24,000
2 ∞ −1 1 0.85 1/π 1,500 1,500,000
3 ∞ 10 1,280 0.85 0 0 180
4 ∞ −1 1,280 0.85 0 0 24,000
5 500 −1 0.1 2.12 0 0 720,000
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Domain preference of molecules
To implement the domain preference of the molecule, the energy 
barrier between the domains was reproduced by probabilistic re
flection when a particle moves from one domain to another. We 
compared three patterns. One is that the particles can move freely 
between the Lo and Ld domains without being reflected (χ = 0). The 
other two are cases where the particles exhibit Lo or Ld preferen
ces. Loχ means that the molecule is reflected at Lo when moving 
from the Lo domain to the Ld domain at χ% probability of reflection 
and not reflected when moving in the opposite direction. Ldχ is 
vice versa.

Supplementary material
Supplementary material is available at PNAS Nexus online.
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