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Ergodic characterization of nonergodic anomalous diffusion processes
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Anomalous diffusion in various complex systems abounds in nature and spans multiple space and time scales.
Canonical characterization techniques that rely upon mean squared displacement break down for nonergodic pro-
cesses, making it challenging to characterize anomalous diffusion from an individual time-series measurement.
Nonergodicity reigns when the time-averaged mean square displacement differs from the ensemble-averaged
mean squared displacement even in the limit of long measurement series. In these cases, the typical theoretical
results for ensemble averages cannot be used to understand and interpret data acquired from time averages. The
difficulty then lies in obtaining statistical descriptors of the measured diffusion process that are not nonergodic.
We show that linear descriptors such as the standard deviation, coefficient of variation, and root mean square
break ergodicity in proportion to nonergodicity in the diffusion process. In contrast, time series of descriptors
addressing sequential structure and its potential nonlinearity: multifractality change in a time-independent way
and fulfill the ergodic assumption, largely independent of the time series’ nonergodicity. We show that these
findings follow the multiplicative cascades underlying these diffusion processes. Adding fractal and multifractal
descriptors to typical linear descriptors would improve the characterization of anomalous diffusion processes.
Two particular points bear emphasis here. First, as an appropriate formalism for encoding the nonlinearity that
might generate nonergodicity, multifractal modeling offers descriptors that can behave ergodically enough to
meet the needs of linear modeling. Second, this capacity to describe nonergodic processes in ergodic terms
offers the possibility that multifractal modeling could unify several disparate nonergodic diffusion processes
into a common framework.

DOI: 10.1103/PhysRevResearch.5.023144

I. INTRODUCTION

Anomalous diffusion abounds in nature—atoms in
magneto-optical traps [1,2], DNA, lipids, and proteins [3–12],
bacteria, cells, and parasites [13–19], foraging wild ani-
mals [20–22] and human hunter gatherers [23,24], economic
markets [25–27], and various other processes [28–31] show
anomalous diffusion that spans multiple scales [Fig. 1(a)]. All
these processes are characterized by an erratic change of an
observable (e.g., position, temperature, or stock price) over
time [Fig. 1(b)]. “Anomalous” implies that the observable x’s
mean squared displacement (MSD) does not grow linearly
with time t , 〈x2(t )〉 ∝ t , as predicted by Fick’s theory of
diffusion, but follows another power-law pattern 〈x2(t )〉 ∝ tα ,
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with α �= 1. Notably, exceptions exist, and the time evolution
of anomalous diffusion regimes’ MSD does not always follow
a power-law form (e.g., Sinai diffusion [32–34]). Frequently,
α < 1, indicating subdiffusion [16,35–41]. Superdiffusion—
characterized by α > 1—is less commonly reported than
subdiffusion but is often observed in active physical and bi-
ological systems [36,42–49].

Widespread evidence of anomalous diffusion processes has
sparked a major theoretical effort to comprehend and for-
mally organize the mechanisms that might explain them. This
endeavor has resulted in various mathematical models with
and without long-range correlations and varied spatial (step
length) and temporal (step duration) random distributions.
Models of anomalous diffusion have grown from elabora-
tions of Brownian motion, which depicts the movement of
a small particle in a fluid due to thermal forces. Brown-
ian motion embodies ordinary diffusion when MSD grows
linearly with time, 〈x2(t )〉 ∝ t [51]. In a curious turn of ter-
minology, anomalous diffusion emerges as the more general
case—“anomalous is normal” [52], and these widespread
applications of diffusion modeling come from adding an
anomalous nuance to these fluctuation patterns in the narrow
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FIG. 1. Random walks or anomalous diffusion processes, defined by unpredictable variations in an observable, can be found in various
systems over a wide range of spatial and temporal scales. (a) Examples include atoms in magneto-optical traps, the diffusion of biological
components such as DNA, lipids, and proteins, bacteria and cell motility, and foraging wild animals. (b) Random walks in three-dimensional
spaces may be dimensionally reduced: 1D, proteins sliding along DNA segments; 2D, receptors diffusing across the plasma membrane; 3D,
cells migrating through a three-dimensional matrix. The color code of the trajectories represents time. (c) Representative trajectories and
corresponding MSD for diffusive (α = 1, black lines), subdiffusive (0 < α < 1, blue lines), and superdiffusive (1 < α < 2, red lines) motion.
The underlying anomalous diffusion model can be classified as fractional Brownian motion, scaled Brownian motion, continuous time random
walk, annealed transient time motion, or Lévy walk. These diffusion models produce subtle changes. A trajectory can show a change point by
switching the diffusion model or exponent due to diffusion in a spatially heterogeneous environment. Adapted from Muñoz-Gil et al. [50].

case of so-called “ordinary” diffusion [52]. The anomalous
diffusion underlying an observed process can be modeled
as fractional Brownian motion (FBM) [53], scaled Brown-
ian motion (SBM) [54,55], noisy continuous time random
walk (nCTRW)—a variant of CTRW with the power-law dis-
tribution of waiting times [55–57], annealed transient time
motion (ATTM) [58], or Lévy walk (LW) [59]. These dif-
fusion processes show subtle differences in how fluctuations
are distributed in time (for details of the models, see Ap-
pendix A). Indeed, the problem of ergodicity breaking also
arises for other types of diffusion anomalies [60]. The theoret-
ical challenge for explaining anomalous diffusion compounds

with the observation that these different processes are not
mutually exclusive—they may only reflect distinct modes into
which the same observable system can transition [50,61]. A
single observed trajectory can switch at change points among
regimes best explained by different of these models as a re-
sult of interactions with the surroundings in a heterogeneous
environment [3,7,8,62–65] [Fig. 1(c)]. The observed motion
often simultaneously exhibits features of more than one of
the “elementary” stochastic models. Despite their common
heritage in Brownian motion [66], these processes exhibit
seemingly disparate modes of nonlinear and nonergodic be-
havior [52,65,67–70]. The challenge is that modeling the
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causal evolution from one mode to another requires causal
models, and prevailing statistical approaches to causal mod-
eling largely assume linearity and ergodicity.

A leading motivation to study anomalous diffusion mod-
els is to detect and classify specific anomalous diffusion
processes in empirical data. However, all the above fac-
tors make this classification a challenging feat. Therefore,
recent attempts include Bayesian [71–75] as well as machine-
learning (ML) approaches [50,76–80], and even unsupervised
approaches [81–86]. However, these attempts are based on an
atheoretical selection of features which may not necessarily be
related to plausible generating mechanisms [87,88]. A more
theoretically defined set of features can potentially improve
the ML-powered characterization of anomalous diffusion pro-
cesses in empirical data.

One possible resolution lies in the observation that tem-
poral correlations and non-Gaussianity are common features
of multifractal processes. Multifractal geometry is also a for-
malism that specifically addresses the intermittent, nonergodic
fluctuations across a wide range of scales and the nonlinear
interactions of short-range events with large-scale contextual
factors [89,90]. Multifractality is observed in strong anoma-
lous diffusion [91,92]. Thus, these anomalous processes with
common heritage in the Brownian-motion formalism may find
a common reunified description. This point is not to say that
the models generating these different regimes of anomalous
diffusion are explicitly multifractal. Instead, it is to recognize
that multifractal geometry has long been considered a mod-
eling framework broad enough to explain how these modes
of anomalous diffusion evolve over time and sometimes with
change points from one mode to another [93]. Critically,
the first step towards explanation through prevailing causal
models is meeting the basic benchmark of ergodicity for the
traditionally linear statistical structure of causal modeling. We
use numerical simulations to test the hypothesis that mul-
tifractal geometrical estimates of these diffusive properties
offer an ergodic descriptor that makes these disparate diffu-
sion processes amenable to a linear causal framework.

Efforts so far have addressed the twofold challenges of
properly quantifying empirical diffusion processes and doing
so with the appropriate model. The difficulty here is that both
concerns must be pursued largely in tandem: we must empir-
ically estimate the value of model parameters, and to ensure
these estimates are effective, we must be sure to use a model
appropriate to the data. Best practices for balancing parameter
estimation with model specification includes analyzing the
empirical time-series data with various statistical observables
such as MSD, spectral power analysis, van Hove correla-
tion functions, step-length or flight-time distribution, and
ergodicity-breaking parameter [31,94–103]. However, data in-
terpretation can be subjective and is contingent on the fidelity
of the observed data which is inevitably constrained by length
and number of observations, measurement noise, and sample
spatiotemporal heterogeneity.

It is important to note that the preceding best practices
are sometimes at odds with the characteristic nonergodic-
ity of many anomalous-diffusion processes. That is to say,
the constraints imposed by ergodicity on diffusion modeling
set in well before any thoughts about linear causal models
to articulate any causal developmental relationships among

disparate anomalous-diffusion processes. Nonergodicity en-
tails a failure of individual time-series measurements to
represent an ensemble. Nonergodicity reigns when time-
averaged MSD (TA-MSD) differs from ensemble-averaged
MSD (EA-MSD). Sample-size constraints on measurements
of nonergodic processes thus dramatically constrain the in-
terpretation of the canonical characterization techniques that
rely on MSD. In these cases, the typical theoretical re-
sults for ensemble averages cannot be used to understand
and interpret data acquired from time averages. For exam-
ple, FBM is ergodic for α = 0.1, although convergence of
the EA-MSD to TA-MSD may be slower for values of the
anomalous exponent close to 1 [104]. The ergodicity in FBM
requires careful analysis as a function of α [105–108], and
often higher-order moments accounting for the skewness and
kurtosis are necessary to study ergodicity breaking in FBM
[109]. CTRW, ATTM, and SBM show weak ergodicity break-
ing [7,58,92,110–113]. Finally, a LW shows a distinct kind
of ergodicity breaking—named ultraweak nonergodicity—in
which ensemble and time averages only differ by a con-
stant factor [114,115]. Deriving inferences from canonical
estimates submitted to linear causal models makes the ques-
tionable compromise of enforcing similarity while neglecting
diversity for formal convenience, given the variability in the
ergodic features of these diffusion processes. Moreover, such
inferences may obscure any artifacts of nonergodicity or fail
to articulate the systematic changes that lead to nonergodicity,
potentially obscuring any genuine individual differences and
discarding any generalizable truths we might have gleaned
from the same diversity that was intended to represent these
disparate models of nonlinearity and nonergodicity [107].

Here, we have used cascade-dynamical descriptors rooted
in multifractal formalism to compare the ergodicity-related
diffusive properties of various anomalous processes. An
important theoretical move beyond attempts at formal con-
venience may be explicitly addressing the underlying mech-
anisms generating nonergodicity in empirical examples of
anomalous diffusion. In this sense, multifractal geometry is
not merely convenient because it affords an analytical reper-
toire for addressing features sometimes seen in different
anomalous-diffusion processes. Rather, multifractal geome-
try is a theoretically valid means to estimate parameters of
cascade dynamics that can generate a wide variety of inter-
mittent, nonergodic behavior. If we encode those aspects of
the diffusion process known to generate nonergodicity, these
parameter estimates might be ergodic—and indeed, current
evidence shows that they are [105,108]. We know, for in-
stance, that f Gn observed in biological and psychological
phenomena break ergodicity primarily due to the interde-
pendencies among factors unfolding at multiple spatial and
temporal scales [116–120]. The scale-invariant shape of the
power-law autocorrelation in f Gn—quantified as the fractal
exponent Hf Gn shows none of the ergodicity breaking of
the f Gn series [108,108]. Although f Gn is a linear process,
one possible explanation for power-law scaling is the nonlin-
ear interactions across scales in cascade processes known to
generate intermittent, nonergodic behavior [89]. The strength
of cascade dynamics can be quantified as the multifractal
spectrum width �α and then as a t-statistic comparing that
multifractal-spectrum width to spectrum widths for linear
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surrogates tMF [121,122]. If cascades can explain the noner-
godic behavior of all anomalous diffusion processes, then �α

and tMF might avoid displaying the breaking of ergodicity and
can be submitted to linear models of cause and effect. Indeed,
we have shown that for f Gn, all three descriptors: Hf Gn, �α,
and tMF , avoid ergodicity breaking [105,108]. Even without
any interest in causal modeling to examine the developmental
change among modes of anomalous diffusion, this approach
of extending beyond MSD to more generalized multifractal
modeling can help restore broken ergodicity for all forms of
anomalous diffusion processes.

The structure of this article is as follows: We first provide
a comparative analysis of the ergodic properties of synthetic
FBM, SBM, nCTRW, ATTM, and LW time series with dif-
ferent values of the anomalous exponent. We then provide
a comparative analysis of the ergodic properties of the time
series of linear and cascade-dynamical descriptors of these
synthetic time series. We discuss how the latter descriptors—
rooted in multifractal formalism—encode the nonlinearity
that might generate nonergodicity in these anomalous diffu-
sion processes. Finally, we discuss the implications of using
cascade-dynamical descriptors of anomalous diffusion pro-
cesses to meet the needs of linear modeling and classify
specific anomalous diffusion processes in empirical data.

II. MATERIALS AND METHODS

A. Simulating FBM, SBM, nCTRW, ATTM, and LW series

We simulated using MATLAB (Matlab Inc, Natick, MA,
USA) 50 001-sample synthetic trajectories generated ac-
cording to each of the following five different anomalous
diffusion models [Fig. 2(a)]: (i) FBM (ergodic)—a motion
with correlated long-range steps [53], (ii) SBM (weakly
nonergodic)—a motion whose diffusion coefficient features
deterministic time-dependent changes [54,55], (iii) nCTRW
(weakly nonergodic)—a variant of CTRW [57], a motion
undergoing local trapping with a wide distribution of wait-
ing times [56], (iv) ATTM (weakly nonergodic)—a motion
with random changes of the diffusion coefficient in time [58],
and (iv) LW (ultraweakly nonergodic)—a motion displaying
irregular jumps with constant velocity [59]. Appendix A de-
scribes the anomalous diffusion models and the algorithm
used to simulate each process in more detail. The anomalous
exponent was restricted to α � 0.1 because smaller exponents
produce practically immobile trajectories. Note that FBM,
SBM, nCTRW, and ATTM are considered in the subdiffu-
sive range 0.1 � α � 1, and LW is subdiffusive in the range
α � 1. We simulated 100 series using each of the 10 different
exponents for each model: α = {0.1, 0.2, . . . , 1} for FBM,
SBM, nCTRW, and ATTM, and α = {1.1, 1.2, . . . , 2} for LW.
Each series was then differentiated, and its absolute value
was taken to obtain a 50 000-sample fluctuation series. All
analysis was conducted on these fluctuation series because
multifractal analysis requires all values in a time series to be
positive. Using absolute values is a common practice in fractal
and multifractal analysis. A shuffled version of each original
fluctuation series was generated for comparison because er-
godicity is about how sequence exemplifies a typical mean
trajectory of a sample of realizations. Shuffling breaks the

sequence, producing additive white Gaussian noise (awGn)
oscillating around the mean. Finally, each original series x(t )
was segmented into 100 nonoverlapping 500-sample seg-
ments, s, such that s = {s1, s2, . . . , s100}. The corresponding
shuffled version for each process was likewise segmented.
100-sample time series of linear and nonlinear descriptors
were obtained across these segmented series. This procedure
breaks long-range correlations in the process, as shown below.

B. Estimating linear descriptors

We computed EA-MSD and TA-MSD for each process
trajectory. We defined EA-MSD as

〈x2(t )〉 = 1

N

N∑
i=1

[xi(t ) − xi(0)]2, (1)

for a set of N trajectories, and we defined the time-average
mean squared displacement (TA-MSD) as

δ2(τ ) = 1

L − m

L−m∑
i=1

{x[(i + m)�t] − x(i�t )}2, (2)

when the series is sampled at L discrete times τ = m�t .
We also computed MSD-related three linear descriptors for

each of the 100 nonoverlapping 500-sample segments for the
original version (i.e., unshuffled) and a shuffled version (i.e.,
a version with the temporal information destroyed) of each
process. We defined the standard deviation (SD) as

SD =
√√√√ 1

T

T∑
t=1

(x(t ) − x(t ))2, (3)

where T is the fluctuation series length, and we defined the
coefficient of variation (CV ) as

CV =
√

1
T

∑T
t=1(x(t ) − x(t ))2

x(t )
. (4)

We also defined the root mean square (RMS), i.e.,

RMS =
√√√√ 1

T

T∑
t=1

|x(t )|2. (5)

C. Estimating cascade-dynamical descriptors

Previous research has supported the idea that fractal and
multifractal estimates offer a more accurate characterization
of measurement series that exhibit ergodicity-breaking fea-
tures such as correlations [108], non-Gaussianity [105], and
cascade dynamics [106], compared with conventional linear-
modeling estimates of variability. This promising outcome has
encouraged further investigation. However, previous work has
been limited to explicit models of non-Gaussian, correlated,
and cascade-dynamical fluctuations. Therefore, we aimed to
test the effectiveness of multifractal estimates in character-
izing a wider range of anomalous diffusion models, which
may better represent biological motility and offer a more com-
prehensive understanding of ergodicity. We computed three
cascade-dynamical descriptors for each of the 100 nonover-
lapping 500-sample segments for the original version (i.e.,
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(a)

(b)

FIG. 2. Simulated anomalous diffusion processes and their ergodic properties. (a) Sample trajectories, and the corresponding fluctuation
series, were generated according to the following five models: fractional Brownian motion (FBM, ergodic), scaled Brownian motion (SBM,
weakly nonergodic), noisy continuous time random walk (nCTRW, weakly nonergodic), annealed transient time motion (ATTM, weakly
nonergodic), and Lévy walk (LW, ultraweakly nonergodic). While FBM, SBM, nCTRW, and ATTM are strictly subdiffusive (0.1 � α � 1),
LW is superdiffusive (α � 1). The anomalous exponent α ranges from 0.1 to 1 for FBM, SBM, nCTRW, and ATTM and from 1.1 to 2 for
LW, with an increment of 0.1 from top to bottom. (b) Ergodicity-breaking parameter [EB(x(t ))] for each of the five processes (N = 100; lag
is � = 10 samples). The different decay rates of EB → 0 as t → ∞ for different diffusion models and exponents indicate that each process
breaks ergodicity to different extents: FBM, ergodic; SBM, weakly nonergodic; nCTRW, weakly nonergodic; ATTM, weakly nonergodic; and
LW, ultraweakly nonergodic. Additionally, for SBM, nCTRW, and ATTM, EB differs between the original series (colored circles and lines)
and their shuffled versions (gray circles and lines). For LW, EB for the original and shuffled series completely coincide. For FBM, EB for the
shuffled series for all α coincide with EB for the original series with α = 0.5. Hence, gray circles and lines are eclipsed by colored circles and
lines for FBM and LW.

unshuffled) and a shuffled version (i.e., a version with the
temporal information destroyed) of each process.

1. Accessing fractality using detrended fluctuation analysis

Detrended fluctuation analysis (DFA) computes the Hurst
exponent Hf Gn, quantifying the strength of long-range corre-
lations in series [123,124] using the first-order integration of

T -length time series x(t ):

y(i) =
i∑

k=1

(x(k) − x(t )), (6)

where i = 1, 2, 3, . . . , T . DFA computes root mean square
(RMS; i.e., averaging the residuals) for each linear trend yn(t )
fit to Nn nonoverlapping n-length bins to build a fluctuation
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function:

f (v, n) =
√√√√ 1

Nn

Nn∑
v=1

(
1

n

n∑
i=1

(y((v − 1) n + i) − yv (i))2

)
,

(7)
where n = {4, 8, 12, . . . } < T/4. f (n) is a power law,

f (n) ∼ nHf Gn , (8)

where Hf Gn is the scaling exponent estimable using logarith-
mic transformation:

ln f (n) = Hf Gn ln n. (9)

Higher Hf Gn corresponds to stronger long-range correlations.

2. Assessing multifractal spectrum width using the
direct-estimation of singularity spectrum

Chhabra and Jensen’s [125] direct method estimates mul-
tifractal spectrum width �α by sampling a series x(t ) at
progressively larger scales using the proportion of signal Pi(n)
falling within the vth bin of scale n as

Pv (n) =

Nn∑
k=(v−1) n+1

x(k)

∑
x(t )

, (10)

where n = {2, 4, 8, 16, . . . } < T/8. As n increases, Pv (n) rep-
resents a progressively larger proportion of x(t ),

P(n) ∝ nα, (11)

suggesting a growth of the proportion according to one
“singularity” strength α [126]. P(n) exhibits multifractal dy-
namics when it grows heterogeneously across timescales n
according to multiple singularity strengths, such that

P(nv ) ∝ nαv , (12)

whereby each vth bin may show a distinct relationship of P(n)
with n. This binning in Chhabra and Jensen’s [125] method is
a one-dimensional (1D) multifractal elaboration of classical
box-counting analyses [126]. The width of this singularity
spectrum, �α = (αmax − αmin), indicates the heterogeneity of
these relationships [127,128].

Chhabra and Jensen’s [125] method estimates P(n) for Nn

nonoverlapping bins of n sizes and transforms them into a
“mass” μ(q) using a q parameter emphasizing higher or lower
P(n) for q > 1 and q < 1, respectively, in the form

μv (q, n) = [Pv (n)]q

Nn∑
j=1

[Pj (n)]q

. (13)

The multifractal analysis is motivated by the cascade dynam-
ics formalism, which involves a variety of fluctuations across
different scales that interact with each other. This suggests that
there are interactions between events of different sizes, both
large and small. One key aspect of the multifractal analysis
is using a q parameter, which can be adjusted to accentuate
events of different sizes to a greater or lesser extent. By grad-
ually adjusting this parameter, multifractal analysis can create
a range of size-accentuated series from a single measurement

series. This allows for identifying contributions from fluctu-
ations of different sizes and estimating continuous variation
in temporal structure across all sizes. For instance, with q =
1, all-sized fluctuations are treated similarly, whereas with
q > 1, larger fluctuations are characterized, and with q < 1,
smaller fluctuations are characterized.

Then, α(q) is the singularity for mass μ-weighted P(n)
estimated as

α(q) = − lim
Nn→∞

1

ln Nn

Nn∑
v=1

μv (q, n) ln Pv (n)

= lim
n→0

1

ln n

Nn∑
v=1

μv (q, n) ln Pv (n). (14)

Each estimated value of α(q) belongs to the multifractal spec-
trum only when the Shannon entropy of μ(q, n) scales with n
according to the Hausdorff dimension f (q) [125], where

f (q) = − lim
Nn→∞

1

ln Nn

Nn∑
v=1

μv (q, n) ln μv (q, n)

= lim
v→0

1

ln n

Nn∑
v=1

μv (q, n) ln μv (q, n). (15)

For values of q yielding a strong relationship between
Eqs. (14) and (15)—in this study, the correlation coefficient
r > 0.995, the parametric curve (α(q), f (q)) or (α, f (α))
constitutes the multifractal spectrum and �α (i.e., αmax −
αmin) constitutes the multifractal spectrum width. r deter-
mines only an adequately strong part of the multifractal
spectrum is considered. This tradition of using a correlation-
coefficient benchmark began with Dixon and Kelty-Stephen
[116] trying to operationalize the concerns raised by Zamir
[129], and all Kelty-Stephen-co-authored empirical work us-
ing Chhabra and Jensen’s [125] multifractal analysis since has
used this same benchmark. The use of correlation coefficient
has regularly provided multifractal spectra whose widths have
been significant predictors of various behavioral outcomes
[122,130–141]. So, whatever may be arbitrary in this choice
of correlation coefficient and whatever may be determined
alternatively, equally, more correctly or usefully, the system-
atic application of this standard across an entire series of
experimental datasets has not left the estimated measures of
multifractal spectrum width altogether useless.

3. Assessing multifractality due to nonlinearity
using surrogate testing

To identify whether a nonzero �α reflects multifractality
due to cascade-like interactivity, �α for the original series
was compared with �α for 32 iterated amplitude-adjusted
Fourier transform (IAAFT) surrogates [142,143]. IAAFT
randomizes original values time-symmetrically around the
autoregressive structure, generating surrogates that random-
ize phase ordering of the original series’ spectral amplitudes
while preserving linear temporal correlations. The one-sample
t-statistic (henceforth, tMF ) takes the subtractive difference
between �α for the original series and the 32 surrogates,
dividing by the standard error of the spectrum width for the
32 surrogates. The greater the value of tMF , the greater the
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multifractality in the original series due to nonlinear as op-
posed to linear sources.

D. Estimating ergodicity-breaking parameter EB for FBM,
SBM, nCTRW, ATTM, and LW series, and the corresponding

TA − MSD, SD, CV , RMS, Hf Gn, �α, and tMF series

Ergodicity can be quantified using a dimensionless statistic
of ergodicity breaking EB, also known as the Thirumalai-
Mountain metric [95,102] and already mentioned by Rytov
et al. [99], computed by subtracting the squared total-sample
variance from the average squared subsample variance and
dividing the resultant by the squared total-sample variance:

EB(x(t )) = 〈[δ2(x(t ))]2〉 − 〈δ2(x(t ))〉2

〈δ2(x(t ))〉2
, (16)

where δ2(x(t )) = ∫ t−�

0 [x(t ′ + �) − x(t ′)]2dt ′/(t − �) is the
time-average mean-squared displacement of the stochastic
series x(t ) for lag time �. This relationship is effectively
the variance of sample variance divided by the total-sample
squared variance. Rapid decay of EB to 0 for progressively
larger samples (i.e., EB → 0 as t → ∞ implies ergodic-
ity). Thus, for Brownian motion EB(x(t )) = 4

3 ( �
t ) [144,145].

Slower decay indicates less ergodic systems in which trajec-
tories are less reproducible, and no decay or convergence to
a finite asymptotic value indicates strong ergodicity breaking
[104]. EB(x(t )) thus allows testing whether a given time se-
ries fulfills ergodic assumptions or breaks ergodicity and the
extent to which it breaks ergodicity.

For instance, Deng and Barkai [104] have shown that for
FBM,

EB(x(t )) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(Hf Gn)�
t if 0 < Hf Gn < 3

4

k(Hf Gn)�
t ln t if Hf Gn = 3

4

k(Hf Gn)
(

�
t

)4−4Hf Gn if 3
4 < Hf Gn < 1.

(17)
Likewise, Thiel and Sokolov [146] have shown that, for SBM,

EB(x(t )) =
⎧⎨
⎩

4Zα

(
�
t

)2α
if α � 1

2

4α2

3(2α−1)
�
t if α > 1

2 ,
(18)

where Zα = ∫ 1
0 dy

∫ ∞
0 dx[(x + 1)α − (x + y)α]2. For any pos-

itive value of the anomalous exponent α, EB for SBM
vanishes and shows a crossover between two types of t de-
pendence at α = 1/2 [146]. Compare also [92]. Despite the
vanishing EB, SBM is weakly nonergodic, i.e., ensemble and
time averages are disparate.

We computed EB for the absolute values obtained for the
original and a shuffled version of each process (range =T/50;
lag � = 10 samples) as Eq. (16).

We computed EB for TA-MSD for the original and a
shuffled version of each process (range = T/50; lag � = 10
samples) as

EB(TA-MSD(t ))

= 〈[δ2(TA-MSD(t ))]2〉 − 〈δ2(TA-MSD(t ))〉2

〈δ2(TA-MSD(t ))〉2
. (19)

We computed EB for SD, CV , RMS, Hf Gn, �α, and tMF

series computed over the 100 nonoverlapping segments for the
original and a shuffled version of each process (range =s/2;
lag � = 1 segment, where s denotes the 100 nonoverlapping
500-sample segments over which each of these descriptors
were computed, such that s = {s1, s2, . . . , s100}) as

EB(SD(s)) = 〈[δ2(SD(s))]2〉 − 〈δ2(SD(s))〉2

〈δ2(SD(s))〉2
, (20)

EB(CV (s)) = 〈[δ2(CV (s))]2〉 − 〈δ2(CV (s))〉2

〈δ2(CV (s))〉2
, (21)

EB(RMS(s)) = 〈[δ2(RMS(s))]2〉 − 〈δ2(RMS(s))〉2

〈δ2(RMS(s))〉2
, (22)

EB(Hf Gn(s)) = 〈[δ2(Hf Gn(s))]2〉 − 〈δ2(Hf Gn(s))〉2

〈δ2(Hf Gn(s))〉2
, (23)

EB(�α(s)) = 〈[δ2(�α(s))]2〉 − 〈δ2(�α(s))〉2

〈δ2(�α(s))〉2
, (24)

EB(tMF (s)) = 〈[δ2(tMF (s))]2〉 − 〈δ2(tMF (s))〉2

〈δ2(tMF (s))〉2
, (25)

respectively.

III. RESULTS

A. Ergodicity breaking depends on the type of the diffusion
process and the anomalous exponent α

We observe noteworthy ergodicity-related differences
across the five types of anomalous diffusion processes and
different values of the anomalous exponent α. FBM for
smaller values of α (i.e., α → 0.1) and SBM for larger values
of α (i.e., α → 1) return and converge towards the mean,
suggestive of ergodicity [Fig. 2(a)]. EB(x(t )) confirmed this
observation. For FBM, EB → 0 as α → 0.1, and for SBM,
EB → 0 as α → 1 [Fig. 2(b)]. FBM appears to break ergod-
icity for larger values of α, indicated by little to no decay
in EB with t . SBM appears to break ergodicity for smaller
values of α, which, despite decay in EB with t , do not
even reach 1. The observation further confirms ergodicity
in FBM and SBM that the EB(x(t )) curves almost entirely
coincide for the original and shuffled trajectories as α → 0.1
for FBM and α → 1 for SBM, indicating that these pro-
cesses behaved as awGn. In contrast, the EB(x(t )) curves for
the original and shuffled versions coincide to progressively
lesser extent as α → 1 for FBM and α → 0.1 for SBM.
Overall, not only EB for the five processes does not con-
verge to an acceptably small value within our observation
time, the FBM, SBM, nCTRW, ATTM, and LW trajecto-
ries show highly variable rates of decays in EB: EB(x(t )) =
−1.01�

t to − 0.18�
t , −1.05�

t to − 0.42 �
t , −1.11�

t to −
0.25�

t , −1.87�
t to − 0.45�

t , and −1.02 �
t to − 0.99�

t , re-
spectively, where � in �

t = 10, not atypical values for many
empirical data.

Unlike FBM and SBM, nCTRW, ATTW, and LW diverge
and never return toward the mean, suggesting ergodicity
breaking in these processes [Fig. 2(a)]. EB quickly decays
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(a)

(b)

(c)

FIG. 3. Ergodicity breaking in TA-MSD. (a) TA-MSD for 100 simulated trajectories of the five anomalous diffusion processes—FBM,
SBM, nCTRW, ATTM, and LW, for two values of the anomalous exponent α blue: α = 0.2 for nCTRW, ATTM, FBM, and SBM, and α = 1.2
for LW; red: α = 0.9 for nCTRW, ATTM, FBM, and SBM, and α = 1.9 for LW. (b) EA-MSD (colored thick lines) and TA-MSD (colored thin
lines) for the five anomalous diffusion processes—FBM, SBM, nCTRW, ATTM, and LW. The anomalous exponent α ranges from 0.1 to 1 for
FBM, SBM, nCTRW, and ATTM and from 1.1 to 2 for LW, with an increment of 0.1 from dark blue to dark red. (c) EBTA-MSD(s) for the five
processes and different values of α (N = 100; lag is � = 10 samples). The EB(TA-MSD(t )) curves all coincide at 100 but have been shifted
vertically for convenience of presentation, and hence, the vertical axis is given in arbitrary units.

with t but does not even reach 1 for nCTRW and ATTW for
smaller values of α (i.e., α → 0.1) and for LW for all values
of α, suggestive of weak ergodicity breaking [Fig. 2(b)]. EB
showed little to no decay with t for nCTRW and ATTW for
larger values of α (i.e., α → 1), suggestive of stronger break-
ing of ergodicity. This ergodicity breaking of nCTRW and
ATTW is further confirmed by the finding that the EB(x(t ))
for the original and shuffled nCTRW and ATTW coincide to
progressively lesser extent as α → 1. LW showed the weakest
ergodicity breaking, wherein EB quickly decays with t for all
values of α but does not reach 1. Hence, FBM and SBM break
ergodicity for larger and smaller values of the anomalous
exponent α, nCTRW, ATTM, and SBM break ergodicity to
differential extents.

B. TA-MSD reflects ergodicity-related differences among
different anomalous diffusion processes

Figures 3(a) and 3(b) show that TA-MSD grows with lag
time � for all five types of anomalous diffusion processes—
FBM, SBM, nCTRW, ATTM, and LW—in the entire range of
�. (The individual amplitudes scatter owing to the stochastic-
ity in generating these trajectories. Such scatter characteristics
of anomalous diffusion processes can be used to reliably
distinguish between FBM from nCTRW processes; see, for
instance, Refs. [111,147].) Furthermore, TA-MSD growth
shows differential dependence on the anomalous exponent
α across the five processes. For example, this dependence
was strongest for FBM and lowest for LW, suggesting that
the growth rates of TA-MSD might not provide sufficient
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(a)

(b)

FIG. 4. Ergodicity breaking in the strength of temporal correlations, Hf Gn. (a) Representative Hf Gn series (Hf Gn calculated across the 100
nonoverlapping 500-sample segments) for the five anomalous diffusion processes—FBM, SBM, nCTRW, ATTM, and LW. The anomalous
exponent α ranges from 0.1 to 1 for FBM, SBM, nCTRW, and ATTM and from 1.1 to 2 for LW, with an increment of 0.1 from dark blue to
dark red. Gray trajectories indicate Hf Gn series for the corresponding shuffled versions. (b) EB(Hf Gn(s)) for the five processes and different
values of α (N = 100; lag is � = 1 segment). Gray curves indicate mean EB(Hf Gn(s)) for the corresponding shuffled versions.

resolution to distinguish multiple trajectories of the same pro-
cess with different anomalous exponents. EB for TA-MSD
remains constant across t [Fig. 3(c)]; indeed, TA-MSD
for FBM, SBM, nCTRW, ATTM, and LW show no de-
cay whatsoever in EB: EB(TA-MSD(t )) = 0 for all values
of the anomalous exponent α. Hence, TA-MSD mask
any ergodicity-related differences among the five processes
and processes with different anomalous exponents and
cannot be used as a stable causal predictor in the lin-
ear modeling of cause-effect relationships in this type of
analysis.

C. MSD-related linear descriptors such as SD, CV ,
and RMS reflect ergodicity-related differences
among different anomalous diffusion processes

SD for FBM for all values of the anomalous exponent
α and SBM for α = 1—the case in which SBM is re-
duced to awGn—return and converges towards the mean,
suggestive of ergodicity. In contrast, SD for SBM, nCTRW,
ATTW, and LW diverge and never return towards the mean,
suggesting ergodicity breaking in the SD series for these pro-
cesses. EB(SD(s)) confirmed these trends (see Appendix B).
Except for some minor differences, the ergodicity-breaking
behavior of CV resembles that of SD, and the RMS series
behaved exactly as the SD series for all five processes (see
Appendix B).

D. Multifractal descriptors provide an ergodic characterization
of nonergodic anomalous diffusion processes

The Hf Gn series—quantifying the strength of temporal
correlations in each of the 100 nonoverlapping 500-sample
segments of the synthetic trajectories—shows signs of restor-
ing ergodicity to the description of some of these processes.
The Hf Gn series for FBM behaved ergodically (i.e., EB → 0
as s → ∞) independent of the anomalous exponent α, and
so do Hf Gn series for LW (Fig. 4). However, the Hf Gn series
for LW show a marginal dependence on α, as the EB taper
off at higher values of s. The observation further strengthens
this result that EB(Hf Gn(s)) curves entirely coincide with the
original and shuffled trajectories. The Hf Gn series for SBM
show strong ergodicity breaking with EB initially having a
converging-to-zero trend but then taking an upward turn and
increasing with s for the rest of the range. The only exception
to this trend is the Hf Gn series for the SBM trajectories for
α = 1—in which SBM is reduced to awGn. The Hf Gn series
for CTRW and ATTM also behaved ergodically with a few ex-
ceptions: the Hf Gn series for CTRW break ergodicity at larger
values of α and the Hf Gn series for the original and shuffled
ATTM trajectories diverge with increasing α. On average, the
Hf Gn series for FBM, SBM, nCTRW, ATTM, and LW show
the initial rates of decay in EB: EB(Hf Gn(s)) = −1.23�

s ,
−1.23�

s , −0.97�
s , −1.08�

s , and −1.12 �
s , respectively, where

� = 1 (Table I). In other words, the Hf Gn series for the five
processes show very similar rates of decay in EB.
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TABLE I. The slopes of EB(�α(s)) for the five anomalous dif-
fusion processes and different values of α in terms of �

s .

αa FBM SBM cCTRW ATTM LW

0.1 (1.1) −1.26 −1.03 −1.27 −1.16 −1.11
0.2 (1.2) −1.23 −1.16 −1.25 −1.21 −1.07
0.3 (1.3) −1.25 −1.15 −1.27 −1.25 −1.13
0.4 (1.4) −1.26 −1.32 −1.21 −1.10 −1.14
0.5 (1.5) −1.28 −1.30 −1.21 −1.08 −1.08
0.6 (1.6) −1.27 −1.33 −1.06 −1.04 −1.08
0.7 (1.7) −1.26 −1.26 −0.92 −1.06 −1.16
0.8 (1.8) −1.20 −1.31 −0.71 −0.98 −1.21
0.9 (1.9) −1.20 −1.22 −0.43 −0.89 −1.15
1 (2) −1.12 −1.24 −0.33 −0.96 −1.10

aThe anomalous exponent α ranges from 0.1 to 1 for FBM, SBM,
nCTRW, and ATTM and from 1.1 to 2 for LW (in parentheses).

The �α series—quantifying the width of the multifrac-
tal spectrum in each of the 100 nonoverlapping 500-sample
segments of the synthetic trajectories—also show signs of
restoring ergodicity to all five processes, albeit with some
exceptions pertaining to specific values of the anomalous
exponent. The �α series for FBM behave ergodically (i.e.,
EB → 0 as s → ∞) independent of α, and so do the �α

series for LW (Fig. 5). However, the �α series for LW show
marginal dependence on α, as EB taper off at higher values
of s. The �α series for SBM show strong ergodicity breaking

with EB initially having a converging-to-zero trend but then
taking an upward turn and increasing with s for the rest of the
range. The only exception to this trend is the �α series for
the SBM trajectories for α = 1—in which SBM is reduced
to awGn. The �α series for CTRW and ATTM also behave
ergodically with a few exceptions: the �α series for CTRW
break ergodicity at larger values of α, and the �α series for the
original and shuffled ATTM trajectories diverge with increas-
ing α. On average, the �α series for FBM, SBM, nCTRW,
ATTM, and LW show the average initial rates of decay in
EB: EB(�α(s)) = −1.23�

s , −1.22 �
s , −0.93�

s , −1.12 �
s , and

−1.16�
s , respectively, where � = 1 (Table II).

The tMF series—quantifying multifractality due to nonlin-
earity in each of the 100 nonoverlapping 500-sample segments
of the synthetic trajectories—for all five processes—FBM,
SBM, nCTRW, ATTM, and LW—show a rapid decay of EB
with a progressively larger sample of segments, i.e., EB → 0
as s → 0 for t → ∞ (Fig. 6). On average, the tMF series
for FBM, SBM, nCTRW, ATTM, and LW show the average
initial rates of decay in EB: EB(tMF (s)) = −1.20 �

s , −1.24 �
s ,

−1.20 �
s , −1.17�

s , and −1.20 �
s , respectively, where � = 1

(Table III). In other words, the tMF series for the five pro-
cesses do not vary in the initial decay rates in EB. Moreover,
EB(tMF (s)) shows a marginal dependence on the anomalous
exponent α at higher values of s, except for ATTM for which
EB(tMF (s)) shows marginally higher dependence on α. No-
tably, the EB(tMF (s)) curves entirely coincide for the original

(a)

(b)

FIG. 5. Ergodicity breaking in multifractal spectrum width, �α. (a) Representative �α series (�α calculated across the 100 nonoverlap-
ping 500-sample segments) for the five anomalous diffusion processes—FBM, SBM, nCTRW, ATTM, and LW. The anomalous exponent α

ranges from 0.1 to 1 for FBM, SBM, nCTRW, and ATTM and from 1.1 to 2 for LW, with an increment of 0.1 from dark blue to dark red. Gray
trajectories indicate �α series for the corresponding shuffled versions. (b) Mean EB(�α(s)) for the five processes and different values of α

(N = 100; lag is � = 1 segment). Gray curves indicate mean EB(�α(s)) for the corresponding shuffled versions.
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TABLE II. The slopes of EB(Hf Gn(s)) for the five anomalous
diffusion processes and different values of α in terms of �

s .

αa FBM SBM cCTRW ATTM LW

0.1 (1.1) −1.28 −1.24 −1.33 −1.31 −1.24
0.2 (1.2) −1.20 −1.22 −1.32 −1.19 −1.15
0.3 (1.3) −1.29 −1.12 −1.07 −1.29 −1.16
0.4 (1.4) −1.25 −1.18 −1.13 −1.14 −1.17
0.5 (1.5) −1.20 −1.17 −0.90 −1.24 −1.13
0.6 (1.6) −1.23 −1.27 −0.92 −0.03 −1.18
0.7 (1.7) −1.18 −1.22 −0.73 −0.09 −1.13
0.8 (1.8) −1.19 −1.26 −0.67 −0.01 −1.20
0.9 (1.9) −1.24 −1.21 −0.56 −0.05 −1.15
1 (2) −1.22 −1.29 −0.62 −0.81 −1.12

aThe anomalous exponent α ranges from 0.1 to 1 for FBM, SBM,
nCTRW, and ATTM and from 1.1 to 2 for LW (in parentheses).

and shuffled trajectories, demonstrating that the ergodic be-
havior of the tMF series for the original series did not differ
from the shuffled versions that lack any temporal correlations
found in the original trajectories. Hence, the tMF series fully
restore broken ergodicity to a description of all five diffusion
processes and all values of α. This result strongly resonates
with previous findings on 1/ f noise, 1/ f noise with different
levels of non-Gaussianity, and binomial multiplicative cas-
cades [105,106,108].

TABLE III. The slopes of EB(tMF (s)) for the five anomalous
diffusion processes and different values of α in terms of �

s .

αa FBM SBM cCTRW ATTM LW

0.1 (1.1) −1.26 −1.24 −1.22 −1.24 −1.39
0.2 (1.2) −1.19 −1.29 −1.26 −1.25 −1.16
0.3 (1.3) −1.26 −1.28 −1.21 −1.30 −1.18
0.4 (1.4) −1.21 −1.23 −1.28 −1.26 −1.17
0.5 (1.5) −1.18 −1.25 −1.24 −1.17 −1.19
0.6 (1.6) −1.23 −1.22 −1.28 −1.08 −1.20
0.7 (1.7) −1.19 −1.22 −1.23 −1.21 −1.14
0.8 (1.8) −1.18 −1.23 −1.13 −1.05 −1.20
0.9 (1.9) −1.20 −1.18 −1.08 −1.08 −1.16
1 (2) −1.16 −1.28 −1.10 −1.06 −1.22

aThe anomalous exponent α ranges from 0.1 to 1 for FBM, SBM,
nCTRW, and ATTM and from 1.1 to 2 for LW (in parentheses).

E. Multifractal spectrum distinguish different anomalous
diffusion processes

Figure 7(a) shows the multifractal spectrum for the five
processes—FBM, SBM, nCTRW, ATTM, and LW and differ-
ent values of the anomalous exponent α. FBM shows highly
symmetric spectra with initially fleeting and increasing differ-
ences between the original spectrum and the corresponding
IAAFT surrogates for larger α. This trend is confirmed by
an initially fleeting and then increasing percentage of FBM
trajectories with the wider-than-surrogate spectrum and an

(a)

(b)

FIG. 6. Ergodicity breaking in multifractal nonlinearity, tMF . (a) Representative tMF series (tMF calculated across the 100 nonoverlapping
500-sample segments) for the five anomalous diffusion processes—FBM, SBM, nCTRW, ATTM, and LW. The anomalous exponent α ranges
from 0.1 to 1 for FBM, SBM, nCTRW, and ATTM and from 1.1 to 2 for LW, with an increment of 0.1 from dark blue to dark red. Gray
trajectories indicate tMF series for the corresponding shuffled versions. (b) EB(tMF (s)) for the five processes and different values of α (N = 100;
lag is � = 1 segment). Gray curves indicate mean EB(tMF (s)) for the corresponding shuffled versions.
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(a)

(b)

(c)

FIG. 7. Multifractal formalism appears to be a nonlinear analytical method that unifies several disparate nonergodic anomalous diffusion
processes into a common framework of multiplicative cascades. (a) Multifractal spectrum for the five types of anomalous diffusion processes—
FBM, SBM, nCTRW, ATTM, and LW. The anomalous exponent α ranges from 0.1 to 1 for FBM, SBM, nCTRW, and ATTM and from 1.1 to
2 for LW, with an increment of 0.1 from dark blue to dark red. The thick colored curve in each plot indicates the multifractal spectrum for the
original series, and the thin gray curves in each plot indicate the multifractal spectrum for a sample of five corresponding IAAFT surrogates.
The axes have been stretched to match the minimum and maximum values of (α(q), f (q)). In some cases, the gray lines representing the
IAAFT surrogates may be hardly discernible because the spectrum associated with these surrogates is significantly smaller than the spectrum
of the original series. (b) The percentage of simulated trajectories with the wider-than-surrogates spectrum, i.e., tMF > 1.96. (c) Multifractal
nonlinearity tMF for processes with the wider-than-surrogates spectrum.
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initially fleeting and then increasing tMF values with an in-
crease in α [Figs. 7(b) and 7(c)].

SBM shows highly asymmetric multifractal spectra, with
the completely missing right half of the spectrum and with the
spectra becoming more asymmetric with an increase in α and
resembling the spectra for FBM at α = 1—the case in which
SBM is reduced to awGn [Fig. 7(a)]. This asymmetry reflects
the putative effects of large q moments, which exacerbate the
effects of smaller fluctuations in estimating the multifractal
spectrum. The difference between the original spectrum and
those of the corresponding IAAFT surrogates is more promi-
nent for smaller values of α, a trend which was confirmed by
the reduction in tMF values with an increase in α [Fig. 7(c)].

nCTRW shows asymmetric multifractal spectra throughout
but a more leftward skewed spectrum for α → 1 [Fig. 7(a)].
Again, this asymmetry reflects the putative effects of small q
moments, which exacerbate the effects of larger fluctuations in
estimating the multifractal spectrum. However, despite these
fluctuations in the asymmetry of the multifractal spectrum,
the difference between the original spectrum and those of the
corresponding IAAFT surrogates increase sharply with α, a
trend confirmed by the increase in the percentage of nCTRW
trajectories with the wider-than-surrogate spectrum and an in-
crease in tMF values with an increase in α [Figs. 7(b) and 7(c)].

ATTM shows highly asymmetric and distorted multifractal
spectra, but the skew direction does not depend on α in a prin-
cipled way [Fig. 7(a)]. Nonetheless, the difference between
the original spectrum and those of the corresponding IAAFT
surrogates increased sharply with α. While the percentage
of ATTM trajectories with the wider-than-surrogate spectrum
increase with α [Fig. 7(b)], tMF values show only marginal
increase with α [Fig. 7(c)].

LW shows highly asymmetric multifractal spectra, almost
with the missing left half of the spectrum when α → 1
[Fig. 7(a)]. This asymmetry reflects the putative effects of
small q moments, which exacerbate the effects of larger fluc-
tuations in estimating the multifractal spectrum. The spectra
of the original trajectories and the corresponding IAAFT
surrogates also do not differ in a principled manner. This
ambiguity is evident in the low percentage of LW trajec-
tories with wider-than-surrogate spectrum [<50 out of 100;
Fig. 7(b)] and comparable tMF values across all α [Fig. 7(c)].

In short, the five anomalous diffusion processes all show
multifractal evidence of nonlinearities, albeit minor differ-
ences in the percentage of trajectories showing multifractal
evidence and the strength of evidence. Notably, the shape of
the multifractal spectrum reflected the respective generative
mechanism—e.g., symmetric spectra for FBM, left-slewed
spectra for SBM, and right-skewed spectra for LW, reflecting
that smaller and larger fluctuations, respectively, character-
ize these two processes. While more detailed interpretations
warrant further investigations, it is evident that multifractal
analysis can diagnose certain differences among these anoma-
lous diffusion processes.

IV. DISCUSSION

This work explores preliminary steps towards a uni-
fied framework grounded in the multifractal formalism
[121,142,148] for restoring ergodicity to a description of

anomalous diffusion processes [149–151]. We used synthetic
data representing various anomalous diffusion processes for a
wide range of anomalous exponent α, both ergodic and noner-
godic, approximated by five disparate mathematical models:
FBM, ergodic; SBM, weakly nonergodic; CTRW, weakly
nonergodic; ATTM, weakly nonergodic; and LW, ultraweakly
nonergodic. We show that TA-MSD and MSD-related lin-
ear descriptors such as SD, CV , and RMS break ergodicity.
In contrast, time series of descriptors addressing sequential
structure and its potential nonlinearity: multifractality, and,
to some extent, fractality, change in a time-independent way
and are ergodic descriptors insensitive to the weak ergodicity
breaking of the process. Thus, these descriptors return the
same information for any diffusion process and the anoma-
lous exponent α. Further analysis revealed that these findings
directly followed the multiplicative cascades underlying these
diffusion processes, as the shape and symmetry of the mul-
tifractal spectrum—and those of the corresponding surrogate
series—differentiated these processes. Thus, the statistical de-
scriptors analyzed here provide very different, complementary
information to other statistical descriptors. Two particular
points bear emphasis here. First, because multifractal de-
scriptors of anomalous diffusion remain ergodic, they can be
submitted to linear causal modeling. Second, this capacity to
describe nonergodic anomalous diffusion processes in ergodic
terms offers the possibility that multifractal modeling could
unify these processes into a common framework.

Multifractal formalisms can serve as the desired analyt-
ical framework for linear causal modeling of anomalous
diffusion processes. Whereas TA-MSD and TA-MSD-related
linear descriptors like SD, CV , and RMS that are typi-
cally submitted to linear causal models [152–154] break
ergodicity [105,107,108]. In contrast, multifractal descrip-
tors remain ergodic and hence, offer a reliable and stable
set of causal predictors [116,118,122,131,132,134,137,155–
159]. Although MSD remains prevalent in measuring active
matter, our present results resonate with a growing interest in
multifractal modeling in many of these active-matter fields,
e.g., biomolecules moving within cells [160–163], animals
foraging in the wild [164–167], and the emergence of collec-
tive dynamics such as swarming and milling [132,168,169],
have begun to embrace multifractal formalisms. We hope that
the current findings might emphasize the importance of these
approaches.

The ergodicity of multifractal descriptors allows the
possibility that cascade dynamics constitute a statistically
testable causal framework that may explain these disparate
anomalous-diffusion regimes. The findings underscore that
multifractal structure is not merely an abstract side effect,
nor is it a nuisance to collapse into the noise terms to avoid
cluttering the lower-dimensional aspects of our generative
models [170,171]. The accumulating evidence of multifrac-
tal structure and its relevance for describing and predicting
structural change has implicated a causal role in cascading
dynamics [89,118,172]. Indeed, the high-dimensional aspect
of cascade dynamics sometimes raises new and unfamil-
iar questions about the relationship between causality and
low-dimensional determinism. Indeed, we may feel most con-
fident explaining when we have reduced our model systems
to a minimal set of control parameters. That confidence
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may lead us to take for granted that the low-dimensional
constraint needed for deterministic modeling is required to
model and explain causal relationships. Our commitment to
low-dimensional causation is so strong that scholars will
even reason that low-dimensionality and so determinism is
a matter of observer’s knowledge: e.g., the suggestion that,
if only we knew how the system works, then we might no
doubt see that causation is low-dimensional after all [173].
However, the mutually fostering growth of multifractal esti-
mation and cascade-dynamical modeling has strengthened the
possibility that causation may not need low dimensionality.
Philosophical, logical, and empirical approaches have all be-
gun to point to growing comfort and fluency with the concepts
of stochastic causation [172,174–177], and even stochastic-
deterministic blends that reflect the cascade-like dynamics
across multiple scales [178].

The observed variety of multifractal spectrum across the
five simulated anomalous diffusion processes suggests that
multifractal formalisms could also aid in time-series charac-
terization and clustering. The generation rate of time series
is exponentially increasing in all areas of physical and life
sciences, and the production of ad hoc analytical tools ac-
companies this growth [179–181]. Many of these attempts use
Bayesian [71–75] and ML approaches [50,76–80], and even
unsupervised [81–86] to detect specific anomalous diffusion
processes and the underlying mathematical model, especially
deviation from pure Brownian behavior in terms of the anoma-
lous exponent. However, these attempts still lack the accuracy,
sensitivity, and specificity necessary, say, for understanding
how diffusion properties change over time due to environ-
mental heterogeneity (e.g., patches with different viscosity on
a cellular membrane), time-varying properties of the observ-
able (e.g., different activation states of a molecular motor).
This limitation may reflect that these attempts typically rely
on manual or automatic extraction of features that may not
have to do with plausible generating mechanisms [87,88].
Including multifractal descriptors with MSD-related linear
descriptors might improve the ML-powered characterization
and clustering of anomalous diffusion processes.

Interdependent fluctuations can cause interactions across
various spatiotemporal scales, altering the context for sub-
sequent fluctuations. Cascade instabilities, e.g., can produce
turbulent structures, complex flows in which once-parallel
currents collapse or explode into a dizzying, possibly limit-
less variety of vortices and eddies, with intermittent swelling
and ebbing throughout space and time [89,93,182]. Indeed,
anomalous diffusion and Lévy walks distinguish active from
inertial turbulence [19]. Our results indicate that the vari-
ous diffusion coefficients are interconnected with the specific
geometries of fluctuations constituting the measured series.
The connection between multifractality and various models
of anomalous diffusion is also being noticed both theoreti-
cally [54,183–186] and empirically [166,167,172,187–190].
Multifractal formalisms and anomalous-diffusion processes
thus appear to be entwined in a vibrant, expanding, far-
reaching, and synergistic relationship originating from the
out-of-equilibrium character, lack of detailed balance, and of
time-reversal symmetry, multiscale nature, nonlinearity and
multibody interactions that typify living and evolving sys-
tems [191]. Future investigations could further explore the

relationship between the various features of the multifractal
spectrum and anomalous diffusion.
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APPENDIX A: THEORETICAL MODELS

1. Fractional Brownian motion

In fractional Brownian motion (FBM), x(t ) is a Gaussian
process with stationary increments; it is symmetric, 〈x(t )〉 =
0, and importantly its EA-MSD scales as 〈x(t )〉 = 2KHt2H ,
where H is the Hurst exponent and is related to the anomalous
exponent α as H = α/2 [53,192]. The two-time correlation
for FBM is 〈x(t1)x(t2)〉 = KH (t2H

1 + t2H
2 − |t1 − t2|2H ). FBM

can also be defined as a process that arises from a generalized
Langevin equation with nonwhite noise (or fractional Gaus-
sian noise, f Gn). The f Gn has a standard normal distribution
with zero mean and power-law correlations:

〈ξ f Gn(t1)ξ f Gn(t2)〉 = 2KH H (2H − 1)|t1 − t2|2H−2

+ 4KH H |t1 − t2|2H−1δ(t1 − t2). (A1)

The FBM features two regimes: one in which the noise
is positively correlated (1/2 < H < 1, i.e., 1 < α < 2, su-
perdiffusive) and the other in which the noise is negatively
correlated (0 < H < 2, i.e., 0 < α < 1, subdiffusive). For
H = 1/2 (α = 1), the noise is uncorrelated. Hence the FBM
converges to Brownian motion.

Various numerical approaches have been proposed to solve
the FBM generalized Langevin equation. We use the method
described by Bardet et al. [193] via the MATLAB function
wfbm(). Details about the numerical implementations can be
found in the associated reference.

2. Scaled Brownian motion

The scaled Brownian motion (SBM) is a process described
by the Langevin equation with a time-dependent diffusivity

dx(t )

dt
=

√
2Ktξ (t ), (A2)

where ξ = 1 is white Gaussian noise [194]. In the case when
K (t ) has a power-law dependence on t such that K (t ) =
αKαtα−1, EA-MSD follows 〈x2(t )〉N = Kαtα with K (t ) =
�(1 + α)Kα . The numerical implementation of SBM is pre-
sented in Algorithm 1.

Algorithm 1: Generate SBM trajectory

Input:
length of the trajectory T
anomalous exponent α

Define:
erfcinv(�a) → Inverse complementary error function of
�a
U(L) → returns L uniform random numbers ∈ [0, 1]

Calculate:
��x ← (1α, 2α, . . . , T α ) − (0α, 1α, . . . , (T − 1)α )
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��x ← 2
√

(2)UL ��x
�x ← cumsum ( ��x)

Return:�x

3. Noisy continuous time random walk

The continuous time random walk (CTRW) is a family of
random walks with arbitrary displacement density for which
the waiting time, i.e., the time between subsequent steps,
is a stochastic variable [57]. We considered a specific case
of CTRW with waiting times following a power-law distri-
bution ψ (t ) = t−σ and displacements following a Gaussian
distribution with variance D and zero means. In such case,
the anomalous exponent is α = σ − 1 [EA-MSD = 〈x(t )2〉 ∝
tα]. To obtain noisy CTRW (nCTRW) [56], white Gaussian
noise with zero mean and standard deviation equal to the
standard deviation of the corresponding CTRW fluctuation
series was added to each CTRW series. Since the waiting
times follow a power-law distribution, for σ = 2, EA-MSD
features Brownian motion with logarithmic corrections [67].

The numerical implementation of CTRW is presented in
Algorithm 2. Notice that the variable τ represents the total
time at ith iteration. The output vector �x corresponds to the
position of the particle at the irregular times given by �t .

Algorithm 2: Generate CTRW trajectory

Input:
length of the trajectory T
anomalous exponent α

diffusion coefficient D
Define:

�x → empty vector
�t → empty vector
N (μ, S) → Gaussian random number generator with

mean μ and standard deviation si = 0; τ = 0
While τ < T do

ti sample randomly from ψ (t ) ∼ t−σ

xi ← xi−1 + N (0,
√

D)
τ ← τ + ti
i ← i + 1

end while
Return:�x,�t

4. Annealed transient time motion

The annealed transient time motion (ATTM) implements
the motion of a Brownian particle with time-dependent dif-
fusivity [58]. The observable performs Brownian motion for
a random time t1 with a random diffusion coefficient D1,
then for t2 with D2, and so on. The diffusion coefficients
follow a distribution such that P(D) = Dσ−1 with σ > 0 as
D → 0, and that decays rapidly for large D. If the random
times t are sampled from a distribution with expected value
E [t |D] = D−γ , with σ < γ < σ + 1, the anomalous expo-
nent is α = σ/γ . Here, we consider that the distribution is a δ

function, Pt (t |D) = δ(1 − D−γ ). Hence, the time ti in which
the observable performs Brownian motion with a random
diffusion coefficient Di is ti = D−γ

i , with Di extracted from
the distribution described above.

The numerical implementation of ATTM is presented in
Algorithm 3. In contrast to nCTRW and LW, the only output
is �x because the trajectory is produced at regular intervals.

Algorithm 3: Generate ATTM trajectory

Input:
length of the trajectory T
anomalous exponent α

sampling time �t
Define:

While σ > γ and γ > σ + 1 do
σ ← uniform random number ∈ (0, 3]
γ = σ/α

end while
BM(D, t,�t) → generates a Brownian motion trajectory

of length t with diffusion coefficient D, sampled at time inter-
vals �t

While τ < T do
Di ← sample randomly from P(D)Dσ−1

ti ← D−γ
i

number of steps Ni = round (ti/�t )
x1, . . . , xi+Ni ← BM(D, t,�t)
i ← i + Ni + 1
τ = τ + Ni�t

end while
Return: �x

5. Lévy walk

The Lévy walk (LW) is a particular superdiffusive CTRW.
Like subdiffusive CTRW, the flight time, i.e., the time between
steps, for LW is irregular [59], but, in contrast to subdiffusive
CTRW, the distribution of displacements for LW is not Gaus-
sian. We considered the case in which the flight times follows
the distribution ψ (t ) = t−σ−1. At each step, the displacement
is �x, and the step length is |�x|. The displacements are
correlated with the flight times such that the probability of
moving a step �x at time t and stopping at the new position
to wait for a new random event to happen is ψ (�x, t ) =
1
2δ(|�x| − vt )ψ (t ), where v is the velocity. The anomalous
exponent is given by

EB(x(t )) =
{

2 if 0 < σ < 1

3 − σ if 1 < σ < 2.
(A3)

The numerical implementation of LW is presented in Algo-
rithm 4. Notice that we use a random number r, which can take
values 0 or 1, to decide in which sense the step is performed.
The output vectors �x represent irregularly sampled positions
and times.

Algorithm 4: Generate LW trajectory

Input:
length of the trajectory T
anomalous exponent α

Define:
�x → empty vector
�t → empty vector
v → random number ∈ (0, 10]
i = 0
While τ < T do
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(a)

(b)

FIG. 8. Ergodicity breaking in SD. (a) Representative SD series (SD calculated across the 100 nonoverlapping 500-sample segments) for
the five anomalous diffusion processes—FBM, SBM, nCTRW, ATTM, and LW. The anomalous exponent α ranges from 0.1 to 1 for FBM,
SBM, nCTRW, and ATTM and from 1.1 to 2 for LW, with an increment of 0.1 from dark blue to dark red. Gray trajectories indicate SD series
for the corresponding shuffled versions. (b) EB(SD(s)) for the five processes and different values of α (N = 100; lag is � = 1 segment). Gray
curves indicate mean EB(SD(s)) for the corresponding shuffled versions.

ti ← sample randomly from ψ (t ) ∼ t−σ−1

xi(−1)rvti, where random r is 0 or 1 with equal
probability.

τ ← τ + ti
i ← i + 1

end while
Return: �x, �t

APPENDIX B: MSD-RELATED LINEAR DESCRIPTORS
SUCH AS SD, CV , AND RMS REFLECT

ERGODICITY-RELATED DIFFERENCES AMONG
DIFFERENT ANOMALOUS DIFFUSION PROCESSES

SD for FBM for all values of the anomalous exponent α

and SBM for α = 1—the case in which SBM is reduced to
awGn—return and converge towards the mean, suggestive
of ergodicity [Fig. 8(a)]. In contrast, SD for SBM, nCTRW,
ATTW, and LW diverge and never return towards the
mean, suggesting ergodicity breaking in the SD series for
these processes. The ergodicity-breaking parameter, i.e.,
EB(SD(s)) confirmed these trends. EB → 0 as s → ∞
for FBM for all values of α and SBM for α = 1—the
case in which SBM is reduced to awGn [Fig. 8(b)]. EB
shows no decay with s for SBM, a much slower decay
with s for nCTRW, and a quick decay but to a much larger
value for ATTM and LW, especially for larger values of
α (i.e., α → 1), confirming ergodicity breaking in SD for

these processes. Overall, the SD series for FBM, SBM,
nCTRW, ATTM, and LW show highly variable initial
rates of decay in EB: EB(SD(s)) = −1.32 �

s to − 0.84 �
s ,

−1.24 �
s to 0.49�

s , −1.33�
s to − 0.23�

s , −1.70 �
s to −

0.30 �
s , and −1.12 �

s to − 1.04 �
s , respectively, where � = 1

(Table IV). In other words, the SD series for the five processes
show highly variable decay rates in EB.

Except for some minor differences, the ergodicity-breaking
behavior of CV resembles that of SD. CV for FBM return and

TABLE IV. The slopes of EB(SD(s)) for the five anomalous
diffusion processes and different values of α in terms of �

s .

αa FBM SBM cCTRW ATTM LW

0.1 (1.1) −1.21 −0.62 −1.49 −1.83 −1.08
0.2 (1.2) −1.26 −0.081 −1.33 −1.29 −1.04
0.3 (1.3) −1.32 0.27 −1.26 −1.48 −1.04
0.4 (1.4) −1.32 0.49 −1.12 −1.58 −1.08
0.5 (1.5) −1.25 0.28 −0.90 −1.70 −1.04
0.6 (1.6) −1.23 0.11 −0.72 −0.99 −1.09
0.7 (1.7) −1.32 0.03 −0.50 −0.65 −1.08
0.8 (1.8) −1.10 0.02 −0.25 −0.39 −1.10
0.9 (1.9) −1.00 0.14 −0.23 −0.16 −1.12
1 (2) −0.84 −1.24 −0.28 −0.30 −1.09

aThe anomalous exponent α ranges from 0.1 to 1 for FBM, SBM,
nCTRW, and ATTM and from 1.1 to 2 for LW (in parentheses).
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(a)

(b)

FIG. 9. Ergodicity breaking in CV . (a) Representative CV series (CV calculated across the 100 nonoverlapping 500-sample segments) for
the five anomalous diffusion processes—FBM, SBM, nCTRW, ATTM, and LW. The anomalous exponent α ranges from 0.1 to 1 for FBM,
SBM, nCTRW, and ATTM and from 1.1 to 2 for LW, with an increment of 0.1 from dark blue to dark red. Gray trajectories indicate CV series
for the corresponding shuffled versions. (b) EB(CV (s)) for the five processes and different values of α (N = 100; lag is � = 1 segment). Gray
curves indicate mean EB(CV (s)) for the corresponding shuffled versions.

converge towards the mean for all values of the anomalous
exponent α and SBM for α = 1—the case in which SBM is
reduced to awGn—return and converges towards the mean,
suggestive of ergodicity [Fig. 9(a)]. In contrast, CV for SBM,
nCTRW, ATTW, and LW diverge and never return towards
the mean, suggesting ergodicity breaking in the CV series for
these processes. EB(CV (s)) confirmed these trends. EB → 0
as s → ∞ for FBM for the most part but show marginal
ergodicity breaking for larger values of α [Fig. 9(b)]. CV
series for SBM behaved ergodically for α = 1—the case in

TABLE V. The slopes of EB(CV (s)) for the five anomalous
diffusion processes and different values of α in terms of �

s .

αa FBM SBM cCTRW ATTM LW

0.1 (1.1) −1.26 −1.62 −1.49 −1.51 −1.15
0.2 (1.2) −1.21 −1.33 −1.33 −1.36 −1.09
0.3 (1.3) −1.27 −1.12 −1.26 −1.30 −1.10
0.4 (1.4) −1.33 −1.02 −1.08 −1.19 −1.11
0.5 (1.5) −1.22 −1.13 −0.84 −1.18 −1.06
0.6 (1.6) −1.28 −1.35 −0.68 −1.13 −1.10
0.7 (1.7) −1.20 −1.29 −0.39 −1.09 −1.09
0.8 (1.8) −1.28 −1.33 −0.21 −1.20 −1.13
0.9 (1.9) −0.96 −1.23 −0.21 −1.14 −1.10
1 (2) −0.87 −1.24 −0.29 −1.13 −1.10

aThe anomalous exponent α ranges from 0.1 to 1 for FBM, SBM,
nCTRW, and ATTM and from 1.1 to 2 for LW (in parentheses).

which SBM is reduced to awGn, but CV series for SBM
for other values of α showed strong ergodicity breaking. CV
series for nCTRW break ergodicity, with stronger ergodicity
breaking for larger α. CV series for ATTM and LW also show
marginal ergodicity breaking, wherein EB quickly decayed
with s but did not reach 1. Overall, the CV series for FBM,
SBM, nCTRW, ATTM, and LW show highly variable ini-
tial rates of decay in EB: EB(CV (s)) = −1.33�

s to − 0.87�
s ,

−1.35�
s to − 1.02 �

s , −1.33�
s to − 0.29�

s , −1.36�
s to −

1.09�
s , and −1.11�

s to − 1.06�
s , respectively, where � = 1

TABLE VI. The slopes of EB(RMS(s)) for the five anomalous
diffusion processes and different values of α in terms of �

s .

αa FBM SBM cCTRW ATTM LW

0.1 (1.1) −1.26 0.05 −1.49 −1.84 −1.08
0.2 (1.2) −1.23 0.50 −1.33 −1.29 −1.04
0.3 (1.3) −1.29 0.53 −1.26 −1.49 −1.04
0.4 (1.4) −1.30 0.29 −1.12 −1.58 −1.08
0.5 (1.5) −1.25 0.13 −0.91 −1.70 −1.04
0.6 (1.6) −1.36 0.05 −0.74 −0.97 −1.09
0.7 (1.7) −1.28 0.02 −0.54 −0.65 −1.08
0.8 (1.8) −1.04 0.01 −0.27 −0.38 −1.10
0.9 (1.9) −0.86 0.17 −0.25 −0.18 −1.12
1 (2) −0.64 −1.28 −0.30 −0.32 −1.09

aThe anomalous exponent α ranges from 0.1 to 1 for FBM, SBM,
nCTRW, and ATTM and from 1.1 to 2 for LW (in parentheses).
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(a)

(b)

FIG. 10. Ergodicity breaking in RMS. (a) Representative RMS series (RMS calculated across the 100 nonoverlapping 500-sample
segments) for the five anomalous diffusion processes—FBM, SBM, nCTRW, ATTM, and LW. The anomalous exponent α ranges from 0.1 to 1
for FBM, SBM, nCTRW, and ATTM and from 1.1 to 2 for LW, with an increment of 0.1 from dark blue to dark red. Gray trajectories indicate
RMS series for the corresponding shuffled versions. (b) EB(RMS(s)) for the five processes and different values of α (N = 100; lag is � = 1
segment). Gray curves indicate mean EB(RMS(s)) for the corresponding shuffled versions.

(Table V). In other words, the CV series for the five processes
show highly variable decay rates in EB.

RMS series behaved exactly as SD series for all five
processes. RMS for FBM for all values of the anomalous
exponent α and SBM for α = 1—the case in which SBM
is reduced to awGn—return and converge towards the
mean, suggestive of ergodicity [Fig. 10(a)]. In contrast,
RMS for SBM, nCTRW, ATTW, and LW diverge and never
return towards the mean, suggesting ergodicity breaking
in the RMS series for these processes. EB(RMS(s))
confirmed these trends. EB → 0 as s → ∞ for FBM for
all values of α and SBM for α = 1—the case in which

SBM is reduced to awGn [Fig. 10(b)]. EB shows no
decay with s for SBM, a much slower decay with s for
nCTRW, and a quick decay but to a much larger value
for ATTM and LW, especially for larger values of α (i.e.,
α → 1), confirming ergodicity breaking in RMS for these
processes. Overall, the RMS series for FBM, SBM, nCTRW,
ATTM, and LW show highly variable initial rates of decay
in EB(RMS(s)): EB(RMS(s)) = −1.36�

s to − 0.64 �
s ,

−1.28�
s to 0.53�

s , −0.25�
s to − 1.49�

s , −1.84 �
s to −

0.18�
s , and −1.12 �

s to − 1.04 �
s , respectively, where � = 1

(Table VI). In other words, the RMS series for the five
processes show highly variable decay rates in EB.
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lous diffusion with deep residual networks, Entropy 23, 649
(2021).

[83] A. Gentili and G. Volpe, Characterization of anoma-
lous diffusion classical statistics powered by deep learn-
ing (condor), J. Phys. A: Math. Theor. 54, 314003
(2021).

[84] P. Kowalek, H. Loch-Olszewska, Ł. Łaszczuk, J. Opała, and J.
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choice on machine learning classification of fractional anoma-
lous diffusion, Entropy 22, 1436 (2020).

[89] B. B. Mandelbrot, Intermittent turbulence in self-similar cas-
cades: Divergence of high moments and dimension of the
carrier, J. Fluid Mech. 62, 331 (1974).

[90] D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya, and D.
Marsan, Multifractal cascade dynamics and turbulent intermit-
tency, Fractals 05, 427 (1997).

[91] N. Gal and D. Weihs, Experimental evidence of strong anoma-
lous diffusion in living cells, Phys. Rev. E 81, 020903(R)
(2010).

[92] A. Rebenshtok and E. Barkai, Distribution of Time-Averaged
Observables for Weak Ergodicity Breaking, Phys. Rev. Lett.
99, 210601 (2007).

[93] M. F. Shlesinger, B. J. West, and J. Klafter, Lévy Dynamics
of Enhanced Diffusion: Application to Turbulence, Phys. Rev.
Lett. 58, 1100 (1987).

[94] D. Ernst, J. Köhler, and M. Weiss, Probing the type of anoma-
lous diffusion with single-particle tracking, Phys. Chem.
Chem. Phys. 16, 7686 (2014).

[95] Y. He, S. Burov, R. Metzler, and E. Barkai, Random Time-
Scale Invariant Diffusion and Transport Coefficients, Phys.
Rev. Lett. 101, 058101 (2008).

[96] E. Kepten, A. Weron, G. Sikora, K. Burnecki, and Y. Garini,
Guidelines for the fitting of anomalous diffusion mean square
displacement graphs from single particle tracking experi-
ments, PLoS One 10, e0117722 (2015).

[97] D. Krapf, N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C.
Selhuber-Unkel, A. Squarcini, L. Stadler, M. Weiss, and X.
Xu, Spectral Content of a Single Non-Brownian Trajectory,
Phys. Rev. X 9, 011019 (2019).

[98] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Frac-
tional Brownian Motion Versus the Continuous-Time Random
Walk: A Simple Test for Subdiffusive Dynamics, Phys. Rev.
Lett. 103, 180602 (2009).

[99] S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of
Statistical Radiophysics: Wave Propagation Through Random
Media (Springer, Berlin, 1989), Vol. 4.
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