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1. Introduction

Since Albert Einstein provided a theoretical foundation [1] for Robert Brown’s observation of
the movement of microscopic granules contained in pollen grains [2], significant deviations
from the laws of Brownian motion have been uncovered in an impressively wide variety of
animate and inanimate systems, from biology to the stock market. Anomalous diffusion, as it
has come to be called, extends the concept of Brownian motion and is connected to disordered
systems, non-equilibrium phenomena, flows of energy and information, and transport in living
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systems [3]. Anomalous diffusion is ‘non-universal’ in the sense that physically very differ-
ent systems share the same power-law form of the mean squared displacement ⟨x2(t)⟩ ∼ tα.
To properly understand a system exhibiting anomalous diffusion, it is therefore important to
have reliable analysis methods to unveil the exact physical mechanisms effecting the observed
anomalous diffusion dynamics.

Several methods for detecting the occurrence of and the mechanisms behind anomalous
diffusion have been developed using classical statistics [4–10]. However, in the last years, the
booming of machine learning has boosted the development of data-driven methods to char-
acterise anomalous diffusion from single trajectories, providing more refined tools for this
problem [11–15].

In 2020, we launched the Anomalous Diffusion (AnDi) challenge to provide the first assess-
ment of classical and novel methods for quantifying anomalous diffusion in various realistic
conditions through a community-based effort [16]. The challenge consisted of an open com-
petition to benchmark existing methods and spur the invention of new approaches. The AnDi
challenge brought together a vibrating and multidisciplinary community of scientists working
on this problem, involving more than 30 participants from 22 institutions and 11 countries.
Ultimately, the analysis of the results obtained on a reference dataset [17] provided an object-
ive assessment of the performance of methods to characterise anomalous diffusion from single
trajectories for three specific tasks, including anomalous diffusion exponent inference, model
classification, and trajectory segmentation. The study, published in Nature Communications,
analyses the results of the community effort and determines that machine learning greatly
improves the estimation of the properties of diffusing particles [18].

This special issue includes the details of several of the methods that participated in the
AnDi challenge. Some of the articles describe updated versions of the software originally
used for the challenge, showing improved performance. Most of these methods rely on state-
of-the-art machine learning approaches. For instance, Gentili and Volpe [19] combine feature
engineering based on classical statistics with feed-forward neural networks. Interestingly, this
work shows how to create an adapted pipeline specific to the dataset of the challenge to reach
some of the best performance of the competition across all tasks. Similarly, Kowalek et al [20]
also uses a set of statistical features as the input to an extreme gradient boosting model, which
then takes care of classifying trajectories among diffusion models. The authors further show
that the proper choice of features heavily affects classification accuracy.

Among the different machine learning approaches, recurrent neural networks (RNNs) have
attracted a lot of interest due to their suitability when dealing with data with temporal informa-
tion and long-range correlations. Three works show different implementations based on RNN
for the challenge tasks [21–23]. Garibo-i-Orts et al [21] combines a bidirectional long short-
term memory (LSTM), a state-of-the-art RNN, with a convolutional neural network (CNN).
The CNN is used as a feature extractor before a stack of LSTM layers to boost the RNN per-
formance, achieving outstanding results for the regression of the anomalous exponent. Argun
et al [22] proposes an architecture where trajectories are directly fed to LSTM layers, an imple-
mentation that enables the analysis of time traces of arbitrary size, without the need for any
padding or preprocessing. Thismethod shows top performance across several tasks of theAnDi
challenge, demonstrating that similar architectures can be successfully used for different pur-
poses. Last, Li et al [23] describes the use of one of the most promising RNN architectures, the
WaveNet. This work further shows how the size of the training dataset (one order of magnitude
larger than the rest of the models used in the challenge) can be key to enhancing the method’s
accuracy.
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Other machine learning approaches have also shown remarkable performance in dealing
with stochastic diffusion. Manzo [24] attempts to establish a baseline for machine learning
approaches using an extreme learning machine, a fast-converging training algorithm for single
hidden layer feedforward neural network applied over a set of statistical features. Al-hada et
al [25] uses a pretrained CNN, the ResNet-50, to classify different stochastic processes and
compare it with other CNNs. Conejero et al [26] proposes a new architecture, the Convo-
lutional Transformer, to extract features from trajectories and feed them to two transformer
encoding blocks that perform either regression or classification. Verdier et al [27] presents a
method based on graph neural networks (GNNs) where a vector of features is associated with
each trajectory position and a sparse graph structure with each trajectory. Similar to [23], the
authors use representation learning techniques to study the latent space features of their model
and propose a visual exploratory method to analyse trajectories from walks never seen by the
GNN. In fact, the unsupervised analysis of diffusion models is a promising tool to charac-
terise unknown datasets that could even lead to the identification of new mechanisms. Along
this line, Muñoz-Gil et al [28] studies the suitability of auto-encoders as feature extractors for
anomalous diffusion trajectories and proposes a method to characterise them using anomaly
detection.

Besides machine learning approaches, theory-based methods were also proposed for char-
acterising anomalous diffusion and tested in the AnDi challenge. Meyer et al [29] discusses
numerical methods to obtain the anomalous diffusion exponent and proposed a questionnaire
for model selection based on feature analysis. Bayesian inference was instead used in [30]
to distinguish between scaled and fractional Brownian motion and in [31] that presents an
approach to deal with Lévywalk trajectories. Bayesianmethods are particularly effective when
enough information is known about the trajectories and specific priors associated with the type
of walk one aims to characterise can be constructed.

The special issue also hosts several theoretical contributions pushing forward the field of
stochastic processes and/or discussing applications to time series. Thus, Vitali et al [32] dis-
cusses emerging transient anomalous diffusion in Markovian hopping-trap scenarios. Transi-
ent anomalous diffusion is also obtained in a tempered fractionally integrated process [33].
Maraj et al [34] introduces the empirical anomaly measure as a means to measure the distance
between the anomalous diffusion process and normal diffusion. Limit properties of Lévy walks
are shown to be useful in the recognition and verification of Lévy walk-type motion, as well
as the parameter estimation in maximum likelihood methods [35]. Wang et al [36] studies the
emerging residual nonergodicity in fractional Brownian motion with random diffusivity that
may help distinguish and categorise certain nonergodic and non-Gaussian features of particle
displacements. Applications of single-trajectory power spectral methods to movement data of
kites and storks are discussed in [37], demonstrating how stochastic models can be extracted
with this method.

Quantum walks are considered in [38], showing how the interplay between quantum coher-
ence and the mean squared displacement of the walker can provide information on the process.
Ablowitz et al [39] studies applications of the inverse scattering transform to fractional ver-
sions of non-linear equations of, e.g. the Korteweg–deVries equation, that provide a framework
for solitonic solutions with power-law dispersion relations. Initial strong non-Gaussianity con-
current with Brownian scaling of the mean squared displacement is reported for self-avoiding
random walks in [40].

The research reported in this special issue provides a major contribution toward the under-
standing of anomalous diffusion processes and their analysis. In particular, a palette of tools
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is introduced, which are poised to become standard methods for the analysis of trajectories
generated from various experiments, from atomic physics to ecology. Moreover, the outcome
of these studies reinforces the importance of community-based efforts in the search for the
advancement of science. The success of this initiative triggered us to organise the 2nd AnDi
challenge around the problem of detecting changes in transport properties and interactions
between moving objects from single trajectories.
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