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The stochastic motion of a particle with long-range correlated increments (the moving phase) which is
intermittently interrupted by immobilizations (the trapping phase) in a disordered medium is considered in
the presence of an external drift. In particular, we consider trapping events whose times follow a scale-free
distribution with diverging mean trapping time. We construct this process in terms of fractional Brownian motion
with constant forcing in which the trapping effect is introduced by the subordination technique, connecting
“operational time” with observable “real time.” We derive the statistical properties of this process such as
non-Gaussianity and nonergodicity, for both ensemble and single-trajectory (time) averages. We demonstrate
nice agreement with extensive simulations for the probability density function, skewness, kurtosis, as well as
ensemble and time-averaged mean-squared displacements. We place a specific emphasis on the comparisons
between the cases with and without drift.
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I. INTRODUCTION

Brownian motion (normal diffusion) is characterized by a
mean-squared displacement (MSD) of a tracer particle that
is a linear function of time [1–4]. Moreover, the probability
density function (PDF) of the displacements is Gaussian. The
emergence of such normal diffusion rests on the following
three conditions: (i) there exists a finite correlation time after
which individual displacements become independent, (ii) the
displacements are identically distributed, and (iii) the second
moment of the displacements is finite. In contradistinction,
anomalous diffusion, which may appear whenever one or sev-
eral of these conditions are violated, has been widely observed
in systems ranging from soft- and biomatter over condensed
matter, up to financial markets or geophysical systems [5–11].
In anomalous diffusion the MSD follows the power-law form

〈x2(t )〉 ∼ Kαtα, (1)

where the anomalous diffusion coefficient has physical di-
mension [Kα] = length2/timeα . Depending on the value of
the anomalous diffusion exponent we distinguish subdiffu-
sion for 0 < α < 1 from superdiffusion for α > 1 [5,6,11,12].
Examples for subdiffusion include the motion of submicron
tracers in the crowded environment of living biological cells
[13–15] or in polymer-crowded in vitro liquids [16,17], the
motion of potassium channels resident in the plasma mem-
branes of living cells [12,18]. For superdiffusion we mention
motor-driven transport of viruses [19], neuronal messenger
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ribonucleoprotein [20], endogenous cellular vesicles [21], or
magnetic endosomes [22].

As soon as one or more of the above three conditions for
normal diffusion are violated, the resulting stochastic process
is no longer universal in the sense that a given measured MSD
(1) may result from different processes [10–12,18]. The infer-
ence of such processes from data has received considerable
attention, approaches including the construction of decision
trees based on complementary statistical observables [23], dy-
namic scaling exponents [24,25], or p variations [26], as well
as “objective” methods such as Bayesian analysis [27–29] or
machine learning [30–36], inter alia.

Here we consider the case when two specific, fundamental
anomalous stochastic processes are combined in the pres-
ence of an external drift. These two processes are fractional
Brownian motion (FBM) and the subdiffusive continuous-
time random walk (CTRW). Going back to Kolmogorov [37]
and Mandelbrot and van Ness [38], FBM is a non-Markovian
process driven by zero-mean, stationary Gaussian noise with
long-range correlations. FBM can describe both sub- and su-
perdiffusion, depending on whether the noise is antipersistent
or persistent (see below). Examples for subdiffusive FBM-
type motion include tracer motion in complex liquids [16,17]
and in the cytoplasm of living cells [14,15], or lipid dynamics
in bilayer membranes [39]. Superdiffusive FBM was found for
the motion of higher animals [25] and of vacuoles in amoeboid
cells and the amoeba cells themselves [40], and it is used as a
model for densities of persistently growing brain fibers [41].

The CTRW model introduced by Montroll and Weiss [42]
is a generalization of a random walk in which the particle
waits for a random time τ between jumps. When the associ-
ated PDF of waiting times is scale-free, ψ (τ ) � τ−1−α with
0 < α < 1, such that the mean waiting time 〈τ 〉 diverges,
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FIG. 1. Sample trajectories of subordinated FBM x(t ) with drift (v = 1) and without drift (v = 0) for different values of the Hurst exponent
H (see the legends in the panels) of the parental FBM and waiting time index α = 0.8. Note the different spans of the vertical axes. The
elementary time step in the simulations was dt = 0.1.

subdiffusion of the form (1) emerges, where the anomalous
diffusion exponent is given by the scaling exponent of the
waiting time PDF. Examples for such CTRW subdiffusion
include the motion of charge carriers in amorphous semicon-
ductors [43,44], and (asymptotic) power-law forms for the
waiting times τ were identified, inter alia, for the motion
of potassium channels in live cell membranes [45], in glass-
forming liquids [46], for drug molecules diffusing in between
two silica slabs [47], and for tracer transport in geological
formations [48]. We note that transient subdiffusion may
also emerge in CTRWs or mobile-immobile models for jump
time or (im)mobilization time distributions with sufficiently
disparate characteristic timescales [49–51]. Asymptotically,
however, these processes are normal diffusive.

There exist a growing number of examples in which anal-
ysis of the recorded dynamics demonstrates the conspirative
action of more than a single anomalous diffusion process.
From a modeling point of view, therefore, compound pro-
cesses with more multifaceted statistical characteristics are
required. In particular, we here mention systems in which
CTRW and FBM act simultaneously. These include the mo-
tion of insulin granules in living MIN6 insulinoma cells [52],
of nicotinic acetylcholine membrane receptors [53], nano-
sized tracer objects in the cytoplasm [54], drug molecules
confined by silica slabs [47], and of voltage-gated sodium
channels on the surface of hippocampal neurons [55].

The combined stochastic process of long-range correlated
FBM and scale-free waiting time effects was recently stud-
ied in terms of a subordination concept in [55]. We here go

one step beyond and study this type of stochastic motion in
the presence of a constant external drift. Such a model is
relevant for soft- and biomatter systems, in which crowding
effects a viscoelastic feedback to the tracer particle of interest.
These viscoelastic effects are, e.g., observed in polymeric
(e.g., dextran) or wormlike micellar solutions [16,17,56], or
in the cellular cytoplasm [13–15]. Here, the particle can be
viewed as moving in a complex continuum liquid, captured
by the anticorrelations with which FBM is endowed. Classical
external forces can be applied to such tracers, e.g., by optical
tweezers [15,17], magnetic fields [22], or by the action of
molecular motors [21,22,57]. Our model will not be appli-
cable to environments with fixed spatial obstacles, that may
(partially) block transport [58,59].

We start our description with an FBM process, which is
then subordinated to a stable subordinator [60–67]. From a
mathematical point of view, subordinated FBM was studied
with the time changes invoked by different diffusion processes
[68–70]. Historically, the notion of subordination was in-
troduced by Bochner [61] and applied by Feller [62]. The
dynamics of the process of interest here thus involves three
elements, namely, long-range correlations, scale-free waiting
times, and an external drift. We here investigate analytically
and numerically the transport properties of this process.

The paper is organized as follows. In Sec. II, the Langevin
equation for subordinated FBM in the presence of a drift is
introduced. Section III provides the PDF and shows its non-
Gaussianity. We also obtain the ensemble-averaged MSD.
In Sec. IV the time-averaged MSD (TAMSD) is derived,
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FIG. 2. Simulations (dark circles) and analytical results (solid curves) from Eq. (6) for the PDF of subordinated FBM with drift v = 1 at
time t = 1000 for varying Hurst exponents H and stability indices α. The elementary time step in the simulations was dt = 0.1.

discussing the weakly nonergodic statistic along with the
amplitude scatter of the TAMSD. The results are discussed
in Sec. V. For the convenience of the reader, the results for
subordinated FBM without drift are briefly summarized in the
Appendix A.

II. SUBORDINATED FRACTIONAL BROWNIAN
MOTION WITH DRIFT

Subordinated FBM with drift, x(t ) ≡ x(s(t )), combines
both long trapping times and long-range correlations with a
drift. It satisfies the coupled stochastic equations

dx(s)

ds
= v +

√
2DζH (s),

dt (s)

ds
= ε(s) (2)

(see the discussions in [67,71]). Here x(s) is the particle
trajectory as function of “operational time” s, and v is the
constant external drift. Without loss of generality we set D =
0.5. Moreover, ζH (s) represents fractional Gaussian noise
with correlation function 〈ζH (t1)ζH (t2)〉 ∼ H (2H − 1)|t1 −
t2|2H−2, for t1 �= t2 [38]. Here, H with 0 < H < 1 is the Hurst
exponent. For free FBM, this effects the MSD (1) with α =
2H . The second equation then translates the operational time s
into the “real” process time t , where ε(s) represents one-sided
Lévy stable noise [72,73], which is the formal derivative of the
Lévy stable subordinator t (s) with stability index 0 < α < 1.
The Lévy stable subordinator is a nondecreasing Lévy process
with stationary and independent increments. The one-sided
Lévy stable distribution [74–76] is defined in terms of its
Laplace transform via L̂α (k) = exp(−kα ), which is strictly

increasing. The inverse subordinator s(t ) is defined as s(t ) =
inf{s > 0 : t (s) > t}, where s(t ) is called the hitting time or
first-passage time process [64], which can be considered as
the limit process of the continuous-time random walk with
a heavy tailed waiting time PDF. It tends to infinity when
t → ∞. We note that the distribution of s(t ) is also called
the Mittag-Leffler distribution based on the relationship be-
tween the moments and the Mittag-Leffler function [74]. The
subordinator s(t ) is responsible for the subdiffusive behavior
with long rests of the particle, while the parent process x(s)
introduces the correlated FBM with drift.

Figure 1 shows sample trajectories of subordinated FBM
with drift (v = 1) and without drift (v = 0) for two values
of the Hurst index (persisent, i.e., positively correlated FBM,
with H = 0.8 and antipersistent, negatively correlated FBM
with H = 0.2), and for α = 0.8. We use identical time series
of the fractional Gaussian noise and the subordinator for the
same parameters. The cases for α = 1, i.e., without long wait-
ing times, are shown in Fig. 9 in the Appendix. Even for the
relatively large waiting time exponent α = 0.8 the effects of
immobilization are clearly present.

III. PROBABILITY DENSITY FUNCTION, MOMENTS,
AND ENSEMBLE-AVERAGED MEAN-SQUARED

DISPLACEMENT

The PDF of the subordinated process is [77]

P(x, t ) =
∫ +∞

0
P0(x, s)h(s, t )ds, (3)

024143-3



YINGJIE LIANG, WEI WANG, AND RALF METZLER PHYSICAL REVIEW E 108, 024143 (2023)

FIG. 3. Simulations (circles) and theoretical results (solid curves) based on Eqs. (14) and (15) of the kurtosis for the subordinated FBM
with drift (v = 1) and without drift (v = 0) for varying values of Hurst exponent H and stability index α with increasing time. The elementary
time step in the simulations was dt = 0.1.

where P0(x, s) and h(s, t ) denote the PDFs of the parental
process x(s) and of the inverse stable subordinator s(t ), re-
spectively. Specifically, the PDF of the original process x(s) is

P0(x, s) = 1√
2πs2H

exp

(
− (x − vs)2

2s2H

)
, (4)

and the PDF of the inverse stable subordinator s(t ) is [77]

h(s, t ) = t

αs1+1/α
Lα (t/s1/α ), (5)

in terms of the one-sided Lévy stable distribution Lα . Then
Eq. (3) can be rewritten as

P(x, t ) =
∫ ∞

0

1√
2πs2H

exp

(
− (x − vs)2

2s2H

)

× t

αs1+1/α
Lα

(
t

s1/α

)
ds. (6)

The moments 〈xn(t )〉 of x(t ) are [75]

〈xn(t )〉 =
∫ ∞

0
〈xn(s)〉h(s, t )ds, (7)

where 〈xn(s)〉 represent the moments of the parental FBM
process with drift. The first moment, μ, is then

μ = 〈x(t )〉 =
∫ ∞

0
vsh(s, t )ds = v

�(1 + α)
tα. (8)

The second moment 〈x2(t )〉 reads

〈x2(t )〉 =
∫ ∞

0
(s2H + v2s2)h(s, t )dτ

= �(1 + 2H )

�(1 + 2Hα)
t2Hα + 2v2

�(1 + 2α)
t2α, (9)

in which at long times asymptotically the drift term will be
dominant (H < 1). The MSD (or variance) corresponds to the
second central moment

σ 2 = 〈
x2(t )〉 = �(1 + 2H )

�(1 + 2Hα)
t2Hα

+
(

2

�(1 + 2α)
− 1

�(1 + α)2

)
v2t2α, (10)

where σ is the standard derivation.
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FIG. 4. Simulated MSD (green circles), a number of individual TAMSDs (thin red curves), and the mean TAMSD (thick blue circles) for
subordinated FBM with drift v = 1 and different values of H and α. Theoretical results for the MSD (thick solid green curves) and mean
TAMSD (thick solid blue curves) as given in Eqs. (9) and (21), respectively, show good agreement. Parameters: length of the trajectories
T = 1000, elementary time step dt = 0.1, and number of trajectories n = 300.

The coefficient of variation c = σ/μ for this motion is given by

c =
[

�(1+2H )
�(1+2Hα) t

2Hα +
(

2
�(1+2α) − 1

�(1+α)2

)
v2t2α

]1/2

v
�(1+α) t

α
, (11)

and the skewness θ = 〈[(x − μ)/σ ]3〉 becomes

θ = 〈[x(t ) − μ]3〉
〈[x(t ) − μ]2〉3/2

, (12)

for which we need to obtain the third central moment and the third power of the standard variation,

〈[x(t ) − μ]3〉 =
(

3�(2 + 2H )v

�(1 + α + 2Hα)
− 3�(2 + 2H )v

(1 + 2H )�(1 + 2Hα)�(1 + α)

)
t2Hα+2α

+
(

6v3

�(1 + 3α)
− 6v3

�(1 + 2α)�(1 + α)
+ 2v3

�(1 + α)3

)
t3α, (13)

and 〈[x(t ) − μ]2〉3/2 = (σ 2)3/2 can be calculated using Eq. (10). The skewness is 0, i.e., the PDF is symmetric when the drift
vanishes (v = 0).

The kurtosis κ = 〈[(x − μ)/σ ]4〉 = 〈[x(t ) − μ]4〉/〈[x(t ) − μ]2〉2 can be calculated based on the fourth central moment and
the fourth power of the standard deviation,

〈(x(t ) − μ)4〉 = 3�(1 + 4H )

�(1 + 4Hα)
t4Hα +

(
6�(3 + 2H )v2

�(1 + 2Hα + 2α)
− 12�(3 + 2H )v2

(2 + 2H )�(1 + 2Hα + α)�(1 + α)
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FIG. 5. Amplitude scatter PDF φ(ξ ) of TAMSDs for subordinated FBM with drift v = 1 and varying values of H and α. The symbols
(circle, square, and star) respectively denote simulations with the lag time 
 = 0.1, 1, and 10.

+ 6�(3 + 2H )v2

(1 + 2H )(2 + 2H )�(1 + 2Hα)�(1 + α)2

)
t2Hα+2α

+
(

24v4

�(1 + 4α)
− 24v4

�(1 + 3α)�(1 + α)
+ 12v4

�(1 + 2α)�(1 + α)2
− 3v4

�(1 + α)4

)
t4α (14)

and

〈[x(t ) − μ]2〉2 = �(1 + 2H )2

�(1 + 2Hα)2
t4Hα +

(
4�(1 + 2H )v2

�(1 + 2Hα)�(1 + 2α)
− 2�(1 + 2H )v2

�(1 + 2Hα)�(1 + α)2

)
t2Hα+2α

+
(

4v4

�(1 + 2α)2
− 4v4

�(1 + 2α)�(1 + α)2
+ v4

�(1 + α)4

)
t4α. (15)

When t → ∞ the kurtosis will be time and drift independent, and determined by the stability index,

κ =
24

�(1 + 4α)
− 24

�(1 + 3α)�(1 + α)
+ 12

�(1 + 2α)�(1 + α)2
− 3

�(1 + α)4

4

�(1 + 2α)2
− 4

�(1 + 2α)�(1 + α)2
+ 1

�(1 + α)4

. (16)

In Fig. 2 we show the results of our analytical calculations
and stochastic simulations of the PDF with drift v = 1 at time
t = 1000 for the Hurst exponents H = 0.2 and H = 0.8, and
stability indices α = 0.2 and α = 0.8. The analytical results
agree nicely with the simulations for all cases, apart from

deviations around the maxima for the case α = 0.8. The PDFs
are asymmetric as compared with the symmetric PDFs of
subordinated FBM without drift in Fig. 6 (see Appendix A).
All PDFs have distinct cusplike peaks for smaller α both in the
presence and in the absence of drift. The PDFs of subordinated
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FIG. 6. Simulations (dark circles) and analytical results (solid curves) from Eq. (6) for the PDF of subordinated FBM without drift (v = 0)
and for different H and α, for t = 1000.

FBM with α = 1 (i.e., the operational time has the same
mean behavior as the process time) are shown in Fig. 10 (see
Appendix A).

To check the non-Gaussianity of the PDF for subordinated
FBM with drift, we illustrate in Fig. 3 the kurtosis based
on Eqs. (14) and (15) with drift (v = 1) and without drift
(v = 0) from analytical calculations and simulations, as a
function of time. For different values of H and α the general
agreement is good. However, due to the fourth order of the
means entering the kurtosis, we did not manage to achieve a
higher numerical accuracy from our simulations. The results
for the kurtosis, whose value for a Gaussian in one dimension
is κ = 3, indicate that the PDFs are non-Gaussian, which is
in full agreement with the results given in Figs. 2 and 6 (see

Appendix A). We note specifically that for smaller values of α

or larger values of H , the values of the kurtosis exhibit values
that are much larger than the Gaussian value 3.

IV. TIME-AVERAGED MEAN-SQUARED DISPLACEMENT
AND ITS DISTRIBUTION

The TAMSD is defined as [10,12,18,78]

δ2(
) = 1

T − 


∫ T −


0
[x(t + 
) − x(t )]2dt, (17)

where T is the measurement time and 
 is called the lag time.
The mean TAMSD is based on the autocorrelation function
〈x(t1)x(t2)〉, which is given by

〈x(t1)x(t2)〉 =
∫ ∞

0

∫ ∞

0
〈x(s1)x(s2)〉h(s2, t2; s1, t1)ds1ds2

=
∫ ∞

0

∫ ∞

0

[
v2s1s2 + 1

2

(
s2H

1 + s2H
2 − |s2 − s1|2H

)]
h(s2, t2; s1, t1)ds1ds2

= v2〈s(t1)s(t2)〉 + 1

2
[〈s(t1)2H 〉 + 〈s(t2)2H 〉 − 〈|s(t2) − s(t1)|2H 〉]. (18)

As we argued in Sec. II, s(t ) is the hitting time, also called the number of steps up to time t . Therefore

〈[x(t2) − x(t1)]2〉 = 〈x2(t2)〉 + 〈x2(t1)〉 − 2〈x(t1)x(t2)〉 = v2〈[s(t2) − s(t1)]2〉 + 〈|s(t2) − s(t1)|2H 〉. (19)
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FIG. 7. Simulated MSD (green circles), individual TAMSDs (thin red curves), and mean TAMSD (thick blue circles) for subordinated
FBM without drift (v = 0) for different H and α. Theoretical results for the MSD (thick solid green curves) and mean TAMSD (thick solid
blue curves) are based on Eqs. (9) and (21), respectively. Parameters: trajectory length T = 1000, elementary time step dt = 0.1, and number
of trajectories n = 300.

Let t1 = t and t2 = t + 
; then the fractional moment of order ϑ of s(t2) − s(t1) is [55]

〈[s(t + 
) − s(t )]ϑ 〉 = �(1 + ϑ )

�(α)�(2 − α + αϑ )
2F1

(
1, 1 − α; 2 − α + αϑ ; −


t

)

1−α+αϑ

t1−α
, (20)

where 2F1 is the hypergeometric function. With the help of Eqs. (17) and (20) we obtain the mean TAMSD in the form

〈δ2(
)〉 = 1

T − 


∫ T −


0

[
2v2

�(α)�(2 + α)
2F1

(
1, 1 − α; 2 + α; −


t

)

1+α

t1−α

+ �(1 + 2H )

�(α)�(2 − α + 2Hα)
2F1

(
1, 1 − α; 2 − α + 2Hα; −


t

)

1−α+2Hα

t1−α

]
dt . (21)

In the limit 
 � t we have 2F1(1, 1 − α; 2 − α + αϑ ; 0) ∼ 1 [79], then Eq. (21) becomes

〈[x(t2) − x(t1)]2〉 ∼ 2

�(α)�(2 + α)

v2
1+α

t1−α
+ �(1 + 2H )

�(α)�(2 − α + 2Hα)


1−α+2Hα

t1−α
. (22)

Performing the temporal integration in Eq. (17) we get

〈δ2(
)〉 ∼ 2v2

α�(α)�(2 + α)


1+α

T 1−α
+ �(1 + 2H )

α�(α)�(2 − α + 2Hα)


1−α+2Hα

T 1−α
. (23)

In the limit 
 � t , we have 2F1(1, 1 − α; 2 − α + αϑ ; −

t ) ∼ ( t+


t )−(1−α) �(2−α+αϑ )�(α)
�(1+αϑ ) , and Eq. (21) becomes

〈[x(t2) − x(t1)]2〉 ∼ 2v2

�(1 + 2α)
[
2 + (α − 1)t
2α−1] + �(1 + 2H )

�(1 + 2Hα)
[
2Hα + (α − 1)t
2Hα−1]. (24)
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FIG. 8. Amplitude scatter PDF of TAMSDs for subordinated FBM without drift (v = 0) for different H and α. The symbols (circle, square,
and star) respectively denote simulations with lag time 
 = 0.1, 1, and 10.

Similarly from Eq. (17) we get

〈δ2(
)〉 ∼ 2v2

�(1 + 2α)

(

2 + (α − 1)(T − 
)
2α−1

2

)
+ �(1 + 2H )

�(1 + 2Hα)

(

2Hα + (α − 1)(T − 
)
2Hα−1

2

)
. (25)

We note that subordinated FBM with drift for the limit α = 1 is an ergodic stochastic process [80–82].

Figure 4 shows results from simulations of the MSD,
a number of individual TAMSDs, and the mean TAMSD
for subordinated FBM with drift v = 1 for different values
of H and α. In Fig. 4 the analytical results are in good
agreement with the simulations for the MSD and the mean
TAMSD. We also note that individual TAMSDs show a wide
spread, especially for smaller values of α, consistent with
the weakly nonergodic behavior of CTRW motion, due to
the associated diverging mean waiting time [10,12,18,78].
The values of the MSD and TAMSD grow faster with time
for subordinated FBM with drift as compared to the same
motion in the absence of drift, as shown in Fig. 7 (see
Appendix A). We mention in passing that, compared with
the weakly nonergodic behavior of the power-law subor-
dinated FBM considered here, rearranged (superstatistical)
FBM with a random diffusion coefficient mirrors features in
part from FBM and in part from CTRW, in the sense that
a single parameter in the statistical distribution of the diffu-
sion coefficient controls the ergodic-to-nonergodic transition
[83,84].

To quantify the relative amplitude spread of individual
TAMSDs, we use the dimensionless variable [10,12,78]

ξ (
) = δ2(
)

〈δ2(
)〉
. (26)

The values of ξ fluctuate around the mean value 〈ξ (
)〉 = 1.
The corresponding PDF φ(ξ ) can be expressed as modified
totally asymmetric Lévy stable density [10,78] or via the
Mittag-Leffler function [85]. The variance EB = 〈ξ 2〉 − 1 is
called the ergodicity breaking parameter [10,12,18,78].

Figure 5 illustrates the scatter PDF of the TAMSD for
the same parameters as in Fig. 4 for the three different lag
times 
 = 0.1, 1, and 10. The results show that the distri-
butions are not symmetric around the mean 〈ξ (
)〉 = 1, and
have a spike and long heavy tail for smaller values of α.
We also note that for smaller values of α the particles will
have longer average waiting times, and thus the probability
will be higher for trajectories without any displacement up
to T , ξ (
) = 0, which agrees well with the general observed
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FIG. 9. Sample trajectories of subordinated FBM with drift (v = 1) and without drift (v = 0) for the cases H = 0.8 and H = 0.2 with
α = 1.

trends in Fig. 4 (see also the discussions in [10,55,78]). The
simulations of the scatter PDF for subordinated FBM with-
out drift have similar statistical properties (see Fig. 8 in the
Appendix A).

V. DISCUSSION

We studied subordinated FBM in the presence of a con-
stant external drift, combining long-range correlated Gaussian
motion characterized by a Hurst exponent H and long-tailed,
scale-free PDFs of immobilization (waiting) times with scal-
ing exponent α. As expected, at long times the drift term
dominates the transport behavior, which we quantified in
terms of the ensemble- and time-averaged moments as well
as the PDF. Technically, we employ the subordination ap-
proach based on a stable subordinator. This transforms the
operational time of the parental FBM to the “process time”
of the combined motion in the presence of the immobilization
events. The resulting process, studied in [55] in the absence
of drift, thus combines two central properties of stochastic
motion observed in a wide range of experiments. Currently,
such observations predominantly come from single-particle
tracking in soft- and biomatter [54,86,87] or large-scale com-
puter simulations (see, e.g., [39,47]). Given the development
of experimental methods to record single-particle movement
in geophysical contexts [88,89], it will be interesting to

see whether similarly rich behaviors are unveiled in this
context.

In our analysis we highlighted the different scaling behav-
iors in the MSDs due to diffusion and drift, respectively. The
resulting PDF is non-Gaussian, and we showed how H and α

influence the shape parameters (skewness and kurtosis). We
also studied from simulations the amplitude scatter of indi-
vidual TAMSDs. In future work we will also consider aging
effects, for which explicit expressions for the ensemble-and
time-averaged moments will be obtained. Concrete experi-
mental applications of our model of power-law correlated
motion with scale-free waiting times in the presence of an ex-
ternal drift could be realized by tracers labeled with magnetic
nanoparticles in a tunable magnetic field [22]. Such labeling
could be achieved for granules or nanosized objects in living
cells, for which combinations of FBM and CTRW dynam-
ics were demonstrated [45,52–55], or for colloidal magnetic
particles in an actin mesh in vitro [31] that is placed in a
viscoelastic fluid. On more macroscopic scales similar dy-
namics could be used to provide a description of certain birds,
in the presence of wind fields, such as kites, for which both
persistent motion [25] and power-law waiting times [90] have
been observed.

Subordinated FBM as studied in [55] in the absence of
a drift and with a drift as investigated herein, complements
similar combined stochastic processes reported in literature.
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FIG. 10. Simulations (dark circles) and analytical results (solid curves) from Eq. (6) for the PDF of subordinated FBM with drift (v = 1)
and without drift (v = 0) for different H and for α = 1 at t = 1000.

We here mention the combination of CTRWs on fractal struc-
tures such as a Sierpiński gasket [91], the conspiracy of
FBM with scaled Brownian motion [92] in which the dif-
fusion coefficient is a power-law function of time [93,94],
the combination of FBM with a stochastically evolving (“dif-
fusing”) diffusivity [95,96], rearranged FBM including the
superstatistical FBM with a random diffusion coefficient
[83,84,97–100], multifractional FBM with a time-dependent
Hurst exponent [101–103], and FBM with a random Hurst
exponent [104–106]. Such processes will form the basis for
future extensions of data analyses based on statistical observ-
ables (such as those developed herein), Bayesian maximum-
likelihood approaches [27–29], or machine-learning strategies
[30–36].
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APPENDIX: SUPPLEMENTARY FIGURES

We here present additional Figs. 6–10 for subordinated
FBM with and without drift, complementing the behaviors
presented in the main text.
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Szwabiński, Boosting the performance of anomalous diffusion
classifiers with the proper choice of features, J. Phys. A 55,
244005 (2022).

[34] S. Bo, F. Schmidt, R. Eichhorn, and G. Volpe, Measurement
of anomalous diffusion using recurrent neural networks, Phys.
Rev. E 100, 010102(R) (2019).

[35] G. Muñoz-Gil, G. Volpe, M. A. Garcia-March, E. Aghion, A.
Argun, C. B. Hong, T. Bland, S. Bo, J. A. Conejero, N. Firbas,
Ó. Gariboi Orts, A. Gentili, Z. Huang, J.-H. Jeon, H. Kabbech,
Y. Kim, P. Kowalek, D. Krapf, H. Loch-Olszewska, M. A.
Lomholt et al., Objective comparison of methods to decode
anomalous diffusion, Nat. Commun. 12, 6253 (2021).

[36] H. Seckler and R. Metzler, Bayesian deep learning for error es-
timation in the analysis of anomalous diffusion, Nat. Commun.
13, 6717 (2022).

[37] A. N. Kolmogorov, The local structure of turbulence in an
incompressible fluid at very high Reynolds numbers, Dokl.
Acad. Nauk USSR 30, 299 (1940).

[38] B. B. Mandelbrot and J. W. van Ness, Fractional Brownian
motions, fractional noises and applications, SIAM Rev. 10,
422 (1968).

024143-12

https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/j.micromeso.2013.02.054
https://doi.org/10.1016/j.advwatres.2012.11.005
https://doi.org/10.1016/j.physa.2012.12.040
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/c2sm25701g
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.104.238102
https://doi.org/10.1103/PhysRevLett.106.048103
https://doi.org/10.1103/PhysRevLett.103.038102
https://doi.org/10.1088/1367-2630/15/4/045011
https://doi.org/10.1063/PT.3.4294
https://doi.org/10.1126/science.1064103
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1038/srep11690
https://doi.org/10.1371/journal.pone.0010046
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1088/1367-2630/abd43c
https://doi.org/10.1103/PhysRevResearch.4.033055
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevE.96.062106
https://doi.org/10.1039/C8CP04043E
https://doi.org/10.1039/C8SM02096E
https://doi.org/10.1088/1367-2630/ab6065
https://doi.org/10.1016/j.bpj.2019.06.015
https://doi.org/10.1103/PhysRevE.102.032402
https://doi.org/10.1088/1751-8121/ac6d2a
https://doi.org/10.1103/PhysRevE.100.010102
https://doi.org/10.1038/s41467-021-26320-w
https://doi.org/10.1038/s41467-022-34305-6
https://doi.org/10.1137/1010093


ANOMALOUS DIFFUSION, NON-GAUSSIANITY, AND … PHYSICAL REVIEW E 108, 024143 (2023)

[39] J. H. Jeon, H. Martinez-Seara Monne, M. Javanainen, and R.
Metzler, Anomalous Diffusion of Phospholipids and Choles-
terols in a Lipid Bilayer and its Origins, Phys. Rev. Lett. 109,
188103 (2012).

[40] D. Krapf, N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C.
Selhuber-Unkel, A. Squarcini, L. Stadler, M. Weiss, and X.
Xu, Spectral Content of a Single Non-Brownian Trajectory,
Phys. Rev. X 9, 011019 (2019).

[41] S. Janušonis, N. Detering, R. Metzler, and T. Vojta, Sero-
tonergic axons as fractional Brownian motion paths: Insights
into the self-organization of regional densities, Front. Comput.
Neurosci. 14, 56 (2020).

[42] E. W. Montroll and G. H. Weiss, Random walks on lattices. II,
J. Math. Phys. 6, 167 (1965).

[43] H. Scher and E. W. Montroll, Anomalous transit-time disper-
sion in amorphous solids, Phys. Rev. B 12, 2455 (1975).

[44] M. Schubert, E. Preis, J. C. Blakesley, P. Pingel, U. Scherf,
and D. Neher, Mobility relaxation and electron trapping
in a donor/acceptor copolymer, Phys. Rev. B 87, 024203
(2013).

[45] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Ergodic
and nonergodic processes coexist in the plasma membrane as
observed by single-molecule tracking, Proc. Natl. Acad. Sci.
USA 108, 6438 (2011).

[46] O. Rubner and A. Heuer, From elementary steps to structural
relaxation: A continuous-time random-walk analysis of a su-
percooled liquid, Phys. Rev. E 78, 011504 (2008).

[47] A. Díez Fernández, P. Charchar, A. G. Cherstvy, R. Metzler,
and M. W. Finnis, The diffusion of doxorubicin drug
molecules in silica nanochannels is non-Gaussian and inter-
mittent, Phys. Chem. Chem. Phys. 22, 27955 (2020).

[48] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Modeling
non-Fickian transport in geological formations as a continuous
time random walk, Rev. Geophys. 44, RG2003 (2006).

[49] S. Vitali, P. Paradisi, and G. Pagnini, Anomalous diffu-
sion originated by two Markovian hopping-trap mechanisms,
J. Phys. A: Math. Theor. 55, 224012 (2022).

[50] T. Doerries, A. V. Chechkin, and R. Metzler, Apparent anoma-
lous diffusion and non-Gaussian distributions in a simple
mobile-immobile transport model with Poissonian switching,
J. R. Soc. Interface 19, 20220233 (2022).

[51] T. J. Doerries, R. Metzler, and A. V. Chechkin, Emergent
anomalous transport and non-Gaussianity in a simple mobile-
immobile model: the role of advection, New J. Phys. 25,
063009 (2023).

[52] S. M. A. Tabei, S. Burov, H. Y. Kima, A. Kuznetsov, T. Huynh,
J. Jureller, L. H. Philipson, A. R. Dinner, and N. F. Scherer,
Intracellular transport of insulin granules is a subordinated
random walk, Proc. Natl. Acad. Sci. USA 110, 4911 (2013).

[53] A. Mosqueira, P. A. Camino, and F. J. Barrantes, Cholesterol
modulates acetylcholine receptor diffusion by tuning confine-
ment sojourns and nanocluster stability, Sci. Rep. 8, 11974
(2018).

[54] F. Etoc, E. Balloul, C. Vicario, D. Normanno, J. Piehler, M.
Dahan, and M. Coppey, Non-specific interactions govern cy-
tosolic diffusion of nanosized objects in mammalian cells, Nat.
Mater. 17, 740 (2018).

[55] Z. R. Fox, E. Barkai, and D. Krapf, Aging power spectrum
of membrane protein transport and other subordinated random
walks, Nat. Commun. 12, 6162 (2021).

[56] M. Weiss, Single-particle tracking data reveal anticorrelated
fractional Brownian motion in crowded fluids, Phys. Rev. E
88, 010101(R) (2013).

[57] I. Goychuk, V. O. Kharchenko, and R. Metzler, Molecular mo-
tors pulling cargos in the viscoelastic cytosol: power strokes
beat subdiffusion, Phys. Chem. Chem. Phys. 16, 16524 (2014).
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