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Nonergodicity of confined superdiffusive fractional Brownian motion
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Using stochastic simulations supported by analytics we determine the degree of nonergodicity of box-confined
fractional Brownian motion for both sub- and superdiffusive Hurst exponents H . At H > 1/2 the nonequivalence
of the ensemble- and time-averaged mean-squared displacements (TAMSDs) is found to be most pronounced
(with a giant spread of individual TAMSDs at H → 1), with two distinct short-lag-time TAMSD exponents.
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Introduction. Fractional Brownian motion (FBM) in free
space [1,2] is a non-Markovian nonaging stochastic process
with a Gaussian probability-density function (PDF) p(x, t )
of particle displacements x at time t . For one-dimensional
FBM, both the ensemble-averaged mean-squared displace-
ment (MSD) 〈x2(t )〉 = ∫ +∞

−∞ x2 p(x, t )dx and the mean over

N traces 〈δ2(�)〉 = N−1 ∑N
i=1 δ2

i (�) of the time-averaged

MSDs (TAMSDs) δ2
i (�) = 1

T −�

∫ T −�

0 [xi(t + �) − xi(t )]2dt
grow nonlinearly. Here, T is the total time and � is the
time lag. FBM at � � T is ergodic [3–6] in the sense of
Boltzmann-Birkhoff-Khinchin [7], i.e.

〈x2(�)〉 ≈ 〈δ2(�)〉 ≈ 2K2H�2H , (1)

where K2H is the generalized diffusion coefficient and H is
the Hurst exponent [8]. The overline denotes averaging over
time, and the angular brackets stand for ensemble averaging
[7]. FBM rationalizes, inter alia, subdiffusive motion of com-
ponents and tracers in biological cells [6,7,9].

Statistical properties of box-confined [10–19] or reset
[20,21] FBM are more intricate. Subdiffusive confined FBM
initially grows as [11] (1) and reaches H-dependent stationary
(st) plateaus at long [16] times (Fig. 1),

MSDst ≈ TAMSDst/2 ≈ [3H/(2 − H )] × L2/12. (2)

From the MSD and PDF perspective, FBM near a boundary
and confined in potentials [22] was studied. Superdiffusive
confined FBM was, however, not examined from a TAMSD
viewpoint: its behavior offers surprises (see below). We bridge
this gap here, also complementing the TAMSD results [10,11]
for confined FBM at H < 1/2.

Main equations. Free FBM is formulated via the over-
damped (high-viscosity limit) stochastic differential equa-
tion dx(t )/dt = ηH (t ) driven by external fractional Gaussian
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noise ηH (t ) with correlations

〈ηH (t1)ηH (t2)〉 ≈ 2K2H H (2H − 1) × |t1 − t2|2H−2. (3)

Brownian motion (BM) follows from FBM at H = 1/2,
superdiffusive FBM at 1/2 < H < 1 features positive corre-
lations, while subdiffusive FBM at 0 < H < 1/2 has negative
correlations [7]. Nonthermalized nonequilibrium FBM [2]
differs from conventional BM driven by a memoryless white
noise and satisfying the fluctuation-dissipation relation.

FBM in a box x ∈ [−L/2, L/2]—discretized at times t j =
j × dt with the time step dt = �1 = T/N̄ (N̄ is the number
of points)—obeys the recursive relation

x(t j+1) =
{

x(t j ) + dBH (t j ), |x(t j ) + dBH (t j )| � L/2
x(t j ), otherwise.

(4)

The increments dBH (tn) = ηH (tn)dt are Gaussian and
have zero mean 〈dBH 〉 = 0, second moment 〈dB2

H 〉 =
2K2H (dt )2H , and covariance function 〈dBH (tm)dBH (tm+ j )〉 =
2K2H (dt )2H (| j + 1|2H − 2| j|2H + | j − 1|2H ). Using the free-
FBM code [4,6], we simulate confined FBM with “inelastic”
reflections, (4) (Fig. 4). Other schemes [13] yield similar
results if the one-step-MSD satisfies L2

1 = 2K2H (dt )2H � L2.

Results. Due to persistence of consecutive jumps, superdif-
fusive FBM after a reflection (4) hits the boundary repeatedly.
The opposite is true for subdiffusive FBM (Fig. 4). Thus,
at H > 1/2 FBM particles accumulate and at H < 1/2 they
deplete near a boundary [12,14,16,23] (Fig. 5). This effect per-
sists for other reflection schemes and for massive FBM [5] in a
box (not shown). A power-law PDF quantifying these features
is [12,14], p1(x) ∝ |x − L/2|1/H−2. A stationary “symmetric”
PDF valid in the entire x interval (Fig. 5) is [24,25]

p2,st(x) ≈ CH L−1[(−x/L + 1/2)(x/L + 1/2)]1/H−2, (5)

where CH = �(1/H − 1/2)/[23−2/H√
π�(1/H − 1)] and

�(z) is the Gamma function. The PDF (5) yields the MSDst

(2) (Fig. 6), while MSDst = L2/4 at H → 1 (ballistic
motion). In contrast, the PDF of box-confined BM is uniform,
pst(x) = 1/L, yielding [16] MSDst = L2/12.
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FIG. 1. MSD, mean TAMSD, and sample realizations of the
TAMSDs of confined FBM for the (a) subdiffusive (H = 0.2) and
(b) superdiffusive (H = 0.9) case. The free-FBM MSDs (1) are the
dashed lines; the dot-dashed curve for 〈δ2(�)〉 is Eq. (7), with its
scaling behaviors indicated. The levels MSDst ≈ TAMSDst/2 and
the plateau δ2

min,st are shown in panels (a) and (b), respectively. At
the last point, MSD(T ) = 〈TAMSD(T )〉. Parameters: the trajectory
length is T = 103, the simulation step is dt = 10−1, the diffusion
coefficient is K2H = 1/2, the number of trajectories is N = 300, the
number of points is N̄ = 104, and the box size is L = 10.

The MSD and mean TAMSD of subdiffusive confined
FBM behave—at chosen values of T , L, and dt—as expected
[10,11] (Fig. 1). Namely, after an H-dependent short-time
nearly unperturbed growth (1), a plateau of the MSD (attained
in a power-law manner [11]) and a twice-as-high TAMSDst (2)
are reached at long times after multiple reflections [Fig. 1(a)].

Surprisingly, for H > 1/2 and at short (lag) times neither
the scalings nor the magnitudes of the MSD and TAMSD
match (nonergodicity [7]). The TAMSD reaches the plateau at
later times than the MSD, due to a slower TAMSD(�) growth
[see Eq. (7)]. Depending on the values of H > 1/2 and T ,
the TAMSD might not yet be stationary, whereas the MSDst

is already attained (not shown). At H > 1/2, due to a scatter
of the TAMSD plateaus, each δ2

i (�) contributes differently to
the evolution of 〈δ2(�)〉.

The lowest TAMSD plateau δ2
min,st can be assessed as fol-

lows. For H → 1 the process at � = �st ballistically reaches
x = ±L/2 with a velocity such that v�st ∼ L/2 and continues
“hitting” the boundary after that. For such traces, for � �
�st the increments in the TAMSD are [x(t + �) − x(t )]2 ∼
(L/2 − vt )2, yielding the plateau δ2

min,st ∼ (�st/T ) × (L2/12)

[see Fig. 1(b)]. Multiple higher δ2
st,i plateaus found in this plot

are due to more than one reflection.
Analytically, for the ith trace of confined FBM (4),

ni reflections occur at times {trefl,i,1, trefl,i,2, . . . , trefl,i,ni}. All
N̄ steps can thus be divided into a set of reflective and
diffusive {tdiff,i,1, tdiff,i,2, . . . , tdiff,i,N̄−ni

} steps. As per Eq.
(4), the increments for diffusive steps are x(tdiff,i,k + dt ) −

x(tdiff,i,k ) = dBH (tdiff,i,k ), while at reflection events x(trefl,i,k +
dt ) − x(trefl,i,k ) = 0. At the shortest lag time �1 = dt

we get δ2
i (�1) = �1

T −�1

∑N̄
j=1{xi[( j + 1)dt] − xi( jdt )}2 that

gives δ2
i (�1) = 1

N̄−1

∑N̄−ni
k=1 dB2

H (tdiff,i,k ). After ensemble av-

eraging at N̄ � 1 with 〈dB2
H 〉 one gets 〈δ2(�1)〉 ≈ 2K2H (1 −

〈n〉/N̄ )�2H
1 , with 〈n〉 = N−1 ∑N

i=1 ni. Thus, the difference
MSD(�1) − TAMSD(�1) related to nonergodicity is ex-
pressed via a reflection “rate,” 〈n〉/N̄ . The PDF (5) at L1 � L
gives 〈n〉/N̄ = 2

∫ L/2
L/2−L1

p2,st(x)dx ≈ DH (L1/L)1/H−1, where
DH = 2CH/(1/H − 1). This yields a fraction of time steps a
particle, located within L1 from a boundary, is reflected within
time dt . At H = 1/2 this yields 〈n〉/N̄ = 2L1/L [uniform
pst (x)]. Using L1 with dt = �1 we get

〈n〉/N̄ ≈ DH (
√

2K2H )1/H−1(T/N̄ )1−H L1−1/H , (6)

in agreement with the in silico results for varying L and N̄
(Fig. 7) [the same scalings follow from p1(x)]. From 〈δ2(�1)〉
with Eq. (6) the short-lag-time TAMSD is

〈δ2(�)〉 ≈ 2K2H�2H − DH (2K2H )
1/H+1

2 L1−1/H�1+H . (7)

At short � the first term in Eq. (7) dominates (∝ �2H

prior to a first reflection), especially for H < 1/2. Thus,
MSD(�1) − TAMSD(�1) is small for subdiffusive confined
FBM (as studied in Refs. [10,11], where the effect was
missed); it is significant for H > 1/2 (and especially for
H → 1). A L- and T -dependent second term in Eq. (7) at
intermediate � [Fig. 1(b)] has ∝ �1+H scaling. Its magnitude
agrees with simulations (Fig. 8). For H < 1/2 the reflection
rate decays quicker with T and L than for H > 1/2 (Fig. 7).
Thus, for realistic L the 〈n〉/N̄ is much smaller than for su-
perdiffusive FBM [the term ∝ �1+H in (7) is most relevant].

Two distinct TAMSD exponents and MSD(�1) 
=
TAMSD(�1) were also detected for reset FBM [20,21]
at H > 1/2 [see Eq. (44) in Ref. [21]]. Ergodicity (1) was,
however, restored for the increment-MSD (iMSD) [21], i.e.,
iMSD(�) = TAMSD(�). The same is true for confined FBM
at H > 1/2, both for small and large � values (not shown),
with the iMSD computed at [21] � � �st. A pronounced
δ2

i (�1) spread and large EB(�1) values render H > 1/2 FBM
under reset and in a box still nonergodic in the sense that
EB � EBBM. Other confined processes treated as nonergodic
might feature iMSD=TAMSD.

The δ2
i (�) spread—described by the PDF [7] φ(ξ ) with

ξ (�) = δ2(�)/〈δ2(�)〉—is small for sub- and substantial
for superdiffusive confined FBM (Fig. 2). For the latter, the
φ(ξ )-PDF is profoundly skewed (as larger increments dx are
prohibited by reflections from the box boundaries), leading
to smaller TAMSD entries. The scatter is quantified by the
ergodicity-breaking parameter [7] EB—the squared coeffi-
cient of variation or squared relative standard deviation of
the δ2

i (�) distribution—EB(�) = 〈ξ 2(�)〉 − 1. The values of
EB(�1) for box-confined FBM at H < 1/2 are small, in con-
trast to EB(�1) at H > 1/2 (Fig. 3). Concretely, at � = �1

the EB at H → 1 is ∼103 that of confined BM (Fig. 3).
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FIG. 2. PDF of the TAMSD distribution φ(ξ (�)) computed from
Fig. 1 for the same parameters, at several � values.

We compare EB(�)-vs-H behavior in Figs. 3 and 9 to that
of free FBM [3], also growing at H > 1/2 and thus indicating
nonergodicity. For free FBM, we have [3,4] EBH<3/4(�/T ) ∼
(�/T )1 and EBH>3/4(�/T ) ∼ (�/T )4−4H . For confined
FBM, the simulations still show EBH<1/2(�/T ) ∼ (�/T )1,
while we get EBH>1/2(�/T ) ∼ (�/T )2−2H (Fig. 9). The
latter scaling follows by replacing 2H in (4 − 2 × 2H ) with
the new TAMSD exponent (H + 1) [Eq. (7)]. The border of
the EB-scaling regimes thus shifts from the free FBM’s [3]
H = 3/4 to 1/2 for FBM in a box. Intuitively, for confined
subdiffusive FBM—only slightly affected by reflections—the
linear EB(�/T ) law stays unaltered, while for superdiffusive
FBM in a box the scaling of EB changes (for H >1/2 and
not for H >3/4). The above EB(�/T )-dependencies feature
continuous exponents at these critical H values. Inertia also
triggers nonergodicity of free “massive” FBM [5].

Discussion. Box-confined FBM is generally nonergodic
in the sense of (1). While its ergodicity is often true
for H < 1/2, it fails drastically for H > 1/2 where

FIG. 3. EB parameter of confined FBM computed from Fig. 2
and normalized to EB of box-confined BM, EBBM(�).

MSD(�1) 
= TAMSD(�1) and the scatter of δ2
i (�1) is

not sharp. Implications of these results for FBM-based
description of—particularly superdiffusive—time series in
single-particle-tracking experiments can be farreaching. For
instance, the distribution of serotonergic fibers in the brain
with reflecting boundaries was modeled as superdiffusive con-
fined FBM [26,27]. For other in vitro and in silico datasets of
FBM type these nonergodicity aspects are to be checked in the
future.
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Foundation (Grant No. 1217531) and the German Science
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Appendix: In Figs. 4–9 we present supplementary plots.

FIG. 4. Exemplary traces of confined FBM for (a) subdiffusive
and (b) superdiffusive H values.

FIG. 5. PDFs of sub- and superdiffusive box-confined FBM. The
solid curves are given by Eq. (5).
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FIG. 6. Stationary MSD plateaus normalized to MSDst of BM:
Eq. (2) is shown vs the simulation results (dots). Note some slight
deviations for very superdiffusive FBM.

FIG. 7. Reflection rate for box-confined FBM. Scaling depen-
dencies by Eq. (6) with parameters (a) L (N̄ = 106, dt = 0.1) and
(b) N̄ (L = 10, T = 102) are the dashed lines.

FIG. 8. Short-time [MSD(�) − TAMSD(�)] deviations at
H > 1/2, compared to Eq. (7). Parameters: T = 103, L = 10.

FIG. 9. EB variation for (a) subdiffusive and (b) superdiffusive
free and confined FBM (empty and filled symbols, respectively).
Linear scalings EBH<1/2(�/T ) in (a) are the dashed lines. Relations
EBH>3/4(�/T ) for free FBM [3] and EBH>1/2(�/T ) for confined
FBM in (b) are the dashed and continuous lines, respectively. We
observe quantifiable [4] time-step-discreteness-induced deviations at
short � in (a) and some long-lag-time deviations of EB from the
asymptotes because of deterioration of TAMSD-averaging statistics.
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