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How do nonlinear clocks in time and/or space affect the fundamental properties of a stochastic process?
Specifically, how precisely may ergodic processes such as fractional Brownian motion (FBM) acquire pre-
dictable nonergodic and aging features being subjected to such conditions? We address these questions in
the current study. To describe different types of non-Brownian motion of particles—including power-law
anomalous, ultraslow or logarithmic, as well as superfast or exponential diffusion—we here develop and analyze
a generalized stochastic process of scaled-fractional Brownian motion (SFBM). The time- and space-SFBM
processes are, respectively, constructed based on FBM running with nonlinear time and space clocks. The
fundamental statistical characteristics such as non-Gaussianity of particle displacements, nonergodicity, as well
as aging are quantified for time- and space-SFBM by selecting different clocks. The latter parametrize power-law
anomalous, ultraslow, and superfast diffusion. The results of our computer simulations are fully consistent with
the analytical predictions for several functional forms of clocks. We thoroughly examine the behaviors of the
probability-density function, the mean-squared displacement, the time-averaged mean-squared displacement, as
well as the aging factor. Our results are applicable for rationalizing the impact of nonlinear time and space
properties superimposed onto the FBM-type dynamics. SFBM offers a general framework for a universal
and more precise model-based description of anomalous, nonergodic, non-Gaussian, and aging diffusion in
single-molecule-tracking observations.
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I. INTRODUCTION

A. Background and motivation

The paradigmatic drift-free Brownian motion (BM) [1–7]
features a Gaussian linear-in-time ergodic [8] spreading dy-
namics of test particles. BM is omnipresent in a multitude of
rather simple interaction-free memoryless stationary physical
systems of thermally agitated passive monodisperse tracers.
The mean-squared displacement (MSD) for BM is

〈x2(t )〉 = 2K1t1 (1)

and BM is ergodic in the Boltzmann-Birkhoff-Khinchin sense
[9–11]. The latter means that the long-time average of a sta-
tistical observable converges to its ensemble-based average
[11,12]. BM is nonaging in the sense of independence of
statistical observables on the observation time T [12–14].

The central quest in analyzing ever-more-detailed ex-
perimental data from single-particle-tracking (SPT) assays
[15,16] is to pinpoint the precise underlying physical stochas-
tic process and confidently predict its associated parameters
[17–20]. Single-parameter BM is, however, often insuffi-
cient for a satisfactory, parameter-sensitive, and robust-to-
“perturbations” description of rich experimental data. The
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latter stem from complex real-world systems, driven by
processes with sometimes intricate long-ranged physicochem-
ical interactions, multilevel couplings, interdependencies of
parameters, memory functions, time-space variabilities, en-
semble heterogeneities, polydispersity in the properties of
particles, etc. These complications inevitably necessitate
a theoretical development of more sophisticated, tunable,
and predictive stochastic models, which are generally non-
Brownian, non-Gaussian, nonergodic, and aging. Such a
development is the main motivation of the current study.

B. Anomalous diffusion

Anomalous diffusion processes [14,18,19,21–31] featuring
a nonlinear-in-time (non-Fickian [2] or non-Brownian [1])
growth of the MSD have been widely observed over the last
couple of decades, ranging from superdiffusive cosmic-ray
propagation in the interstellar medium [32] on the galactic
scale [33–35] to subdiffusion of nanometer-sized tracers in-
side biological cells on the submicron scale [36–39] and to
short-time superdiffusion of vortices in ultraquantum turbu-
lence in superfluid helium-4 [40], to motion a few examples.

Physically, the MSD growth of the power-law form [14,25]

〈x2(t )〉 = 2Kρtρ, (2)

where Kρ is the generalized diffusion coefficient (with the
dimensions length2/timeρ) and ρ is the anomalous scaling
exponent, describes the regimes of subdiffusion (for 0 <

ρ < 1), BM (ρ = 1) [1,3–6], superdiffusion (1 < ρ < 2),

2470-0045/2023/108(3)/034113(24) 034113-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3201-6969
https://orcid.org/0000-0002-1786-3932
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-0516-9900
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.034113&domain=pdf&date_stamp=2023-09-13
https://doi.org/10.1103/PhysRevE.108.034113


LIANG, WANG, METZLER, AND CHERSTVY PHYSICAL REVIEW E 108, 034113 (2023)

TABLE I. Some important and experimentally accessible properties (abbreviations used are Y = Yes and N = No) of some pure and
hybrid SBM- and FBM-related stochastic processes. We present Fickianity in the sense of short-time linearity of the MSD and mean TAMSD,
stationarity for the increment process, ergodicity in the sense of MSD=TAMSD equivalence for long trajectories, Markovianity as the absence
of memory effects for consecutive particle’s displacements, Gaussianity of the probability-density function (PDF) form, and aging as a TAMSD
dependence on the trajectory length T . Note a transition of all diffusion properties being standard for processes on the top to all “canonical”
postulates being violated for processes on the bottom of the table.

Processes ↓ Properties → Fickianity (MSD) Fickianity (TAMSD) Stationarity Ergodicity Markovianity Gaussianity Nonaging

BM [1,3,5] Y Y Y Y Y Y Y
FBM [54,55] N N Y Y N Y Y
SBM [56,57] N Y N N Y Y N
HDP [58,59] N Y N N Y N N
FBM-HDP [60] N N N N N N N
SBM-HDP [61] N Y N N Y N N
FBM-SBM [62] N N N N N Y N
Time-SFBM, Sec. II N N N N N Y N
Space-SFBM, Sec. III N N N N N N N
Time-space-SFBM, Sec. IV N N N N N N N

ballistic motion (ρ = 2), and hyperdiffusion (or superballis-
tic motion [41], with ρ > 2). Nonlinear forms of the MSD
growth with time [Eq. (2)] are related to non-Fickianity
or non-Brownianity of diffusion. Other functional forms of
anomalous diffusion proposed and detected include the ultra-
slow [42,43] logarithmic and the superfast [44] exponential
growth of the MSD. The first case is a part of the class of
Sinai-type [45] diffusion, while the second scenario is real-
ized, e.g., for the speculative growth [46–53] of stock-market
indices. Note that an adequate and balanced referencing even
to the most representative examples of anomalous-diffusion
observations from various domains of physics, chemistry, and
biochemistry is beyond the scope of this study.

C. Relevant stochastic anomalous-diffusion processes

The description of non-Brownian and non-Gaussian dif-
fusion processes is often a challenging task in situations
when the underlying physical mechanism and the associated
stochastic model are to be extracted from data and justified.
A number of frameworks and stochastic processes (see Ta-
ble I) have been proposed in the statistical-physics community
to unravel the properties of anomalous-diffusion processes,
defining a subset of general processes satisfying Eq. (2).
The list includes continuous-time random walks (CTRWs)
[14,63–65], diffusion on fractals [23], fractional BM (FBM)
[54,55] (see also recent Refs. [30,66–75]), concentration-
dependent diffusion of power-law form [76,77], multistate
diffusion (e.g., with stochastically changing diffusivities [78]
and scaling exponents [38]), diffusing-diffusivity-based mod-
els [69,70,79–85], annealed transit-time models [19,86,87],
heterogeneous diffusion processes (HDPs) [58,59,88–93],
scaled BM (SBM) [56,94–97], diffusion in expanding media
[98–101], and many other models [including geometric BM
(GBM) [46,47,50,51,102] featuring the exponential MSD].

Let us shortly introduce a set of anomalous-diffusion mod-
els of a particular interest as mathematical frameworks that
will be generalized by stochastic processes invented in the
current study. The model of subdiffusive CTRWs [14] is
nonergodic [103], being often used to capture the anoma-
lous spreading of particles featuring long-tailed waiting-time

and/or jump-length distributions. Nonergodicity—a concept
first introduced by Boltzmann [8] and developed by, among
others, Birkhoff, von Neumann, and Khinchin [9–11]—is de-
fined hereafter as the nonequivalence of ensemble- and time-
based averaging [14,104,105]; namely, in the limit � � T ,

〈x2(�)〉 �= δ2(�). (3)

It thus describes the situations when the MSD (2) is not equal
to the long-observation-time time-averaged MSD (TAMSD)
defined for a single trajectory as [14]

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t )]2dt . (4)

Here T is the trajectory length and � is the lag time.
Similarly nonergodic (also quantitatively, as assessed

in Ref. [59]) is the HDP [58,59,88,90], emerged based
on several “classical” considerations of position- and/or
concentration-dependent diffusion (see Refs. [106–110]). In
its standard formulation, HDPs describe power-law-type
anomalous diffusion in heterogeneous media with a position-
dependent power-law-like diffusion coefficient, D(x) ∝ |x|β
[58,59,88,90], used, e.g., as a model of deterministically
varying porosity, of dispersion in nonequilibrium systems
with a temperature gradient, or of diffusion in quasi-one-
dimensional channels with a variable cross section [111,112].
The “exponential” HDP gives rise to ultraslow diffusion for an
exponential spatial dependence of the diffusivity D(x) ∝ e−λ̄x,
namely, MSD(t ) ∝ log2(t/τ (λ̄)) [88], and to GBM-like mo-
tion for D(x) ∝ x2 (this dependence is a critical point [59,110]
of the power-law D(x) variation). The process of logarith-
mic HDP with logarithmically dependent diffusivity was also
studied [88]; D(x) e.g. exponentially decaying in space [88]
were used; for instance, to describe bombardment- [113] and
irradiation-enhanced [114] diffusion. Recently, the theory of
confined [89,93] and reset [115] HDPs was developed.

The process of SBM also describes nonergodic anomalous
diffusion [56,57,94,116,117]. SBM is an inherently nonsta-
tionary memoryless Markovian stochastic process applicable
to diffusion in aging or accelerating systems with, e.g., a time-
varying temperature. The property of Markovianity means that
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FIG. 1. Artistic representation of nonlinear time and space clocks running for the process of SFBM [175].

the value of a stochastic process in the next moment of time
depends only on its value on the previous time step (i.e., no
dependence on former “history” exists). One example of SBM
is the dynamics of cooling granular gases [94]. In the standard
formulation, SBM features a power-law-like dependence of
the diffusivity with time, D(t ) ∝ tα−1 [56,57,94,116,117] (see
Table I). For a “critical” exponent of this time dependence,
namely, at D(t ) ∝ 1/t , SBM gives rise to ultraslow diffu-
sion with a logarithmic growth of the MSD at long times,
MSD(t ) ∝ log(t/τ ) [95]. The exponential growth of the long-
time MSD and the linear growth of the short-time TAMSD
are the characteristic features of GBM [49,50] as well as of
exponential SBM with D(t ) ∝ eκt introduced in Ref. [118].
These SBM-type processes exhibit a linear growth of the
TAMSD with the lag time.

FBM [54,55] is a very widely used stochastic process em-
ployed to describe subdiffusion in viscoelastic [119] systems
such as the cyto- and nucleoplasm of diverse classes of biolog-
ical cells [38,120] on various length- and time-scales (among
other numerous applications [14]). FBM is a Gaussian process
[30,121] with stationary increments which are persistent and
antipersistent for the anomalous Hurst exponent H in the
range 2 > 2H > 1 and 0 < 2H < 1, respectively. FBM with
2H = 1 reduces to BM. FBM is “nearly” ergodic [66,69,74],
being one of few stochastic processes with a nonlinear and
H-dependent scaling exponent of the TAMSD. The property
of Gaussianity means a Gaussian form of the distribution
of position displacements of the particles, P(x, t ), as mea-
sured after a diffusion time t . Stationarity of increments of
a stochastic process means their independence on the actual
time moment of measurement. In addition to free-space FBM,
potential-confined [122–127] and externally reset [115] FBM
versions were considered as well.

D. Generalizations of diffusion models

As an even smaller subset of stochastic processes men-
tioned in Sec. I C, several modifications of SBM [56,94–
97,118,128], FBM [74,115], and HDPs [58,59,88–91] were
studied recently. A number of recent SPT data sets
[38,39,129–142] indicate a motion driven by a stochastic
process featuring more than a single generating mechanism.
Therefore, “compound” processes with more “multifaceted”
statistical characteristics [143] can be beneficial.

In particular, nonergodic processes with a nonlinear growth
of the TAMSD(�) and with additionally tunable aging depen-
dence on the trajectory length T (denoted as 〈δ2(�, T )〉) are
required to rationalize some SPT data sets, namely,

〈δ2(�, T )〉 ∝ �μ/T 1−ν �= 〈x2(�)〉. (5)

Such desired processes would then serve as tools to physically
describe a number of “mixed” statistical properties observed
in experimental SPT time series [18,19,30,39,141,142,144–
150]. Aging here means a particular dependence of the
TAMSD magnitude on the measurement time T . For multi-
ple power-law-type subdiffusive processes the magnitude of
〈δ2(�, T )〉 is a decaying power-law function of T , as mea-
sured at short lag times � (see Table I).

The list of hybrid processes developed by us in recent
years includes the processes of SBM-HDP [61], FBM-HDP
[60], FBM-diffusing diffusivity [69], FBM-SBM [62], SBM-
diffusing diffusivity [96,151], exponential and logarithmic
HDPs [88], exponential and logarithmic SBM [118], and
SBM-GBM [152] (see a short overview in Table I). Note
that a hybrid diffusion process with a power-law-like time-
and space-dependent diffusivity was also proposed previously
in Refs. [116,153–155]. Regarding the technicalities of the
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FIG. 2. Details of the simulation scheme for generating time- and space-SFBM from a parental FBM trajectory. The procedure to create
SFBM from a finely simulated FBM (time-step ds) via a ”projection” with rescaling functions F (t ) and G(x) is illustrated here, see Sec. II C
for details.

mathematical description and the applications of all these
stochastic processes, we refer the interested reader to the
original studies. Note also that an extensive collection of
FBM- and SBM-related SPT experimental observations were
tabulated in Ref. [62]. Recently, hybrid stochastic processes
of CTRW type with a random walk on fractals [156], CTRW-
FBM [18,157], and processes alternating between a Lévy
walk and standard BM [158] as well as between a Lévy walk
and CTRW [159,160] were proposed, in addition to other
models of anomalous diffusion of mixed origin [156].

Various computational methods and statistical tests for the
SPT-trajectory analysis of multiple origins (e.g., Bayesian
inference, neural-network-based, power spectrum, p-variation
test, and machine-learning-based approaches, etc.) have been
invented in recent years [18–20,30,132,144–150,161–172] to
estimate and to catalog the models of diffusion as well as
to determine their parameters for a given data set (such as
the MSD- and TAMSD-scaling exponents, the increment-
autocorrelation functions, Mandelbrotian exponents [173],
the TAMSD-aging functions, etc.). The state of the art
of such analysis methods was recently assessed by the
anomalous-diffusion (AnDi) challenge [18,174]. In the cur-
rent investigation, we are particularly interested in these
statistical quantifiers and answer the question how they
change for various underlying functional forms of superim-
posed time and space clocks.

E. Plan of the paper

Here, we extend the arsenal of hybrid anomalous-diffusion
models via presenting a generalized stochastic process of
scaled fractional Brownian motion (SFBM) (see Fig. 1). The
process of time-rescaled BM with nonlinear clocks in fact has
some history: for power-law and logarithmic-like clock func-

tions it was first proposed on the MSD level in Refs. [67,68].
For power-law clocks this process was named compressed
or stretched BM [67] and it describes sub- or superdiffusive
SBM [56,96], respectively. The process of SFBM fills the gap
in understanding the principles of composition of the MSD
and TAMSD scaling exponents for many of the compound
stochastic processes mentioned in Sec. I D, connecting them
to the features of running time and space clocks.

Time-SFBM BH (F (t )) and space-SFBM G(BH (t )) pro-
cesses are constructed based on FBM BH (t ) running with a
nonlinear time clock F (t ) and a nonlinear space clock G(x),
respectively. We explicitly investigate analytically and via
in silico experiments the properties of diffusive motion of
particles by selecting different clocks giving rise to a power-
law anomalous, ultraslow, and superfast diffusion described
by SFBM.

The rest of this study is organized as follows. In Sec. II the
processes of FBM and time SFBM are introduced. In Sec. III
we describe the probability-density function (PDF), the MSD,
the TAMSD, as well as provide the analysis of the nonergodic
and aging behaviors of time-SFBM with three special cases of
nonlinear time clock. In Sec. IV we introduce space-SFBM,
computing the same characteristics for three scenarios of
nonlinear space clocks. In Sec. V the properties of time-space-
SFBM are examined. Finally, in Sec. VI we present the main
conclusions. A number of auxiliary figures are provided in the
Appendix A, while all acronyms are provided in Appendix B.

II. FBM AND TIME-SFBM

In this section, we give a brief introduction into FBM and
present some results for time-SFBM that can be regarded as
“merging” of FBM with SBM.
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A. FBM

The process of FBM,

x(t ) = BH (t ), (6)

studied by Mandelbrot and van Ness [55] and in fact consid-
ered earlier by Kolmogorov [54], is a centered continuous-
time Gaussian process with the two-point autocovariance
function of the form

〈BH (t1)BH (t2)〉 = K2H

2

(
t2H
1 + t2H

2 − |t2 − t1|2H
)
, (7)

where the generalized diffusion coefficient K2H has physical
units

[K2H ] = m2s−2H , (8)

and with the Gaussian particle-displacement form of the PDF,

P(x, t ) = exp

(
− x2

2K2Ht2H

)/√
2πK2Ht2H . (9)

Here, x0 = 0 is the starting position and t is diffusion time.
FBM is an ergodic [14] stochastic process, with the MSD
equal to the TAMSD,

〈x2(�)〉 =〈
B2

H (�)
〉 = 〈δ2(�)〉 = K2H�2H . (10)

The mean TAMSD is generally defined as the arithmetic mean
over N available statistically identical and independent parti-
cle trajectories, namely [14]

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�). (11)

The stationarity of increments of FBM can be studied via
its autocovariance function. Considering an increment [55]

B(δ)
H (t ) = BH (t + δ) − BH (t ), (12)

the autocovariance function between the increments in the
intervals [t1, t1 + δ] and [t2, t2 + δ] is defined as

C(δ)(t1, t2) = 〈
B(δ)

H (t1)B(δ)
H (t2)

〉
. (13)

Using Eq. (7) we arrive at the autocovariance function of FBM
that solely depends on the time difference �12 = |t2 − t1|
(with t2 > t1), namely,

C(δ)(t1, t2) = K2H

2

(
(�12 + δ)2H + |�12 − δ|2H − 2�2H

12

)
.

(14)

In particular, when �12 	 δ the autocovariance function has
an approximate power-law form

C(δ)(t1, t2) ∼ K2H H (2H − 1)δ2 × �2H−2
12 , (15)

indicating that FBM has positively and negatively correlated
increments for 1 > H > 1/2 and 0 < H < 1/2, respectively
[55].

B. Time-SFBM

Time-SFBM is defined as a stochastic process of FBM
running with a nonlinear time clock, i.e.,

x(t ) = BH (F (t )). (16)

Here F (t ) is a deterministic smooth monotonic function
changing over time with a non-negative derivative f (t ) sat-
isfying (see also Refs. [67,68] employing the same method
for clarification of its requirements)

F (t ) =
∫ t

0
Dα f (s)ds. (17)

Here Dα is a coefficient ensuring that F (t ) always has the
dimension of time, [F ] = s1. Combining the property of FBM
(7) and the definition (16) yields the two-point autocovariance
function of time-SFBM as

〈x(t1)x(t2)〉 = K2H

2
([F (t1)]2H + [F (t2)]2H

− |F (t1) − F (t2)|2H ). (18)

When t1 = t2 = t the MSD of time-SFBM reads

〈x2(t )〉 = K2H [F (t )]2H . (19)

Using definition (4), the mean TAMSD of time-SFBM is

〈δ2(�)〉 = K2H

T − �

∫ T −�

0
[F (t + �) − F (t )]2H dt . (20)

When � � T , using the Taylor expansion F (t + �) −
F (t ) ≈ Dα f (t )�, we get the leading term

〈δ2(�)〉 ≈ K2H

T

[∫ T

0
[Dα f (t )]2H dt

]
× �2H . (21)

Obviously, the TAMSD (21) is not equivalent to the MSD
(19), indicating weak ergodicity breaking as long as F (t ) is
a nonlinear function. Notably, when H = 1/2 time-SFBM
reduces to SBM [56,57,94,116,117] with

〈δ2(�)〉 = K1F (T ) × �/T . (22)

Given the increments (12), for xδ (t ) = x(t + δ) − x(t ) of
time-SFBM we have

xδ (t ) = BH (F (t + δ)) − BH (F (t )) (23)

and the explicit autocovariance function can be obtained as

C(δ)(t1, t2) = K2H

2
(|F (t1 + δ) − F (t2)|2H

+ |F (t1) − F (t2 + δ)|2H − |F (t1 + δ)

− F (t2 + δ)|2H − |F (t1) − F (t2)|2H ). (24)

This implies that, as expected, the property of stationarity is
broken when FBM runs with a nonlinear clock. In particular,
when H = 1/2 we get C(δ)(t1, t2) = 0 if the two increments
in the intervals [t1, t1 + δ] and [t2, t2 + δ] are disjoint. This
feature reveals that FBM with arbitrary nonlinear clocks has
independent increments.

The PDF of time-SFBM with arbitrary nonlinear clock is—
analogously to FBM expression (9)—a Gaussian function

P(x, t ) = exp

(
− x2

2K2H [F (t )]2H

)
/
√

2πK2H [F (t )]2H . (25)

C. Details of computer simulations

The trajectories of SFBM are generated below from those
of standard FBM through the specific transformations of time-
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and space-related variables. In short, several standard methods
can be employed to generate FBM [176] including, e.g., the
method of Hosking [177], the Choleski matrix-decomposition
approach, or the method of Wood and Chan [178]. We adopt
here the last one [178], used also in Refs. [69,70], due to its
rapid simulation times achieved by using the discrete Fourier
transformation [179].

To generate time-SFBM (16) as x(t ) = BH (F (t )) in Sec. III
at discrete times tn = n × dt , where dt = T/N is the time step
and T is the measurement time, we find equivalent discrete
points of BH (s) at times

sm = m × ds = F (tn). (26)

Here ds < dt is a smaller time step to generate FBM. As
the time-transformation function F (t ) is general, an integer
m obeying (26) does not always exit. We thus find adjacent
points tm and tm+1 such that

m × ds � F (tn) < (m + 1) × ds (27)

is fullfilled in order to approximate F (tn) (see the details
in Fig. 2). This method is frequently employed to generate
subordinated stochastic processes [180].

The discrete-time process (16) is thus approximated in two
steps:

(i) We first generate FBM trajectories using the method of
Wood and Chan [178]; e.g., we create BH (s j ) at discrete times
and with the trajectory length smax � F (T ).

(ii) The values of x(tn) are equivalent to those of BH (s j )
with s j = round[F (tn)/ds], where round[x] produces a ceil-
ing integer for x. The more rapid the variation of F (t ) with
time is, the more detailed should the simulation grid ds for
the initial FBM process be in order for the final time-SFBM
process to be sufficiently accurate.

Figures 12, 15, and 18 demonstrate the consistency of the
simulations and analytical results for the MSD and the mean
TAMSD for time-SFBM with power-law, logarithmic, and
exponential time clocks for the three relationships

ds = dt/2, ds = dt/5, ds = dt/10. (28)

The last choice yields (naturally) the most accurate results.
To simulate space-SFBM defined via (48) as y(t ) =

G(BH (t )) in Sec. IV, as the timescale does not change
upon transformation BH (t ) → y(t ), the discrete-time pro-
cess y(tn) follows directly via finding the related point of
FBM BH (tm) at tm = tn, and then mapping the values of
FBM with the specific nonlinear space transformation. The
most general time-space-SFBM examined in Sec. V is simu-
lated as a point process z(tn) = G(x(tn)) through a particular
space transformation G(x) and time transformation F (t ). This
gives x(tn) = BH (F (tn)) that yields z(tn) = G(BH (F (tn))).
The time-transformed process x(tn) = BH (F (tn)) is generated
again by the approximate approach for time-SFBM outlined
above.

III. SPECIAL CASES OF TIME-SFBM

In this section, the results for three special situations of
time-SFBM for nonlinear power-law, logarithmic, and ex-
ponential time clocks are presented. We demonstrate that

FIG. 3. Magnitude of the MSD (green circles), the spread of indi-
vidual TAMSDs (thin red curves), and the mean time transformation
TAMSD (blue circles) for the process of time-SFBM with time trans-
formation (29) computed for the Hurst exponent H = 0.2 and the
exponent α = 1.5. Theoretical results for the MSD (thick solid green
curves) and the mean TAMSD (thick solid blue curves) are given
by Eqs. (31) and (32), respectively; the respective short-time scaling
exponents are added in the graph for clarity. Parameters: the length
of the trajectories is T = 100, the elementary time step in computer
simulations is dt = 0.1, the FBM generalized diffusion coefficient is
K2H = 1 (hereafter, for all diffusion-coefficient-like quantities we do
not mention their explicit units), the coefficient Dα is Dα = 1, and
the number of independent trajectories (ensemble size) is N = 300.

time-SFBM in all these situations is a nonergodic and aging
stochastic process.

A. Anomalous diffusion with F(t ) = Dαtα

For the choice

F (t ) = Dαtα, (29)

with α > 0 and Dα having physical units

[Dα] = s1−α, (30)

the time-SFBM describes anomalous diffusion with the MSD

〈x2(t )〉 = K2H (Dα )2Ht2Hα, (31)

while the mean TAMSD (at short lag times � � T ) is given
by

〈δ2(�)〉= K2H (αDα )2H

2H (α − 1) + 1
× �2H

T 2H (1−α)
. (32)

Both the MSD and the mean TAMSD are power-law functions
of time.

The TAMSD magnitude depends on the trajectory length
T and thus the current process features aging [14]. Based on
the mean-TAMSD result (32), the TAMSD aging factor can
be quantified for short lag times as

�(T ) � T 2H (α−1). (33)

Figure 3 demonstrates the consistency of the simulation
results for the MSD and the mean TAMSD for time-SFBM
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with the clock (29) with the analytical predictions. This agree-
ment is found in the entire range of the lag times examined.
In Fig. 13 we show the excellent agreement of the results
from simulations and the theory for the Gaussian PDF of
time-SFBM (29), for H and α values as in Fig. 3. Figure 14
shows the agreement of simulations and theory for the aging
factor: it has a power-law dependence on T as a function
of the values of H and α. Here and below, we present the
dimensionless aging factor �.

B. Ultraslow diffusion with F(t ) = Dβ logβ(t/τ + 1)

The process of time-SFBM describes ultraslow diffusion
for the choice

F (t ) = Dβ logβ (t/τ + 1), (34)

with Dβ having physical units [Dβ] = s1. We thus arrive at
Sinai-type ultraslow growth of the MSD,

〈x2(t )〉 = K2H (Dβ )2H [log(t/τ + 1)]2Hβ, (35)

where τ is a characteristic time of time variation of F (t ).

1. Case 0 < H < 1/2

The mean TAMSD for this ultraslow-in-MSD diffusion at
0 < H < 1/2 is a subdiffusive function of lag time,
namely

〈δ2(�)〉 = K2H (βDβ )2Hτ 1−2H

2H (β − 1) + 1

�2H

T
[log(T/τ )]2H (β−1)+1

× M[2H (β − 1) + 1, 2H (β − 1) + 2,

(1 − 2H ) log(T/τ )], (36)

where M(x, y, z) is the Kummer function [181] of the first
kind,

M(x, y, z) = (y)

(x)(y − x)

∫ 1

0
ezuux−1(1 − u)y−x−1du.

(37)

The logarithmic as well as the linear dependencies on the
trajectory length T enter the aging-related prefactor in expres-
sion (36), while the scaling with the lag time is FBM-like,
〈δ2(�)〉 ∝ �2H . When T → ∞, the mean TAMSD in this do-
main of H exponents becomes considerably simpler, namely

〈δ2(�)〉 � K2H (Dβ )2H log2H (β−1)(T/τ )

T 2H
�2H . (38)

The TAMSD aging factor in this case can thus be quantified
for short lag times (when � = 1 and T → ∞) in terms of the
measurement time T as

�(T ) � log2H (β−1)(T/τ )

T 2H
. (39)

2. Case H > 1/2

The MSD for ultraslow diffusion at 1 > H > 1/2 still fol-
lows expression (35), while the mean TAMSD in this case is

〈δ2(�)〉= K2H (βDβ )2Hτ 1−2H

(2H − 1)2H (β−1)+1

�2H

T

× γ (2H (β − 1) + 1, (2H − 1) log(T/τ )), (40)

FIG. 4. MSD [Eq. (35)], TAMSDs, and mean TAMSD [Eq. (36)]
for the time-SFBM with clock dependence (34) for H = 0.2, β = 2,
τ = 10 × dt , K2H = 1, and Dβ = 1. Other parameters are as in Fig. 3
(it is the case in this and all other plots of the main text and in the
Appendix A, if not specified otherwise).

where γ (x, y) is the lower incomplete Eulerian Gamma func-
tion [182]

γ (x, y) =
∫ y

0
ux−1e−udu. (41)

When T → ∞ the mean TAMSD in this case becomes

〈δ2(�)〉 � K2H (Dβ )2Hτ 1−2H �2H

T
. (42)

This expression, again, demonstrates (in the leading order) the
FBM-type growth TAMSD(�) ∝ �2H and the reciprocal de-
pendence of TAMSD on the trajectory length T . The TAMSD
aging factor at �/T � 1 and for H > 1/2 is therefore

�(T ) � T −1. (43)

3. Graphical results

In Fig. 4 we observe a full consistency between the theory
and simulation results for the MSD and the mean TAMSD
of time-SFBM with Eq. (34), computed for H = 0.2 and
β = 2. The MSD and the mean TAMSD agree both for short,
intermediate, and long (lag) times. The stochastic process
of time-SFBM running with a logarithmic time clock is ev-
idently nonergodic. Figure 16 shows the Gaussian PDF of
this process, with the analytical results fully consistent with
the simulations. Figure 17 illustrates the excellent theory-vs-
simulations agreement for the aging factor (39), computed for
varying times T .

C. Superfast diffusion with F(t ) = Dκeκt

The time-SFBM gives rise to superfast diffusion when the
clock function is exponential,

F (t ) = Dκeκt , (44)

where κ is the reciprocal timescale of F (t ) variation and the
coefficient Dκ has physical dimension [Dκ ] = time1. Note
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FIG. 5. MSD [Eq. (45)], TAMSDs, and mean TAMSD [Eq. (46)]
for the time-SFBM with transformation (44) for H = 0.2, κ = 0.1,
K2H = 1, and Dκ = 1.

that for each of the considered subcases of time-SFBM in
subsections III A, III B, and III C we use distinct notations for
the diffusion coefficients (Dα , Dβ , and Dκ ) and specify their
(different) physical units. This will help to avoid confusion
due to possible misinterpretation of symbols and finally yield
a more systematic presentation of the results. This yields the
MSD

〈x2(t )〉 = K2H (Dκ )2H e2Hκt (45)

and the mean TAMSD

〈δ2(�)〉 = K2H (Dκ )2Hκ2H−1

H

e2HκT − 1

T
�2H . (46)

We thus find that MSD grows exponentially in time, while the
TAMSD has a power-law FBM-type scaling (10) with the lag
time.

Note that—similarly to Eq. (38)—the trajectory length T
enters expression (46) both in a linear and logarithmic fashion,
complicating the general aging behavior as compared to that
known for other aging processes [14]. The mean TAMSDs
of logarithmically slow MSD spreading in Sec. III B and
exponentially fast MSD-related diffusion in Sec. III C have,
therefore, very different functional forms. The aging function
for this process can be quantified, as follows from Eq. (46), at
short lag times � = 1 for varying measurement times T as

�(T ) � e2HκT − 1

T
. (47)

Figure 5 illustrates the MSD and the mean TAMSD for
time-SFBM with (44) for H = 0.2 and κ = 0.1, in full consis-
tency with the theoretical expectations in the whole interval of
lag times. In Fig. 19 we show that the PDF of this stochastic
process is Gaussian, with theoretical and simulation results
being fully consistent. In Fig. 20 we present the aging factor
for time-SFBM with exponential clock (44), again in full
agreement with the theoretical predictions.

IV. SPECIAL CASES OF SPACE-SFBM

In this section, we present some results for space-SFBM,
a process that can be considered as a hybrid of FBM and
HDPs. Space-SFBM is defined through FBM running with a
nonlinear “space clock,”

y(t ) = G(BH (t )), (48)

where G(x) is a deterministic smooth function of the space
coordinate x. Some special cases of space-SFBM for power-
law, logarithmic, and exponential space clocks are presented
below. Similarly to time-SFBM in Sec. III, we demonstrate
here that space-SFBM with all these clocks represents a non-
ergodic and aging stochastic process.

For the entire consideration to be systematic, similar to
time-SFBM in Sec. III with

[F (t )] = seconds, (49)

for each of the subcases of space-SFBM in Secs. VI A, VI B,
and VI C we use distinct (and different) notations for the
diffusion coefficients, with their dimensions chosen such that
the physical units of clock functions G(x) always remain the
same, namely

[G(x)] = meters. (50)

This helps in checking physical dimensions in the resulting
expressions. This can also enable experimentalists (planning
to use such hybrid processes) to adjust model predictions
to the measurements using these generated diffusion coef-
ficients as additional fitting coefficients. Different notations
and subscripts with the bars used for the diffusion coefficients
of space-SFBM in this section—as compared to diffusivities
and indices in time-SFBM in the previous section—serve the
same purpose and also help us categorize different functional
dependencies emerging in all the subcases.

A. Anomalous diffusion with G(x) = D̄ᾱ|x|ᾱ
Space-SFBM with

G(x) = D̄ᾱ|x|ᾱ (51)

describes anomalous diffusion for ᾱ > 0. Here, the units of
D̄ᾱ are

[D̄ᾱ] = m1−ᾱ . (52)

The MSD of this process grows as (for the MSD, we use 〈y2〉
for space-SFBM in Sec. IV and 〈z2〉 for time-space-SFBM in
Sec. V)

〈y2(t )〉= (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (Dᾱ )2t2H ᾱ, (53)

while the mean TAMSD at short lag times behaves as

〈δ2(�)〉= (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2 �2H

T 2H (1−ᾱ)
. (54)

The PDF of space-SFBM with clock (51) is described by a
non-Gaussian distribution of the form

P(y, t ) = 2
y1/ᾱ−1exp

(− y2/ᾱ

2K2H (D̄ᾱ )2/ᾱt2H

)√
2πᾱ2K2H (D̄ᾱ )2/ᾱt2H

, (55)
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FIG. 6. MSD [Eq. (53)], TAMSDs, and mean TAMSD [Eq. (54)]
for space-SFBM with clock (51) for H = 0.8, ᾱ = 0.5, K2H = 1, and
D̄ᾱ = 1.

that follows from the PDF of FBM (9) after using a HDP-like
variable substitution y(x) = D̄ᾱ|x|ᾱ > 0 and the probability-
transformation law PFBM(x)dx = P(y)dy. The aging factor of
this process is (as follows from (54))

�(T ) � T 2H (ᾱ−1). (56)

In Fig. 6 the simulations-based MSD and the mean
TAMSD of space-SFBM with Eq. (51) for H = 0.8 and ᾱ =
0.5 demonstrate good agreement with theory. Note that for the
MSD the agreement is quantitative at all times, while for the
TAMSD at � � T the magnitude agrees well, whereas for
intermediate and long lag times some deviations between the
theory and respective in silico experiments occur. The larger
the exponent ᾱ is, the better the agreement between the mean
TAMSD from computer simulations and the analytical predic-
tions become (results not shown). The PDF of space-SFBM
with transformation (51) is non-Gaussian (see Fig. 21), with
perfect agreement of theory and simulations. In Fig. 22 the
aging factor—in its variation with T —is presented.

B. Ultraslow diffusion with G(x) = D̄β̄ logβ̄(|x|/x0 + 1)

Space-SFBM with

G(x) = D̄β̄ logβ̄ (|x|/x0 + 1) (57)

describes ultraslow diffusion, with β̄ > 0. With units

[D̄β̄] = m1, (58)

the MSD describing the simulation data grows as

〈y2(t )〉 ≈ D̄2
β̄

log2β̄
(√

2K2Ht2H/x0 + 1
)
. (59)

The PDF of space-SFBM with (57) has—for large particle
displacements and at long times—the non-Gaussian form

P(y, t ) = 2
(y/D̄β̄ )1/β̄−1e(y/D̄β̄ )1/β̄

exp

[
−

(
e

(y/D̄
β̄

)1/β̄ −1
)2

2K2H t2H /x2
0

]
D̄β̄

√
2πβ̄2K2Ht2H/x2

0

. (60)

To derive MSD (59), as in Sec. IV A, we can use the PDF
of FBM (9) and transform the variables x = q

√
2K2Ht2H that

for 〈y2(t )〉 = 2
∫ ∞

0 G2(x)PFBM(x, t )dx yield

〈y2(t )〉 =
2D̄2

β̄√
π

∫ ∞

0
log2β̄

(√
2K2Ht2H q

x0
+ 1

)
e−q2

dq. (61)

At long times, to the same level of approximation as in
Eqs. (59) and (60), this can be written in terms of a polynomial
expansion (with n = 2β̄)

〈y2(t )〉 ≈
2D̄2

β̄√
π

∫ ∞

0

(
log q + log

√
2K2Ht2H

x0

)2β̄

e−q2
dq

≈
2D̄2

β̄√
π

n∑
k=0

(
n
k

)[
log

√
2K2Ht2H

x0

]n−k

×
∫ ∞

0
(log q)ke−q2

dq. (62)

Here
(

n
k

) = n!
k!(n−k)! is the binomial coefficient. Due to the

exponential decay, the integrals over q converge for all k
values to Ck = ∫ ∞

0 (log q)ke−q2
dq (for k = 0, e.g., we get

C0 = √
π/2). The leading term of Eq. (62) obtained at k = 0

gives the MSD expression (59); for small values of β̄ this is
the only term in the sum (62).

1. Case 0 < H < 1/2

The mean TAMSD of space-SFBM at 0 < H < 1/2 for
T/� → ∞ is

〈δ2(�)〉 ≈ D̄2
β̄

log2H (2β̄−2)
[(

2K2H T 2H/x2
0

)1/(2H )]
T 2H

�2H , (63)

with the aging function (given by its prefactor) as

�(T ) � log2H (2β̄−2)
[(

2K2H T 2H/x2
0

)1/(2H )]
T 2H

. (64)

2. Case H > 1/2

The MSD for ultraslow diffusion for H � 1/2 still follows
expression (59), while the mean TAMSD for T/� 	 ∞ be-
comes

〈δ2(�)〉 ≈ D̄2
β̄

(
2K2H/x2

0

)1−1/(2H ) �
2H

T
. (65)

The aging factor at � = 1 for H � 1/2 is thus

�(T ) � (1/T ). (66)

3. Graphical results

The simulated MSD and the mean TAMSD presented in
Fig. 7 for space-SFBM with Eq. (57) at H = 0.8 and β̄ = 2
agree nicely with the theory. The PDF of this process shown
in Fig. 23 is non-Gaussian, with a similar consistency of
theoretical and simulation results. The good consistency is
also found for the aging factor in Fig. 24, as a function of
varying observation time T .
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FIG. 7. MSD [Eq. (59)], TAMSDs, and mean TAMSD [Eq. (65)]
for space-SFBM with clock (57) for H = 0.8, β̄ = 2, x0 = 1, K2H =
1, and D̄β̄ = 1.

C. Superfast diffusion with G(x) = D̄κ̄eκ̄x

The process of space-SFBM describes superfast diffusion
when

G(x) = D̄κ̄eκ̄x, (67)

where κ̄ > 0 is the reciprocal length scale of G(x) variation
(with [κ̄]=1/m and [D̄κ̄ ] = m1), with the MSD

〈y2(t )〉 = D̄
2
κ̄ exp(2κ̄2K2Ht2H ). (68)

The PDF of space-SFBM with clock (67) is expectedly not a
Gaussian, but rather a modified log-normal distribution

P(y, t ) = exp

(
− [log(y/D̄κ̄ )]2

2K2H κ̄2t2H

)
/
√

2πy2K2H κ̄2t2H . (69)

The mean TAMSD for this superfast MSD diffusion for
�/T � 1 is

〈δ2(�)〉 = D̄
2
κ̄

e2K2H κ̄2T 2H

T 2H
�2H , (70)

whereas the aging factor is

�(T ) � e2K2H κ̄2T 2H

T 2H
. (71)

In Fig. 8 the results for the MSD and the mean TAMSD
for space-SFBM with (67) for H = 0.8 and κ̄ = 0.05 are
illustrated. In Fig. 25 the log-normal PDF of this process is
shown, also revealing a quantitative agreement of theory and
simulations. In Fig. 26 the results for the aging factor (71) are
presented.

V. TIME-SPACE-SFBM

A. General concepts

Here, we present some results for the process of time-
space-SFBM, which generalizes FBM, SBM, and HDPs (see

FIG. 8. MSD [Eq. (68)], TAMSDs, and mean TAMSD [Eq. (70)]
for the space SFBM with (67) for H = 0.8, κ̄ = 0.05, K2H = 1, and
D̄κ̄ = 1.

below). Time-space-SFBM is effectively FBM running with a
nonlinear space- and time-clock

z(t ) = G(BH (F (t ))), (72)

where F (t ) and G(x) are smooth functions. Below, to stay
concise, we present the results for time-space-SFBM only for
a power-law space clock

G(x) = D̄ᾱ|x|ᾱ (73)

as per Eq. (51) used in the case of space-SFBM in Sec. IV and
for the same three cases of the time-clock F (t ) used for time-
SFBM in Sec. III. Analogously to time- and space-SFBM
considered in Secs. III and IV, correspondingly, we demon-
strate below that time-space-SFBM with all these choices of
clocks is nonergodic and aging.

Combining the properties of time-SFBM [Eq. (19)] and
space-SFBM [Eq. (53)], the PDF of time-space-SFBM is gen-
erally non-Gaussian,

P(z, t ) = 2
z1/ᾱ−1 exp

( − (
z2

(2K2H )ᾱ (D̄ᾱ )2[F (t )]2H ᾱ

)1/ᾱ)√
2πᾱ2[(K2H )ᾱ (D̄ᾱ )2[F (t )]2H ᾱ]1/ᾱ

, (74)

and its MSD—with the chosen coefficients for fractional
Gaussian noise, as well as of the space and time dependencies
of the diffusion coefficient—reads

〈z2(t )〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2[F (t )]2H ᾱ . (75)

The factor 2 in Eq. (74) (and in the PDF relations below) stems
from the definitions (72) and (51) reducing the domain of
definition of this process to the z > 0 region. This fact finds its
reflection also in the PDF plots presented in the Appendix A,
all showing only one “wing” of the particle-position distribu-
tion functions.
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B. Limiting behaviors of space-time-SFBM: HDP, SBM-HDP,
SBM, FBM-HDP, and FBM with diffusing diffusivity

Naturally, the most general space-time-SFBM process re-
duces to a number of previously investigated anomalous
stochastic processes for the following choices of exponents
of the time- and space-transformation functions.

(i) For the choice H = 1/2, with G(x) = D̄ᾱ|x|ᾱ , and with
F (t ) = D1t1 we arrive at the HDP with (after setting ᾱ = p

and redefining the coefficients as D̄2/ᾱ
ᾱ = (2/p)2D0, HDP

2K1D1
to get the

form of Eqs. (2) and (3) in Ref. [58]) the PDF

P(z, t ) = 2
z1/p−1 exp

(− z2/p

(2/p)2D0,HDPt

)√
4πD0,HDPt

, (76)

and the MSD

〈z2(t )〉 =
∫ ∞

0
z2P(z, t )dz = (p + 1/2)√

π

(
2

p

)2p

(D0,HDP)pt p.

(77)

(ii) For H = 1/2, G(x) = D̄ᾱ|x|ᾱ , and F (t ) = Dαtα the
process of space-time-SFBM reduces to SBM-HDP with (set-
ting ᾱ = p and redefining the exponent α = βSBM-HDP + 1 and

the coefficients D̄2/ᾱ
ᾱ = (2/p)2D0,SBM-HDP

2K1Dα
to get Eqs. (18) and (20)

in Ref. [61]) the general PDF (74) that turns into

P(z, t ) = 2
z1/p−1 exp

(− z2/p

(2/p)2D0,SBM-HDPtα

)√
4πD0,SBM-HDPtα

, (78)

and the MSD

〈z2(t )〉 = (p + 1/2)√
π

(
2

p

)2p

(D0,SBM-HDP)ptα×p. (79)

(iii) For H = 1/2, ᾱ = 1, and F (t ) = Dαtα time-space-
SFBM with Eqs. (74) and (75) yields (with the redefinition
Kα,SBM = K1D̄2

1Dα) the process of SBM featuring the PDF

P(z, t ) = 2exp

(
− z2

2Kα,SBMtα

)
/
√

2πKα,SBMtα (80)

and the MSD

〈z2(t )〉 = Kα,SBMtα. (81)

(iv) For arbitrary H values, G(x) = D̄ᾱ|x|ᾱ , and F (t ) =
D1t1 space-time-SFBM turns (with the substitution ᾱ = p and

D̄2/ᾱ
ᾱ = (2/p)2D0,FBM-HDP

2K2H D2H
1

to get the equivalence with Eqs. (38)
and (40) in Ref. [60]) into the process of FBM-HDP with the
PDF

P(z, t ) = 2
z1/p−1 exp

(− z2/p

(2/p)2D0,FBM-HDPt2H

)√
4πD0,FBM-HDPt2H

, (82)

and the MSD

〈z2(t )〉 = (p + 1/2)√
π

(
2

p

)2p(
D0,FBM-HDP

)p
t p×2H . (83)

In turn, FBM-HDP turns into HDP at H = 1/2 and into FBM
at p = 1. Lastly, we note that—similarly to the limiting be-
haviors of space-time-SFBM—the process of space-SFBM
considered in Sec. IV with H = 1/2 turns into HDP (with

variable ᾱ) and with ᾱ = 1 it becomes FBM (with variable
2H).

(v) Finally, stochastic processes of BM with diffusing
diffusivity and FBM with diffusing diffusivity with, respec-
tively, normal MSD(t ) ∝ t [82] and non-Fickian MSD(t ) ∝
t2H [69,70] can in some aspects be modeled by time-space-
SFBM. Note that the PDFs of many diffusing-diffusivity
models feature a crossover from a Laplacian at short times
to a Gaussian at long times. This can be mimicked by time-
space-SFBM with different model parameters in the current
consideration. For instance, for time-space-SFBM (72) with
functions F (t ) (29) and G(x) (51) with α = 1/2 and ᾱ = 2
we arrive at the Laplacian PDF

P(z, t ) =
z−1/2exp

(− z
2K2H D̄2D2H

1/2tH

)
√

2πK2H D̄2D2H
1/2tH

, (84)

and the MSD

〈x2(t )〉 = 3K2
2H D̄2

2D4H
1/2 × tH . (85)

In contrast, for α = 1 and ᾱ = 1 the Gaussian distribution

P(z, t ) = 2
exp

(− z2

2K2H D̄2
1D2H

1 t2H

)√
2πK2H D̄2

1D2H
1 t2H

(86)

and the MSD

〈x2(t )〉 = K2H D̄2
1D2H

1 × t2H (87)

are obtained. For comparison, for the FBM-diffusing-
diffusivity model in the entire range of times in the domain
of the Hurst exponent 1/2 < H < 1, the MSD is (see Eq. (20)
in Ref. [69])

〈z2(t )〉 ≈ D2H,FBM-DD × t2H . (88)

Here, the diffusion coefficient is expressed via the strength
of the noise σ causing diffusivity fluctuations and the cor-
relation time of FBM-(diffusing diffusivity) τ as follows
D2H,FBM-DD = (2π )−1D̃2Hσ 2τ .

Note also that introduction of distinct diffusion coefficients
for the parental processes enables a systematic consideration
and allows us to change the contribution of the space, time,
and noise effects into the final process separately. This, to-
gether with the unit definitions (8), (52), (30) and with a
redefinition of the diffusivities (as conducted above), also
helps in checking the physical dimensions at each step of the
calculation.

C. Anomalous diffusion with F(t ) = Dαtα

For time-space-SFBM with clocks (51) and (29) the MSD
is given by

〈z2(t )〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2(Dα )2H ᾱt2H ᾱα, (89)

the mean TAMSD follows the dependence

〈δ2(�)〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2(Dα )2H ᾱ �2H

T 2H (1−ᾱα)
,

(90)

034113-11



LIANG, WANG, METZLER, AND CHERSTVY PHYSICAL REVIEW E 108, 034113 (2023)

FIG. 9. MSD [Eq. (89)], TAMSDs, and mean TAMSD [Eq. (90)]
for time-space-SFBM with clocks (29) and (51) for H = 0.8, K2H =
1, α = 1.5 (time clock), ᾱ = 0.5 (space clock), D̄ᾱ = 1, and Dα = 1.

and the aging factor at short lag times has the form

�(T ) � T 2H (ᾱα−1). (91)

The MSD, the TAMSDs, and the mean TAMSD of time-
space-SFBM with (29) and (51) are illustrated in Fig. 9,
revealing a nice consistency between the theoretical predic-
tions and simulations. The PDF of this process is shown in
Fig. 27 for the same values of the exponents and model param-
eters. The aging factor is presented for varying observation
times T in Fig. 28.

D. Ultraslow diffusion with F(t ) = Dβ[log (t/τ + 1)]β

Time-space-SFBM represents ultraslow diffusion with
clocks (51) and (34) yielding the MSD

〈z2(t )〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2(Dβ )2H ᾱ

× [log(t/τ + 1)]2H ᾱβ . (92)

1. Case 0 < H < 1/2

The mean TAMSD at 0 < H < 1/2 is

〈δ2(�)〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2(Dβ )2H ᾱ

τ 2H−1

× �2H

T

[
log

(
T

τ

)]2H (ᾱβ−1)+1

× M[2H (ᾱβ − 1) + 1, 2H (ᾱβ − 1) + 2,

(1 − 2H ) log(T/τ )], (93)

that for long trajectories and short lag times turns into

〈δ2(�)〉 � (K2H )ᾱ (D̄ᾱ )2(Dβ )2H ᾱ

× log2H (ᾱβ−1)(T/τ )

T 2H
�2H . (94)

FIG. 10. MSD [Eq. (92)], TAMSDs, and mean TAMSD
[Eq. (96)] of time-space-SFBM with clocks (51) and (34) for H =
0.8, K2H = 1, β = 2, ᾱ = 0.5, τ = 10 × dt , D̄ᾱ = 1, and Dβ = 1.

The aging factor of this process at H < 1/2 is thus

�(T ) � log2H (ᾱβ−1)(T/τ )

T 2H
. (95)

2. Case H > 1/2

The mean TAMSD of space-time-SFBM at H > 1/2 is

〈δ2(�)〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2(Dβ )2H ᾱ

× τ 1−2H (1/T )�2H

× γ [2H (ᾱβ − 1) + 1, (2H − 1) log(T/τ )],
(96)

where the function γ is given by Eq. (41). At T → ∞ this
mean TAMSD turns into

〈δ2(�)〉 � (K2H )ᾱ (D̄ᾱ )2(Dβ )2H ᾱ

× τ 1−2H (1/T )�2H . (97)

The aging effect for H > 1/2 is (cf. Sec. III B)

�(T ) � (1/T ). (98)

3. Graphical results

Figure 10 summarizes the results for the MSD, the spread
of the TAMSDs, and the mean TAMSD for time-space-
SFBM with space- and time-transformations (51) and (34)
for H = 0.8, ᾱ = 0.5, and β = 2. Figure 29 illustrates the
non-Gaussian PDF of this process, with full consistency of
the theory and simulations. Figure 30 portrays the results for
the aging factor.

E. Superfast diffusion with F(t ) = Dκeκt

Time-space-SFBM with clocks (51) and (44), with 1/κ

being a characteristic timescale, has the exponentially fast
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FIG. 11. MSD [Eq. (99)], TAMSDs, and mean TAMSD
[Eq. (100)] for time-space-SFBM with dependencies (51) and (44)
for H = 0.8, K2H = 1, κ = 0.1, ᾱ = 0.5, D̄ᾱ = 1, and Dκ = 1.

growth of the MSD,

〈z2(t )〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2(Dκ )2H ᾱe2H ᾱκt , (99)

and the power-law evolution of the mean TAMSD,

〈δ2(�)〉 = (ᾱ + 1/2)√
π

2ᾱ (K2H )ᾱ (D̄ᾱ )2(Dκ )2H ᾱ

κ1−2H

× (e2H ᾱκT /T )�2H . (100)

The aging factor can therefore be expressed as

�(T ) � (e2H ᾱκT /T ). (101)

In Fig. 11 we illustrate the results for the MSD, the
TAMSDs, and the mean TAMSD of time-space-SFBM with
(51) and (44). Similarly to the observations for the MSD
and the TAMSD presented in Secs. IV A, V C, and V D, the
results for the mean TAMSD in Fig. 11 are in close agree-
ment with the simulations at short lag times only, while the
MSD agrees in the entire range of times; the mean TAMSD
at intermediate and long lag times deviates somewhat from
the theoretical predictions. Statistically most meaningful is
the region of short lag times, however [14]. In Fig. 31 we
show the simulated non-Gaussian PDF of this process, fully
corroborating the theoretical results. Figure 32 demonstrates
the behavior of the aging factor.

VI. DISCUSSION AND CONCLUSIONS

A. Main results

This paper extends the arsenal of “hybrid” models of
anomalous diffusion via presenting a compound stochastic
process of SFBM with nonlinear time- and space-related
clocks. The diffusion process of time-SFBM is anomalous,
Gaussian, nonergodic, and aging. The process of space-
SFBM is anomalous, non-Gaussian, nonergodic, and aging.
Therefore, the combined process of time-space-SFBM is
anomalous, non-Gaussian, nonergodic, and aging. The mul-
tifacetedness of all possible situations and functional forms of

the MSD, the TAMSD, and the TAMSD-aging dependencies
are summarized in Table II (see also Table I to compare these
scaling relations to those for other pure and hybrid diffusion
processes).

Time- and space-SFBM processes provide a general and
versatile framework for generating anomalous diffusion, of-
fering a great flexibility to describe a wide spectrum of
possible mechanisms, as observed in SPT studies. General-
izations of a nonlinear-clock approach to processes other than
FBM are possible. This underlines the significance of the
current theoretical SFBM development: as shown in Sec. V B,
SFBM includes a multitude of previously studied stochastic
processes as special cases. From the application viewpoint,
the spectrum of physical systems and observations where the
proposed processes of time- and space-SFBM are applicable
include all physical systems describable by parental processes
(see Secs. I C and I D) and goes well beyond these. With an
input from a given system helping to infer the transformation
functions F (t ) and G(x), SFBM enables to design the best
suited stochastic process to describe a given SPT data set.

Time-space-SFBM is a general process describing power-
law anomalous, ultraslow, and superfast diffusion. A vari-
ability of the scaling exponents of the MSD and the mean
TAMSD and their tunability via varying the clock parameters
is not only the strength and an essential distinction of SFBM
from the state-of-the-art approaches, but it also fits demands
of the SPT data [164] description. The assessment procedure
of the best-suited underlying diffusion process can thus be
conducted more accurately. The “pure” processes are often too
idealistic in terms of their initial basic postulates and have an
insufficient number of tunable parameters to properly reflect
the richness of a physical reality.

Based on the statistical features detected in a given data set
to be studied—including the scaling exponents in expression
(5), a distinct combination of the properties of nonergodicity,
non-Fickianity, non-Gaussianity, aging, etc.—a decision
should be taken whether a time-, space-, or time-space-SFBM
is the most appropriate process. For this, possible combina-
tions of the MSD and TAMSD exponents, TAMSD-aging
functional forms, as well as of the PDF forms derived for each
of these processes (as listed in Table II) should be compared
to those from the experimental data. As Table II manifests, in
contrast to a universal ∝�2H scaling of the mean TAMSD, the
exponents of the MSD, the space dependence of the PDFs, and
the form of the TAMSD aging functions are highly variable
for the chosen realizations of clock transformations in time-,
space-, and time-space-SFBM. For instance, only time-SFBM
is a Gaussian process, as Table I indicates. This offers a broad
spectrum of possibilities for the SPT experimentalists to find
a suitable SFBM to describe a given data set.

B. Other models and applications of SFBM

Let us now discuss and acknowledge other models and
alternative approaches implementing the concepts similar
to nonlinear clocks. Time-SBM running with a nonlinear
clock—so-called compressed and stretched BM—was first
constructed with independent nonstationary increments and
with an a priori MSD in Ref. [67]. Later, based on it, time-
SFBM was proposed and extensively studied on the MSD
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TABLE II. Summarized functional forms of the MSD, the TAMSD, and the TAMSD-aging dependencies for time-SFBM, space-SFBM,
time-space-SFBM, as well as some experimental SPT data sets as potential applications.

Processes ↓ Properties → 〈x2(t )〉 〈δ2(�)〉 〈δ2(� = 1, T )〉
Time-SFBM
F (t ) = Dαtα ∝t2Hα , Eq. (31) ∝�2H , Eq. (32) ∝T 2H (α−1), Eq. (33)
F (t ) = Dβ logβ (t/τ + 1)

0 < H < 1/2 ∝ log2Hβ (t/τ ), Eq. (35) ∝�2H , Eq. (38) ∝ log2H (β−1) (T )
T 2H , Eq. (39)

H > 1/2 ∝ log2Hβ (t/τ ), Eq. (35) ∝�2H , Eq. (42) ∝T −1, Eq. (43)
F (t ) = Dκeκt ∝e2Hκt , Eq. (45) ∝�2H , Eq. (46) ∝ e2HκT −1

T , Eq. (47)

Space-SFBM
G(x) = D̄ᾱ|x|ᾱ ∝t2H ᾱ , Eq. (53) ∝�2H , Eq. (54) ∝T 2H (ᾱ−1), Eq. (56)
G(x) = D̄β̄ logβ̄ (|x|/x0 + 1)

0 < H < 1/2 ∝ log2β̄ (
√

2tH + 1), Eq. (59) ∝�2H , Eq. (63) ∝ log2H (2β̄−2) (T )
T 2H , Eq. (64)

H � 1/2 ∝ log2β̄ (
√

2tH + 1), Eq. (59) ∝�2H , Eq. (65) ∝ (1/T ), Eq. (66)

G(x) = D̄κ̄eκ̄x ∝e2κ̄2t2H
, Eq. (68) ∝�2H , Eq. (70) ∝ e2κ̄2T 2H

T 2H , Eq. (71)

Time-space-SFBM
G(x) = D̄ᾱ|x|ᾱ for all F (t )
F (t ) = Dαtα ∝t2H ᾱα , Eq. (89) ∝�2H , Eq. (90) ∝T 2H (ᾱα−1), Eq. (91)
F (t ) = Dβ logβ (t/τ + 1)

0 < H < 1/2 ∝ log2H ᾱβ (t ), Eq. (92) ∝�2H , Eq. (94) ∝ log2H (ᾱβ−1) T
T 2H , Eq. (95)

H > 1/2 ∝ log2H ᾱβ (t ), Eq. (92) ∝�2H , Eq. (97) ∝(1/T ), Eq. (98)
F (t ) = Dκeκt ∝e2H ᾱκt , Eq. (99) ∝�2H , Eq. (100) ∝(e2H ᾱκT /T ), Eq. (101)

Subordinated FBM [183]:
Nav1.6 diffusion in hippocampal neurons ∝t0.35 ∝�0.81 ∝1/T 0.46

BM with random diffusivity [184]:
receptor motion in living cells ∝t0.84±0.05 ∝�0.95±0.05 ∝1/T 0.17±0.05

Subordinated FBM [185]:
intracellular transport of insulin granules Not presented ∝�0.76...0.84 ∝1/T 0.2...0.28

Random walk with power-law forgetting [186]:
time series of word counts in languages ∝ logα (t ) ∝ log(�) Not presented

Stochastic process of GBM [49,50]:
financial time series of stock-market prices ∝eσ 2t ∝�1 ∝(eσ 2T − 1)/T

Heterogeneous FBM (in time and space) [138]:
diffusion of hemocytes of Drosophila melanogaster ∝t1.2...1.5 ∝�1.2...1.5 Not presented

Subdiffusive CTRW, SBM, or HDPs [133]:
ergodicity breaking in silo unclogging
via broken arches ∝t0.4 ∝�1 ∝T −0.6

level [68,187], in terms of p variation [68], from the first-
passage-time [188] and multiscaling [189] perspective, as well
as for FBM sheets [190]. The advantage of our current work
is the invention of a general framework to generate arbitrary
time and space clocks for SFBM. It is also the examination
of both the MSD and the TAMSD (used much more often
in SPT) that enabled for the resulting compound process to
study the MSD-to-TAMSD nonequivalence and nonergodicity
as well as the properties of TAMSD aging.

As examples of applications, time-SBM with a power-law
clock was used to describe diffusion in confined nanofilms
near a strain-induced critical point [191], and time-SFBM
with the Mittag-Leffler clock function to rationalize ultra-
slow diffusion in porous media [192] (see also Ref. [193]).
Diffusion of chloride ions in concrete was also recently ac-
curately described with power-law time-SFBM [194]. FBM

with multiscaled clocks was also used, e.g., to mimic
diffusion of colloidal particles in microstructural fluids [195].
Interestingly, the extension of FBM [196] with nonlin-
early transforming spatial variables was investigated based
on a flexible covariance structure and fractal dimension,
opening new areas for random-field generation. More gen-
eral examples where nonstationary processes with nonlinear
clocks emerge are, among others, the dynamics of the ex-
panding universe, processes in growing biological cells,
non-Fickian dispersion in hierarchically permeable [197,198]
multiscale porous media [199–201] for hydrological ap-
plications, price fluctuations of stock-market indices in
time-varying conditions (e.g., in inflationary scenarios such
as in scaled GBM [152]), as well as the dispersion of
particles in variably (e.g., with acceleration) aging systems
[202].
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C. Perspective

From a theoretical viewpoint, as possible directions for
future developments of generalized stochastic processes with
nonlinear space and time clocks one can propose scenarios
of confined and reset time-space-SFBM. For the parental pro-
cesses, the studies of the potential- and box-confined FBM
[125–127], SBM [56], HDPs [89,90], and GBM [203] are
available as “landmarks”; the reset versions of FBM [115],
SBM [204,205], HDPs [115,206,207], and GBM [52,53] were
also examined recently. Additionally, other classes of specific
clock functions can be proposed [e.g., piecewise different
functional forms of F (t ) and G(x)] for addressing the physical
reality of a given system under investigation.

Finally, multifractal [208,209] scenarios of diffusion with,
e.g., power-law clocks F (t )∝tα(t ) with time-varying expo-
nent can further be proposed. Moreover, from a data-driven
perspective, choosing the most appropriate general stochastic
process of SFBM type for a given SPT data set based on the
values of the so-called Joseph, Moses, and Noah auxiliary
exponents [210,211], computed for the data vs the theory,
could offer one more model-assessment criterion, to supple-
ment those based on the MSD and TAMSD scaling relations
as well as the TAMSD trace-length dependence (5).

We believe that the process of SFBM will form a good
basis for development of advanced machine-learning or
Bayesian-inference approaches for in silico deciphering of
diffusion models behind measured anomalous-diffusion tra-
jectories. Such further developments will move forward the
field of generalized stochastic processes used as mathematical
tools for description of anomalous-diffusion data.
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APPENDIX A: SUPPLEMENTARY FIGURES

Here, we present Figs. 12–32 supporting the claims of the
main text.

FIG. 12. The same as in Fig. 3 computed for the choices (28) of
the time step ds.

FIG. 13. Simulational (blue circles) and theoretical results (solid
red curve) given by Eq. (25) of the PDF for the time-SFBM with (29)
at the specific time t = 100 for the values of H and α as in Fig. 3.

FIG. 14. Simulations (blue circles) and theoretical results (solid
curve) given by Eq. (33) for the aging factor � for time-SFBM with
Eq. (29), for H and α values as in Fig. 3.
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FIG. 15. The same as in Fig. 4 computed for the choices (28) of
the time step ds.

FIG. 16. PDF (25) of time-SFBM with (34) at t = 100, com-
puted for H and β as in Fig. 4.

FIG. 17. Aging factor �/[ log(T/τ )]
2H (β−1)

[Eq. (39)] of time-
SFBM with F (t ) [Eq. (34)], shown for the same H and β as in Fig. 4.

FIG. 18. The same as in Fig. 5 computed for the choices (28) of
the time step ds.

FIG. 19. PDF (25) of time-SFBM with (44) at t = 100, for H
and κ as in Fig. 5.

FIG. 20. Aging factor � [Eq. (47)] for time-SFBM with (44), for
H and κ as in Fig. 5.
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FIG. 21. PDF (55) of space-SFBM with (51) at t = 100, com-
puted for H and ᾱ as in Fig. 6.

FIG. 22. Aging factor � [Eq. (56)] for space-SFBM with (51)
for H and ᾱ as in Fig. 6.

FIG. 23. PDF (55) of space-SFBM with (57) at t = 100, com-
puted for H and β̄ as in Fig. 7.

FIG. 24. Aging factor � [Eq. (66)] for space-SFBM with (57)
for H and β̄ as in Fig. 7.

FIG. 25. PDF (69) of space-SFBM with (67) at t = 100, com-
puted for H and κ̄ as in Fig. 8.

FIG. 26. Aging factor � [Eq. (67)] for space-SFBM with (67)
for H and κ̄ as in Fig. 8.

FIG. 27. PDF (74) of time-space-SFBM with (29) and (51) at
t = 100, computed for H , α, and ᾱ as in Fig. 9.

FIG. 28. Aging factor � [Eq. (91)] for time-space-SFBM with
(29) and (51) for H , α, and ᾱ as in Fig. 9.
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FIG. 29. PDF (74) of time-space-SFBM with (51) and (34) at
t = 100, computed for H , ᾱ, and β as in Fig. 10.

FIG. 30. Aging factor � [Eq. (98)] for time-space-SFBM with
(51) and (34) for H , ᾱ, and β as in Fig. 10.

FIG. 31. PDF (74) of time-space-SFBM with (51) and (44) at
t = 100, computed for H , κ , and ᾱ as in Fig. 11.

FIG. 32. Aging factor � [Eq. (101)] for time-space-SFBM with
(51) and (34) for H , κ , and ᾱ as in Fig. 11.

APPENDIX B: ABBREVIATIONS

Single-particle tracking, SPT; probability-density function, PDF; mean-squared displacement, MSD; time-averaged MSD,
TAMSD; Brownian motion, BM; scaled BM, SBM; fractional BM, FBM; scaled FBM, SFBM; geometric BM, GBM;
continuous-time random walks, CTRWs; heterogeneous diffusion processes, HDPs.
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