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Directedeness, correlations, and daily cycles in springbok motion:
From data via stochastic models to movement prediction
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How predictable is the next move of an animal? Specifically, which factors govern the short- and long-term
motion patterns and the overall dynamics of land-bound, plant-eating animals in general and ruminants in
particular? To answer this question, we here study the movement dynamics of springbok antelopes Antidorcas
marsupialis. We propose several complementary statistical-analysis techniques combined with machine-learning
approaches to analyze—across multiple time scales—the springbok motion recorded in long-term GPS tracking
of collared springboks at a private wildlife reserve in Namibia. As a result, we are able to predict the springbok
movement within the next hour with a certainty of about 20%. The remaining about 80% are stochastic in
nature and are induced by unaccounted factors in the modeling algorithm and by individual behavioral features
of springboks. We find that directedness of motion contributes approximately 17% to this predicted fraction.
We find that the measure for directedeness is strongly dependent on the daily cycle of springbok activity. The
previously known daily affinity of springboks to their water points, as predicted from our machine-learning
algorithm, overall accounts for only about 3% of this predicted deterministic component of springbok motion.
Moreover, the resting points are found to affect the motion of springboks at least as much as the formally studied
effects of water points. The generality of these statements for the motion patterns and their underlying behavioral
reasons for other ruminants can be examined on the basis of our statistical-analysis tools in the future.
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I. INTRODUCTION

Ronald Ross, who received the 1902 Nobel Prize for
Physiology or Medicine for his discovery on the transmis-
sion of malaria by mosquitoes, formulated the fundamental
problem to understand the spatiotemporal spreading of in-
fected mosquitoes from a breeding pool [1]: “Suppose that
a mosquito is born at a given point, and that during its life it
wanders about, to and fro, to left or to right, where it wills, in
search of food or of mating, over a country, which is uniformly
attractive and favorable to it. After a time it will die. What are
the probabilities that its dead body will be found at a given
distance from its birthplace?” To solve this problem, Ross
contacted the statistician Karl Pearson, who is credited for
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creating the concept of the random walk [2]. In an exchange of
Letters in Nature with John William Strutt (Lord Rayleigh) it
became apparent that after sufficiently many steps the position
of the random walker is described by a Gaussian random
variable [2–6]. In fact, the random-walk formulation is close
to Einstein’s and Smoluchowski’s formulations of the math-
ematical theory of diffusion [7,8], and generalizations of this
simple concept have been extensively used in the modeling of
how animals search for resources.

A milestone towards modern movement ecology were
established by animal counts and the tracking of seasonal
migration patterns by aerial observation in the late 1950s,
informing authorities on the best layout for the newly estab-
lished Serengeti National Park in Tanzania, Africa. Nowa-
days, several well-developed methods to record the movement
of animals are routinely employed [9]. We mention GPS track-
ing of transmitting tags [10–12] and automated radio tracking
(particularly, the high-throughput ATLAS (advanced track-
ing and localization of animals in real-life systems) [13,14]).
The observations garnered by such methods are at the core
of movement ecology, an emerging unifying paradigm for
understanding the various mechanisms underlying animal be-
havior and unravelling their consequences for key ecological
and evolutionary processes [15,16]. Thus, movement ecology
builds on early theoretical ideas of dispersal in populations
[17,18] and on the connection with epidemic spreading [19].
Classes of interest in movement ecology based on individual
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tracking of organisms include, inter alia, mammals [12,20],
birds [14,21–23], bats [24], and marine predators [25,26]. A
key question is to predict the “next move” [27] of an animal
with some statistical certainty.

Unveiling a broader picture in the movement ecology
of even a single species is hampered by various factors,
including effects of seasonal changes of animal behavior
and of the environment, migration, reproduction cycles and
breeding, intra-species collective phenomena and group size,
interactions with foreign species, variations of behaviors and
physiology among individuals, heterogeneity of the environ-
ment and resources, home-ranging and confinement, among
a variety of other factors. The original expectations that
relatively simple stochastic models could capture essential
features of movement ecology therefore have remained elu-
sive, and most models are species-specific. While a universal
modeling framework may be unattainable, a central longer-
term question is whether we can identify universal dynamic
modules occurring for a broad range of species. Within this
broader picture we note that, in general, fluctuations, noise,
and their stochastic description play a very important role
in today’s physics, acknowledged by Parisi’s Nobel Prize in
Physics in 2021 “for the discovery of the interplay of disorder
and fluctuations in physical systems from atomic to planetary
scales” [28]. Indeed, stochasticity is a feature in all kinds
of complex systems and can even be a stabilizing feature in
micro- [29,30] or macroscopic [31,32] physics.

Several stochastic models have been used to describe the
movement patterns of animals, starting with the normal ran-
dom walk (Pearson walk) [2] for the description of mosquito
spreading and applications to crabs [17] and muskrats [18].
While a random walk is a Markovian process and the direction
of each jump independent of that in the previous jump, a direct
generalization is represented by correlated random walks with
a finite correlation time (typically modeled with Ornstein-
Uhlenbeck (OU) noise or by coupling to a diffusive rotational
motion of the direction of motion) [6,33–38]. Beyond the
correlation time, such processes are normally diffusive with an
effective diffusivity [36]. Once the correlations are of a long
range, such as in fractional Brownian motion with positive,
power-law correlations of the driving Gaussian noise [39],
the resulting motion is superdiffusive with a mean-squared
displacement (MSD) of the form 〈r2(t )〉 � tα and 1 < α � 2
[40–42]. Crossovers from superdiffusive power-law forms of
the MSD to normal diffusion or another power law can be
achieved by different forms of tempering of the driving noise
[43].

In the standard formulation of these models the motion
is unbounded. Finite domains—such as home ranges or
confinement by geographic boundaries or fencing—can then
be included by appropriate boundary conditions or via intro-
duction of a confining potential. In such cases the motion will
eventually reach a nonequilibrium steady state (NESS) char-
acterized by a stationary probability-density function (PDF)
[44,45]. A NESS can also be reached by so-called random
resetting strategies, in which an a priori unbounded stochastic
process such as Brownian motion is “reset” back to its origin
(or to another point with a given probability [46,47]), typically
following a Poissonian statistics of reset times [48,49].
Resetting has been generalized to a large number of stochastic

FIG. 1. Illustration of some vital daily decisions of a springbok,
to choose the best survival, foraging, resting, etc. strategies of move-
ment. Courtesy Pixabay website [96] for the source images and to
Alexey A. Cherstvy for preparing the artwork.

processes, we only mention some representative examples
[50–58].

In the context of random search for sparse food sources a
long debate has focused on “optimal search” [59,60]. Intermit-
tent search strategies [61–65] combine local search, typically
Brownian motion, with a persistent process such as ballistic
motion. The role of the latter is to decorrelate the searcher by
relocating it to a remote area, that likely has not been visited
before. A second strategy to reduce oversampling in one and
two dimensions are Lévy search processes, in which reloca-
tion lengths are power-law distributed, such that hierarchical
clusters are searched [66,67]. This reduces the search time
[64,67,68]. The Lévy-flight foraging hypothesis [63] led to a
large number of studies identifying Lévy-patterns in animal
[25,26,34,69–82] and in human motion [83–86]. While in
some cases the Lévy model has been questioned [71,87–90],
it focused the interest of the statistical-physics community on
movement ecology.

Obviously, while simple random-search models may pro-
vide essential insight into observed motion patterns, they
cannot capture the full complexity of behaviors displayed
by higher animals and thus represent a starting point for
further analysis. To develop better models in movement ecol-
ogy, various other effects need to be considered, e.g., spatial
memory [91], task-optimized navigation strategies [92], food
abundance [93], group dynamics [24], information exchange
between subpopulations in a community [24,94], heterogene-
ity of the terrain, habitat connectivity [92], or selection [95].

We here propose dedicated statistical-analysis techniques
in combination with machine-learning (ML) approaches, to
study to which degree these tools can be used for predicting
the movement patterns of ruminants depending, inter alia, on
daily and annual cycles, on resource distribution in the home
range, on area restriction due to confinement, and on addi-
tional features that can only be described in a statistical way.
We validate these methods to analyze long-term GPS-tracking
data of springboks in a private wildlife reserve in Namibia
on various time scales, see Fig. 1. This approach helps us to
understand the limitations and also some important features of
springbok motion, which can be generalized to the description
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FIG. 2. Movement data of all 8 springboks in the dataset during (a) the wet season of 2019/2020 and (b) the dry season of 2020. Different
colors denote distinct animals. The dataset is available upon reasonable request from the authors.

of motion patterns of other ruminant species inhabiting semi-
arid landscapes. Moreover, the concepts developed here are
promising to be applied on a more generic level to analyze
and predict movement patterns of other higher animals.

The structure of the paper is as follows. We introduce the
dataset of our study in Sec. II and characterize it by applying
stochastic modeling in Sec. III. In Sec. IV we focus on two
main questions: the importance of water-point positions for
the overall dynamics of springbok movement and how the
directedness [97] of gazelle motion and their activity depend
on the hour of the day. Finally, in Sec. V we discuss the
forecasting power of the ML-based models in dependence
on input features such as season, water-point distance, and
vegetation levels. We conclude our investigation in Sec. VI.

II. DATA ACQUISITION AND VISUALIZATION

The movement patterns of medium-sized ruminants such
as antelopes, gazelles, and springboks have been intensely in-
vestigated [98–102]. While earlier studies relied on extensive
direct observations, such as aerial monitoring or radio trac-
ing by hand-held antennae, contemporary automated tracking
methods allow scientists to garner high-resolution, long-time
tracking data. An extensive range of behavioral details has
been revealed for gazelles and springboks, including activity
rhythms, seasonal influence, water needs, gaits, feeding habits
and preferences, social habits, reproduction cycles, lambing
peaks, herd composition, age-related changes, sex-specific
behavior, body-weight distribution, etc. [98–101].

In the current study, female Antidorcas marsupialis
(springboks) were equipped with e-Obs GPS collars [103]
for tracking. These animals have a shoulder height of about
80 cm and weight of 30 to 40 kg. They can reach speeds
of up to 88 km/h in extended gallop [100]. An image of a
springbok together with its daily decision options is shown in
Fig. 1. Each collared individual was selected from different
herds during the dry season and can thus be treated to move
independently from other tracked individuals. The study area
was located between the regions of Kunene, Omusati, and
Oshana in the north of Namibia, at {15.2235◦E, 19.2576◦S},
approximately 80 km south-west of the Etosha pan, at Etosha
Heights Private Reserve and Etosha National Park.

The vegetation zones in Etosha Park are known to be very
diverse, depending on the soil properties and water abun-
dance. Rainfall in the study area is highly variable, but mainly
occurs from October to April. During this wet season the mean

daily temperature is around 26◦C, with daily variations of
some 15◦C. The dry season is somewhat colder, with mean
temperatures around 18◦C and daily variations of around
20◦C.

Our dataset contains the positions of eight springboks
taken at time intervals of �t = 15 min for the duration of
up to 31 months. The focal landscape is confined by a fence,
which happens to be damaged at some places and thus allows
some animals to cross or jump over it. Detailed information
on how animals interact with fences and on their energy
expenditure is available for female Antidorcas marsupialis
(springbok), Tragelaphus oryx (eland), and Tragelaphus strep-
siceros (kudu) [103].

The average precision of the GPS positioning of the
GPS-tagged springboks was quite high because the weather
conditions and the vegetation structure were ideal for satellite
reception. Each single position in the dataset corresponds to
an average of a sequence of five GPS records taken at one-
second intervals. When the sensor is not moving (e.g., one
GPS sensor was tracked while laying in the field) the appara-
tus yielded an accuracy of δxerr ≈ 2 m upon two-dimensional
position acquisition. Some preprocessing of the data was con-
ducted. In particular, missing data points (if only up to one
hour of data was missing) were replaced with the previous
values of the animal’s position. Position data were stored
along with the underlying vegetation pattern from the dataset
and with the recorded ambient temperatures.

Springbok-movement data during the wet and dry seasons
are displayed in Fig. 2. We observe that during the dry season
the motion of the animals is more localized around the water
points, as the environmental conditions necessitate regular
returns to the water points for rehydration. The statistics of
consecutive turning angles of all tracked springboks is illus-
trated in wind-rose diagrams in Fig. 3. Visually (see below for
details) short-time persistent motion in the same direction on
15-min intervals is distinct. Quite pronounced antipersistence
is seen, in contrast, on the daily time scale, signifying the
eventual return to some preferred location every day.

III. STOCHASTIC MODELING

There exist a substantial number of both theoretical and
data-based studies dealing with animal-motion modeling, see,
e.g., Refs. [73,104]. Typical observables are the moments
of the motion or the corresponding position/displacement
autocorrelations. Correlations (persistence) in the motion is
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FIG. 3. Histograms of the turning angles between two successive steps of springbok movement (data from all individuals), for data
processed with (a) 15-min time steps and (b) one-day time steps. The full dataset (blue filled segments) is shown together with the dry-season
data only (red outline coutours).

an expected feature for directedness, and it may serve as
some measure of intelligence of the forager [105]. Single-
trajectory power spectra may be additional quantities for
analysis [106,107]. To describe the observed two-dimensional
springbok motion we start with a simplistic Brownian motion,
that we write in the discrete form

r(ti ) = r(ti−1) + ξ (ti)eϕ (ti ), (1)

where eϕ (ti ) = { sin (ϕ(ti )), cos (ϕ(ti ))} and ti = i�t is the
time expressed in terms of elementary time steps �t , see be-
low. The Gaussian driving longitudinal noise ξ is of zero mean
and has the autocovariance function (ACVF) 〈ξ (ti)ξ (t j )〉 =
2Kδi j |ti − t j |, where δi j is the Kronecker delta [108] and K is
the diffusion coefficient. The noise impulse ξ (ti ) is allocated
to the two Cartesian coordinates via a random angle ϕ(ti ),
assumed to be uniformly distributed on [0, π ). The MSD of
this process then becomes

〈r2(ti)〉 = 4Kti, (2)

with |r(ti )| =
√

[x(ti) − x(0)]2 + [y(ti ) − y(0)]2 and the ini-
tial condition x(0) = y(0) = 0. The angular brackets 〈·〉
denote averaging over realizations of the noise ξ . We note
that on a log-log scale the MSD (2) thus has unit slope. From
an individual time series r(ti ) of N steps we calculate the
time-averaged MSD (TAMSD)

δ2(�l ) = 1

N − l

N−l∑
i=1

(r(ti+l ) − r(ti ))
2, (3)

in terms of the “lag time” �l = l�t [109]. As Brownian
motion is self-averaging, when l � N we have

δ2(�l ) = 4K�l , (4)

that is, the process is ergodic in the Boltzmann-Birkhoff-
Khinchin sense [109,110]. In the following, we drop the
indices for discrete times for convenience.

Individual experimental TAMSDs of a number of individ-
ual springboks are shown in Fig. 4(a) for wet and dry seasons,
along with the averages for each ensemble. We see that the
initial slope is greater than unity, reflecting superdiffusive mo-
tion. As we will see, this superdiffusion is due to persistence
in a given direction of motion. After lag times of about 70
to 100 h the slope of the TAMSD changes, corresponding to
traveled distances of about 1 to 2 km. While for a number
of trajectories the TAMSD continues to grow—with a larger
slope α ≈ 0.98 during wet seasons as compared to α ≈ 0.59
during dry seasons—the TAMSD for some other trajectories
flattens off to a plateau value at around 100 h. Such a plateau
within the measured lag-time window appears more often in
dry than in wet seasons. We note that even for those animals,
whose TAMSDs grow until the maximum lag time displayed
in Fig. 4(a), the TAMSD eventually also reaches a plateau a
fortiori, as the habitat is finite. Moreover, we point out that
even for the data points at shorter times (smaller distances)
the contribution δx2

err to the TAMSD due to measurement error
is negligible, and thus the extracted scaling exponents of the
TAMSD are meaningful.

We conclude from these observations that the simple model
of Brownian motion with TAMSD (4) is insufficient to ac-
count for the data. Instead, we are seeking a model that
captures the initial superdiffusion δ2(�) � �α with α > 1, a
crossover to a second scaling regime δ2(�) � �α′

of anoma-
lous diffusion, and a terminal plateau behavior, δ2(�) �
const.1

Let us first address the confinement effect. As an approx-
imation, we assume that the animal motion is subject to an
harmonic potential. Such a “soft” confinement—in contrast to

1Here and in the following, the symbol � denotes asymptotic
scaling neglecting constant coefficients.
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FIG. 4. (a) TAMSDs of springbok movement with time steps of 15 minutes for all individuals in both seasons. The unit of � along the
abscissa in all the plots is 1h. The thick lines are averages for all TAMSDs from the wet and dry seasons. The traces of each animal were
divided into wet and dry seasons, so that the total number of (partial 1/2-year-long) trajectories is about three times larger than the number
(8) of individual animals in the data base. The slopes of the average TAMSDs for small and large � values are indicated by the fitted scaling
exponents. The oscillations in the TAMSD observed at intermediate-to-long lag times with a period of 24 h are due to repetitive returns to
certain preferential points, such as favorite water and/or resting points. [(b)–(d)] TAMSDs for dry [(b) and (d)] and wet (c) seasons for the
same individual; the dashed line shows the small-� scaling; the theoretical expression (9) with free parameters τs, τl , and K is fitted and shown
as the dashed-dotted curve. (e) Fitted model parameters: the short- and long-time scales τs and τl (subscripts “s” and “l” indicate short and
long) are compared for different individuals during dry and wet seasons, see the legend and Eq. (9) for details. Both characteristic times are
longer during the wet season in comparison to those during the dry season, the difference is more significant for τl . Large symbols in panel (e)
indicate mean times over all 1/2-year-long seasons.

“hard” confinement in a finite box or in higher-order poten-
tials such as x4-forms—allows for variations in the maximal
traveled distance. These variations may occur, for instance,
when the animal ventures out further when a fence is broken
or during periods of lusher vegetation. Discrete Brownian
motion in an harmonic confinement is then described by our
discrete-time Langevin equation (1) with damping coefficient
exp(−�t/τl ) [111–113],

r(ti ) = e−�t/τl r(ti−1) + ξ (ti )eϕ (ti ). (5)

This formulation is equivalent to the autoregressive model
AR(1) of order one [114], representing the discrete version
of the seminal OU process [115–118]. The time scale τl in
the exponential prefactor in Eq. (5) is the characteristic cor-
relation time in the harmonic potential. At short times, the
TAMSD of the process (5) is linear in lag time, while at long
times the TAMSD converges to 4Kτl [119].

In the short-time limit, the OU process with its linear
MSD scaling in time is thus not an appropriate model for
the observed springbok movement. Instead, animal move-
ment is characterized by a certain degree of persistence, i.e.,
the trend to keep moving in a given direction [36,120], as
indicated by the angle histograms in Fig. 3. There are dif-
ferent modeling approaches in literature for such persistence.
As mentioned above, random search by animals is often
described by Lévy flights or walks. Due to the long-tailed
jump-length distribution, they perform superdiffusion. Lévy
flights in harmonic potentials lead to monomodal (with a
single maximum at the origin) stable PDFs [121], while in

steeper than harmonic potentials their PDFs exhibit bimodal
structures (with maxima away from the origin) [122–128].
Lévy walks with long-tailed jump distributions but with a
finite propagation speed exhibit bimodal PDFs already for har-
monic confinement [129], including scenarios, in which the
harmonic potential is only switched on stochastically (“soft
resetting”) [52]. Alternatively, superdiffusive animal motion
can be described by fractional Brownian motion (FBM) [23],
defined in terms of a Langevin equation driven by power-law
correlated Gaussian noise [39]. Positively correlated FBM in
steeper than harmonic potentials also exhibits bimodal PDFs
[130,131].

Here, we use a minimal model to introduce confinement
and persistence without long-range jump-length distributions
of power-law displacement correlations. Namely, we show
that the springbok movement data can be nicely described by
replacing the white Gaussian noise ξ in Eq. (5) by exponen-
tially correlated noise z [132,133],

r(ti ) = e−�t/τl r(ti−1) + z(ti ), (6)

where we choose

z(ti ) = e−�t/τs z(ti−1) +
√

�t

τs
ξ (ti)eϕ (ti ). (7)

Here τs, chosen as τs � τl , is the correlation time of the
driving noise z. Comparing (7) with Eq. (5) it is clear why
the noise z is often called OU noise. These equations can
be simplified by eliminating z, yielding the autoregressive
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process AR(2) of order two [114],

r(ti ) = (e−�t/τl + e−�t/τs )r(ti−1)

−e−�t/τl −�t/τs r(ti−2) +
√

�t

τs
ξ (ti )eϕ (ti). (8)

The TAMSD defined by the model (8) reads [119]

〈δ2(�)〉 = 4Kτ 2
l

τ 2
l − τ 2

s

[τl (1 − e−�/τl ) − τs(1 − e−�/τs )]. (9)

In the short-time limit � � τs, this expression encodes the
ballistic scaling

〈δ2(�)〉 ∼ 2Kτl

τs(τl + τs)
�2, (10)

whereas at intermediate lag times τs � � � τl we find a
linear �-dependence (with a correction term),

〈δ2(�)〉 ∼ 4Kτ 2
l

τ 2
l − τ 2

s

(
1 − �

τl

)
�. (11)

At long lag times, � � τl , the TAMSD (9) reaches the plateau
value

〈δ2(�)〉 ∼ 4Kτ 2
l

τl + τs
. (12)

The characteristic times τs and τl describe the dominant de-
pendencies of the TAMSD in the limits of short and long
times, respectively. We use the TAMSD as a quantifier to
assess the typical ballistic and confined motion (converging
to a plateau) of springboks expected at short and long times.

The solution (9) can be fitted to the measured TAMSD of
the springbok data. As we can see in Fig. 4(b) the agreement
is quite good. At shorter times we see that the model with the
three fit parameters K ∼ 1 . . . 10 km2/h, τs ∼ 1 h, and τl ∼
1 day, matches the data well up to the time scale of a week,
and levels off to the plateau somewhat too early. However,
given that the initial power-law regime spans merely around
one decade, this discrepancy does not appear too severe. In
contrast, we believe that the relatively simple AR(2) model
allows for easy physical interpretation of the parameters and
provides a very satisfying description. Importantly, in this
AR(2) model we can easily include an error analysis relevant
for experimental data.

We briefly describe now our fitting procedure of TAMSD
curves as those shown in Fig. 4(b). We use a nonlinear fit of
the TAMSD (9), equivalent to a nonlinear fit to the fluctuation
function [134]. The model has three free parameters K , τl ,
and τs. The fact that the most reliable points of the TAMSD
are those at shorter lag times while most points are available
at longer times (due to the logarithmic scaling) makes the fit
challenging. The solution we choose is to fit one parameter
at a time. For the fit shown in Fig. 4(b) we therefore practi-
cally divide the lag-time window into separate intervals and
fit the time scales to the relevant range of lag times. This
is possible as long as τl � τs, as we obtain from the data
self-consistently. We start measuring the variance σ 2 (related
to the diffusivity K) of the time series. As the “curvature” of
the TAMSD is independent of τs for � � τs, we set τs to a
small value and fit τl in the range between 1.25 h and 3.75 h.

Finally, τs is fitted using the parameters K and τl , and the first
two points of the dataset.

The results of the fitting procedure are displayed in Fig. 4.
In panel (a) we show all seasons and individuals along with
the average for each season. Panels (b)–(d) are examples
from one individual during three successive half-year-long
periods/seasons. In Fig. 4(c) we show all measured param-
eters τs and τl of different animals during their movement in
both wet and dry seasons. Generally, τl is smaller in the dry
season, reflecting a confinement of animals due to a lack of
resources during the dry season. The time scale τs also has
a tendency to be smaller in dry seasons. There is, however, a
large overlap in the found distributions of τs and τl when com-
paring data of different seasons, see Fig. 4(e). In all situations
the strong inequality

τl � τs (13)

holds, so that in the short-time limit the dynamics of ani-
mals can be approximated by free diffusion with correlated
driving z(t ).

IV. FEATURE CHARACTERISTICS

The above model takes into account finite-time correla-
tions in the movement and confinement. We here discuss the
influence of two important additional features, namely, of
geographical features (such as water and resting points) and
of temporal features (such as day and night).

A. Water points and resting points

Water points are a key element in springbok-movement
dynamics. Although springboks are well adapted to arid envi-
ronments and can survive long periods without drinking [102],
they regularly visit water points when available. This way,
they avoid negative physiological consequences during the
adjustment to a low water supply [135]. Springboks drink at
water points throughout day time but also occasionally during
night time [100]. To understand the springbok movements it
is necessary to investigate the effects of water points.

During the wet season, when there is ample nutritious
food available, it is known that large herds of hundreds of
springboks concentrate on open, highly productive grassland
[100]. During the dry season, when food is more limited, the
springboks disperse and form smaller groups of a few dozen of
individuals [100]. Such behavior may, however, vary between
different areas [101,136] and largely depends on the combined
environmental factors such as water-point locations and water
levels, fencing, general geohydrology, weather, etc.

The behavior with respect to the water holes is not unique,
as shown in Figs. 5(a) and 5(b). The segment of the animal
trajectory shown in panel (a) shows a preferential return to
the same water point, while different resting points are chosen
and the animal has a fairly constant maximal range of motion
on consecutive days. In contrast, in the trajectory segment
in panel (b) the same individual covers much smaller daily
distances [roughly 10% of the covered spans of panel (a)],
and shows only small variations in the resting points, while it
visits continuously changing water points.
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FIG. 5. Effects of water and resting points. (a) Segment of the trajectory x(t ) (position time series projected onto the x direction) during
which the springbok visits the same water point every day, while the maximum distance and the resting points vary. (b) Segment of another
trajectory, during which the resting point remains almost constant, while the animal visits different water points. (c) Mean distance between
the resting points on two subsequent days vs the distances of visited water points on subsequent days. Large crosses are the averaged values
calculated for the full dataset of individuals. The small symbols are from the same datasets, but averages are taken only over the six months of
either dry or wet season, see legend. The black line in panel (c) represents the diagonal.

The springbok resting points visited at night correspond to
the maximum of their computed temporal occupation density,
i.e., the local area where they spend most time in a 24-hour
span. In some periods, the resting points of animals are almost
the same every night, see Fig. 5(b), while in other cases the
resting points are more distant [panel (a)]. In order to find the
maximum of the PDF of springbok positions on a specific day,
one approach is to recursively delete the point, which is fur-
thest away for the median. This way we start with the full set
{x(T ), y(T )} of positions of length 24 × 4 for all recorded po-
sitions during the span of a single day (T runs from midnight
to 23:45 hours). We then enumerate the distance ([x(T ) −
median(x(T ))]2 + [y(T ) − median(y(T ))]2)

1/2
. The element

{x(Tmax), y(Tmax)}, which has the maximal distance from the
median of x and y, is then deleted, and the procedure is
repeated with the next point, until only one point is left in
the set. This identifies the maximum of the PDF.

To quantify the effects of water and resting points on the
springbok movement, for each day we define the point closest
to a water point as {xwp, ywp} and the resting point, at which
the density of the visited positions of the animal reaches a
maximum, as {xrp, yrp}. This is a somewhat crude approxima-
tion because springboks do not necessarily visit a water point
only once per day and do not have a single sleeping phase
per day. However, the two sets of data points {xwp, ywp} and
{xrp, yrp} are, as we show, meaningful quantities for analysis.

We compute the mean distance of subsequent daily water
points as

dwp(Ti ) = ([xwp(Ti ) − xwp(Ti − 1)]2

+[ywp(Ti ) − ywp(Ti − 1)]2)1/2, (14)

where the set {Ti} is the sequence of days. Analogously, we
evaluate drp(Ti ) for the resting points. The means of these
expressions for different individuals in the tracked ensem-
ble are compared in Fig. 5(c). We find that, in general, the
resting-point distances are shorter than water-point distances.
The analysis contrasting wet and dry seasons shows that the
difference is mostly due to the movement in the dry seasons,
while in the wet seasons both dvp and dwp separations are

rather close in magnitude [green triangles on the diagonal
of Fig. 5(c)]. The fact that longer journeys are necessary to
find sufficient water supplies in the dry season reflects the
expected conditions in arid climates. On average, therefore,
we conclude that springboks rather keep to more localized
resting points and travel further for water points.

A video of the motion of two springboks on an actual map
with a variable vegetation index is presented in Fig. 6, together
with motion-step predictions from our theoretical model (see
Sec. V A). Note that the modeled springboks are always
somewhat lagging behind the actual measured springboks’
positions because predictions are weighted averages over all
possible outcomes and, therefore, 2D predictions tend to have
somewhat smaller steps as compared to the true step lengths.
The overall reproducibility of the movement directions, of
the magnitude of the turning angles, and of the “intensity”

FIG. 6. Snapshot from a movie of the motion of two springboks.
The water points are marked as blue stars on the map, the actual
animal positions are the orange and violet filled circles. The model
predictions (for the same time intervals between steps) are denoted
by the red crosses. The full movie file is provided in the Supplemental
Material [137].
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FIG. 7. Displacements and short-time scaling exponents of the velocity autocorrelation function of springbok motion. (a) Single-springbok
data. Top: Scaling of the squared displacements along the trajectory for different hours of the day. Bottom: Cumulative sum of the squared
velocities of springbok motion for different hours of the day. The different symbols represent different starting hours. We observe a spread in
values of the scaling exponents—given by the slopes of the curves in log-log plots—depending on the time of day. (b) Springboks ensemble
data. Left: For each hour of the day, the average scaling exponents {2J, 2H, 2M} are calculated as an average over days, using 15-min intervals.
The symbols correspond to the ones used in panel (a). Exponents are disentangled following Eq. (16). Right: For the long-range correlation
exponent 2J presented here, thin lines represent different individuals, the thick line is an average over all individuals. (c) Correlations between
the scaling exponents 2J during the day and night. Average scaling during the day (4 a.m. to 6 p.m.) and night (6 p.m. to 4 a.m.) shows a
variability among the individuals and an increased directedness (i.e., more positive J values) during the day for all animals in the dataset. The
computed mean values are the dashed lines. The black line represents the diagonal.

of motion is, however, remarkable for the two springboks in
Fig. 6 chosen from the dataset.

B. Day and night autocorrelation

We now address the dynamics encoded in the movement
data on the time scale of a single day. The data segments
shown in Fig. 5 suggest some daily cycle regarding the
distances covered by the springboks. Here we address the
question whether this daily cycle in walked distance is due to a
daily cycle in activity or in directedness of the motion, or both.
To this end, we need to assess all three quantities: the total
distance, the activity, and the directedness. With changing
activity we mean nonstationarity of the driving, related to
the parameter K . Here, by directedness we mean short-time
autocorrelations. One difficulty in distinguishing these two
characteristics is the fact that our data have the resolution
of only 15 min and thus shorter correlation times cannot be
resolved.

First, we need an assumption regarding the shape of
short-time autocorrelations prior to starting the analysis.
From Figs. 4(a)–4(c) it follows that a power-law shape is
a reasonable assumption for the short-time behavior of the
TAMSD, which is closely related to the autocorrelation func-
tion [138–140]. So, for simplicity, we assume a power-law
TAMSD scaling with a corresponding exponent in the short-
time limit of the displacement. The total distance walked by
an individual can be measured by the squared displacement
r2

h(t ) = (xh(t ) − xh(0))2 + (yh(t ) − yh(0))2, where the index
h denotes the time of the day when the measurement is started,
and rh(0) is the starting position.

One question is whether the growth of the squared dis-
placement depends on the starting time, i.e., the hour h of
the day. Figure 7(a) displays the average over an ensemble of
days in the dataset (we assume that the days can be considered
independent). At each time of the day, we can assign a Hurst

exponent H to the ensemble-averaged displacement 〈r2
h(t )〉, as

per Eq. (17). As described in Appendix, we also define scaling
exponents for the velocity-autocorrelation function (Joseph
exponent J) and of the nonstationarity (Moses exponent M).
The latter can be defined via the scaling of the cumulative
squared increments of animals in x and y directions, i.e.〈

n∑
i=1

v2(ti )

〉
∝ n2M+1, (15)

with velocities v(ti) = [r(ti ) − r(ti−1)]/�t . It can be shown
that the exponents H , M, and J are related to each other via
[23,138,139,141,142]

J = H − M + 1/2, (16)

as in our case (due to the finite variance of the increments) the
Noah exponent L = 1/2 (see also Appendix).

Given relation (16), it is sufficient to calculate two of the
three exponents for a certain hour of the day for the spring-
bok motion, to know all three of them. As the inference of
autocorrelations usually involves time averaging, we restrict
ourselves to calculating the exponents H and M. Here M is
defined by relation (15) and H is defined by the ensemble-
averaged MSD [138–140],

〈(r(ti ) − r(t0))2〉 ∝ (ti − t0)2H . (17)

In Eqs. (15) and (17) the brackets denote averaging over dif-
ferent days of springbok data and for each day t0 corresponds
to the same hour of the day. Using segments of length 90 min,
we extract the short-time exponents.

In Figs. 7(b) and 7(c) we show the results of the com-
putations for different times of the day and for different
springboks. Figure 7(b) demonstrates the evolution of the
short-time scaling exponents {J, H, M} for all individuals
measured at each hour of the day. The exponents H and M
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peak in the morning, reflecting the activity increase of the
springboks as the sun rises. Note that the exact time of the
sunrise varies for each calendar day, but due to the location
of springbok trajectories close to the equator this effect is
relatively minor.

In Fig. 7(c) we plot the average exponent J—describing
the directedness of the motion—during the day (4 a.m. until 6
p.m.) versus the exponent computed during the night (6 p.m.
until 4 a.m.). We find that autocorrelations—quantified by the
value of exponent J—during the day are more pronounced as
compared to those during the night. During the entire day, the
motion is more persistent than a completely random process
(2J > 1), but less directive/persistent than a ballistic process
(2J < 2).

We stress here that the underlying assumption of the
existence of the power-law TAMSD scaling is a strong ap-
proximation and thus the inferred exponents are to be treated
with care. According to Fig. 4(b), the TAMSD(�) has a
concave shape and thus autocorrelations in reality might be
somewhat stronger at very short time scales [that is below
the time resolution of the current analysis (assuming power
laws)]. The inferred influence of the autocorrelations can,
therefore, be regarded as a lower bound to the impact of
autocorrelations.

We find that changes in both activity and directedness
contribute to the daily cycle. Both are not accounted for by
our model (8).

V. PREDICTABILITY

The analysis in the previous section demonstrates that our
relatively simple OU model (8) with correlated noise cannot
fully describe all features of the springbok-movement dy-
namics. While this simple model captures several essential
features of the dynamics, it would be naive to expect that
such rather generic physics-inspired models could grasp the
complexity of effects such as day-night or seasonal variations.
One possible generalization could include different parame-
ters for day and night. The heterogeneity of the springbok
movement stems from the environmental or terrain features,
but also from different modes of individual animal move-
ment (such as, generally, hunting, resting, hiding, vigilance,
etc.). Some studies specifically focus on classifying these
modes of motion [105,143,144]. Here we discuss some pos-
sible extensions of our model and estimate their predictive
power.

A. Comparison with basic AR(1) and AR(2) models

As we are interested in forecasting the movement to be
made by a springbok in the next hour (hereafter �t = 1 h),
encoded by the “velocity”

v(ti ) = r(ti ) − r(ti−1)

�t
, (18)

the simplest prediction is to assume that, most probably, the
next position is equal the current position. Then the predicted
velocity denoted as ṽ(ti ) vanishes, i.e., ṽ(ti) = 0. Viewing v as
an averaged quantity, this simplified assumption corresponds
to the picture of Brownian motion, in which steps in either di-
rection are equally probable, and, as already noted by Pearson
[4], the next displacement is zero. How realistic this simple

TABLE I. Mean-squared error and relative error for different
models of springbok movement. The values are averages over all
individuals in the dataset. As seen from comparison of the third &
fourth columns, the full model established here reduces the error in
springbok-move prediction by around 20%, as compared to the basic
model.

Model MSE [km2/h2] MSE/MSEbasic MSE/MSEfull

basic 0.264 1.0 1.257
AR(1) 0.228 0.873 1.087
AR(2) 0.228 0.873 1.087
vt−1 0.228 0.872 1.082
velocities 0.219 0.841 1.044
time 0.215 0.825 1.023
full 0.210 0.795 1.0

prediction or similar ones are can be quantified in terms of
the mean-squared error (MSE), evaluated as squared devia-
tion of the forecast ṽ with respect to the actual experimental
time series v,

MSE = 1

N

N∑
i=1

(v(ti ) − ṽ(ti ))
2. (19)

MSEs, or normalized MSEs, are common measures for the
quality of models in modeling analyses, see, e.g., Refs.
[145,146].

A better prediction is expected if the information contained
in model (8) is taken into account. For short lag times of
around one hour, confinement effects can be neglected, as
these enter only with a comparatively long correlation time τl ,
which is on the order of tens-to-hundreds of hours, according
to Fig. 4(e). The resulting model is then a random walk with
correlated increments, characterized by the correlation time
τs. Thus, at such short lag times the prediction is given by

v(ti ) = e−�t/τs v(ti−1), (20)

in which each component corresponds to an autoregressive
model of order one, AR(1). It can be tested that the full
AR(2) model (8) does not lead to any significant improvement
of the predictions (see Table I). In fact, model (20) already
represents a significant improvement as compared to the naive
Brownian prediction and explains around 13% of the squared
error (see Table I).

B. Machine-learning approach

However, as mentioned above, model (20) is still quite
simplistic. It neither takes into account the specific animal
movements at certain times of the day or year, nor the position
of the water points, the dependence on explorations during
the previous day, as well as other factors (such as variable
levels of vegetation or fluctuating temperatures). Obviously,
a general model that could take such features into account is
hard to formulate explicitly. Therefore, it is useful to search
for suitable ML-algorithms. These methods [147] are supe-
rior to many classical techniques for model selection for the
datasets generated from stochastic processes [145,146,148–
151]. They can also be used to infer the dynamical changes
and the transition points [152]. A direct forecast of future

043129-9



PHILIPP G. MEYER et al. PHYSICAL REVIEW RESEARCH 5, 043129 (2023)

steps of an animal using ML is less common in studying
diffusion and foraging (for a review of potential methods we
refer the reader to Ref. [153]), but it is already widespread
in other disciplines such as power-grid frequency [154] or
air-pollution research [155]. In these disciplines, the question
“How important is the individual feature for the accuracy of
modeling” is often being discussed. The same techniques can
be applied for time-series analysis of animal movement.

We deploy a supervised-ML model, which takes the fol-
lowing features into account:

(i) v(ti−1), the distance per time covered by an animal in
the last hour (i.e., for a lag time �t = 1 h),

(ii) v(ti−2), the distance per time covered in the hour be-
fore that,

(iii) v(ti−24), the distance per time walked in the same hour
of the previous day,

(iv) |r(ti−1) − r(ti−24)|, the overall distance directions
traveled in the last 24 hours,

(v) w(ti−1), the distance to the closest water point, and
w(ti−1) − w(ti−2), the change in distance from the closest
water point during the last hour,

(vi) T (r(ti−1)), the temperature at the current position,
(vii) V (r(ti−1)), the vegetation type as a “lushness coef-

ficient” (varying in the interval [0,1]) at the current position,
and the lushness difference V (r(ti−1)) − V (r(ti−2)) as com-
pared to the previous location.

Gradient-boosted trees (GBTs) represent a popular tool
for regression analyses [156,157]. GBTs are based on simple
decision trees, and the output of one tree is then passed to the
next decision tree, which “learns” how the residuals can be
improved with additional questions. The result of each tree is
regularized by a factor, called the learning rate. Choosing a
sufficiently small learning rate reduces the risk of overfitting
[154]. We use a learning rate of 0.1, which is a standard choice
for gradient-boosting machines. The number of trees and the
maximal depth of the trees are the parameters to be chosen
prior to starting the algorithm. We use n = 100 trees with a
maximal depth of five, see Fig. 8, which was decided after
comparing the accuracy of the algorithm for different sets of
parameters. We employ the Python scikit-learn library [158]
for a supervised-ML model implemented as GBTs.

We note that due to the relatively small number of the
involved parameters, the algorithm runs fast and training re-
quires only a few minutes on a standard desktop computer.
The black-box character of such a model could be understood
via running the model with different features acting as inputs
and comparing the importance of each feature, see below. We
note that in this GBT approach we do not use any specific
information regarding the physical position of the springboks,
but only account for their relative distances. The algorithm is
thus applicable to all springboks independently of whether or
not the area has already been explored previously. The data on
vegetation levels and on temperature variations are taken from
[103].

In Fig. 9(a) we compare the MSE of the basic (Brown-
ian) model, the prediction from the AR(1) model (20), and
the supervised-ML model. For the latter two, the models
were trained on all but one individual and the next step was
predicted for this remaining individual. In the case of the
stochastic model, only the parameter τs had to be “learned”:

FIG. 8. Schematic diagram of the GBT algorithm. The first tree
receives as input the residuals s0 of the inputs and the average
result of the training set. Depending on the specific input values,
the tree’s output (the estimator ŝ0) can take different values (one
of the branches of the tree), which are trained from the results in
the training set {vx (t ), vy(t )}, that ended up on the same branch
of the tree. The output is regularized by the learning rate 0.1. The
residuals s1 are passed as an input to the next tree, which works in
the same way. The maximum number of trees in our application was
100. After the model is trained, the output can be calculated from a
new input as {v̂x (t ), v̂y(t )} = [〈vx〉, 〈vy〉] + 0.1[ŝ0(t ) + ŝ1(t ) + . . . +
ŝ99(t )], where {〈vx〉, 〈vy〉} are the mean displacements in the training
set.

it can be obtained from minimizing [v(ti) − e−(1h)/τs v(ti−1)]2.
The stochastic model reduces the MSE of the prediction by
≈ 13% on average. Using all available features in the GBT
model leads to a total reduction of the MSE of ≈ 20%, see the
entry 0.795 in the third column of Table I. Consequently, the
springbok motion contains a significant degree of stochasticity
that cannot be explained even with the quite broad features of
the GBT approach. We also mention the measurable variabil-
ity of the MSE results computed for movements of different
individuals (Fig. 9), resulting from characteristics such as age,
size, gender, distinct set of explored terrain patterns, move-
ment strategy (residential vs migrating), etc.

C. Feature gain

ML models such as GBTs can be considered as “black
boxes”: the effects of an individual feature are not immedi-
ately obvious. The easiest way to gain some insight into such
a black box is to run the algorithm repeatedly and to examine
the effects of adding or deleting certain individual features.
More information should lead to a better prediction of the
future behavior, but the question is how relevant an individual
feature is for such predictions.

In Fig. 9(b) we demonstrate how subsequently adding
information reduces the MSE. Errors are normalized by
the error of the basic model (the variance of the velocity).
Taking into account only the previous data point—i.e., the
same amount of information considered for the stochastic
forecast—very well reproduces the MSE of the stochastic
model, ≈ 13% (see Table I). Adding information about the
springbok paths during the previous hour and day, {v(ti−2),
v(ti−24), r(ti−1) − r(ti−24)} as three additional features yields

043129-10



DIRECTEDENESS, CORRELATIONS, AND DAILY CYCLES … PHYSICAL REVIEW RESEARCH 5, 043129 (2023)

FIG. 9. MSE of different forecasting models for individual springboks, which are distinguished by the numbers on the abscissa. (a) Com-
parison of the basic model, the stochastic AR(1) model, and the GBT-based model using all features. (b) Comparison of the MSE, normalized
by the prediction of the basic model, for GBT models with information of the last step (denoted as v(t − 1)), movements on the last day
(velocities), movements on the last day and time of the year (time), and all available information (full). (c) Comparison of the error normalized
by the error of the full model vs the models where one of the features was removed. Note that in cases when no error bars are visible, the
corresponding error is negligibly small.

a strong improvement of the error magnitude: it is almost 16%
better than the basic model, see Fig. 9(b). Also, taking into
account the time of the day and of the year gives rise to another
visible improvement, as can be expected from the changes of
the dynamics depending on time discussed above. The infor-
mation on changes in the distance to the water points has some
effect, while the vegetation level and the actual temperature
lead to hardly any additional improvement. One reason might
be that some of this information is already included in the
movement during the previous day, e.g., if the animal already
visited the same water point or went to the same pasture to
eat.

Looking at these three factors (previous data point, longer
movement history, time of day/year) in detail, we can also
consider the relative increase of the MSE upon removal of ei-
ther of the features from the full model, as shown in Fig. 9(c).
We see that there is only one of the three factors that has a
negative effect throughout all individuals, namely, the distance
from the water points. The magnitude of the effect is, however,
rather small. It is not clear that the model benefits much
from information on the vegetation and temperature. For the
vegetation, this is not an expected result, however: in order
to predict where the animal goes to eat one would need more
information about the surroundings and a higher temporal and
better spacial resolution of the data.

VI. CONCLUSIONS

We studied the movement dynamics of an ensemble of
springboks, whose positions were recorded by long-term GPS
tracking. Our analysis combines new statistical observables,
stochastic models, and ML-based feature analysis. Although
the studied springbok ensemble is relatively small and the
statistical quality of our results is therefore limited, we be-
lieve that this study will be a solid basis for more elaborate
experimental field work and for extraction of dynamic fea-
tures from the garnered data. In particular, all techniques
discussed here should be easily adaptable to the analysis of
the movement dynamics of other ruminants. With sufficient
modifications, possibly including the underlying stochastic
models, the movement dynamics of other tracked animal

species can be approached with the same methodology. In
this sense our analysis presents a next step from the purely
statistical description of animal movements in the direction of
a more detailed, biologically-inspired analysis and prediction.

The evaluation of the model performance (“forecasting
error”) for the movement in the following hour was based on
the MSE obtained from comparison of the predicted move-
ment of a given animal based on the model (after training of
the model parameters from all other individuals) with actual
animal movement. A simple model chosen for the movement
dynamics was the discrete OU process with correlated driving,
corresponding to the autoregressive model AR(2). This pro-
cess includes the confinement of the animal motion over time
ranges of some 102 h corresponding to a few km2 visited area,
as seen from the detailed TAMSD data. For the movement
within the chosen 1-h lag time for the prediction analysis, the
AR(2) model reduces to the AR(1) process (an unconfined,
correlated motion). This model was shown to already have a
quite good forecasting power, leading to a reduction of the
MSE as compared to a basic model, in which animals on aver-
age stay at their current positions. The gain in prediction from
the correlated-motion model was ≈13%. The error did not
vary appreciably between this AR(1) model, the full AR(2)
model, and even the GBT model, when the latter was solely
trained on the previous position.

Naturally, a homogeneous model—such as AR(1) with
two parameters (diffusivity or noise strength and correlation
time τs)—misses many relevant features of the real animal-
movement dynamics. A prime feature here is the daily cycle
of the animal behavior. Using a decomposition technique—
based on the scaling exponents of the MSD, activity, and
directedness—shows that not only the activity, but also the
directedness of the springbok motion is higher during the day
(the corresponding exponent is ≈1.5) than during the night
(with exponent ≈1.3), see the dotted lines in Fig. 7(c).

Taking into account the step at the same hour of the pre-
vious day, the daily displacement, and the last two steps, the
error of the prediction is reduced by ≈16% as compared to the
basic model, as some of the daily dynamics is captured. The
prediction is even better when information about the time of
the year is added as well, because there is a difference between
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the behavior during wet versus dry seasons. A model with
information about the time of the day and of the year improves
the naive prediction with the basic model by ≈18%. Note that
such models do not have any specific information about the
underlying map and are thus purely dynamical formulations.

An important feature of the concrete physical landscape
were shown to be the water points. While the scatter of the
visited water points is higher than that of the resting points, the
information of the water-point distances turned out to have a
clear effect. In contrast, including the current temperature did
not improve the model prediction, similar to the effects of the
lushness and its gradient. However, it is not immediately clear
to which extent the information about temperature affects the
movement dynamics at all. Moreover, it would be reasonable
to assume that the geographic abundance of food is encoded
in the movements themselves. For an improved model, one
could consider the food landscape in the entire field of vision
of the animals and their memory.

Our best ML-based model with all information improved
the MSE by about 20%. While this points at the relevance
of the underlying parameters, it also shows the limitation of
the predictability, pointing at a good degree of stochasticity
of individual motion. We propose that the reasons for this
are not only the heterogeneity among the individuals reflected
in variability of their movement parameters, but also in the
multiple decisions taken in dependence of the current needs of
an individual (Fig. 1) and its interactions with other animals,
as well as personal perceptions. Averaging over different indi-
viduals from different herds leads to a loss of details of the
individual animal movement. Concurrently, such averaging
unveils features such as the motion directedness during day
and night, scattering of water points and resting positions,
and the predictability of the springbok movement without any
knowledge of the underlying landscape.

When more detailed data will be available, we will be able
to extend our analysis on exact geographical features such as
detailed vegetation and height maps, as well as the positions
of fences and of other animals in the herd. In such an analysis
also the time-resolved water availability at water points can
be taken into consideration. However, it is an open question
whether such details are actually that important, or whether
it is sufficient to have knowledge about more generic motion
patterns.

We conclude by speculating that a substantial improvement
of the relatively simple, few-parameter approaches outlined
here, in combination with ML, may still be achievable.
Namely, from feature-based ML studies we know that few
additional features—on top of a substantial number of already
used quantifiers—may significantly improve the predictions.
Here, artificial intelligence combining all available informa-
tion may be used in the future to pinpoint additional relevant
factors in movement ecology. In that sense the combination
of traditional stochastic modeling and ML-based approaches
represents a promising strategy in obtaining more truthful
models for movement ecology.
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APPENDIX: A PRIMER ON THE MANDELBROT
DECOMPOSITION METHOD

The central limit theorem for the sum of random variables
guarantees the convergence to a Gaussian PDF if these ran-
dom variables are independent, identically distributed, and
of finite variance [5]. Violation of any of these conditions
changes the resulting PDF. When a diffusive process deviates
from the Gaussian statistics of normal Brownian motion, a
direct test of which of these conditions is violated, can be
based on three scaling exponents defined on the basis of the
increments of the position time series [23,138,139,141,142].

Consider the time series r(t ) as function of time t , de-
scribed by the discrete sum of random increments r(N�t ) =∑N

j=1 δr j , where δr j ≡ r( j�t ) − r([ j − 1]�t ) and N =
t/�t , and 0 < �t � t is an arbitrary time increment. We also
define the average velocity vector in the jth increment, v j ≡
δr j/�t . From these quantities we calculate the scaling of
three observables: (i) the mean absolute velocity 〈|v|〉, (ii) the
mean-squared velocity 〈v2〉, and (iii) the ensemble-averaged
TAMSD. These are connected to the following effects:

(i) Nonstationarity. The conditions that the random vari-
ables are identically distributed is violated. Nonstationarity of
the increments can be measured by the the “Moses” exponent
M defined in terms of

〈|v(N�t )|〉 =
〈

1

N

N∑
j=1

|v j |
〉

∝ NM−1/2, (A1)

where the overline indicates time averaging. When M = 1/2
the increments are stationary and thus identically distributed.
When M > 1/2 the process is nonstationary and the mean
velocity grows with time.

(ii) Diverging variance. Extreme events in the time series
are picked up by the “Noah” exponent L (generally, L � 1/2
[141]), given through

〈v2(N�t )〉 ≡
〈

1

N

N∑
j=1

v2
j

〉
∝ N2L+2M−2. (A2)

If in addition to M = 1/2 we have L = 1/2, then 〈v2〉 is con-
stant. Yet, if L > 1/2, 〈v2(t )〉 will grow in time, even though
M = 1/2. While 〈|v|〉 is a measure of typical fluctuations in a
time series, the quantity 〈v2〉 is sensitive to the tails of the
velocity–PDF. In absence of extreme events 〈v2〉 ∝ N2M−1,
thus L �= 1/2 is an indicator of occurrence of extreme events.

(iii) Temporal correlations. The “Joseph” exponent mea-
sures whether the increments of the process are independent
or not. This exponent can be extracted from the scaling of the
integrated velocity autocorrelation function

1

〈v2〉
N−l∑
i=1

〈vi · vi+l〉 ∝ l2J−1. (A3)
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As this function is sometimes difficult to calculate from finite
time series, an alternative definition is based on the mean
TAMSD,〈

1

N − l

N−l∑
i=1

(r(ti+l ) − r(ti ))
2

〉
∝ N2L+2M−2l2J . (A4)

For long-ranged temporal correlations (decaying very slowly
in time) one has J �= 1/2, thus violating the independence
condition of the central limit theorem.

There exists a fundamental summation relation between M,
L, J and the Hurst exponent H [138,139,142],

H = J + L + M − 1. (A5)

This relation was empirically confirmed in a wide range of
systems [23]. An observed process resembles Brownian mo-
tion when L = M = J = H = 1/2. As we do not observe a
growing variance 〈v2〉, we assume L = 1/2 in the main text.

The relation (A5) for L = 1/2 can be derived as follows.
Assuming a power-law scaling dependence of the autocorre-

lation function with the lag time � and the measurement time
t , we have (for the x component)

〈(x(t ) − x(0))2〉 = 2
∫ t

0
d�

∫ t−�

0
dt ′〈vx(t ′)vx(t ′ + �)〉

∝ 2
∫ t

0
d�

∫ t−�

0
dt ′〈v2

x (t ′)〉�2J−2

∝ 2
∫ t

0
d��2J−2

∫ t−�

0
dt ′t ′2M−1

∝ B(2J − 1, 2M + 1)

M
t2M+2J−1, (A6)

where the Euler beta function is given by

B(α, β ) =
∫ 1

0
tα−1(1 − t )β−1dt . (A7)

The last step in (A6) requires that J > 1/2 and M > 0, which
is true in our situation. In this case, relation (A6) holds for all
t and �; for smaller exponents it only holds in the long-time
limit.
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