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ABSTRACT

Modern experiments routinely produce extensive data of the diffusive dynamics of tracer particles in a large range of systems. Often, the
measured diffusion turns out to deviate from the laws of Brownian motion, i.e., it is anomalous. Considerable effort has been put in conceiv-
ing methods to extract the exact parameters underlying the diffusive dynamics. Mostly, this has been done for unconfined motion of the tracer
particle. Here, we consider the case when the particle is confined by an external harmonic potential, e.g., in an optical trap. The anomalous
particle dynamics is described by the fractional Ornstein–Uhlenbeck process, for which we establish new estimators for the parameters. Specif-
ically, by calculating the empirical quadratic variation of a single trajectory, we are able to recover the subordination process governing the
particle motion and use it as a basis for the parameter estimation. The statistical properties of the estimators are evaluated from simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0158843

Recent advances in single particle tracking experiments
confirmed that various complex systems display anomalous,
nonlinear in time mean squared displacement. Here, we ana-
lyze the dynamics of anomalous subdiffusive fractional Orn-
stein–Uhlenbeck process. This process is conveniently described
by the fractional (in time) Fokker–Planck equation in the pres-
ence of harmonic potential. Equivalently, it can be described by
subordinating the classical Ornstein–Uhlenbeck process. Using
this fact, we establish dedicated estimators for the parameters of
the anomalous diffusion of a test particle in a confining harmonic
potential. To contract the estimators, we employ the empiri-
cal quadratic variation of a single trajectory. We evaluate the
statistical properties of the estimators by extensive simulations.

I. INTRODUCTION

After Einstein and Smoluchowski published their theories
for diffusion,1,2 Perrin realized the potential to extract Avogadro’s
number from diffusive measurements,3 an approach that was

further improved by Nordlund4 and a whole series of scientists. In
turn, Smoluchowski derived the reaction rate of molecules following
their diffusive encounter.5 Today, measuring diffusive properties of
tracer particles in complex environments such as soft and bio matter
inform about materials properties and biological processes in living
cells or tissues.6–9

In many examples, the measured diffusive dynamics is anoma-
lous in the sense that the mean squared displacement (MSD) of the
tracked particle follows the power-law form11–13

〈x2(t)〉 ' Kαt
α , (1)

where Kα with dimensions length/timeα is the generalized diffu-
sion coefficient and α is the anomalous diffusion exponent. We
distinguish subdiffusion (0 < α < 1) and superdiffusion (α > 1),
including the limiting cases of normal Brownian diffusion with
α = 1 and wave-like, ballistic propagation for α = 2. As shown
by Einstein and Smoluchowski, Brownian motion emerges from a
stochastic process when its increments are independent, identically
distributed random variables with finite variance.14,15 Violation of
one or more of these conditions gives rise to anomalous diffusion.
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In cases where the MSD is not well defined (for example, in
the case of stable processes), one can replace MSD in (1) with the
fractional moments

〈|x(t)|q〉 ∼ tcq. (2)

Then, the case c > 1/2 is typical for superdiffusion and c < 1/2 is
characteristic for subdiffusion.

Following the detailed diffusive characteristics unveiled by
experiments in many different systems, a large range of differ-
ent anomalous diffusion processes have been established.16–18 Given
the variety of possible processes that may effect the MSD (1)
with given values of α and Kα , from an application point of
view, it is important to extract the underlying parameters but
also the exact anomalous diffusion process for a given system.
Different approaches have been conceived, such as complemen-
tary stochastic observables,17,19–24 Bayesian maximum likelihood
methods,25–28 q-moments,29 p-variation,30,31 as well as machine learn-
ing approaches.32–36

Most of these approaches are designed for the analysis of
unconfined motion. Here, we establish dedicated estimators for the
parameters of the anomalous diffusion of a test particle in a confin-
ing harmonic potential. We describe the dynamics of the particle by
the fractional Ornstein–Uhlenbeck process,10,11 which corresponds
to a subdiffusive continuous time random (CTRW) experiencing
a restoring linear force. Subdiffusive CTRWs are characterized as
jump processes whose jump lengths are drawn from a Gaussian
density, while they experience random waiting times between suc-
cessive jumps that are governed by long-tailed densities of the form
ψ(τ) ' τ−1−α with 0 < α < 1 such that the characteristic waiting
time 〈τ 〉 diverges.11,16,37

Long-tailed waiting time densities were experimentally
observed for the motion of potassium channels in cell membranes,38

tracer motion in actin gels,39,40 messenger ribonucleoprotein trans-
port in neuron cells,41 functionalized colloidal particles along a com-
plementarily functionalized surface,42 in weakly chaotic systems,43

in porous media,44 and even for the search mode of tracked kites.45

In simulations, power-law waiting times were, i.a., observed for the
motion of drug molecules in silica slabs.46

Harmonic oscillators are prototype systems in physics. In the
context of single particle tracking, they naturally occur when the
tracked particle is initially placed at the bottom of a harmonic trap
potential in an optical tweezer setup and the stiffness of the trap
is chosen to be low.8,47–49 Alternatively, a tracer attached to a flex-
ible polymer, whose other end is fixed, will experience a Hookean
force.50 We also mention internal protein dynamics monitored by
the relative motion of two labeled amino acids, which are linked by
a number of amino acids along the sequence.51 Harmonic confine-
ment can also be viewed as a simple model for home-ranging effects
in the movement dynamics of animals.

In this paper, we employ the idea of quadratic variation and
propose dedicated estimators for the associated model parameters.
We verify their statistical properties using simulations of the under-
lying stochastic process. The paper is organized as follows. In Sec. II,
we introduce the fractional Ornstein–Uhlenbeck process and recall
its main properties. Next, in Sec. III, we propose new estimators for
the parameters of this process. The accuracy of these estimators is

then evaluated on the basis of extensive simulations in Sec. IV. In
Sec. V, we draw our conclusions.

II. FRACTIONAL ORNSTEIN–UHLENBECK PROCESS

The fractional Ornstein–Uhlenbeck process Xα(t) is given by
the subordination scheme,52–55

Xα(t) = X(Sα(t)), t ∈ [0, T], (3)

where X(t) is the standard Ornstein–Uhlenbeck process, given as the
solution of the Îto stochastic differential equation14,56

dX(τ ) = −λ1X(τ )dτ + (2K1)
1/2dB(τ ), X(0) = 0, (4)

where λ1 > 0 and K1 > 0. Here, the stochastic driving force is the
differential of the Wiener process B(τ ). Moreover, λ1 corresponds
to the strength of the trapping harmonic potential, corresponding
to the inverse correlation time of the Ornstein–Uhlenbeck pro-
cess. The mapping of the Brownian Ornstein–Uhlenbeck process
X(τ ) as a function of the time τ (operational time correspond-
ing to the number of steps57,58) to the process time t of the frac-
tional Ornstein–Uhlenbeck process Xα(t) is given in terms of a
subordinator.59–61 In our notation, this mapping is based on Sα(t),
the inverse α-stable subordinator, defined as52–55

Sα(t) = inf{τ > 0 : Uα(τ ) > t}, (5)

where Uα(t) is the α-stable subordinator with Laplace transform〈
exp (−uUα(τ ))

〉
= exp (−τuα).

Sample trajectories of the process Xα(t) are plotted in Fig. 1.
Note that the subordination in formula (3) changes the time scale
of the Ornstein–Uhlenbeck process. For every jump of the process
Uα(τ ), there is a flat period in its inverse, Sα(t), yielding equal val-
ues of the process Xα(t) over the corresponding waiting time. The
constant periods are clearly visible in Fig. 1, and their length is
longer for lower values of the parameter α, i.e., heavier tails of the
corresponding α-stable distribution.

The probability density function (PDF) w(x, t) of the process
Xα(t) is the solution of the fractional Fokker-Planck equation10,11,53

∂w(x, t)

∂t
= 0D

1−α
t

[
−λαx + Kα

∂2

∂x2

]
w(x, t), (6)

where λα is the generalized inverse correlation time of the frac-
tional Ornstein–Uhlenbeck process with dimension (sec−α).11 The
operator 0D

1−α
t with α ∈ (0, 1) is the fractional Riemann–Liouville

derivative.11 Hence, the fractionality of the considered process is
related to time.

III. ESTIMATION OF PARAMETERS

In this section, we propose new estimators for the parameters
of the fractional Ornstein–Uhlenbeck process Xα(t), based on prop-
erties of the corresponding quadratic variation V2(t). Specifically,
we use the fact that the inverse subordinator Sα(t) is linked with the
quadratic variation of Xα(t) in the following way:23

V(2)(t) = 2KSα(t). (7)

Hence, the subordinator Sα(t) can be recovered from the pro-
cess V2(t). Having a trajectory of the process Xα(t), its quadratic
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FIG. 1. Sample trajectories of the fractional Ornstein–Uhlenbeck process with λα = 0.1 (upper panel), λα = 1 (middle panel), or λα = 10 (bottom panel) and
α ∈ {0.6, 0.75, 0.9}, Kα = 1, for time step1t = 10−4.

variation can be estimated using its empirical form

V̂2(t) =

n∑

k=1

[
Xα(tk)− Xα (tk−1)

]2
, (8)

where (t0, t1, . . . , tn) is a given partition of the interval [0, t].
In the subordinator picture, flat periods of Sα(t) correspond

to the jumps of the process Uα(t). Hence, their lengths constitute
an independent, identically distributed sample of totally skewed
α-stable random variables. This sample can be approximately recov-
ered from a trajectory of Xα(t), using the formulas (7) and (8), as the
sample of the lengths of constant periods in the estimated quadratic
variation process V̂2(t). Moreover, the value of the parameter α can
be estimated from that sample using one of the known estimation
methods for the parameters of the α-stable distribution. In the fol-
lowing, we will use the regression62 as well as McCulloch63 methods,
for other methods see, e.g., Refs. 64 and 65.

Next, we introduce the estimator of the scale parameter Kα . To
this end, we use the quadratic variation properties (7) and (8) along

with the fact that66

〈Sα(t)〉 =
tα

0(α + 1)
, (9)

where 0 is the complete Gamma function.
Taking the last value from the considered interval [0, T] in (9)

and rearranging Eq. (7), we obtain the estimator K̂α ,

K̂α =
0(α̂ + 1)

2Tα̂
V̂(2)(T), (10)

where α̂ is the value of the previously estimated α parameter.
We now use the least squares technique to derive a new estima-

tor for the parameter λα . We recall that Xα(t) = X(Sα(t)), where X
satisfies Eq. (4). Therefore, Xα is the solution of

dXα(t) = −λαXα(t)dSα(t)+ (2Kα)
1
2 dB(Sα(t)), (11)

and rearranging we have

dXα(t)

dSα(t)
+ λαXα(t) = (2Kα)

1
2 bα(t), (12)
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where bα(t) = dB(Sα (t))
dSα (t)

is the subdiffusive white noise. Now, to
obtain the least squares estimator of λα , we want to minimize the
integral from the square of the left side of the above equation, i.e., to
minimize the following expression with respect to λα ,

∫ T

0

∣∣∣∣
dXα(t)

dSα(t)
+ λαXα(t)

∣∣∣∣
2

dSα(t)

=

∫ T

0

∣∣∣∣
dXα(t)

dSα(t)

∣∣∣∣
2

dSα(t)

+ 2λα

∫ T

0
Xα(t)dXα(t)+ λ2

α

∫ T

0
X2
α(t)dSα(t). (13)

Finally, the above expression is the standard quadratic polynomial
with respect to λα . Its minimum is attained for

λ̂α = −

∫ T

0 Xα(t)dXα(t)∫ T

0 X2
α(t)dSα(t)

, (14)

Formula (14) describes our new estimator of λα . Note that for prac-
tical uses, the integrals in (14) are approximated using partial sums
and Sα(t) is recovered from Eqs. (7), (8), and (10), i.e.,

Ŝα(t) =
V̂2(t)

2K̂α
. (15)

FIG. 2. Boxplots of the percentage errors (PEs) of the α-estimator obtained from 103 simulated trajectories of the fractional Ornstein–Uhlenbeck process using the regression
(left panels) or McCulloch (right panels) methods. Results for different α parameters (0.6, 0.7, 0.8, or 0.9) are plotted in different rows. The other parameters were set to
Kα = 1 and λα = 1, and we chose T = 1. The number of trajectory points was equal to n = 103, n = 104, or n = 105.
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IV. SIMULATIONS

In order to verify the performance of the proposed estimators,
we simulate 103 trajectories of the fractional Ornstein–Uhlenbeck
process with n = 103, n = 104, or n = 105 points on the time inter-
val [0,1], i.e., with time steps 1t = T

n
equal to 10−3, 10−4, and

10−5, respectively. The parameters are set to α ∈ {0.6, 0.7, 0.8, 0.9},
Kα ∈ {0.1, 1, 10}, λα ∈ {0.1K, K, 10K}. For practical illustration, in
the Appendix, we also show sample results obtained for a lower
number of trajectories.

We start with the calculation of the percentage errors (PEs) of
the estimated values. The PE of an estimator is obtained as

PE(θ) =
θ̂ − θ

θ
, (16)

where θ̂ is the estimator of the parameter θ .
In Fig. 2, we show the boxplots of the obtained PEs of the α

estimator based on the regression as well as the McCulloch meth-
ods. The other parameters were set to Kα = 1 and λα = 1. Recall
that a boxplot is a visualization of a distribution. Concretely, the
box indicates the range between the 25th and 75th percentile, the
central red line is the median and the whiskers extend to the most
extreme data points not considered to be outliers, while the red
crosses mark the outliers. In all cases, the widths of the boxplots
decrease with the sample size. This convergence is slightly faster for
the regression method. However, especially for larger values of α
both estimators are biased, yielding lower estimates than the true
value. This effect is more pronounced for the regression method. In
this case, for α ≥ 0.7, the true value lies outside the range expected
from the estimator distribution. Hence, for the estimation of Kα and
λα parameters, we will use α estimates obtained from the McCulloch

method. Bias of the estimators is caused by the fact that the data are
observed in the discrete time point only; therefore, in the analyzed
samples, observations shorter than 1t are not available. Also, it is a
general rule that the estimators of stable index perform worse for α
close to two.

The boxplots of the PEs of λ̂α and K̂α are plotted in Fig. 3. The
other parameters were set to α = 0.7 and Kα = 1 for the λα param-
eter or α = 0.7 and λα = 1 for the Kα estimation, respectively. For
both parameters, the convergence of the estimator distribution with
a growing number of trajectory points is barely visible. In the case of
the Kα parameter estimates, the PEs have a similar distribution for all
choices of the true parameter with medians close to the true value.
For the λα parameter, the situation is different. Here, the PEs are
much larger for smaller values of λα than Kα . The most accurate esti-
mates were obtained for λα = 10 with the smallest percentage errors
and median close to the true value. Note that for relatively large Kα
and relatively small λα , the strength of the noise obscures the action
of harmonic potential. In such cases, as expected, the estimation of
λα is biased.

Next, we calculate the means and standard errors (se) of the
estimated values for all considered combinations of the process
parameters and the longest trajectories with n = 105 points. Recall
that the standard error of the estimator is equal to the standard devi-
ation of the difference between the estimator and the true value of
the parameter,

se
(
θ̂
)

=

√〈
θ̂ − θ)2

〉
. (17)

The obtained values are given in Table I. The corresponding box-
plots of the obtained estimates are depicted in Figs. 4–6 for α, Kα ,
and λα , respectively. For the estimation of Kα and λα , we use the α

FIG. 3. Boxplots of the PEs of Kα (upper panels) and λα (bottom panels) estimator obtained from 103 simulated trajectories of the fractional Ornstein–Uhlenbeck process
with different values of Kα and λα . The other parameters were set to λα = 1, α = 0.7, T = 1, or Kα = 1, α = 0.7, and T = 1 for the estimation of Kα or λα , respectively.
The number of trajectory points was equal to n = 103, n = 104, and n = 105.
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TABLE I. Means and standard errors (se) of the estimated parameters based on 103 trajectories of the fractional Ornstein–Uhlenbeck process simulated with n= 105 points on

the interval [0,1] with different values of the parameters α, Kα , and λα . The parameter α is estimated using the regression (reg) or McCulloch (MC) methods.

Simulated Estimated parameters

parameters α - reg α - MC Kα λα

α Kα λα Mean se Mean se Mean se Mean se

0.60 0.10 0.01 0.54 0.11 0.59 0.10 0.10 0.07 1.55 2.77
0.60 0.10 0.10 0.54 0.12 0.59 0.10 0.10 0.07 1.67 2.75
0.60 0.10 1.00 0.54 0.12 0.60 0.12 0.10 0.07 2.64 3.32
0.60 1.00 0.10 0.55 0.15 0.60 0.13 1.00 0.66 1.61 2.73
0.60 1.00 1.00 0.54 0.09 0.58 0.07 1.02 0.70 2.67 3.01
0.60 1.00 10.00 0.54 0.12 0.59 0.10 0.97 0.65 11.18 8.11
0.60 10.00 1.00 0.54 0.14 0.60 0.14 9.68 6.50 2.76 3.38
0.60 10.00 10.00 0.53 0.10 0.59 0.08 9.94 6.72 11.41 8.00
0.60 10.00 100.00 0.54 0.10 0.59 0.08 9.23 6.03 85.00 55.63

0.70 0.10 0.01 0.59 0.06 0.65 0.06 0.10 0.06 1.27 2.49
0.70 0.10 0.10 0.59 0.05 0.65 0.06 0.10 0.06 1.71 2.92
0.70 0.10 1.00 0.59 0.09 0.66 0.09 0.10 0.06 2.71 3.30
0.70 1.00 0.10 0.59 0.09 0.66 0.10 0.99 0.58 1.68 2.85
0.70 1.00 1.00 0.59 0.07 0.65 0.06 0.97 0.56 2.73 3.26
0.70 1.00 10.00 0.59 0.07 0.66 0.07 0.99 0.58 11.54 7.50
0.70 10.00 1.00 0.59 0.07 0.66 0.08 9.84 5.73 2.70 3.17
0.70 10.00 10.00 0.59 0.11 0.66 0.11 9.97 5.53 12.02 7.67
0.70 10.00 100.00 0.59 0.09 0.66 0.09 9.65 5.66 94.60 55.71

0.80 0.10 0.01 0.63 0.07 0.72 0.08 0.10 0.04 1.70 2.93
0.80 0.10 0.10 0.63 0.07 0.72 0.08 0.10 0.04 1.77 3.03
0.80 0.10 1.00 0.63 0.07 0.72 0.07 0.10 0.05 2.56 3.21
0.80 1.00 0.10 0.63 0.04 0.72 0.05 0.99 0.46 1.54 2.58
0.80 1.00 1.00 0.63 0.04 0.72 0.05 0.96 0.46 2.82 3.36
0.80 1.00 10.00 0.63 0.04 0.72 0.05 0.99 0.45 11.79 6.76
0.80 10.00 1.00 0.63 0.05 0.72 0.07 9.82 4.43 2.75 3.10
0.80 10.00 10.00 0.63 0.04 0.72 0.05 9.73 4.50 11.35 6.44
0.80 10.00 100.00 0.63 0.06 0.72 0.07 9.86 4.56 99.59 47.40

0.90 0.10 0.01 0.66 0.03 0.79 0.05 0.10 0.03 1.88 3.10
0.90 0.10 0.10 0.66 0.03 0.79 0.05 0.10 0.03 1.73 2.91
0.90 0.10 1.00 0.66 0.05 0.79 0.06 0.10 0.03 2.71 3.25
0.90 1.00 0.10 0.66 0.03 0.78 0.05 0.97 0.31 1.93 3.01
0.90 1.00 1.00 0.66 0.03 0.79 0.05 0.97 0.32 2.69 3.30
0.90 1.00 10.00 0.66 0.03 0.79 0.05 0.95 0.32 11.01 5.83
0.90 10.00 1.00 0.66 0.05 0.79 0.06 9.64 3.14 2.72 3.16
0.90 10.00 10.00 0.66 0.03 0.78 0.05 9.51 3.10 11.59 5.93
0.90 10.00 100.00 0.66 0.04 0.79 0.05 9.70 3.11 98.57 34.10

parameter estimates based on the McCulloch method, as it yielded
more reliable results.

The results obtained for the α estimators confirm the conclu-
sions drawn from the boxplots of the PEs. The regression estimator
yields lower standard errors than the McCulloch one, but, concur-
rently, it is more biased. The values of the other parameters, i.e., λα
and Kα , have no influence on the results of the α estimation. The
length of the time interval here and in the following two cases is
chosen as T = 1.

For the Kα estimation, the obtained means are close to the
true values for all chosen parameters. The standard errors are
proportional to the true parameter values and they clearly decrease
with increasing α. Recall that for larger α the waiting periods of the
process Xα(t) are typically shorter.

The λα estimation results yield a different picture. Now, the
obtained values depend markedly on the choice of the Kα param-
eter. When λα is much smaller than Kα , the standard errors of the
estimator are very high, resulting in mean values that are far from
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FIG. 4. Boxplots of the estimated values
of α obtained from 103 simulated trajecto-
ries of the fractional Ornstein–Uhlenbeck
process and the regression (upper panels)
or McCulloch (bottom panels) methods.
The other parameters were set to λα = 1,
Kα = 1, T = 1, and n = 105. True values
of α are marked with black dashed lines.

the simulated values. When λα is larger than Kα , the standard errors
are proportionally smaller. Again, there is a visible dependence of
the estimation results on the simulated α values. The standard errors
of λ̂α are smaller for larger values of α.

A. Estimation in the presence of localization errors

We also analyze the performance of the estimation proce-
dure in the presence of localization errors. Following Ref. 67, we
consider static errors, which occur due to imperfect measurement,

FIG. 5. Boxplots of the estimated values
of Kα obtained from 103 simulated trajec-
tories of the fractional Ornstein–Uhlenbeck
process. True values of K are marked with
black dashed lines.
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FIG. 6. Boxplots of the estimated values
of λα obtained from 103 simulated trajec-
tories of the fractional Ornstein–Uhlenbeck
process. True values of λα are marked with
black dashed lines.

as well as dynamic errors, which come from limited time resolu-
tion of the measurement. We assume, in a standard manner, that
the static error et is an additive random noise following a Gaussian
distribution of the form

p(et) =

√
1

4πσ 2
e 1t

exp

(
−

e2
t

4σ 2
e 1t

)
(18)

independent of the previous measurements. The noisy simulated
trajectories are then simply obtained as

X̃α(tk) = Xα(tk)+ etk
. (19)

On the other hand, trajectories measured with dynamic localization
errors are the averages of the real process

Xα(t) =
1

τe

∫ τe

0
Xα(t − ξ)dξ (20)

depending on the exposure time τe. Here, we simulate trajectories
of the fractional Ornstein–Uhlenbeck process on a dense grid of
n = 105 points on the interval [0, 1] and then average them over
subintervals as

Xα(tk) =
1

ne

ne−1∑

i=0

Xα(tk−i), (21)

FIG. 7. Medians and 10% or 90% quan-
tiles of the estimated values of λα (left
panel) or Kα (right panel) for trajectories

with static localization errors, X̃α . The true
simulated values of the parameters are
marked with black dashed lines. The α
parameter was set to 0.7, while T = 1 and
1t = 10−5. The quantiles were calculated
from 1000 repetitions of the estimation pro-
cedure.
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FIG. 8. Medians and 10% or 90% quantiles of the estimated values of α (left panel), λα (middle panel), or Kα (right panel) for trajectories with dynamic localization errors,

Xα . The true simulated values are marked with black dashed lines. The quantiles were calculated from 1000 repetitions of the estimation procedure.

with ne = τe/1t being the number of the corresponding time steps.
The estimation results for trajectories with static localization

errors for different values of the parameter σ 2
e are plotted in Fig. 7.

The parameters of the fractional Ornstein–Uhlenbeck process were
set to α = 0.7, λα = 1, Kα = 1, T = 1, and 1t = 10−5. The estima-
tion procedure was repeated for 1000 independent trajectories. Note
that adding a random noise to the positions of the trajectories also
adds variability to the constant time periods. Estimation of α would
require setting an additional tolerance level, below which the vari-
ability is only due to the noise. Hence, for simplicity, we assume
here that the α parameter is known. The static localization errors
increase the variability of the λα parameter estimation. With higher
variance of the errors, the values of λ̂α are also higher. This effect
is likely caused by the errors of the estimation of Kα , whose values
grow linearly with the variability of the static localization errors.

The estimation results for trajectories with dynamic localiza-
tion errors for different values of τe are plotted in Fig. 8. The
parameters of the fractional Ornstein–Uhlenbeck process were set
to α = 0.7, λα = 1, and Kα = 1. The estimation procedure was
repeated for 1000 independent trajectories.

The variability of the α estimation is higher, with higher val-
ues of τe, due to shorter samples of constant time periods in Xα .
However, the median value of α̂ is similar for all considered cases of
dynamic errors. Estimation of the generalized diffusion coefficient
from the averaged values on subintervals leads to lower than sim-
ulated values of Kα . The effect of decreasing values of the estimator
with increasing size of dynamic errors is also visible in the case of λα .
However, here it does not lead to a lower accuracy for the considered
levels of τe.

V. CONCLUSIONS

We here introduced new estimators for the parameters of
the fractional Ornstein–Uhlenbeck process. Using the empirical
quadratic variation of a single trajectory, we were able to estimate the
subordinator process. It was further used as a basis for the parameter

estimation of the anomalous diffusion exponent α, the generalized
diffusion coefficient Kα , and the generalized inverse time scale λα .

To verify the performance of the estimators, we performed a
simulation study. In the case of the α parameter estimation, we
found that the regression method yields lower standard errors than
the McCulloch method, but at the same time it is more biased,
especially for larger values of the α parameter. For both methods,
increasing the sample size decreases the variance of the estimators.
However, both methods lead to the underestimation of the α values.
This effect is more pronounced for the regression method and larger
values of α. In the case of the K parameter, the proposed estimator
yields reliable results, as the obtained means are close to the true
values. The standard errors are proportional to the true parameter
values. Concurrently, the accuracy of the λα parameter estimation
is highly dependent on the relation between λα and Kα . The most
precise results were obtained when λα is higher than Kα . Finally, we
found that the variance of the λα as well as Kα estimators is higher for
lower values of α. There is no such dependence between the results
obtained for the α parameter estimation and the chosen values of λα
and Kα .

The results obtained here are expected to be useful for direct
parameter estimates from experiments and simulations. They may
also be useful as benchmarks for dedicated Bayesian or machine
learning-based estimators.
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APPENDIX: ADDITIONAL SIMULATIONS

In Figs. 9 and 10, we show the estimation results correspond-
ing to a lower number of trajectories, representing a situation that is
often encountered in experiments.

FIG. 9. Boxplots of the PEs of the α estimator obtained from 102 simulated trajectories of the fractional Ornstein–Uhlenbeck process using the regression (left panels) or
McCulloch (right panels) methods. Results for different α parameters (0.6, 0.7, 0.8, or 0.9) are plotted in different rows. The other parameters were set to Kα = 1, λα = 1,
and T = 1. The number of trajectory points was equal to n = 103, n = 104, and n = 105.
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FIG. 10. Boxplots of the PEs of the Kα (upper panels) and λα (bottom panels) estimators obtained from 102 simulated trajectories of the fractional Ornstein–Uhlenbeck
process with different values of Kα or λα . The other parameters were set to λα = 1, α = 0.7, and T = 1 or Kα = 1, α = 0.7, T = 1 for the Kα and λα estimation,
respectively. The number of trajectory points was equal to n = 103, n = 104, or n = 105.
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