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Abstract: An example of non-Markovian quantum dynamics is considered in the framework of
a geometrical (topological) subordination approach. The specific property of the model is that it
coincides exactly with the fractional diffusion equation, which describes the geometric Brownian
motion on combs. Both classical diffusion and quantum dynamics are described using the dilatation
operator x d

dx . Two examples of geometrical subordinators are considered. The first one is the
Gaussian function, which is due to the comb geometry. For the quantum consideration with a specific
choice of the initial conditions, it corresponds to the integral representation of the Mittag–Leffler
function by means of the subordination integral. The second subordinator is the Dirac delta function,
which results from the memory kernels that define the fractional time derivatives in the fractional
diffusion equation.

Keywords: subordination; comb model; anomalous diffusion; non-Markovian quantum dynamics;
dilatation operator

1. Introduction

In this paper, we consider both classical anomalous diffusion and quantum non-
Markovian dynamics in the two dimensional comb geometry, both of which are controlled
by the operator x d

dx . Its Hermitian counterpart is the dilatation (contraction) operator,
which has the Hamiltonian form Ĥ0 = −ixh̄ d

dx − ih̄/2 ≡ x̂ p̂x − ih̄/2. The system attracts
much attention in quantum mechanics and number theory in connection with the Riemann
Hypothesis [1–3], whereH0 is known as a Berry–Keating–Connes Hamiltonian [4]. This
Hamiltonian has been considered in various general contexts, including space–time con-
formal transformations [5–7], the quantum Mellin transform [8], and a random walk [9].
In the Hamiltonian dynamics, it describes inverted potentials [10] with the dynamics near
hyperbolic points [11], including a singular behaviour [12] and exponential spreading of
the phase space [13], and the relaxation dynamics in the comb geometry [14].

We have analysed plausible quantum non-Markovian, non-unitary dynamics derived
from the Markovian-unitary quantum dynamics [15]. This is achieved via a corresponding
subordinator, which is due to the comb geometry. As is known [16], according to a
subordination approach, one can derive a variety of (non-Markovian) processes from
Markovian ones, such as the Brownian motion with stationary transition probabilities
G0(x, t), by introducing a so-called operational time. In this case, a new process is described
using a subordination integral as follows

G(x, t) =
∫ ∞

0
G0(x, u)h(u, t) du, (1)
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where u is the operational time and h(u, t) is a subordination function (or subordinator)
that depends on both physical time t and operational time u, respectively.

Subordination has been introduced by Bochner [17] as a notion of a subordinated
semi-group, and its interpretation and systematic presentation in terms of the operational
time has been suggested for the fractional calculus [18]. Our interest in the subordination
approach in the comb geometry relates to the fact that the latter is responsible for anomalous
or fractional diffusion, which is described by a linear fractional Fokker–Planck equation
(FFPE). A comb model was originally introduced to understand the anomalous diffusion
in percolating clusters [19–22]. Various settings of the comb geometry structures lead
to various FFPEs, whose effects include both subdiffusion [23,24], including ultra-slow
diffusion [25], and superdiffusion [26–28]. The nontrivial nature of transport along combs is
discernible from the fact that the motion along the branches results in a long-range memory
for the motion along the backbone, where the corresponding anomalous behaviour of
the transport takes place [29]. The implementation of comb models in various natural
phenomena is reflected in recent reviews [29–34]. In contemporary studies, the comb
model is employed in a variety of applications including explanations of experimental
realizations in percolation clusters, energy transfer in dendritic polymers [35], diffusion
of drugs in the circulatory system [36], anomalous diffusion in neurons [37,38], random
walks of active species in porous media [39] utilized in microelectronics [40], electron
transport in disordered nanostructured semiconductors [41], and so on. Another important
issue discussed in the framework of the comb model [42] is related to understanding the
geometry impact on diffusion with stochastic resetting [43] and first-passage properties in
nonequilibrium systems [44].

An elegant way for a heuristic formulation of the comb model in the framework of a
Fokker–Planck equation has been suggested in [22], and its description in the framework
of the fractional calculus is presented in Appendices A and B. In particular in Appendix B,
we introduce the details of how the transport in the comb geometry leads to the fractional
transport described by the FFPE. In this sense, the relation between the comb geometry and
the subordination approach is straightforward and is established in Section 2.

A general form of this equation for the description of slow and ultra-slow diffusion
has been suggested by means of memory kernels γ(t) and η(t), and the corresponding
integro-differential comb equation reads [25]

∫
γ(t− t′)

∂

∂t′
P(x, y, t′) dt′ = δ(y)

∫
η(t− t′) LFPP(x, y, t′) dt′ + Dy

∂2

∂y2 P(x, y, t). (2)

Here −∞ < x, y < ∞, and the initial condition is

P(x, y, t = 0) =
1
2

δ(|x| − x0)δ(y), (3)

where an arbitrary x0 ∈ R is specified later in the text. The boundary conditions are set
to zero at infinity for both the probability density function (PDF) P(x, y, t) and its first
derivatives with respect to x and y. The memory kernels γ(t) and η(t) are integrable non-
negative functions of time, which approach zero in the long time limit. The PDF P(x, y, t)
defines the test particle at position (x, y) at time t. Here, x measures the direction along
the backbone of the comb, which is controlled by the Fokker–Planck operator δ(y) LFP
at y = 0, while y is the distance along the side branches (also fingers or teeth). The
latter are continuously distributed along the backbone. The analytical form of the model,
suggested by heuristic arguments with LFP = Dx ∂2

x in [22], supposes an inhomogeneous
two-dimensional diffusion, where the non-zero diagonal components of a diffusion tensor,
Dx δ(y) and Dy are the diffusion coefficients in the x and y directions, correspondingly.
This special case is considered in Appendix B.

According to this formulation, the problem at hand is to develop a subordinated
quantum dynamics, which is a quantum counterpart of classical turbulent diffusion in
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the comb geometry. To this end in Section 2, the FFPE related to the comb model (2) is
constructed together with the solution in the subordination form. Its quantum counterpart
is analysed in Section 3. A subordination approach for some generalisation of both fractional
diffusion and fractional quantum dynamics is suggested in Section 4. In Section 5 we
present the conclusion of the obtained results. Additional material necessary for the
analysis is considered in the Appendices.

2. Subordinated Comb Diffusion

In the present analysis, we consider LFP = −v ∂
∂x x, which leads to a turbulent-like

diffusion analogous to the geometrical Brownian motion, when the mean squared dis-
placement (MSD) grows exponentially in time [14,26,45]. By means of commutation, the
quantum counterpart of LFP relates to the Hamiltonian Ĥ0 as well.

In what follows, we use dimensionless variables and parameters without loss of
generality. In particular, the velocity v and the diffusion coefficient Dy ≡ D form the
parameters D/v and D/v2, which are used for dimensionless space and time variables,
respectively.

It is interesting to admit that for the drift term, the corresponding diffusion equation
can be obtained from a Langevin equation. Correspondingly, a possible realisation of the
turbulent transport can be discussed in the framework of a Langevin equation in a so-called
Matheron–de Marsily form [46]

Ẋ = v δ(Y) X, Ẏ = ξ(t), (4)

where ξ(t) is a random Gaussian delta correlated process 〈ξ(t)ξ(t′)〉 = 2 δ(t− t′) , where
D ≡ Dy is a diffusion coefficient. That is, white noise affects the velocity of the drift along
the x axis. Following a standard procedure, one obtains a Fokker–Planck equation for
the PDF.

P(x, y, t) = 〈δ(X(t)− x)δ(Y(t)− y)〉

as follows
∂

∂t
P(x, y, t) = −v δ(y)

∂

∂x
xP(x, y, t) + D

∂2

∂y2 P(x, y, t). (5)

We use the same boundary and symmetrical initial conditions as in Equation (2). The
solution to the equation is a convolution integral. That is, the PDF P(x, y, t) reads

P(x, y, t) = P(x, y = 0, t) ∗ Py(y, t) =
∫ t

0
P(x, y = 0, t− t′)Py(y, t′) dt′,

where P(x, y = 0, t) is a non-conserving PDF on the backbone and Py(y, t) is the Lévy–
Smirnov density L[Py(y, t)](s) = exp

(
−|y|
√

s/D
)
, see Appendix B. In the Laplace space,

P̃(x, y, s) = L[P(x, y, t)], we have

P̃(x, y, s) = P̃(x, y = 0, s) exp
(
−|y|
√

s/D
)

. (6)

Our main interest here is related with finding the marginal PDF,

P1(x, t) =
∫ ∞

−∞
P(x, y, t) dy. (7)

To find the corresponding equation, we integrate Equation (5) with respect to y, which
after the Laplace transform reads as

sP̃1(x, s)− δ(x) = −v
∂

∂x
xP̃(x, y = 0, s). (8)

Then, the integration of Equation (6) with respect to y yields P̃(x, y = 0, s) =
1
2

√
s/D P̃1(x, s), and substituting the result in Equation (8), we obtain
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P̃1(x, s) =
s−1/2

s1/2 + 1
2 vD−1/2 ∂

∂x x
P1(x, t = 0), (9)

where P1(x, t = 0) = δ(x) is the initial condition. The Laplace inversion of Equation (9)
yields the FFPE for the marginal PDF of the backbone anomalous transport, as follows

CD1/2
t P1(x, t) = −1

2
vD−1/2 ∂

∂x
xP1(x, t), (10)

where CDα
t is the Caputo fractional derivative of order α, see Equation (A4). This equation

has an exact solution in the form of the log-normal distribution [26,45].
We are, however, interested in presenting the solution in the form of the subordination

integral defined in Equation (1). To this end, the denominator in Equation (9) is rewritten
in the exponential operator form,

P̃1(x, s) =
∫ ∞

0
s−1/2 e−us1/2

exp
(
−u

1
2

vD−1/2 ∂

∂x
x
)

P1(x, t = 0) du

≡
∫ ∞

0
h̃(s, u) Ĝ0(x, u) P1(x, u = 0) du, (11)

where P1(x, t = 0) = P1(x, u = 0) and h̃(s, u) = s−1/2 e−us1/2
are the subordinator

that subordinates the FFPE (10) to a standard drift equation for the evolution operator
Ĝ0(x, u) = exp

(
−u 1

2 vD−1/2 ∂
∂x x
)

, in the form

∂

∂u
Ĝ0 = −1

2
vD−1/2 ∂

∂x
xĜ0. (12)

The formal solution to Equation (12) is

Ĝ0(x, u) = exp
(
−u

1
2

vD−1/2 ∂

∂x
x
)

P1(x, u = 0).

Note that since all parameters and variables are dimensionless, the diffusion coefficient
vD−1/2 in Equation (12) can be taken to be the same as in Equation (10).

3. Subordinated Quantum Mechanics

It is worth stressing that (remarkably) the FFPE (10) and the drift Equation (12) are
quantum Schrödinger equations as well. Indeed, let us multiply both equations by ih̄, where
for our dimensionless variables’ consideration, h̄ is a dimensionless Planck constant and
we can use the same power of the Planck constant for both equations. Then, Equations (10)
and (12) become the fractional Schrödinger equation (FSE) and the conventional (standard)
Schrödinger equation, respectively,

ih̄ CD1/2
t ψ(x, t) = ω p̂x̂ψ(x, t) (13)

and
ih̄

∂

∂u
ψ0(x, u) = ω p̂x̂ψ0(x, u) (14)

where ω = 1
2 vD−1/2 and p̂ = −ih̄ ∂

∂x and x̂ = x are the quantum momentum operator
and the quantum coordinate, respectively with the commutation rule [x, p̂] = ih̄. For
convenience of notation and without restriction of generality, we set ω = 1.

An essential difference from the classical diffusion case is that the quantum initial
condition is the wave function ψ(x, t = 0) = ψ0(x, u = 0). Correspondingly, the PDF is
|ψ(x, t = 0)|2. These functions can be square integrable functions, such that∫

|ψ(x, t = 0)|2 dx =
∫
|ψ0(x, u = 0)|2 dx = 1.
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However, it is not mandatory and the normalisation condition to the Dirac δ function
is also possible and considered in the present analysis, see Appendix C.

It is reasonable to choose the quantum initial conditions in the form of the eigen-
functions of the Hermitian Hamiltonian Ĥ0. In this case of the continuous spectrum,
the normalisation condition needs to be calculated with some care, see the discussion in
Appendix C. The dilatation operator

Ĥ0 = h̄
[
−ix

∂

∂x
− i/2

]
= p̂x + ih̄/2

determines the complete set of eigenfunctions χe(x) with the eigenvalues e according to
the eigenvalue problem Ĥχe(x) = h̄ e χe(x), where e is the continuous spectrum and the
eigenfunctions are [1,4]

χe(x) =
1√
N|x|

exp(ie ln |x|), (15)

which satisfies the boundary conditions χe(x = ±∞) = 0 and N = 4π. Therefore,

ψ(x, t = 0) = ψ0(x, u = 0) = χe(x). (16)

In this case, both Equations (13) and (14) describe relaxation processes from the initial
energy level e according to the non-Hermitian Hamiltonian

Ĥ = ω p̂x = ω Ĥ0 − ih̄ω/2 = Ĥ0 − ih̄/2, (17a)

Ĥχe(x) = (e− ih̄/2)χe(x) = ei χe(x), (17b)

where we set ω = 1. The solution to the FSE (13) subordinated to Equation (14) is de-
fined by the subordination integral in Equation (11). Taking into account the eigenvalue
problem (17), the solution in the Laplace space reads as follows,

ψ̃(x, s) =
∫ ∞

0
s−1/2 e−us1/2

e−iu(e−ih̄/2)/h̄χe(x) du. (18)

This leads to the integral representation of the Mittag–Leffler function, namely [47]

ψ(x, t) =E1/2

(
−i(e− ih̄/2)t1/2/h̄

)
χe(x) = L−1

[
s−1/2

s1/2 − (e− ih̄/2)/ih̄

]
χe(x)

=
∫ ∞

0

1√
4πt

e−
u2
4t e−iu(e−ih̄/2)/h̄χe(x) du, (19)

where Eα(ztα) is the one parameter Mittag–Leffler function, see Equation (A8) for ν→ 1/2,
β→ 1 and z→ −i(e− ih̄/2)/h̄.

It should be pointed that from the analysis of Sections 2 and 3, it follows that the one
dimensional quantum dynamics is the same as the classical one, and since the latter is
well defined on the backbone, the former is well defined in the same area as well. This
coincidence results from the fact that these two phenomena are described just by the same
Equation (10), which is the FFPE for the marginal PDF of the backbone anomalous transport
and at the same time, it is the FSE for the wave function of the quantum dynamics on the
same backbone.

Discussion of the Preliminary Results

From this consideration of the toy model, we obtain two important results for the
classical and quantum dynamics on the comb. The first one is that the inhomogeneous
advection on the comb, which is described by means of the FFPE (10), describes also the
fractional dynamics of a quantum particle with the non-Hermitian Hamiltonian Ĥ =
p̂x = xp̂− ih̄/2 in the framework of the FSE (13). In the latter case, the time evolution
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of the system follows the Mittag–Leffler function U(t) = Eα(−ei tα), where ei = e− ih̄/2
is the continuous spectrum with the decay term. To some extent, this result follows
immediately from the separation of variables and the fact that the Mittag–Leffler function
is the eigenfunction of the Caputo fractional derivative. In this case, the last two lines
of Equation (19) are both the integral representation of the Mittag–Leffler function and
the subordination integral. In this connection, this is a particularly simple case, when the
evolution can be easily expressed by the Mittag–Leffler function.

The second result is that in the general case, say of the memory kernel γ(t), as in
Equation (2), the subordination integral is a convenient form of the solution for the evolution
operator U(t), which is subordinated to the Schrödinger Equation (14). This situation is
considered in the next section. In contemporary studies, the model is employed in a variety
of applications including explanations of experimental realisations in percolation clusters,
energy transfer in dendritic polymers [35], diffusion of drugs in the circulatory system [36],
anomalous diffusion in neurons [37,38], and the random walk of active species in porous
media [39] utilized in microelectronics [40].

4. Generalised Comb Model

Let us now consider the generalised comb Equation (2). Performing the Laplace
transform, we obtain

γ̃(s)
[
sP̃(x, y, s)− P0(x, y)

]
= δ(y) η̃(s) LFP P̃(x, y, s) + D

∂2

∂y2 P̃(x, y, s). (20)

In this case, the ansatz (6) reads

P̃(x, y, s) = P̃(x, y = 0, s) exp
(
−|y|

√
sγ̃(s)/D

)
, (21)

which yields the relation to the marginal PDF P̃1(x, s)

P̃(x, y = 0, s) =
√

sγ̃(s)/4D P̃1(x, s). (22)

Integrating Equation (20) with respect to y, then accounting for expression (22) and
performing a quantisation in complete analogy of Section 3, we arrive at the FSE for the
wave function in the Laplace space,

ih̄ ξ̃(s)[sψ̃(x, s)− ψ0(x)] = Ĥψ̃, (23)

where

ξ̃(s) =
1

η̃(s)

√
γ̃(s)

s
. (24)

The quantum solution presented in the form of the subordination integral is

ψ(x, t) = L−1
[

ξ̃(s)
sξ̃(s) + iĤ/h̄

]
ψ0(x) =

[∫ ∞

0
h(t, u)e−iu Ĥh̄ du

]
ψ0(x), (25)

where the subordinator h(t, u) is determined by the inverse Laplace transform, as follows

h(t, u) =
1

2πi

∫ c+i∞

c−i∞
ξ̃(s) e−usξ̃(s) est ds. (26)

Note that for γ(t) = η(t) = δ(t) we immediately arrive at the result of Equation (19).
In more sophisticated cases of the memory kernels, like kernels of distributed order of the
form

γ(t) =
∫ 1

0

tα−1

Γ(α− 1)
dα, (27)
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it is not possible to obtain solutions in an analytical form, see also the discussion in [25].
We are finishing this section with one more example with ξ̃(s) = 1.

4.1. Memory Kernels with ξ̃(s) = 1

A variety of realisations of the memory kernel have been considered in [25]. Let us
consider the memory kernels γ(t) and η(t), such that ξ̃(s) = 1 when the memory kernels
compensate the comb geometry. In this case, the subordinator is h(t, u) = δ(u− t) and the
quantum dynamics is governed by the standard Schrödinger Equation (14).

For example, for γ(t) = t−1/2

Γ(1/2) and η(t) = t−1/4

Γ(3/4) , then ξ̃(s) = 1. In the general case of

the power law forms for the memory kernels γ(t) = tν−1

Γ(ν) and η(t) = tµ−1

Γ(µ) with 0 < µ, ν < 1,

we have ξ̃(s) = 1 for ν + 1 = 2µ. In the case when 2µ < ν + 1, the quantum dynamics
follows the Mittag–Leffler function Eα

( ˆiHtα/h̄
)
, where α = 1

2 (ν + 1)− µ.

4.1.1. Comb Wave Equation

The second example relates to the wave equation in the comb geometry. Let us
consider γ(t) = − d

dt δ(t) and η(t) = δ(t), then ξ̃ = 1. In this case, Equation (2) reads(
∂2

∂t2 − ∆
)

F(x, y, t) = 0, ∆ = δ(y) LFP + D
∂2

∂y2 , (28)

where the Laplace operator ∆ has the comb structure, which eventually leads to a diffusion-
wave-like process on the comb with an additional initial condition ∂

∂t F(x, y, t = 0) = 0.
Indeed, let us integrate Equation (28) with respect to y with f (x, t) =

∫
F(x, y, t) dy.

Then, performing the Laplace transform and substitution analogous to Equation (22),

F̃(x, y, s) = P̃(x, y = 0, s) exp
(
−|y|

√
sγ̃(s)/D

)
, (29a)

F̃(x, y = 0, s) =
√

sγ̃(s)/4D f̃ (x, s), (29b)

we arrive at its “fractional” counterpart that reads

ξ̃(s)
[
s f̃ (x, s)− f0(x)

]
= LFP f̃ , (30)

which is just a diffusion equation for ξ̃(s) = 1.
Again, multiplying Equation (30) by ih̄, we arrive at the conventional Schrödinger

equation

ih̄
∂

∂t
ψ(x, t) = Ĥψ(x, t) (31)

with the Hamiltonian Ĥ defined in Equation (17a). An important feature here is the
zero boundary conditions at infinity as the necessary conditions for the considerations of
Equations (28), (30) and (31).

5. Conclusions

We have derived both the fractional geometric Brownian motion on combs and the
corresponding quantum particle dynamics based on the dilatation operator x d

dx , based
on the same dynamic equation. However, there is an essential difference between these
descriptions. Namely, the classical case is described by the probability density function,
which is integrable. In contrast, the quantum case is described by the wave function, which
is square integrable. Both cases are considered in the framework of the subordination
approach, when both the fractional Fokker–Planck equation and the fractional Schrödinger
equation are subordinated to the their conventional counterparts. We considered two
cases of geometrical subordinators. The first one is the Gaussian function, which is due
to the comb geometry. For the quantum consideration with a specific choice of the initial
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conditions, it corresponds to the kernel of the integral representation of the Mittag–Leffler
function. The second subordinator is the Dirac delta function that results from memory
kernels that compensate the geometry effect in the generalised comb model.

In the latter case, there is an interesting effect of reduction of the wave equation to
the diffusion equation in the comb geometry. In particular, let us consider the comb wave
equation as follows

∂2

∂t2 F(x, y, t) = δ(y)
(

∂

∂x
x
)2

F(x, y, t) +
∂2

∂y2 F(x, y, t) (32)

with the initial conditions P(x, y, t = 0) = P0(x, y), when the first derivative with respect
to time is zero at t = 0. The boundary conditions are set to zero at infinity. The diffusion

operator
(

∂
∂x x
)2

results from the multiplicative noise in the corresponding Langevin
equation (in the Matheron–de Marsily form (4)) [45]. Performing the standard procedure of
Sections 2 and 4.1.1 (see also Appendix B), we arrive at the Fokker–Planck equation for the
marginal function f (x, t) =

∫
F(x, y, t) dy, that is

∂

∂t
f (x, s) =

1
2

(
∂

∂x
x
)2

f (x, s), (33)

where f (x, t) becomes the marginal PDF that describes the geometrical Brownian motion.
It must be noted that in the quantum analysis, we considered specific initial conditions

in the form of the eigenfunctions of the dilatation operator Ĥ, where we only touched
some specific aspects of the evolution of the initial wave packet due to the non-Hermitian
dilatation operator. This approach eventually corresponds to the variable separation,
concentrating our attention to the form of the corresponding subordinators for the evolution
functions. However, in a general choice of the initial condition, the latter can be presented
in the form of the spectral decomposition over the eigenfunctions, for example the initial
wave function can be ψ0(x) =

∫
A(e) χe(x) de. As shown above, this fractional Cauchy

problem can be considered by either approach in the framework of both FFPE (10) and
FSE (13), which are equivalent to the relation P1(x, t = 0) = |ψ0(x)|2. In this case, the
evolution of the MSD is well defined, and grows exponentially with time in both cases
of fractional diffusion [45] and fractional quantum mechanics [13,48]. Note that a general
subordination approach for time-fractional evolution equations is studied as well [49].

It should be pointed out that the fractional property of the transport (and corre-
spondingly the marginal PDF) is described by the subordinator in the form of the normal
distribution in Equations (11), (18) and (19), which is the topological subordinator. It re-
flects the classical comb geometry and normal diffusion along the fingers. Remarkably,
the obtained Equation (10) describes also the one dimensional fractional time quantum
dynamics. It follows from the simple multiplication by ih̄, which is the identity operation.

The comb geometry can be more sophisticated [29,34]. For example, by considering
a three dimensional (3D) comb or a comb with the power law distribution of the fingers
length. In this case, the topological subordinator h(u, t) is described by the Fox H-functions,
and in the Laplace space, it has a simple form h̃(u, s) = sν−1e−usν

, where the fractional
index is 0 < ν < 1, and for the 3D comb we have ν = 1/4.

There is another interesting result that follows from the analysis and its generalisation.
Namely, let us define the fractional time quantum evolution according to the subordinator
h(u, t) in the standard way, Ψ(x, t) =

∫ ∞
0 h(u, t)ψ(x, u)du, where h̃(u, s) = sν−1e−usν

in the
Laplace space. In this case, if the conventional quantum mechanics with a Hamiltonian Ĥ
is due to the wave function ψ(x, u) = e−iĤt/h̄ψ0(x), then the corresponding FTSE reads

ih̄ CDν
t Ψ = ĤΨ.
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In conclusion, in this developing field, which is similar to the concept of quantum
walks, the full physical meaning of the model is not yet established. For the topology of
the comb, we could say that it started from pure curiosity and then the obtained effects
turned out to be very interesting. So, while a clear physical interpretation is missing, the
study could be of interest in the development of stochastic features in quantum physics.
Moreover, we can view the fingers/teeth of the comb as an environment with some kinds
of trapping quasi-states (or confining potentials).
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Appendix A. A Brief Survey on Fractional Integration

Extended reviews of fractional calculus can be found, e.g., in [50–54]. Fractional
integration of the order of α is defined by the Riemann–Liouville operator

Iα
x f (x) =

1
Γ(α)

∫ x

a
f (y)(x− y)α−1 dy, (A1)

where α > 0, x > a and Γ(z) are the Gamma function. Fractional derivation was developed
as a generalisation of integer order derivatives and is defined as the inverse operation to
the fractional integral. Therefore, the fractional derivative is defined as the inverse operator
to Iα

x , namely Iα
x D f (x) = I−α

x f (x) and Iα
x = D−α

x . Its explicit form is

Dα f (x) =
1

Γ(−α)

∫ x

a
f (y)(x− y)−1−αdy. (A2)

This integral diverges for arbitrary α > 0, and a regularisation procedure is introduced
with two alternative definitions of Dα. For an integer n defined as n− 1 < α < n, we obtain
the Riemann–Liouville fractional derivative,

RLDα f (x) ≡ Dα
x f (x) =

dn

dxn In−α
x f (x) , (A3)

and the Caputo fractional derivative,

CDα
x f (x) = In−α

x
dn

dxn f (x) . (A4)
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There is no constraint on the lower limit a. For example, when a = 0, one has

RLDα
x xβ =

Γ(β + 1)
Γ(β + 1− α)

xβ−α.

This fractional derivation with the fixed low limit is also called the left fractional
derivative. One can introduce the right fractional derivative as well, where the upper limit
a is fixed and a > x. For example, the right fractional integral is

Iα
x f (x) =

1
Γ(α)

∫ a

x
(y− x)α−1 f (y)dy . (A5)

Another important property is Dα Iβ = Iβ−α, where subscripts are omitted for brevity.
Note that the inverse combination is not valid. In general, IβDα 6= Iβ−α, since it depends on
the lower limits of the integration [52]. We also use here a convolution rule for the Laplace
transform for 0 < α < 1

L[Iα
x f (x)] = s−α f̃ (s). (A6)

Note that for arbitrary α > 1, the treatment of the Caputo fractional derivative by the
Laplace transformation is more convenient than that of the Riemann–Liouville one.

Solutions considered in the paper can be also obtained in the form of the Mittag–Leffler
function by means of the Laplace inversion [47,52,55]

Eν,β(zrν) =
r1−β

2πi

∫
C

sν−β esr

sν − z
ds, (A7)

where C is a suitable contour of integration, starting and finishing at−∞ and encompassing
a circle |s| ≤ |z|1/ν in the positive direction, and ν, β > 0.

It is also convenient to present the Mittag–Leffler Eν,β(−zrν) function in the series
representation. Expanding the denominator formally, we have

Eν,β(zrν) =
∞

∑
n=0

r1−β

2πi

∫
C

sν−β esr s−nν zn ds =
∞

∑
n=0

(zrν)n

Γ(nν + β)
. (A8)

From the series representation (A8), the asymptotic behaviour can be easily found
as well [47]. In particular, for Eν,β(−zrν) in the limit |zrν| � 1, we obtain the stretched
exponential behaviour of the Mittag–Leffler function,

Eν,β(−zrν) ≈ 1
Γ(β)

[
1− Γ(β)zrν

Γ(ν + β)

]
≈ 1

Γ(β)
exp

[
− Γ(β)zrν

Γ(ν + β)

]
. (A9)

In the opposite case of |zrν| � 1, we have [47],

Eν,β(−zrν) ≈ (zrν)−1

Γ(β− ν)
, (A10)

where |arg(zrν)| < (1− ν/2)π.

Appendix B. Fractional Fokker–Planck Equation

Considering Equation (2) with γ(t) = η(t) = δ(t) and LFP = Dx
∂2

∂x2 , we arrive at the
well known form of the comb model, suggested in [22], which reads

∂

∂t
P(x, y, t) = δ(y) Dx

∂2

∂x2 P(x, y, t) + Dy
∂2

∂y2 P(x, y, t). (A11)

The same initial and boundary conditions as in Equation (2) are imposed. Inte-
gration with respect to y leads to an equation for the marginal distribution P1(x, t) =∫ ∞
−∞ P(x, y, t) dy:
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∂

∂t
P1(x, t) = Dx

∂2

∂x2 P(x, y = 0, t), (A12)

where P̂(x, y = 0, s) = f (x, s). To obtain this equation in a closed form, we perform the
Laplace transform for the solution, which is

P̂(x, y, s) = P̂(x, y = 0, s) exp
(
−
√

s/Dy |y|
)

, (A13)

and integrate it with respect to y. This yields the relation P̂(x, y = 0, s) =
√

s/4Dy P̂1(x, s).
Using this relation and the Laplace transforming Equation (A12), we find

s1/2P̂1(x, s)− δ(x) s−1/2 =
Dx

2
√

Dy

∂2

∂x2 P̂1(x, s). (A14)

Performing the Laplace inversion, we obtain the integro-differential equation

CD1/2
t P1(x, t) =

Dx

2
√

Dy

∂2

∂x2 P1(x, t). (A15)

The integro-differential operator CD1/2
t is the so-called Caputo fractional derivative,

defined in Equation (A4), which reads

CDα
t P1(t) =

1
Γ(1− α)

∫ t

0

1
(t− t′)α

dP1(t′)
d t′

dt′, 0 < α < 1, (A16)

while Equation (A15) is called the fractional Fokker–Planck equation (FFPE). Instead of the
Caputo derivative, it is possible to employ the Riemann–Liouville fractional derivative,
defined in Equation (A3), which reads

Dα
t P1(t) ≡ RLDαP1(t) =

1
Γ(1− α)

d
d t

∫ t

0

P1(t′)
(t− t′)α

dt′, 0 < α < 1. (A17)

This operator leads to the different form of the FFPE [56], as follows

∂

∂t
P1(x, t) =

Dx

2
√

Dy
RLD1−α

t
∂2

∂x2 P1(x, t), (A18)

where α = 1/2. For arbitrary 0 < α < 1, this equation is a general form of the FFPE with
the solution (A28)

P1(x, t) =
1√

Dαtα
H1,0

1,1

[
x2

Dαtα

∣∣∣∣ (1− α/2, α)
(0, 2)

]
. (A19)

In that case, the diffusion coefficient must be generalised as well, Dx/(2
√

Dy) =
D1/2 → Dα.

Solution in the Form of the Fox H-Function

The Fox H-function is defined in terms of the Mellin–Barnes integral [55,57],

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (a1, A1) , . . . , (ap, Ap)

(b1, B1) , . . . , (bq, Bq)

]
=

1
2πi

∫
Ω

Θ(s) z−s ds, (A20)

where

Θ(s) =

{
∏m

j=1 Γ(bj + sBj)
}{

∏n
j=1 Γ(1− aj − sAj)

}
{

∏
q
j=m+1 Γ(1− bj − sBj)

}{
∏

p
j=n+1 Γ(aj + sAj)

} , (A21)
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with 0 ≤ n ≤ p, 1 ≤ m ≤ q and ai , bj ∈ C, while Ai , Bj ∈ R+, for i = 1 , . . . , p, and
j = 1 , . . . , q. The contour Ω starting at σ− i∞ and ending at σ + i∞, separates the poles
of the functions Γ(bj + sBj), j = 1 , . . . , m from those of the function Γ(1 − ai − sAi),
i = 1 , . . . , n.

Now, let us solve FFPEs (A15) and (A18) in terms of the Fox H-functions. Performing
the Fourier and Laplace transformations, we obtain the Montroll–Weiss equation, as follows

¯̃P1(k, s) ≡ P(k, s) =
sα−1

sα + Dαk2 , (A22)

where we take ¯̃P0(k, s) = 1. Then employing formula (A7) for the Mittag–Leffler function
[47,52,55] one obtains

P(k, t) ≡ P̄1(k, t) = Eα,1

(
−Dαk2tα

)
. (A23)

The two parameter Mittag–Leffler function (A7) is a special case of the Fox H-function,
which can be represented by means of the Mellin–Barnes integral (A20)

Eα,β(−z) =
1

2πi

∫
Ω

Γ(s)Γ(1− s)
Γ(β− αs)

z−s ds = H1,1
1,2

[
z
∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
=

1
δ

H1,1
1,2

[
z1/δ

∣∣∣∣ (0, 1/δ)
(0, 1/δ), (1− β, α/δ)

]
. (A24)

The Fourier-cosine transformation of Equations (A23) and (A24) yields [29,55]

Pρ(x, t) =
1

2π

∫ ∞

0
kρ−1 cos(kx) H1,1

1,2

[√
Dαtα|k|

∣∣∣∣ (0, 1/2)
(0, 1), (0, α/2)

]
dk

=
1
|x|ρ H2,1

3,3

[
x2

Dαtα

∣∣∣∣∣ (1, 1), (1, α), ( 1+ρ
2 , 1)

(1, 2), (1, 1), ( 1+ρ
2 , 1)

]
. (A25)

For ρ = 1, we obtain the solution of Equation (A22). Taking into account the properties
of the Fox H-function, we obtain

1
|x|H

2,1
3,3

[
x2

Dαtα

∣∣∣∣ (1, 1), (1, α), (1, 1)
(1, 2), (1, 1), (1, 1)

]
=

1
|x|H

2,0
2,2

[
x2

Dαtα

∣∣∣∣ (1, α), (1, 1)
(1, 2), (1, 1)

]
. (A26)

Use of property

xδ Hm,n
p,q

[
x
∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= Hm,n

p,q

[
x
∣∣∣∣ (ap + δAp, Ap)

(bq + δBq, Bq)

]
reduces Equation (A25) to

P1(x, t) ≡ P(x, t) =
1√

Dαtα
H2,0

2,2

[
x2

Dαtα

∣∣∣∣ (1− α/2, α), (1/2, 1)
(0, 2), (1/2, 1)

]
. (A27)

Using the property of Equation (A26), we obtain

P1(x, t) =
1√

Dαtα
H1,0

1,1

[
x2

Dαtα

∣∣∣∣ (1− α/2, α)
(0, 2)

]
. (A28)

The straightforward generalisation to another toy model is also possible. Namely, the
FFPE of the form

CDα
t P(x, t) = xα

CDα
x P(x, t), x ∈ R+, 0 < α < 2, (A29)

describes the fractional diffusion of a tracer with the PDF P(x, t) with corresponding initial
and boundary conditions. By means of the multiplication by (ih̄)α, one arrives at the
fractional quantum dynamics.
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Appendix C. Eigenfunctions of the Dilatation Operator

The dilatation operator

Ĥ0 = h̄
[
−ix

∂

∂x
− i/2

]
= p̂xx + ih̄/2

determines the complete set of eigenfunctions χω(x) with the eigenvalues ω according to
the eigenvalue problem Ĥχω(x) = h̄ ω χω(x), where ω is the continuous spectrum and the
eigenfunctions are [1,4]

χω(x) =
1√
N|x|

exp(iω ln |x|), (A30)

which satisfies the boundary conditions χω(x = ±∞) = 0 and N = 4π. For the continuous
spectrum, the normalisation condition is∫ ∞

−∞
χ∗ω′(x) χω(x) dx = δ(ω−ω′), (A31)

while the completeness relation is
∫

χ∗ω(x′) χω(x) dω = δ(x− x′) (see e.g., [58]). Note also
that for x > 0, the normalisation constant is half as large, N = 2π [4].

It is worth mentioning that a mathematically rigorous calculation of the normalisation
constant for the wave function χω(x) can be presented as well by following the presentation
of [59]. Since the operator xp̂ has the continuous spectrum ω, the eigenfunctions χ(ω, x) ≡
χω(x) are not square integrable. Therefore, the normalisation condition exists not for the
eigenfunction but for the “eigendifferential” [59] ∆χ(ω, x), which reads

∆χ(ω, x) =
∫ ω+∆ω

ω
χ(ω′, x) dω′.

Substituting here Equation (A30), one obtains

∆χ(ω, x) =
2√

N|x| ln |x|
exp(i(ω + ∆ω) ln |x|) sin

∆ω ln |x|
2

.

This solution is already square integrable and has the following normalisation form

lim
∆ω→0

1
∆ω

∫ ∞

−∞
|∆χ(ω, x)|2 dx = 1.

To take the limit, the integrand can be presented as follows [14]

|∆χ(ω, x)|2 =
4

N|x| ln2 |x|
sin

∆ω ln |x|
2

sin
∆Ω ln |x|

2
,

where ∆Ω = ∆ω + ∆ω1. We can perform this trick, since the “eigendifferentials” for not
overlapping spectral regions ∆ω and ∆ω1 are orthogonal [59]. Then, taking the limit ∆ω =
0 and carrying out the variable change z = (∆ω1/2) ln |x| and taking into account that
4
N
∫ ∞
−∞

sin z
z dz = 4π

N , we obtain N = 4π, which coincides exactly with the dimensionless
normalisation constant N in Equation (A30).
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