
8802 |  Soft Matter, 2023, 19, 8802–8819 This journal is © The Royal Society of Chemistry 2023

Cite this: Soft Matter, 2023,

19, 8802

Trapped tracer in a non-equilibrium bath:
dynamics and energetics

Koushik Goswami *a and Ralf Metzler *ab

We study the dynamics of a tracer that is elastically coupled to active particles being kept at two

different temperatures, as a prototype of tracer dynamics in a non-equilibrium bath. Employing

analytical techniques, we find the exact solution of the probability density function for the effective

motion of the tracer. The analytical results are supported by numerical simulations. By combining

the experimentally accessible quantities such as the response function and the power spectrum,

we measure the non-equilibrium fluctuations in terms of the effective temperature. In addition,

we compute the energy dissipation rate to find the precise effects of activity. Our study is relevant in

understanding athermal fluctuations arising in cytoskeletal networks or inside a chromosome.

1 Introduction

The dynamics of a test particle inside a living cell is a complex
process,1–3 and it often occurs in a regime where the laws of
equilibrium physics cannot be applied, or in other words, the
detailed balance condition breaks down and the usual fluctua-
tion–dissipation theorem (FDT) is violated.1,4 In systems, in
which the FDT holds, the response function of a system where
the influence of an external force acts is related to its sponta-
neous fluctuations via the ambient temperature.5–7 Employing
microrheology and single-particle tracking techniques, it is
possible to measure the fluctuations of a tracer trapped in a
medium and thus check the validity of the FDT.8–10 Any
deviation from the usual FDT indicates a non-equilibrium
nature of the observed dynamics, found earlier in a wide class
of systems, e.g., aging glasses,11,12 sheared materials,13,14 exter-
nally driven colloids,15,16 active matter,17,18 and others.1,19–21

Based on the knowledge from equilibrium physics, a general-
ised version of the FDT was proposed,22–27 and the notion of an
effective temperature is introduced in the theorem as a sub-
stitute for the ambient temperature.28–35 Thus one can char-
acterise the fluctuations and estimate the deviations from
equilibrium by correlating useful quantities extracted from
experimental data such as the response function and the power
spectral density (PSD).10,36,37 In the context of active matter,
there have been several experimental as well as theoretical
and simulation-based studies which have validated the general-
ised approach to the FDT by incorporating the concept of

effective temperature, and quantified the departure from
equilibrium.38,39,41–50

An emerging area of biophysical research is to understand
how the activity affects biological processes in a living cell. The
shape of a cell is formed by the cytoskeleton—an active
viscoelastic network (gel) of cross-linked filaments and motor
proteins.32,51–53 Harnessing energy from ATP hydrolysis, motors
generate force along the filaments, a phenomenon which renders
the network dynamic and drives it out of equilibrium.1,54 Naturally,
a probe particle immersed inside the network exhibits distinct
dynamical properties such as enhanced diffusion and a non-
Boltzmann distribution of displacements as observed in numerous
experiments.1,4,45,55,56 Measuring the mechanical and dynamic
properties, it was observed that the probe’s position varies non-
monotonically with time due to compression and eventual relaxa-
tion of the network controlled by motor activity.1 For such a
system, a clear violation of the FDT was demonstrated, and the
effect was particularly prominent at low frequencies of the PSD at
which enhanced fluctuations of the probe’s displacement occur.
Similar observations were reported in activity-induced flickering of
membranous systems such as red blood cells, cell nuclei, vesicles,
etc.9,29–31 In these systems, a viscoelastic network made up of a
cytoskeletal protein (spectrin) constitutes the cell membrane
(of red blood cells), and rearrangements of the network due
to metabolic activity cause athermal fluctuations of the
membrane.29,57

With high-resolution imaging techniques recent inves-
tigations have revealed the effects of ATP-powered activity
on the dynamics of chromatin which resides inside the cell
nucleus.32,58,59 For instance, several studies have observed the
coherent motion of chromatin with long-range spatial correla-
tions due to the directional force generated by nuclear
enzymes.59,60 The shape of the nucleus is determined by the
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surrounding membrane called the nuclear envelope, which
separates the nuclear contents such as chromatin and the
nucleoplasm from the remaining cellular cytoplasm. Therefore
the undulations of the nuclear shape are controlled by two
kinds of activity—from outside by the cytoskeleton and from
inside by the chromatin that is actively remodelled conti-
nuously.61 A recent experiment suggested that these activities
act differently on the shape fluctuations; particularly, cyto-
skeletal activity amplifies the fluctuations, while these are
dampened if chromatin is involved.32

To explain the properties of non-equilibrium fluctuations of
the above examples, the systems are generally modelled as the
coupled motion of a tracer and surrounding bath particles,
where the tracer represents the probe or membrane while the
bath particles correspond to faster degrees of freedom which
account for activity.40,41,62–64 Integrating out the faster degrees
of freedom, one can obtain the effective motion of the tracer.
We note that, to capture the collective effects on the dynamics,
the environment is often modelled as a polymeric network
which can cause subdiffusive motion of the tracer due to
the viscoelastic feedback from the environment.65 Along this
direction, extensive studies have been carried out.65–71

Here we consider a minimal model (analogous to those used
in ref. 41 and 63) to describe the viscoelasticity of the environ-
ment. The advantage of using this model is that we can apply
an exact analytic theory to investigate the basic elements of
tracer diffusion in a non-Markovian active environment with
specific kind of viscous and elastic components, and to get
insights into the energetics. To keep things simple, we consider
harmonic couplings between the tracer and the bath particles,
while there is no interaction among the bath particles. In this
setting, an individual tracer particle itself is assumed to
undergo normal diffusion, i.e., it is driven by a Gaussian white
noise. Even with this simple assumption, the tracer’s dynamics
can no longer be described in the equilibrium framework, rather it
is characterised by an effective temperature which is a clear
indicator of the non-equilibrium nature.41 This model can thus
capture enhanced fluctuations of the tracer, but it fails to char-
acterise the medium which is itself intrinsically active or the one
where enhanced activity reduces non-equilibrium fluctuations.32

To address the second problem, a modification of the
existing model was proposed recently by considering a coupling
of the tracer to a mixture of hot and cold particles.63 Note that a
similar model was used earlier to explore several interaction-
mediated phenomena.72–75 One important trait of an active
particle is the persistence of its motion over a finite timescale
called persistence time, which is missing in the mentioned
studies.17,26,33,76,77 Manifestations of active matter are, in fact,
prevalent everywhere—in swimming bacteria, migrating cells to
schooling of fish and flocking of birds.78–81 Other realisations
where the influence of activity can be found are facilitated
looping of a passive polymer in the presence of active bath
particles, enhanced long-range coordination between enhan-
cers and promoters in gene regulation, etc.82–85

An analytically tractable description of active system is
the active Ornstein–Uhlenbeck particle (AOUP) model which

introduces a correlation time to the particle dynamics des-
cribed within a Gaussian regime.33,47,86 Recently, a few theore-
tical and simulation-based studies considered the fluctuating
motion of a passive tracer in an active medium by modelling
the bath particles as AOUPs.62,87–90 For example, the authors of
ref. 89 modelled a Stirling-like heat engine in a viscoelastic active
bath by considering the system as a large passive tracer interact-
ing with the AOUPs via harmonic potentials. Using this model,
they analytically determined the viscoelastic effects on the steady-
state properties and engine efficiency in the quasi-static limit. In
ref. 90, a similar setup was established through computer simula-
tions, where an active medium consisting of smaller active disks
interacted with each other and with a confined tracer via repulsive
Lennard-Jones-type potentials. The effective motion of the tracer
was found to be influenced by the interplay between the activity of
the medium and the tracer’s relaxation dynamics.

In this paper, we present a generalisation of the standard
model presented in ref. 41 and 63, which encompasses most of
its variations mentioned above, namely, the stochastic motion
of a tracer confined in a harmonic potential and interacting
with bath particles via elastic bonds; the bath particles at two
different temperatures are driven by either white or coloured
Gaussian noises. We develop an analytical scheme which solves
the problem exactly, and the approach can be extended easily to
incorporate other models of active noise. Also, it can be applied
to study the fluctuating dynamics of an active tracer, a tracer
with inertia, and bath particles subjected to both active and
thermal noise. It is important to note that, for a comprehensive
modelling of an active particle, one would typically include
additional thermal driving in the dynamics of bath particles.91,92

However, for the purposes of this study, we choose to omit thermal
effects on the bath particles to focus exclusively on the impact of
active contributions. Furthermore, it is essential to underscore that
the influence of active noise significantly outweighs thermal con-
tributions in the hot-cold mixture model of active bath particles.
Active particles are assumed to be connected to reservoirs separate
from the tracer, allowing us to safely disregard thermal effects on
the active particles while still assessing their influence on the tracer.

The plan of the paper is as follows. In Section 2, we present
the details of the model. For this model, the standard dynami-
cal observables such as the mean squared displacement (MSD)
and the probability density function (PDF) of the displacement
are provided in Section 3. In Section 4, we derive the exact
results for the relevant thermodynamic quantities to quantify
non-equilibrium fluctuations. Additionally, we establish a
generalised FDT by defining a frequency-dependent effective
temperature, and we investigate stochastic energetics by calcu-
lating the amount of energy exchanged between the system and
the environment. We summarise our results in Section 5. Other
important details to supplement the main results are presented
in subsequent appendices: Appendix A is dedicated to the exact
derivation of the PDF. The simulation details of the model are
discussed in Appendix B. In Appendix C, we present the detailed
derivations of the response function and the autocorrelation.
All the quantities and parameters used in the text are collected
in Table 1.
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2 Model

Suppose that a tracer particle is immersed in a bath consisting of two
types of active particles: one, Nh of active particles are in contact with
thermostats of higher temperature Th. Two, Nc cold particles are
driven by a thermostat with temperature Tc, where Tc r Th, and we
take N = Nh + Nc. We assume that the active particles do not interact
with each other, and as a simple but effective approximation, the
tracer is coupled to all these particles via harmonic potentials of the
same strength l0. On top of those interactions, the tracer is confined
in an external harmonic potential of strength l, e.g., exerted by an
optical or acoustic trap.66,93–95 In addition, it is subjected to white
Gaussian noise arising due to collisions with solvent particles kept at
temperature Ttr. This description is sketched in Fig. 1. Considering
the isotropic nature of the medium, it is sufficient to deal with a one-
dimensional system as the procedure can easily be extended to
higher dimensions.

In a minimal model, the governing equations for the coupled
dynamics of the tracer (with coordinate x) and the active particles
(with coordinate xh and xc for hot and cold particles, respectively)
in the overdamped limit can be expressed as41,63

_xðtÞ ¼ � kxðtÞ �
XNh

i¼1
kI ðxðtÞ � xh;iðtÞÞ

�
XNc

i¼1
kI ðxðtÞ � xc;iðtÞÞ þ ZðtÞ;

(1a)

:
xh(t) = �k0(xh(t) � x(t)) + Zh(t), (1b)

:
xc(t) = �k0(xc(t) � x(t)) + Zc(t). (1c)

Here the dot symbol above the variable denotes its time
derivative. The above set of equations has been rescaled by
the friction coefficients of the particles, and thus the strength of
the potentials are redefined as k = l/gtr, kI = l0/gtr, and k0 = l0/gb,
where gtr and gb are the friction coefficients of the tracer and the

Table 1 Notations and dimensions of quantities/parameters used in the text

Notation Description Unit

x, xh, xc Respective positions of tracer, hot and cold particles mm
t, Dt Total time and time step s
th, tc Respective persistence times of hot and cold particles s
gtr, gb Friction coefficients of tracer and active bath particles pN mm�1 s
l Strength of external harmonic trap pN mm�1

l0 Strength of interaction potential between tracer and active particles pN mm�1

1/k Relaxation time of tracer in external harmonic trap s
1/kI Interaction timescale of tracer interacting with bath particles s
1/k0 Interaction timescale of active bath particles interacting with tracer s
Dtr, Dh, Dc Respective diffusivities of tracer, hot and cold particles in model II mm2 s�1

Dtr, Dh,m, Dc,m Respective diffusivities of tracer, hot and cold particles in model III mm2 s�1

Gh, Gc Amplitudes of active forces acting on hot and cold particles in model III mm2 s�2

Deff, Dh,eff, Dc,eff Respective effective diffusivities of tracer, hot and cold particles mm2 s�1

Ttr, Th, Tc Temperatures of tracer, hot and cold particles K
Teff, Tact,h, Tact,c Effective temperatures of a single tracer, hot and cold particles K
Nh, Nc Numbers of hot and cold particles 1
w(t) Response function [eqn (11)] 1
~SxxðoÞ Power spectral density of x [eqn (16)] mm2 s

kB Boltzmann constant pN mm K�1

Eact(o) Active energy [eqn (21)] pN mm
hJi Energy dissipation rate [eqn (24)] pN mm s�1

a1 Eqn (35) s�1

a2 Eqn (36) s�2

ts, tl Eqn (13a) and (13b) s
ws, wl Eqn (13c) and (13d) 1
a11, a12 Eqn (27a) and (27c) s�2

a21, a22 Eqn (27b) and (27d) K
f(t) Eqn (33) 1
c(t) Eqn (34) s

Fig. 1 Illustration of a tracer particle (blue sphere in the centre) confined
in a harmonic trap of strength in a bath comprising hot (red) and cold
(green) particles. The tracer is coupled to the particles via harmonic springs
of strength l0. In addition, it is surrounded by solvent molecules (small blue
spheres) which act as the source of thermal fluctuations.
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active particles, respectively. The term Z in eqn (1a) represents
zero-mean, white Gaussian noise corresponding to the thermal
fluctuations acting on the tracer, with hZ(t)i = 0 and hZ(t)Z(t0)i =
2Dtrd(t � t0), where the diffusivity of the tracer Dtr is related to the
bath temperature Ttr via the Einstein–Smoluchowski–Sutherland
relation Dtr = (kBTtr)/gtr, with the Boltzmann constant kB.96

From now on, we set kB = 1. For the active particles, we consider
two different models for the active noises Zh and Zc which are
discussed in the following.

2.1 Active noise models

Eqn (1b) and (1c) describe the dynamics of active hot and cold
particles which are subject to the noises Zh and Zc, respectively.
For simplicity, we consider that all hot (or cold) particles follow
similar dynamical properties, but they do not interact with each
other. So the autocorrelation function of noises Zh,i and Zc,j

acting on the ith hot particle and jth cold particle is given by

hZh,i(t1)Zc,j(t2)i = dhcdijk(|t1 � t2|), (2)

with k(|t|) being the autocorrelation function with the time-
translational invariance, and dab the Kronecker delta of any two
variables a and b.

2.1.1 Model I: active particles driven by Gaussian white
noises. Let us first consider a simple model where the active
particles just act as a source of additional energy input to the
tracer dynamics, and for such a case, the noises in (2) are
considered as white Gaussian with zero mean and delta
correlations,97

hZh,i(t)Zh,j(t0)i = 2Dhdijd(t � t0) (3a)

hZc,i(t)Zc,j(t0)i = 2Dcdijd(t � t0) (3b)

where Dh and Dc are the diffusivities of hot and cold particles,
respectively, defined as Dh = kBTh/gb and Dc = kBTc/gb. In the
long-time limit, each particle attains an equilibrium state,
thereby assuming a Boltzmann distribution.

2.1.2 Model II: active particles driven by Gaussian coloured
noises. In contrast to the previous model, here we characterise
the active particles by the persistence properties of their
motion, or in other words, finite correlation times denoted as
th and tc are included in the dynamics of the hot and cold
particles. As a common yet effective model, the active noises Zh

and Zc are described by the Ornstein–Uhlenbeck process
(OUP),33,86

_ZhðtÞ ¼ �
1

th
ZhðtÞ þ

1

th
Zw;h; (4a)

_ZcðtÞ ¼ �
1

tc
ZcðtÞ þ

1

th
Zw;c; (4b)

where Zw,h and Zw,c represent Gaussian white noises. Thus the
autocorrelation functions of the active noises Zh(t) and Zc(t) can
be expressed as

hZh;iðtÞZh;jðt 0Þi ¼
Dh

th
dij exp �

jt� t 0j
th

� �
; (5a)

hZc;iðtÞZc;jðt 0Þi ¼
Dc

tc
dij exp �

jt� t 0j
tc

� �
: (5b)

Therefore, each free active particle can reach a steady state after
its correlation time, and its distribution is of Boltzmann form,

yet involves effective diffusivities given by Dh;eff ¼
Dh

1þ k0th

and Dc;eff ¼
Dc

1þ k0tc
for the hot and cold active particle,

respectively.35 Such a description is often referred to as the
active Ornstein–Uhlenbeck particle (AOUP) model. Note that
in the limit th - 0 (or tc - 0), the active noise becomes
delta-correlated white noise, and thus one recovers the pre-
vious model.

A related model is the modified AOUP (MOUP) in which the
correlations for the active noises have similar forms as in (5a)
and (5b), but the amplitudes do not depend on the correlation
times, i.e., the terms Dh/th and Dc/tc are replaced by the fixed
amplitudes Gh and Gc.77 The MOUP will be considered as
model III. In model III, the diffusivities of a hot and a cold
particle can be defined as Dh,m = Ghth and Dc,m = Gctc,
respectively, implying their dependence on persistence times.
However, it is worth noting that for fixed values of diffusivities,
both model II and model III yield the same result for the
dynamical properties.

3 Dynamical properties

To get an idea about the dynamics of the tracer, we find the PDF
of the displacement and the MSD of the tracer for the above
models. A complete derivation of the PDF is shown in Appendix
A. The results are used below for the detailed analysis.

From eqn (50), the MSD defined as h[x(t) � hx(t)i]2i is derived
in Appendix A. Given that the mean of the distribution is zero
(i.e., hx(t)i = 0), we will henceforth refer to the MSD as hx(t)2i.
The MSD is displayed in Fig. 2. Fig. 3 shows the PDF (48) of
the tracer displacement x for the two models of active parti-
cles at different times, and we notice that the distribution is
always Gaussian. However, the width of the PDF varies non-
monotonically with time, corresponding to the MSD behaviour
captured in Fig. 2. At t = 0, there is no effective interaction
between the tracer and the active particles as the tracer is in
equilibrium at temperature Ttr, and thus it is Gaussian of width

hxð0Þ2i ¼ Ttr

l
(see Appendix A). At short times, the tracer motion

then becomes constrained due to the coupling to the active
particles. This is evident from the short-time behaviour
hx(t)2i B �j(Nh + Nc)kIt, suggesting that the initial decrease of
the MSD depends on the coupling strength and the number of
active particles that are elastically coupled to the tracer. After an
intermediate time t*, the MSD starts increasing and reaches a
plateau value in the long-time limit. This behaviour can be
attributed to the relaxation of the system to a steady state by
exchanging energy with the active particles. Note that a similar
variation of the displacement was observed experimentally for a
probe diffusion inside a cytoskeletal network.1 In the long-time
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limit, the MSD in model II can be written as (see Appendix A)

lim
t!1
hx2ðtÞi ¼ Dtr

a2 þ k0
2

a1a2
þ 2NhDhkI

2 1þ a1thð Þ
2a1a2 th a1 þ a2thð Þ þ 1ð Þ

þ 2NcDckI
2 1þ a1tcð Þ

2a1a2 tc a1 þ a2tcð Þ þ 1ð Þ;
(6)

where a1 and a2 depend on the coupling constants k0, kI, and k,
as well as the number N of active particles, see eqn (27c). In
terms of temperatures, the MSD can be rewritten as

Teff

l
¼ lim

t!1
hx2ðtÞi

¼ Ttr

l
lgb þ l0gtr½ �

l0gtr þ ðlþNl0Þgb½ �

þNhTh

l
gtgb þ ðlþNl0Þgbth þ l0gtrth½ �

l0gtr þ ðlþNl0Þgb½ �

� l0gb
gtgb þ ðlþNl0Þgbth þ l0gtrth þ ll0th2½ �

þNcTc

l
l0gb

l0gtr þ ðlþNl0Þgb½ �

� gtgb þ ðlþNl0Þgbtc þ l0gtrtc½ �
gtgb þ ðlþNl0Þgbtc þ l0gtrtc þ ll0tc2½ �:

(7)

Note that even for Th = Tc = Ttr, the effective temperature Teff is
not equal to Ttr as, by construction, the active particles are in a

non-equilibrium state, and thus they keep the tracer away from
equilibrium. At th - 0 and tc - 0, the active noise reduces to
the white Gaussian noise, and we recover model I, for which
[see eqn (50)]

lim
t!1
hx2ðtÞi ¼ 2 lim

t!1
x2ðtÞ

¼ DhNh þDcNc½ �kI2
a1a2

þ
Dtr a2 þ k0

2
� �
a1a2

: (8)

In terms of temperatures,

Teff

l
¼ lim

t!1
hx2ðtÞi ¼ Ttr

l
lgb þ l0gtr½ �

l0gtr þ ðlþNl0Þgb½ �

þ l0gb
l

NhTh þNcTc½ �
l0gtr þ ðlþNl0Þgb½ �:

(9)

Note that unlike model II, when Th = Tc = Ttr, we have Teff = Ttr,
indicating that that the particle attains equilibrium, as illu-
strated in Fig. 2. Furthermore, under the condition NhTh +
NcTc = (Nh + Nc)Ttr, we also find Teff = Ttr. Thus, the width of
the distribution at shorter and longer times is the same, as
reflected in panel (a) of Fig. 3. However, if Th 4 Ttr (or Tc o Ttr)
keeping Tc = Ttr (or Th = Ttr), an additional energy is supplied
to the tracer (or active particles), and as a result, the MSD
is increased (or decreased) compared to the initial value,
i.e., Teff 4 Ttr (or Teff o Ttr). We will discuss the energetics of
the system in more detail in the next section.

To get more insight about the dynamics, the MSD hx(t)2i
is plotted in Fig. 4 for different coupling strengths kI

Fig. 2 Log–linear plot of the second central moment of the displacement
versus time for (a) model I and (b) model II at different temperatures of the
hot and cold particles. The theoretical result (50) shown by the dashed
lines is in good agreement with the simulation results (solid curves).
The correlation times for the active particles used in model II are given
by th = 1.0, tc = 1.0. We set the values of the parameters to be Ttr = 50,
k = 0.5, kI = 0.5, and k0 = 1.0. Other details are provided in Appendix B. For
the ease of numerical simulations, the tracer is considered to be harmo-
nically coupled to only one hot and one cold particle.

Fig. 3 PDF plotted against the displacement of the trapped tracer at
different timescales for (a) model I and (b) model (II). Simulation results
represented by histograms are, within numerical errors, in good agree-
ment with the analytical expression (48). The temperatures of the hot, cold
and tracer particle are Th = 60, Tc = 40, Ttr = 50, respectively. In model (II)
the correlation times for the active particles are set to th = tc = 10. Here we
consider that the tracer particle is coupled to one hot and one cold
particle. Other parameters used here are given in Appendix B.
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(or equivalently, l0). At the crossover time t*, the value of hx(t)2i
reaches a minimum which shifts towards shorter t* for higher
kI values. This is true for both models, but in the case of model
II, a plateau-like behaviour after t* occurs for a longer period of
time before it approaches towards the steady state. This could
be due to the existence of a longer persistence time in model II.
It is worth noting that the dynamical properties corresponding
to model III are similar to those in model II.

4 Linear response and
fluctuation–dissipation theorem

An important quantity to study in the behaviour of a non-
equilibrium system is the response function w(t) which encodes
the response of the system when subjected to an external
perturbation. Ignoring higher-order terms corresponding to a
nonlinear response in the presence of small external force
fext(t), the response function in the linear regime can be defined
in terms of the change in position due to the application of an
external force for all possible realisations of the motion, as

hdxðtÞi ¼ hxðtÞif � hxðtÞi0 ¼
ðt
0

dt1 k0cðt� t1Þ þ fðt� t1Þ½ �fextðt1Þ:

(10)

Eqn (32) shows how the random force Z(t) can be replaced by
the external force fext(t) as both forces are related to x(t), in the
same way, although their statistical properties are different.

From eqn (10) the response function, denoted as w(t), can
thus be computed as

wðtÞ ¼ dhdxðtÞi
dfext

¼ YðtÞ½k0cðtÞ þ fðtÞ�; (11)

which is plotted in Fig. 5(a) for different coupling strengths kI

(or equivalently l0). Here Y(t) denotes the Heaviside step
function which takes care of the causality. Note that w(t)
captures, in a way, the relaxation dynamics of the system, and
so it is independent of the bath models. Without coupling to
the active particles, w(t) = Y(t)e�kt, which corresponds to the
response function for a tracer trapped in a harmonic potential
of strength k. Fig. 5(a) shows that the response function w(t)
follows a bi-exponential decay in time, viz.,

wðtÞ ¼ YðtÞws exp �
t

ts

� �
þYðtÞwl exp �

t

tl

� �
; (12)

where

ts ¼
2

a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p ; (13a)

tl ¼
2

a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p ; (13b)

ws ¼
1

2
þNkI þ k� k0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p ; (13c)

wl ¼
1

2
�NkI þ k� k0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p : (13d)

Fig. 4 Double logarithmic plot of the second central moment of the
displacement given by eqn (50) versus time for (a) model I and (b) model II
at different coupling strengths between the tracer and the active particles.
The correlation times for the active particles used in model II are th = 1.0,
tc = 1.0. The number of hot and cold particles coupled to the tracer are
Nh = Nc = 10. The tracer, hot and cold particles are connected to three
thermostats at temperatures Ttr = 50, Th = 150 and Tc = 10, respectively.
Other parameters are the same as in Fig. 2.

Fig. 5 (a) Double logarithmic plot of the response function (eqn (11)) as a
function of time at different coupling strengths between the tracer and the
active particles, keeping the strength of the harmonic potential fixed at
l = 1.0. (b) Log–log plot of ts (see eqn (13a)) versus coupling strength l0 for
different values of l. Other parameters are the same as in Fig. 4.
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So the decay is governed by two distinct functions with corres-
ponding timescales, ts and tl, representing the behaviour in the
two opposite time limits. The initial temporal regime, during
which w(t) exhibits a ‘‘shoulder’’, is dictated by the timescale ts,
while tl corresponds to the timescale for the following regime.
At the initial stage, the response function can be approximated
as w(t) B 1 � (k + NkI)t, suggesting its strong dependence on the
coupling strength l0, and it decays faster for higher values of l0,
as shown in Fig. 5. In fact, ts decreases monotonically with l0

for any finite values of l, as shown in panel (b) of Fig. 5, and it
scales as ts p l0

�1 in the limit l0 c l. Similar characteristics
are reflected in the plots of hx(t)2i, Fig. 4. Comparing Fig. 4 and
5, it can be concluded that the crossover time t* also dictates
the timescale which distinguishes two decay laws. At longer

times, wðtÞ � e
�a2a1t, i.e., it decays exponentially which is barely

affected by the coupling strength kI, as can also be seen in
Fig. 5(a).

For a system in equilibrium, the power spectrum of x (or
Fourier transform of the positional autocorrelation function) is
linked to the Fourier transform of the response function via the
FDT. However, a system driven away from equilibrium violates
the usual FDT with respect to the ambient temperature, but its
departure from equilibrium can be quantified by introdu-
cing the concept of an effective temperature Teff (or effective
diffusivity Deff), and thereby redefining the FDT in the Fourier
space,22,98

Im ~wðoÞ½ � ¼ o
2DeffðoÞ

Re ~SxxðoÞ
h i

; (14)

where Deff(o) represents a frequency-dependent effective diffu-
sivity. Instead of an effective temperature, one can alternatively
use the term effective energy defined as Eeff = kBTeff. From (58)
the imaginary part of the response function in Fourier space
can be rewritten as

Im ~wðoÞ½ � ¼
o k0

2 þ o2 þNk0kI
� �

ðo2 � kk0Þ2 þ o2 k0 þ kþNkIð Þ2
: (15)

The PSD of x depends on a chosen model of active particles,
and thus it is different for each model as given by eqn (59)–(61).
But all models can be mapped into each other by taking specific
values of th and tc, as discussed before. For model II, the PSD
can be expressed as

~SxxðoÞ ¼ 2

kI
2 NhDh

1þ o2th2
þ kI

2 NcDc

1þ o2tc2
þ k0

2 þ o2
� �

Dtr

ðo2 � kk0Þ2 þ o2 k0 þ kþNkIð Þ2
; (16)

and its plot as a function of frequency o is shown in Fig. 6.
In the limit o - 0 the PSD can be approximated as

~SxxðoÞ � 2

kI
2 NhDh

1þ o2th2
þ kI

2 NcDc

1þ o2tc2
þ k0

2Dtr

o2 k2 þ k02 þN2kI2 þ 2 k0 þ kð ÞNkI½ � þ k2k02
;

(17)

which strongly depends on the strengths of the active forces,
and therefore the spectra with different activities are separated

at low frequencies, as shown in Fig. 6. At a higher activity, the
tracer experiences larger active fluctuations, thus showing a
higher spectral value. Note that such a behaviour was reported
earlier in several experimental observations.1,10,45,60 At inter-
mediate frequencies, a significant plateau is observed for the
tracer connected to AOU particles due to the presence of
the persistence time, as shown in panel (b) of Fig. 6. At high
frequencies,

~SxxðoÞ �
2Dtr

o2 þ k2 þ k02 þN2kI2 þ 2 k0 þ kð ÞNkI½ �; (18)

which is of typical Lorentzian form and corresponds to the
thermal noise. Thus, the spectra for various activities converge
to a single curve at o-N. Note that eqn (18) is a generic form
that appears in the expression of the PSD for various processes,
including the OU process,99,100 Brownian motion subjected
to resetting,101 and free diffusion of an active Brownian
particle.102

Let us first consider the model I for the active particles. For
this case, using eqn (60) and substituting eqn (15) in eqn (14),
one can find the effective diffusivity in Fourier space as

DeffðoÞ ¼
kI

2ðNhDh þNcDcÞ
k02 þ o2 þNk0kI

þ Dtrðk02 þ o2Þ
k02 þ o2 þNk0kI

¼ Dtr þ
kI

2ðNhDh þNcDcÞ �DtrNk0kI

k02 þ o2 þNk0kI
;

(19)

Fig. 6 Log–log plot of the power spectral density of x versus frequency o
for (a) model I and (b) model II with th = tc = 1. The parameters are
Nh = Nc = 100 and Ttr = 50. The other parameters are given by gtr = 5,
gb = 1, l = 1, l0 = 1.
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or in a similar way, the frequency-dependent effective tem-
perature is

TeffðoÞ ¼ gtrDeffðoÞ ¼ Ttr þ
ðNhTh þNcTcÞ � TtrN

k0

kI
1þN

kI

k0
þ o2

k02

	 
 : (20)

Note that the effective temperature becomes identical to the
temperature of the tracer (i.e., Teff(o) = Ttr) when Ttr = Th = Tc.
This describes an equilibrium situation. In any other case,
Teff(o) differs from Ttr, and thus it represents a non-equili-
brium system. Note that here one can define the active
energy as

Eact(o) = kB[Teff(o) � Ttr], (21)

which measures the sole contributions of active fluctuations.45

For model II, the frequency-dependent effective temperature
can be calculated using eqn (15), (59) and (14),

TeffðoÞ ¼ gtrDeff ðoÞ

¼ Ttr þ

NhTh

1þ o2th2
þ NcTc

1þ o2tc2
� TtrN

k0

kI
1þN

kI

k0
þ o2

k02

	 
 :
(22)

For Ttr = Th = Tc, Teff(o) a Ttr, and as mentioned earlier, this
system always stays at non-equilibrium.

Fig. 7 shows the plot of Teff(o) for the two models. Note that,
depending on the values of Th and Tc, Teff(o) becomes larger or
smaller compared to Ttr, and this difference of temperature is
clearly visible in the (activity-dominated) low-o regime, in sync
with the PSD analysis. Interestingly, Teff(o) in model II exhibits

a non-monotonic variation with o, i.e., at an intermediate
frequency o* it reaches a minimum which diminishes at
vanishing persistence times. Therefore, such behaviour cap-
tures a signature of the persistent motion.

Fig. 8 illustrates how o* varies with persistence times
(th and tc) and the coupling strength l0. Increasing persistence
times causes o* to shift towards smaller values, while an
increase in l0 results in higher values of o*. When the coupling
strength is higher, the tracer’s motion is quickly constrained by
stronger interaction with the active particles before it relaxes
towards the steady state. This implies a higher o* value and a
significant decrease in effective energy [cf. Fig. 5]. On the other
hand, in a highly persistent environment, the tracer interacts
with the particles over longer periods, expending more energy
before reaching a steady state. As a result, Eact(o) decreases
significantly over a wider range of frequencies, and thus its
minimum occurs at a lower o*. The result is further clarified in
our subsequent analysis.

Another way of characterising the non-equilibrium activity is
to calculate the energy dissipation rate. Using the Harada–Sasa
equality, the spectral density of dissipation rate can be
expressed as22,98

IdissðoÞ ¼ gtro o~SxxðoÞ � 2DtrIm ~wðoÞ½ �
h i

; (23)

and thus the integration of its spectral density over all values of
o results in the average rate of energy dissipation, i.e., the
energy transferred from the surroundings to the tracer. So the
average dissipation rate can be written as

hJi ¼ 1

2p

ðþ1
�1

doIdissðoÞ: (24)

Fig. 7 Double logarithmic plot of the effective temperature in frequency domain, scaled by temperature of the tracer as function of frequency o for (a)
model I and (b) model II where th = tc = 1 and Ttr = 50. Other parameters are the same as in Fig. 6. In panels (c) and (d), the effective temperature for
model II is plotted as a function of o for different values of the persistence time th and the interaction strength l0, respectively, setting the temperatures
as Th = 100, Tc = 25 and Ttr = 50. For panel (c), we take l0 = 1.0, and for panel (d), th = tc = 1. Other parameters are the same as in Fig. 6.
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With the help of eqn (15) and (57), the average dissipation
rate given in eqn (24) is calculated exactly for the two models.
For model I, it is given by

hJi ¼
ffiffiffi
2
p

kIk0kB �Ttr Nc þNhð Þ þ TcNc þ ThNhð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
a1 � 2a2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
a1 � 2a2

q ;

(25)

while for model II, the energy dissipation rate is

hJi ¼ � k0kIkB

2

ThNhth
a2th2 þ 1ð Þ2�a12th2

þ TcNctc
a2tc2 þ 1ð Þ2�a12tc2

"

þ
ffiffiffi
2
p

a22
a12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
a1 � 2a2

q

þ
ffiffiffi
2
p

a21
a11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
a1 � 2a2

q #
;

(26)

where the variables are given as

a11 ¼ a1 th2tc2a15 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
th2tc2a14 � 6a2tc2 þ 1

� �
th2

��

þ tc2
�
a13 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
4a2tc2 þ 1
� �

th2 þ tc2
� �

a12

þ 4a2 2a2tc2 þ 1
� �

th2 þ tc2
� �

a1 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
� a22th2tc2 þ a2 th2 þ tc2

� �
þ 1

� ��
;

(27a)

a21 ¼ � 2 TcNc þ ThNhð Þ � a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
� a12 þ 2a2

� �
� TcNcth2 þ ThNhtc2
� �

þ Ttr Nc þNhð Þ

� ðtc2a14 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
tc2a13 � 4a2tc2 þ 1

� �
a12

h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
� a1 2a2tc2 þ 1

� �
þ 2a2 a2tc2 þ 1

� ��
th2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
� a1

� �
a1 þ 2a2

� �
tc2 þ 2

i
;

(27b)

a12 ¼ a1 th2tc2a15 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
th2tc2a14 � 6a2tc2 þ 1

� �
th2

��

þ tc2
�
a13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
4a2tc2 þ 1
� �

th2 þ tc2
� �

a12

þ 4a2 2a2tc2 þ 1
� �

th2 þ tc2
� �

a1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
� a22th2tc2 þ a2 th2 þ tc2

� �
þ 1

� ��
;

(27c)

Fig. 8 Plots of o* for model II as functions of (a) th while keeping tc = 1
and l0 = 1, (b) tc while keeping th = 1 and l0 = 1, and (c) l0 when th = tc = 1,
with Ttr = 50. The curves are obtained by numerically solving the equation
dTeff ðoÞ

do


o¼o�

¼ 0; using eqn (22). Other parameters are the same as

in Fig. 6.
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a22 ¼ � 2 TcNc þ ThNhð Þ þ a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
þ a12 � 2a2

� �
� TcNcth2 þ ThNhtc2
� �

þ Ttr Nc þNhð Þ tc2a14
��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
tc2a13 � 4a2tc2 þ 1

� �
a12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
� 2a2tc2 þ 1
� �

a1 þ 2a2 a2tc2 þ 1
� ��

th2

� a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
þ a12 � 2a2

� �
tc2 þ 2

i
:

(27d)

Fig. 9 demonstrates the variation of the hJi values for a wide
range of temperatures associated with hot and cold particles.
It is evident that the rate increases with increasing Th (or Tc) for
a fixed value of Tc (or Th). In model I, hJi 4 0 if the tracer is

connected to all hot particles whose temperatures are greater
than Ttr, and in the opposite case when all connected particles
have temperatures lower than that of the tracer, h Ji o 0. The
dissipation rate is exactly zero if Ttr = (TcNc + ThNh)/(Nh + Nc).

Now consider the case when the active force is described by
the OU process. Interestingly, h Ji o 0 even if the tracer is in
contact with all hot particles, as shown in panel (b) of Fig. 10.
This may seem counter-intuitive, but this behaviour has already
been anticipated in panel (b) of Fig. 7. The negativity of the h Ji
values implies that the active particles must have a lower
(effective) temperature as compared to the tracer and, as a
result, a net energy is dissipated to the active particles. In fact,
at the steady state (without thermal fluctuations) a single active
particle can be characterised by an effective temperature (Tact)
which is smaller than the one (T) in its equilibrium, here Tact,i =
Ti/(1 + k0ti), and i = h and i = c for hot and cold particles,
respectively. Note that, for any non-zero values of ti, Tact,i o Ti.
Thus with the increment of ti, the effective temperature of the
active particle decreases, and this appears to be one of the
reasons for the lowering of h Ji. The value of h Ji will be lowered
to a greater extent if it is a hot particle whose effective
temperature is decreased due to longer persistence. This fact
is reflected in panel (a) of Fig. 10. One can thus infer that there
is a net energy flow to active particles of this kind, and, if there
are a large number of active particles coupled to the tracer, h Ji
decreases significantly, as can be seen from panel (b) of Fig. 10.
However at a fixed parametric region, there exists an optimal
value of number ratio (Nh/Nc) for which h Ji is maximum,
and this maximum moves from a region where Nh/Nc 4 1 to
a region where Nh/Nc o 1, as the number of active particles
increases. Note that here only the active contributions have
been considered which yields negative dissipation rate. Concep-
tually, the dissipation rate becomes positive, i.e., a net energy is
supplied to the tracer while coupled to active particles if the
thermal part is included in the dynamics of active particles or/and
the active force is much stronger than the thermal one. However,
using the above analysis of model II one can justify the surprising
observation in ref. 32 where the activity is responsible for the
suppression of non-equilibrium fluctuations.

For fixed values of diffusivities Dh,m and Dc,m, model III
produces the same results as model II mentioned above.
However, it differs when the amplitudes of the active force
are held fixed. The results for this case are shown in Fig. 11. In
contrast to model II, the dissipation rate h Ji varies non-
monotonically with respect to the persistence times, as shown
in panel (a) of Fig. 11. At an intermediate region in the
parametric space of {th,tc}, h Ji is at its maximum. Relying on
a similar argument as presented for model II, the behaviour at
small persistence times could be attributed to its dependence

on the effective temperature which is given by Tact;i ¼
gbGiti
1þ k0ti

,

where i = {h,c} for hot and cold particles, respectively. Note that
with an increase in the persistence time, the effective tempera-
ture also increases and reaches a fixed value, but the correlation
of the active force decays exponentially in time with a correla-
tion timescale given by ti. The variation of hJi with respect to

Fig. 9 Contour plot of the average dissipation rate hJi as function of the
temperatures of the hot and cold particles in (a) model I and (b) model II
where th = tc = 0.01. The various coloured regions in the plot correspond
to different ranges of hJi values, as indicated in the legend. The contour
lines correspond to equal magnitude of hJi. Other parameters are the
same as in Fig. 6.
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the number ratio follows a similar trend as model II, as shown
in panel (b) of Fig. 11. Model III is suitable for characterising
the bath where the motion of active particles is induced by self-
propulsion with a fixed average speed, such as in a bacterial
bath.17

5 Conclusions

Here we developed an analytical tool to generalise the common
model for the dynamics of a tracer in a non-equilibrium bath.
With this technique, we obtained exact time-dependent solu-
tions of important dynamical observables for the model of bath
particles driven by any kind of Gaussian noise. Some important
results we obtained in the present study are given as follows.

For the effective motion of the tracer, the MSD of its positional
distribution changes non-monotonically with time, and it
reaches a steady state at a long time characterised by an
effective temperature (Teff), dictating its departure from equili-
brium. Teff for model I [see eqn (9)] closely resembles the one
reported in ref. 63. We also present the results for Teff when the
dynamics of bath particles are governed by the OU processes.

The active contributions are encoded in the low-frequency
regime of the PSD, where enhanced fluctuations occur, as
observed experimentally; e.g., see ref. 10 and 45. In model II
and III, the persistent nature is highlighted in the plateau
region of the PSD plot. The response function obeys double-
exponential decay laws, with two distinct timescales that

Fig. 10 Model II: active particles driven by coloured Gaussian noises.
Contour plot of (a) the average dissipation rate hJi as function of persis-
tence times where Nh = Nc = 2, and (b) the numbers of hot and cold
particles where th = tc = 0.65. Each red dot in panel (b) indicates the point
at which Nc is maximum for the respective contour. Here the temperatures
of the particles are taken as Th = 500, Tc = 50 and Ttr = 100. Other
parameters are given as gtr = 5, gb = 1, l = 1, l0 = 1.

Fig. 11 Model III: active particles governed by MOU processes. Contour
plot of (a) the average dissipation rate hJi as function of persistence times
where Nh = Nc = 2, and (b) the numbers of hot and cold particles where
th = tc = 0.65. In panel (b), each red dot on the respective contour
indicates the point at which Nc has maximum value. Here, the amplitudes
of the active forces are considered as constants, and their values are given
as Gh = 600 and Gc = 50. Other parameters are given as Ttr = 100, gtr = 5,
gb = 1, l = 1, l0 = 1.
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strongly depend on the interaction strength between the tracer
and the bath particles. In a viscoelastic bath, the existence of
two timescales was reported earlier in the hopping dynamics of
a tracer crossing the barrier.103

A higher effective temperature, associated with increased
activity, results in a higher dissipation rate, allowing for an
estimation of non-equilibrium fluctuations, as discussed in
ref. 10, 45 and 47. However, we show that for the case where
the temperature of the active particles is lower or the active
particles undergo OU dynamics, non-equilibrium fluctuations
are significantly reduced, in agreement with the findings in
ref. 63. More specifically, longer persistence leads to a more
substantial reduction of non-equilibrium fluctuations.

Extensions of our present study are quite straightforward to
incorporate, e.g., in terms of alternative models of the active
force such as a Poisson noise when the dynamical description
goes beyond the Gaussian approximation. It can also be applied
to study other thermodynamic quantities such as heat, work
and entropy production. Finally, we note that it will be inter-
esting to employ a similar approach to explore how a tracer
behaves in an active medium, considering scenarios where
the interaction potential between the tracer and bath particles
is anharmonic, when the particles within the medium interact
with each other, or when the medium itself is an active
polymeric network.

Abbreviations and symbols

AOU Active Ornstein–Uhlenbeck
FDT Fluctuation–dissipation theorem
MOU Modified active Ornstein–Uhlenbeck
MSD Mean squared displacement
OU Ornstein–Uhlenbeck
PDF Probability density function
PSD Power spectral density
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Appendix

A Derivation of the PDF

The solution of eqn (1b) and (1c) can be expressed as

xjðtÞ ¼ xjð0Þe�k0t þ k0

ðt
0

dt1e
�k0ðt�t1Þxðt1Þ þ

ðt
0

dt1e
�k0ðt�t1ÞZjðt1Þ:

(28)

Using the above, eqn (1a) can be recast as

_xðtÞ ¼ � kþNkIð ÞxðtÞ þNk0kI

ðt
0

dt1e
�k0ðt�t1Þxðt1Þ

þ kI
XNh

i¼1
xh;ið0Þe�k0t

þ kI
XNc

i¼1
xc;ið0Þe�k0t þ kI

XNh

i¼1

ðt
0

dt1e
�k0ðt�t1ÞZh;iðt1Þ

þ kI
XNc

i¼1

ðt
0

dt1e
�k0ðt�t1ÞZc;iðt1Þ þ ZðtÞ;

(29)

where N = Nh + Nc. Upon Laplace transform of eqn (29) one
obtains

s~xðsÞ�xð0Þ ¼ � kþNkIð Þ~xðsÞþNk0kI
~xðsÞ
sþk0

þkI
XNh

i¼1

xh;ið0Þ
sþk0

þkI
XNc

i¼1

xc;ið0Þ
sþk0

þkI
XNh

i¼1

~Zh;iðsÞ
sþk0

þkI
XNc

i¼1

~Zc;iðsÞ
sþk0

þ~ZðsÞ:

(30)

After rearranging the terms of the above, the solution in the
Laplace domain can be expressed as

~xðsÞ ¼ xð0Þ sþk0

s2þ k0þNkI þkð Þsþkk0

þ ~ZðsÞ sþk0

s2þ k0þNkI þkð Þsþkk0

þ kI
XNh

i¼1

xh;ið0Þ
s2þ k0þNkI þkð Þsþkk0

þ kI
XNc

i¼1

xc;ið0Þ
s2þ k0þNkI þkð Þsþkk0

þ kI
XNh

i¼1

~Zh;iðsÞ
s2þ k0þNkI þkð Þsþkk0

þ kI
XNc

i¼1

~Zc;iðsÞ
s2þ k0þNkI þkð Þsþkk0

:

(31)

Now one can perform the inverse Laplace transform of
eqn (31), yielding

xðtÞ ¼ xð0Þ k0cðtÞþfðtÞ½ �þkIcðtÞ
XNh

i¼1
xh;ið0Þþ

XNc

i¼1
xc;ið0Þ

" #

þ kI
XNh

i¼1

ðt
0

dt1cðt� t1ÞZh;iðt1ÞþkI
XNc

i¼1

ðt
0

dt1cðt� t1ÞZc;iðt1Þ

þ
ðt
0

dt1 k0cðt� t1Þþfðt� t1Þ½ �Zðt1Þ;

(32)
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where

fðtÞ¼ e�
a1t
2 cosh

t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p� �

�
a1e
�a1t

2 sinh
t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p ; (33)

cðtÞ¼
2e�

a1t
2 sinh

t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p ; (34)

a1 = k0 + NkI + k, (35)

and

a2 = kk0. (36)

By virtue of eqn (43), the PDF can be expressed as91,104

Pðx; tÞ ¼ d x� xðtÞð Þh i ¼ 1

2p

ð
dqe�iqxheiqxðtÞixðtÞ

¼ 1

2p

ð
dqe�iqxheiqxð0Þ k0cðtÞþfðtÞ½ �ixð0Þ

�
YNh

i¼1
heiqkIcðtÞxh;ið0Þixð0Þ;xh;ið0Þ;xc;ið0Þ

�
YNc

i¼1
heiqkIcðtÞxc;ið0Þixð0Þ;xh;ið0Þ;xc;ið0Þ

�
YNh

i¼1
heiqkI

Ð t
0
dt1cðt�t1ÞZh;iðt1ÞiZh;iðt1Þ

�
YNc

i¼1
heiqkI

Ð t
0
dt1cðt�t1ÞZc;iðt1ÞiZc;iðt1Þ

� heiq
Ð t
0
dt1 k0cðt�t1Þþfðt�t1Þ½ �Zðt1ÞiZðt1Þ;

(37)

where h� � �iy(t) represents the ensemble average over all realisa-
tions of variable y(t). As a simple assumption, one can consider
that all the particles are decoupled to the tracer at time t = 0,

and the tracer is just confined in the potential Vðx0Þ ¼
1

2
kx0

2

(initial condition I). So the PDF in eqn (37) can be written as

� e
iqkI

Ð t
0
dt1cðt�t1ÞZh;iðt1Þ

� �
Zh;iðt1Þ

� e
iqkI

Ð t
0
dt1cðt�t1ÞZc;iðt1Þ

� �
Zc;iðt1Þ

¼ 1

2p

ð
dqe�iqxe

�Dtrq
2
Ð t
0
dt1 k0cðt�t1Þþfðt�t1Þ½ �2�x12ðtÞq2

� e
iqkI

Ð t
0
dt1cðt�t1ÞZh;iðt1Þ

� �
Zh;iðt1Þ

� e
iqkI

Ð t
0
dt1cðt�t1ÞZc;iðt1Þ

� �
Zc;iðt1Þ

;

(38)

where

x1
2ðtÞ ¼ Dtr

2k
k0cðtÞ þ fðtÞ½ �2: (39)

One can also assume another initial condition which states that
the active particles evolve from steady states having densities of

the form: Pðxið0ÞÞ / e
� k0
2Deff

xið0Þ2 ; with Deff being the effective
diffusivity (initial condition II). Using those initial (normalised)
densities, one can write the average over x0, xh(0) and xc(0)
explicitly, and thereafter integrating over these variables in
eqn (48), one obtains

Pðx; tÞ

¼ 1

2p

ð
dqe�iqx

ffiffiffiffiffiffiffiffiffiffiffiffi
k

2pDtr

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhNc

4p2
kI

Dtr
þ k0

Dh;eff

� �
kI

Dtr
þ k0

Dc;eff

� �s

�
YNh

i¼1

YNc

j¼1

ð
dxð0Þ

ð
dxh;ið0Þ

ð
dxc;jð0Þeiqxð0Þ k0cðtÞþfðtÞ½ �þiqkIcðtÞxh;ið0Þ

� eiqkIcðtÞxc;jð0Þe
�

k

2Dtr
xð0Þ2�

kI

2Dtr
xð0Þ�xh;ið0Þð Þ2�

kI

2Dtr
xð0Þ�xc;jð0Þð Þ2

� e
�

k0

2Dh;eff
xh;ið0Þ�xð0Þð Þ2�

k0

2Dc;eff
xc;jð0Þ�xð0Þð Þ2

� e
iqkI

Ð t
0
dt1cðt�t1ÞZh;iðt1Þ

� �
Zh;iðt1Þ

� e
iqkI

Ð t
0
dt1cðt�t1ÞZc;iðt1Þ

� �
Zc;iðt1Þ

e
iq
Ð t
0
dt1 k0cðt�t1Þþfðt�t1Þ½ �Zðt1Þ

� �
Zðt1Þ

¼ 1

2p

ð
dqe�iqxe

�Dtrq
2
Ð t
0
dt1 k0cðt�t1Þþfðt�t1Þ½ �2�x12ðtÞq2

� e
iqkI

Ð t
0
dt1cðt�t1ÞZh;iðt1Þ

� �
Zh;iðt1Þ

� e
iqkI

Ð t
0
dt1cðt�t1ÞZc;iðt1Þ

� �
Zc;iðt1Þ

:

(40)

Pðx; tÞ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffi
k

2pDtr

s ð
dqe�iqx

YNh

i¼1

YNc

j¼1

ð
dxð0Þeiqxð0Þ k0cðtÞþfðtÞ½ �� k

2Dtr
xð0Þ2

� e
iq
Ð t
0
dt1 k0cðt�t1Þþfðt�t1Þ½ �Zðt1Þ

� �
Zðt1Þ
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Here,

x1
2ðtÞ ¼Dtr k0cðtÞþfðtÞ½ � kINcðtÞþk0cðtÞþfðtÞ½ �

2k

þ DtrkINhcðtÞ
2k Dtrk0þkIDh;eff

� �
� Dtrk0

2cðtÞþk0 DtrfðtÞþkIcðtÞ Dh;effþDtrN
� �� ��

þkIDh;eff kINcðtÞþkcðtÞþfðtÞf g
�
þ DtrkINccðtÞ
2k Dtrk0þkIDc;eff

� �
� k0 DtrfðtÞþkIcðtÞ Dc;effþDtrN

� �� ��
þkIDc;eff kINcðtÞþkcðtÞþfðtÞf gþDtrk0

2cðtÞ
�
;

(41)

which becomes identical to eqn (50) if one takes kI = 0 in
eqn (52). For a Gaussian noise Z(t) with the correlation function
hZ(t1)Z(t2)i, its characteristic functional is given by97

exp i

ðt
0

dt 0pðt 0ÞZðt 0Þ
	 
� �

Z

¼ exp �1
2

ðt
0

dt1

ðt
0

dt2pðt1ÞhZðt1ÞZðt2Þipðt2Þ
� �

:

(42)

Using the above relation in eqn (37) for the thermal noise Z(t),
we arrive at

Pðx; tÞ ¼ 1

2p

ð
dqe�iqxe�x1

2ðtÞq2�x22ðtÞq2 e
iqkI

Ð t
0
dt1cðt�t1ÞZh;iðt1Þ

� �
Zh;iðt1Þ

� e
iqkI

Ð t
0
dt1cðt�t1ÞZc;iðt1Þ

� �
Zc;iðt1Þ

;

(43)

where

x2
2ðtÞ ¼ Dtre

�a1t

2a1 a12 � 4a2ð Þa2
4a2 a2 þ k0 k0 � a1ð Þf g½

þ a12 � 4a2
� �

a2 þ k0
2

� �
ea1t

þ a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
a2 � k0

2
� �

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
t

� �

� a1 a1 a2 þ k0
2

� �
� 4a2k0

� �
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
t

� �i
:

(44)

Now let us consider the hot and cold particles as AOUPs
(model II). So, by virtue of eqn (42), one can calculate the
average over the active noises as

e
iqkI

Ð t
0
dt1cðt�t1ÞZh;iðt1Þ

� �
Zh;iðt1Þ

¼ exp �q2kI2
Dh

2th

ðt
0

dt1

ðt
0

dt2cðt� t1Þ
�

� e
�jt1�t2jth cðt� t2Þ

�
¼ exp �q2x312ðtÞ

� �
;

(45)

where

x31
2ðtÞ

¼ DhkI
2

a12�4a2ð Þ th a1þa2thð Þþ1ð Þ

� a1þa12th�2a2th
2a2

� 2

a1
� thþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
th2e

� t
th
�a1t

2

th a1�a2thð Þ�1

2
4

� a1thþ2ð Þsinh 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� ��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
th cosh

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� ��

� th a1þa2thð Þþ1½ �e�a1t
2a1a2 th a1�a2thð Þ�1ð Þ

� a1 �a1þa12th�2a2th
� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� ��

þa1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
a1th�1ð Þsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� �
�2a2 a1th�2ð Þ

�i
:

(46)

Similarly, one has e
iqkI

Ð t
0
dt1cðt�t1ÞZc;iðt1Þ

� �
Zc;iðt1Þ

¼ e�q
2x322ðtÞ; where

x32
2ðtÞ

¼ DckI
2

a12�4a2ð Þ tc a1þa2tcð Þþ1ð Þ
a1þa12tc�2a2tc

2a2
� 2

a1
� tc

	

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
tc2e

� t
tc
�a1t

2

tc a1�a2tcð Þ�1
a1tcþ2ð Þsinh 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� ��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
tc cosh

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� ��

� tc a1þa2tcð Þþ1½ �e�a1t
2a1a2 tc a1�a2tcð Þ�1ð Þ

� a1 �a1þa12tc�2a2tc
� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� ��

þa1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
a1tc�1ð Þsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12�4a2

p
t

� �
�2a2 a1tc�2ð Þ

�i
:

(47)

Using the above results, the PDF can be rewritten as

Pðx;tÞ¼ 1

2p

ð
dqe�iqxe�x1

2ðtÞq2�x22ðtÞq2�x32ðtÞq2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4px2ðtÞ

s
exp � x2

4x2ðtÞ

� �
;

(48)

with

x3
2(t) = Nhx31

2(t) + Ncx32
2(t), (49)

and the variance is given by 2x2(t),

x2(t) = x1
2 + x2

2(t) + x3
2(t). (50)
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For model I where Zh(t) and Zc(t) are taken as the Gaussian
white noises, x3

2(t) can be computed by taking the limits th - 0
and tc - 0. The result is

x3
2ðtÞ ¼ DhNh þDcNc½ �kI2

e�a1t

2a1 a12 � 4a2ð Þa2
4a2 þ a12 � 4a2

� �
ea1t

�

� a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
t

� �n

þ a1 cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 � 4a2

p
t

� �oi
:

(51)

Temporal behaviour of hx2(t)i at short and long times

In the short-time limit, i.e., for t - 0, one has the following
approximations: c(t) B t and f(t) B 1� a1t, leading to x2

2(t = 0) B

Dtrt, x3
2(t) B 0 and x12ðtÞ �

Dtr

2k
1� 2kt� jNkI tð Þ where j = 1, 2 for

initial condition II and I, respectively. So the second moment of
the displacement at t = 0 becomes hx2ðt ¼ 0Þi ¼ 2 lim

t!0
x2ðtÞ ¼

Dtr

k
¼ Ttr

l
. In the limit t - N, the terms can be approximated

as c(t) B f(t) B 0, x1
2(t) B 0 and x22ðtÞ � Dtr

a2 þ k0
2

2a1a2
: For model I

and II of active noise, one has x32ðtÞ �
DhNh þDcNc½ �kI2

2a1a2
and

x32 �
NhDhkI

2 1þ a1thð Þ
2a1a2 th a1 þ a2thð Þ þ 1ð Þþ

NcDckI
2 1þ a1tcð Þ

2a1a2 tc a1 þ a2tcð Þ þ 1ð Þ.

B Simulation details

We employ the Euler–Maruyama method to simulate the dynamics
of the tracer as well as the active particles which are given by
eqn (1a)–(1c). For the sake of simplicity, the tracer is considered to
be interacting with only one hot and one cold particle, though the
dynamical characteristics remain unchanged if it is coupled to more
than one hot (and cold) particle. The simulations are performed
over 2 � 103 trajectories with integration time step Dt = 10�3 for
total time t = 100. The initial positions of the tracer are sampled

from the Boltzmann distribution of the form: Pðx0Þ ¼ e
� k
2Dtr

x0
2

;

where l = 1.0, gtr = 2.0, Ttr = 50, k ¼ l
gtr
¼ 0:5 and Dtr ¼

Ttr

gtr
¼ 25.

For active particles, their positions at t = 0 are taken as xh(0) = 0 and
xc(0) = 0. Other parameters are l0 = 1.0, gb = 1.0 and kB = 1. All the
parameters are with their respective units given in Table 1.

C Fourier transform of the response
function and autocorrelation

Taking the Fourier transform of eqn (1a)–(1c) defined as

~xðoÞ ¼ 1

2p

Ðþ1
�1dte

iotxðtÞ, one obtains the coupled equations

�io~xðoÞ ¼ �k~xðoÞ �
XNh

i¼1
kI ~xðoÞ � ~xh;iðoÞ
� �

�
XNc

i¼1
kI ~xðoÞ � ~xc;iðoÞ
� �

þ ~ZðoÞ; (52)

�iox̃h(o) = �k0(x̃h(o) � x̃(o)) + ~Zh(o), (53)

�iox̃c(o) = �k0(x̃c(o) � x̃(o)) + ~Zc(o). (54)

Rearranging the terms yields ~xhðoÞ ¼ k0
~xðoÞ

k0 � io
þ ~ZhðoÞ
k0 � io

and

~xcðoÞ ¼ k0
~xðoÞ

k0 � io
þ ~ZcðoÞ
k0 � io

. With the use of xh(o) and xc(o), it

further reduces to

~xðoÞ �ioþ kþNkI � k0
NkI

k0 � io

	 


¼
XNh

i¼1
kI

~Zh;iðoÞ
k0 � io

þ
XNc

i¼1
kI

~Zc;iðoÞ
k0 � io

þ ~ZðoÞ:
(55)

The solution of x(t) in Fourier domain can thus be recast as

~xðoÞ ¼
XNh

i¼1
kI

~Zh;iðoÞ
IðoÞ þ

XNc

i¼1
kI

~Zc;iðoÞ
IðoÞ þ ~ZðoÞk0 � io

IðoÞ ; (56)

where IðoÞ ¼ �o2 � io k0 þ kþNkIð Þ þ kk0. Using eqn (56),
the autocorrelation function for position can be expressed as

~SxxðoÞ ¼ h~xðoÞ~xð�oÞi

¼
XNh

i¼1
kI

2
h~Zh;iðoÞ~Zh;ið�oÞi

IðoÞIð�oÞ þ
XNc

i¼1
kI

2
h~Zc;iðoÞ~Zc;ið�oÞi

IðoÞIð�oÞ

þ h~ZðoÞ~Zð�oÞi k0
2 þ o2

IðoÞIð�oÞ:

(57)

For the thermal noise, the Fourier transform of autocorrelation
can be computed as

h~ZðoÞ~Zðo0Þi ¼ 1

ð2pÞ2
ðþ1
�1

dt1

ðþ1
�1

dt2e
iot1þio0t2hZðt1ÞZðt2Þi

¼ 2Dtrdðoþ o0Þ:

To find the response function in Fourier domain, one can
use eqn (56) and write the change in position as hdx̃(o)i =
hx̃(o)if � hx̃(o)i0 = ~w(o)f̃ext(o), where the Fourier transform of
the response function is given by

~wðoÞ ¼ k0 � io
IðoÞ ¼

ðk0 � ioÞIð�oÞ
IðoÞIð�oÞ

¼
k o2 þ k0

2
� �

þNkIo2 þ io k0
2 þ o2 þNk0kI

� �
ðo2 � kk0Þ2 þ o2 k0 þ kþNkIð Þ2

: (58)

For the case when the active particles are modelled as the
AOUPs (model II), the Fourier transform of the noise correla-
tion for the active forces given in eqn (5a) and (5b) can be found

to be h~ZjðoÞ~Zjð�oÞi ¼
Dj

tj

2tj
1þ o2tj2

; where j = h, c. Therefore, the

positional autocorrelation function given in eqn (57) can be
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calculated for model II, and it reads

~SxxðoÞ ¼
2NhkI

2Dh

IðoÞIð�oÞ
1

1þ o2th2
þ 2NckI

2Dc

IðoÞIð�oÞ
1

1þ o2tc2

þ 2Dtr
k0

2 þ o2

IðoÞIð�oÞ: (59)

Taking th - 0 and tc - 0 in the above equation, one can
recover the autocorrelation function for model I, and the
result is

~SxxðoÞ ¼ h~xðoÞ~xð�oÞi

¼ 2NhkI
2Dh

IðoÞIð�oÞ þ
2NckI

2Dc

IðoÞIð�oÞ þ 2Dtr
k0

2 þ o2

IðoÞIð�oÞ: (60)

For the MOUP case as discussed at the end of Section 2.1.2,
~SxxðoÞ can be calculated from eqn (59) in a straightforward
manner just by replacing Dh and Dc with Ghth and Gctc,
respectively. So the autocorrelation function for the MOUP case
is given by

~SxxðoÞ ¼
2NhkI

2Gh

IðoÞIð�oÞ
th

1þ o2th2
þ 2NckI

2Gc

IðoÞIð�oÞ
tc

1þ o2tc2

þ 2Dtr
k0

2 þ o2

IðoÞIð�oÞ:
(61)
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51 F. Jülicher, K. Kruse, J. Prost and J. F. Joanny, Phys. Rep.,

2007, 449, 3.
52 C. P. Broedersz and F. C. MacKintosh, Rev. Mod. Phys.,

2014, 86(3), 995.
53 S. Scott, M. Weiss, C. Selhuber-Unkel, Y. F. Barooji,

A. Sabri, J. T. Erler, R. Metzler and L. B. Oddershede, Phys.
Chem. Chem. Phys., 2023, 25, 1513.

54 G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix,
F. C. MacKintosh, J. H. Hartwig, T. P. Stossel and D. A.
Weitz, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 15192.

55 T. Toyota, D. A. Head, C. F. Schmidt and D. Mizuno, Soft
Matter, 2011, 7, 3234.

56 B. Stuhrmann, M. Soares e Silva, M. Depken, F. C.
MacKintosh and G. H. Koenderink, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2012, 86, 020901.

57 Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran,
G. Popescu, S. Suresh and M. S. Feld, Proc. Natl. Acad.
Sci. U. S. A., 2010, 107(4), 1289.

58 A. Zidovska, D. A. Weitz and T. J. Mitchison, Proc. Natl.
Acad. Sci. U. S. A., 2013, 110, 15555.

59 D. Saintillan, M. J. Shelley and A. Zidovska, Proc. Natl.
Acad. Sci. U. S. A., 2018, 115, 11442.

60 R. Bruinsma, A. Y. Grosberg, Y. Rabin and A. Zidovska,
Biophys. J., 2014, 106, 1871.

61 G. Fudenberg, M. Imakaev, C. Lu, A. Goloborodko,
N. Abdennur and L. A. Mirny, Cell Rep., 2016, 15, 2038.

62 C. Maes, Phys. Rev. Lett., 2020, 125, 208001.
63 M. Wang, K. Zinga, A. Zidovska and A. Y. Grosberg, Soft

Matter, 2021, 17, 9528.
64 O. Granek, Y. Kafri and J. Tailleur, Phys. Rev. Lett., 2022,

129, 038001.
65 S. Joo, X. Durang, O. C. Lee and J.-H. Jeon, Soft Matter,

2020, 16, 9188.
66 J.-H. Jeon, N. Leijnse, L. B. Oddershede and R. Metzler,

New J. Phys., 2013, 15, 045011.
67 A. Godec, M. Bauer and R. Metzler, New J. Phys., 2014,

16, 092002.
68 Y. Kim, S. Joo, W. K. Kim and J.-H. Jeon, Macromolecules,

2022, 55, 7136.
69 L. Theeyancheri, R. Sahoo, P. Kumar and R. Chakrabarti,

ACS Omega, 2022, 7, 33637.

70 P. Kumar and R. Chakrabarti, Phys. Chem. Chem. Phys.,
2023, 25, 1937.

71 H. Han, S. Joo, T. Sakaue and J.-H. Jeon, J. Chem. Phys.,
2023, 159, 024901.

72 A. Y. Grosberg and J. F. Joanny, Phys. Rev. E: Stat., Non-
linear, Soft Matter Phys., 2015, 92, 032118.

73 R. R. Netz, Phys. Rev. E, 2020, 101, 022120.
74 M. Wang and A. Y. Grosberg, Phys. Rev. E, 2020, 101,

032131.
75 E. Ilker, M. Castellana and J. F. Joanny, Phys. Rev. Res.,

2021, 3, 023207.
76 S. Ramaswamy, J. Stat. Mech.: Theory Exp., 2017, 054002.
77 K. Goswami, Phys. Rev. E, 2022, 105, 044123.
78 S. Ramaswamy, Annu. Rev. Condens. Matter Phys., 2010,

1, 323.
79 D. B. Kearns, Nat. Rev. Microbiol., 2010, 8, 634.
80 N. Fakhri, A. D. Wessel, C. Willms, M. Pasquali, D. R.

Klopfenstein, F. C. MacKintosh and C. F. Schmidt, Science,
2014, 344, 1031.

81 C. De Pascalis and S. Etienne-Manneville, Mol. Biol. Cell,
2017, 28, 1833.

82 J. Shin, A. G. Cherstvy, W. K. Kim and R. Metzler, New
J. Phys., 2015, 17, 113008.

83 J. Shin, A. G. Cherstvy, W. K. Kim and V. Zaburdaev, Phys.
Chem. Chem. Phys., 2017, 19, 18338.

84 H. Chen, M. Levo, L. Barinov, M. Fujioka, J. B. Jaynes and
T. Gregor, Nat. Genet., 2018, 50, 1296.

85 K. Goswami, S. Chaki and R. Chakrabarti, J. Phys. A: Math.
Theor., 2022, 55, 423002.

86 K. Goswami and R. Chakrabarti, Soft Matter, 2022, 18,
2332.

87 A. Solon and J. M. Horowitz, J. Phys. A: Math. Theor., 2022,
55, 184002.

88 I. Santra, J. Phys. Complex., 2023, 4, 015013.
89 C. A. Guevara-Valadez, R. Marathe and J. R. Gomez-Solano,

Phys. A, 2023, 609, 128342.
90 S. Ye, P. Liu, F. Ye, K. Chen and M. Yang, Soft Matter, 2020,

16, 4655.
91 K. Goswami and K. L. Sebastian, J. Stat. Mech.: Theory Exp.:

Theory Exp., 2019, 083501.
92 K. Goswami and R. Metzler, J. Phys. Complex., 2023, 4,

025005.
93 J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-

Unkel, K. Berg-Sørensen, L. B. Oddershede and R. Metzler,
Phys. Rev. Lett., 2011, 106, 048103.

94 S. C. Takatori, R. De Dier, J. Vermant and J. F. Brady, Nat.
Commun., 2016, 7, 10694.
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