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Abstract
We propose an extension of the existing model describing a biomolecular reaction such as protein
folding or ligand binding which is usually visualised as the barrier crossing of a diffusing particle in
a double-well potential. In addition to the thermal noise, an active noise modelled in terms of an
Ornstein–Uhlenbeck process is introduced to the dynamics. Within this framework, we investigate
the transition-path properties of an underdamped particle surmounting an energy barrier, and we
show explicitly how these properties are affected by the activity and persistence of the particle. Our
theoretical study suggests that an active particle can cross the barrier at comparatively shorter
timescales by lowering the (effective) barrier height. In particular, we study how the persistence
time of the active force alters the transition-path time (TPT) at different friction limits.
Interestingly, in one of our models we find a nonmonotonic behaviour of the TPT which is absent
in the overdamped limit. The framework presented here can be useful in designing a reaction in a
non-equilibrium environment, particularly inside a living biological cell in which active
fluctuations keep the system out of equilibrium.

1. Introduction

A chemical reaction can be viewed as the exploration of a particle in a rough, multidimensional energy
landscape [1–5]. However, to reduce the complexity of the problem, normally the collective features of the
system are mapped onto a single, effective ‘reaction coordinate’ (RC) which becomes relevant in tracking the
progress of the reaction [6–11]. In certain cases, the RCs have a direct physical meaning, e.g. the contour
length of a polymer translocating through the nanopore [12], the geometric distance between two amino
acids in internal protein dynamics [13, 14], or the gyration radius of small fluctuating proteins [15]. In the
reduced space of the RC the stochastic dynamics is equivalent to the motion of a diffusing particle. Therefore,
one can think of the reaction as the Kramers’ escape problem in which the particle (or the RC) initially
diffuses in a local minimum (reactant side) and then surmounts an energy barrier (ϵ) to reach the product
side [1, 6]. The barrier height ϵ is estimated to be several times that of thermal energy kBT, kB being the
Boltzmann constant and T the reservoir temperature. So the particle spends most of the time near the
minimum, attempting to cross the barrier, while only a few trajectories span across the barrier, leading to
successful crossings towards the product side [16, 17]. Therefore, the time tc of actual crossing is much
shorter than the total reaction time τε, which takes into account both kinds of quick successful crossing over
the barrier and extended exploration on the reactant side [18–20]. From Kramers’ theory the average of the
total escape time can be expressed as ⟨τϵ⟩= Aexp(ϵ/[kBT]), where A is a prefactor, which depends on the
mass of the particle, the shape of the barrier and the friction coefficient of the surroundings [1, 21].

A crucial step in decoding the cellular functioning is to know how biopolymers such as protein or nucleic
acids and their assemblies fold into certain conformations. Owing to their complex nature, it poses a great
challenge in understanding the entire process of folding [2, 4, 17, 22–24]. Like other simple biomolecular
reactions, protein folding can also be assumed as a one-dimensional barrier crossing problem in a
double-well potential with two minima corresponding to locally stable unfolded and folded conformations
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of the protein [25–29]. Thus one considers only the ‘relevant’ degrees of freedom (typically, the RC) such as
the distance between two probes on the protein chain, as it is usually done in experiments, to monitor the
fluctuations of the distance and thereby providing information about the time scales associated with the
reaction [13–15, 30–32]. To gain knowledge about the structural dynamics, one requires to unveil the shorter
time scale tc, namely, the duration of time the molecule takes just to successfully cross the barrier: this is the
transition-path time (TPT), denoted here as tTP [20, 33–35]. With the advancement of single-molecule
measurements equipped with sufficient temporal resolution, it now becomes possible to obtain the TPT
[18, 33, 34, 36–41], triggering a number of recent theoretical and simulations-based studies to corroborate
experimental observations as well providing proposals for future directions [26–29, 35, 42–51].

As has been found experimentally, the dynamics of the RC can be described by a Markovian, simple
diffusion process with an effective diffusion coefficient Deff, but the analysis using the same Deff may lead to
false predictions about other dynamical properties [52–54]. We note, however, that the appearance of
longer-time Markovian kinetics may be substantially delayed, e.g. in internal protein dynamics [13, 14]. In
many theoretical studies it is therefore suggested that the projection of the multidimensional landscape onto
a single coordinate essentially introduces a memory effect [27–29, 35, 49, 55]. With this consideration,
several theoretical models have been proposed, e.g. in some studies [27, 28, 55], the dynamics is modelled in
terms of the generalised Langevin equation with a temporal memory kernel, taken as either power-law or
exponential function. In [27], a correlated noise is included additionally to the system: this not only captures
the effect of memory but also keeps the system out of equilibrium. Such a noise is often referred to as active
noise, which may stem from some active processes such as ATP hydrolysis [56–61]. In fact, a process driven
by an active force is ubiquitous in biological systems—examples of such realisations include, i.a., self
propulsion of bacteria, motility of cells, and movement of motor proteins along the filaments inside a living
cell [62–68]. Other examples in which active forces play an important role are the assisted looping kinetics of
a polymer in a bath of self-propelled particles or random fluctuations of chromosomal loci driven by
enzymatic activity, etc [69, 70]. An energetic cost is involved in these processes, resulting in broken
detailed balance [60, 71–73]. It is worth noting here that to date most experiments on protein folding have
been performed in an equilibrium set-up [74]. However, at non-equilibrium conditions, e.g. for
chaperone-assisted protein folding inside the cellular environment, or in an actively swirled, highly crowded
cellular cytoplasm [75], the reaction is found to be faster compared to its equilibrium counterpart [76, 77].
Another related problem is the translocation (as well as the folding) of an active polymers through a pore
which too can be conceived as a diffusive motion over a barrier where the contour length of the translocating
polymer is considered as the RC [78]. The study of active polymer turns out to be of great importance for the
characterisation of a biopolymer as recent observations on genomic mobility revealed the presence of an
active force along its backbone [79, 80]. Apart from the activity arising from an intrinsic source as in the case
of an active polymer, the experiment can be performed on a passive system with the application of an
external force which mimics an active noise, as discussed below.

Although the effect of active forces on the transition-path has been addressed earlier, e.g. in the context of
protein folding, see [27], the contribution of inertia was mostly ignored by considering the overdamped
limit. In the presence of memory, it is found to be important to incorporate the inertial effect into the
Langevin dynamics to predict the accurate rate for the reduced description of a reaction [81]. The (effective)
mass involving in such dynamics can be estimated by application of the equipartition theorem on the
velocity data extracted from trajectories. In a simulation study on the dissociation of NaCl in water, the
increase in transition-path probability by up to 40%–50% has been observed due to inertial effects [82].
Thus it is of interest to investigate the role of underdamped dynamics as well as the active force individually
for such shorter segments of trajectories. This study may also be applicable to a generic biomolecular
reactions occurring in a low-density medium [83, 84], or for a rearrangement and isomerisation reaction
involving rotational dynamics, for which inertia plays an important role on the speed of the reaction [85, 86].
Its applicability can be extended to the target search (TS) problem for active particles, a topic with great
relevance in biology—whether it is a bacteria searching for nutrients or a protein locating a promoter site on
the DNA chain to initiate the transcription [87, 88], it can be mapped onto a TS problem. But only a few
studies have considered a TS problem where the reactant is driven by both thermal and active force,
particularly in the underdamped limit, and the target site and the reactant site are separated by a high energy
barrier [89–93]. In a recent experiment [94], Militaru et al investigated the activated escape of a nanoparticle
trapped inside a double-well potential in both high and low friction limits. They generated the active noise
by applying an electrostatic force externally which induces self-propulsion of the particle. Their key finding is
a non-monotonic variation of the transition rate as a function of its rotational diffusivity (DR). For lower
values of the rotational diffusivity, i.e. for a highly correlated motion, the rate is reduced with decreasing DR.
Specifically, in the high DR limit, the enhancement of the rate was clearly observed with the decrease of DR,
evincing an activity-assisted escape over a lower effective barrier.
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Motivated by the above examples, we here consider the barrier crossing event of an underdamped active
particle in one dimension. The particle is initially confined in the left well of a double-well potential, and it is
attempting to overcome the barrier to reach the right well, which can be thought of as a target or product
side. As mentioned above, an active force acting on the particle can be realised in two ways: (i) athermal
fluctuations arising from an internal mechanism as in the case of an active polymer [79] or (ii) an external
stochastic force generated from a driven crowded environment [75] or a custom-programmed input as
employed in [94]. But we do not distinguish the two cases as the noises with same statistical properties have
similar effects on the dynamics, at least on the single-particle level. Here our aim is to find analytically the
transition-time distribution and TPT of the above system. We further analyse the effects of activity,
persistence and friction coefficient of the bath on the transition properties.

2. Model

We consider a particle of massm performing a random motion in a one-dimensional double-well potential
V(x) at ambient temperature T. Along with the thermal noise η(t) from the reservoir, the particle is
subjected to an additional noise σ(t) which may refer to the self-propulsive force of a self-propelled particle,
the noise arising from a chemical reaction to aid the directed walk of a motor protein, or the driving by active
particles in the surrounding. There is no dissipative term corresponding to the fluctuations described by
σ(t), implying that the system is driven out of equilibrium [72, 73, 95]. At t= 0, the particle is in the left well
of the potential, and so one can assume that it already achieves a local steady state inside the well before it
crosses the barrier. Now the stochastic equation describing the particle’s dynamics is given by [96–98]

mẍ(t)+mγẋ(t) =−V ′(x)+ η(t)+σ(t), (1)

where γ is the drag coefficient of the bath, and it is related to the thermal diffusivity DT via the
Einstein–Smoluchowski–Sutherland relation kBT=mγDT. We note that the massm here is an effective
measure, and we will show that it effects modifications in the reduced description of the active process,
similar to observations in [81]. As usual, η(t) is a zero-mean white Gaussian noise, which follows the
fluctuation-dissipation theorem (FDT), ⟨η(t1)η(t2)⟩= 2mγkBTδ(t1 − t2).Moreover, the active noise σ(t)
violates the FDT, and as a simple model, the time evolution of σ(t) is described by the Ornstein–Uhlenbeck
process (OUP) [57, 60, 71]

σ̇(t) =− 1

τA
σ(t)+

1

τA
ηA(t) (2)

where ηA is a zero-mean, delta-correlated Gaussian noise with the noise strength σ02. The active OUP noise
σ(t) is an exponentially correlated noise with autocorrelation function [99]

⟨σ(t1)σ(t2)⟩=
σ20
τA

exp

(
−|t1 − t2|

τA

)
, (3)

where τA is the persistence time of the noise. This model is usually used to describe the dynamics of a passive
tracer in a low-density active bath where the pronounced enhancement of the tracer’s diffusivity has been
observed [57, 100]. A similar model for σ(t) is the modified Ornstein–Uhlenbeck process (MOUP) which
can be realised by the following stochastic equation:

σ̇(t) =− 1

τA
σ(t)+

1
√
τA
ηA(t). (4)

So the correlation for the MOUP model can be expressed as

⟨σ(t1)σ(t2)⟩= σ2m exp

(
−|t1 − t2|

τA

)
, (5)

which has a similar form as the OUP case, but here the amplitude of the correlation does not depend on the
persistence time τA. Thus both models can be mapped onto each other just by replacing σ20/τA in (3) with a
term σ2m to obtain equation (5). For a self-propelled particle, σ(t) corresponds to its velocity with a fixed
average speed σm, and the motion persists in a particular direction over an average time period τA [98]. Note
that the dynamical behaviour, which remains within the Gaussian domain, is well captured by the above
models. For more information, we refer to [97, 98]. Analogous to the MOUP case, the telegraphic noise can
also be characterised by an exponential correlation function, and it is often invoked to describe processes
within the cellular environment where the distribution deviates from Gaussian statistics [61, 101]. For
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example, motor proteins exert an active force on a tracer immersed in the cytosol by creating pulses at
random intervals sampled from a Poisson distribution with an average waiting time τw [61, 72]. If the value
of τw is comparatively small, one can assume the deviations from Gaussianity to be negligible. Then the
above case can reasonably be approximated by the MOUP. Another non-Gaussian model is described by an
active Brownian particle (ABP) where the particle under a fixed amplitude of force changes its direction
stochastically due to its rotational diffusion [94]. This means that the rotational diffusivity (DR) is inversely
related to the persistence time τA, i.e., DR = τ−1

A . Again, this model is associated with a similar correlation
function as the one in (5). Thus the MOUP description represents a Gaussian approximation of the ABP
model which allows analytical predictions.

To specify transition paths, it is necessary to assign one entry point on the left side of the potential and
one exit point on the right for the transition-path trajectories at which the absorbing boundary conditions
should be posed. For the sake of simplicity, the position of the barrier top is taken to be x= 0, and the entry
and exit points are at−xc and+xc(>0), respectively. Since only a portion around the barrier top is required
to find transition-paths, one can approximate V(x) as an inverted parabolic potential of the form:
V(x)≈− 1

2κbx
2, where κb is the stiffness of the potential corresponding to the barrier top. Therefore from

equation (1) the dynamics of the particle around the barrier top x= 0 can be rewritten as

1

γ
ẍ(t)+ ẋ(t) =

κb
mγ

x(t)+ η(t)+σ(t). (6)

Here we rescaled all terms bymγ, such that (3) turns into ⟨σ(t1)σ(t2)⟩= (DA/τA)exp(−|t1 − t2|/τA), where
now DA = σ20/(m

2γ2) is the active diffusivity stemming from the active noise. Similarly from (5) one can
write the strength of the noise–noise correlation as CA = (σm/[mγ])

2
, which basically represents the square

of the ‘swim speed’ when σ(t) is used to model the self propulsion of a self-propelled particle. For the sake of
notational brevity, we keep the same symbols in equation (6) to denote the rescaled variables. Note that in
the OUP-noise case σ(t) becomes delta-correlated in the limit τA → 0, and thus it behaves like a thermal
noise. It implies that the motion can then be characterised by an effective diffusivity Deff = DT +DA. Unless
mentioned otherwise we mostly analyse our results based on the OUP noise. Notice that finding a theoretical
expression of the probability density function (PDF) with the absorbing boundary conditions mentioned
above is often a difficult task. However, we can easily derive the PDF using the free boundary conditions as
discussed in appendix A. Following the previous studies [27, 35, 102, 103], one can simply use the PDF of the
free case to obtain the transition-path properties, provided that barrier (∆V) is high enough for purely
thermal escape, i.e. ϵp = (κbx2c )/(2kBT)≫ 1. It is worthwhile noting here that the experiments on transition
paths are usually performed implying absorbing boundary conditions, i.e. once a trajectory crosses the exit
point for the first time before it reverts back to the entry point, it is discarded and is regarded as a successful
transition. From a theoretical point of view, it can be properly implemented if the re-crossing events around
the exit point are minimised. As the normal mode transformation theory by Pollak suggests [35], such events
become least probable in the limit (∆V)/(kBT)≫ 1. Therefore, our following analysis is based on the free
boundary condition in the sense of the above approximation.

3. Transition-path properties

We now discuss the transition-path properties for transition-paths in the region x ∈ [−xc,+xc]. The number
of trajectories in this region with TPTs shorter than t can be estimated in terms of the absorption function
Qc(t,xc), which is actually related to the survival probability S (t,xc) as Qc(t,xc) = 1−S (t,xc), is defined
as [26]

Qc(t,xc) =

ˆ ∞

xc

dxtP(xt, t| − xc,0). (7)

In principle, P(xt, t| − xc,0) is the PDF to find the process at RC xt at time t after release at x0 =−xc at t= 0
with absorbing boundary conditions at x=−xc and x=+xc. But as already mentioned, a good
approximation is the PDF with free boundary conditions as given by (A.11), taking into account the fact that
κbx2c ≫ kBT. Using equation (A.11) one can compute the absorption function

Qc(t,xc) =

ˆ ∞

xc

dxtP(xt, t| − xc,0) =
1

2
erfc(q(t)). (8)
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Here we defined (for the full expression for ϕ see appendix A)

q(t) =

√
ϕ2

2
(xc + xcψ0) , (9)

and the complementary error function is given by erfc(x) = (2/
√
π)
´∞
x dze−z2 .

The variation of Qc(t,xc) as function of time t quantifies the fraction of transition-paths within the time
period t, and so it can be identified as the PDF of the TPT, or simply, the transition-time density (TTD).
Incorporating the normalisation constant, one can write the TTD as

℘(t) =
1

Q0(xc)

d

dt
Qc(t,xc) =− 1

Q0(xc)

1√
π

dq(t)

dt
e−q2(t), (10)

where the long-time limit of Qc(t,xc) can be expressed as

Q0(xc) = lim
t→∞

Qc(t,xc) =

ˆ ∞

xc

dxt lim
t→∞

P(xt, t| − xc,0). (11)

In the long-time limit in comparison to both persistence and damping times, i.e. for t≫ τA and t≫ 1/γ,
one can calculate (11) (for details see appendix C), yielding

Q0(xc) =

ˆ ∞

xc

dxt lim
t→∞

P(xt, t| − xc,0)≈
1

2
erfc

√
ϵA, (12)

where the scaled (effective) energy barrier for the active case is given by

ϵA =
(λ+ γ)2x2c

16
(

∆
2

2
+ γ2DT

λ−γ + 2γ2DA

(λ−γ)(τA(λ−γ)+2)

) . (13)

Figure 1 shows the TTD for different strengths and persistence times of the active noise as well as the
friction coefficient of the medium, keeping the mass of the particle constant. The behaviour of the TTD is
determined by the term exp(−q2(t)) at short times. From equation (C.6) it is clear that q2(t) diverges at a
short times and, consequently, the TTD converges to zero, as shown in figure 1. The time scale depends on σ0
(or σm), τA, and γ. Since q2(t) is directly proportional to γ2 at fixed temperature (see equation (C.6)), and
q2(t)∝ 1/σ20 , the TTD vanishes comparatively at a larger rate in the low-friction limit and for higher values
of the active force σ0 or σm. At intermediate times the TTD attains a peak at t= τm, corresponding to the
most probable TPT. The peak shifts towards shorter times as σ0 (or σm) increases and γ decreases, as
illustrated in figure 1. Although the dependence of the active diffusivity as well as the friction coefficient on
the TTD is similar in both models, the persistence time τA has different effects in the two cases. Let us first
consider the intermediate and high-friction limits when γ > 1. Here τm takes higher values for higher τA in
the OUP case, while the reverse trend with insignificant differences in τm can be observed in the MOU
process, as shown in panels (b) and (d) of figure 1. In the underdamped regime, when γ < 1 the TTD for the
former case follows a similar behaviour as in the previous limits. But in the case of the MOU process, τm
varies with τA in a different manner: it shifts towards lower values in the small τA limit while it increases with
τA in the opposite limit. So there exists a nonmonotonic variation of τm, hinting at the existence of an
optimal transition rate. The TTD at longer times reaches asymptotically (see equation (C.5))

lim
t→∞

℘(t)∼
2
√
ϵA

erfc
√
ϵA

e−ϵA

√
π

λ(λ− γ)

(λ+ γ)
e−

λ
2 t+

γ
2 t, (14)

for ϵA ≫ 1. Thus the leading-order behaviour is ℘(t)∼ ϵAe−
λ
2 t+

γ
2 t, confirming an exponential tail in the

long-time limit. With increasing DA, ϵA takes lower values and, therefore, the exponential tail of the TTD
decays faster for a system with higher active diffusivity. A similar argument can be presented to justify the
dependence of τA on the TTD, as shown in panels (b) and (d) of figure 1. In the high-friction limit,

℘(t)≃ e−
κb
mγ t, suggesting that the exponential function decays slowly with γ, as can be understood from

figure 1.
The mean TPT corresponds to the first moment of the TTD,

⟨tTP⟩=
ˆ ∞

0
dt ′t ′℘(t ′). (15)
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Figure 1. Transition-time density (TTD) versus time for two models of active noise, (a)–(b) the OU process, and (c)–(d) the
MOU process. The simulation results shown by the dashed histograms are in good agreement with the theoretical densities of
equation (10) (solid lines). The simulation details are provided in appendix B. In panels (a) and (c), the variations of the TTD are
shown for different values of the correlation strengths of the active forces and the friction coefficient γ, for τA = 0.5 and τA = 1.0,
respectively. For both models, we take xc = 1 and T= 0.01. Other parameters are taken as unity. In panels (b) and (d), the
correlation strengths of the active forces are set to σ0 = 2.5 and σm = 2.5, respectively. Other parameters are T= 0.01,m= 1,
xc = 1, and κb = κw = 1.

Figure 2. Log-linear plot of the mean transition-path time as function of the friction coefficient γ for two models of active noise:
(a) the OU process and (b) the MOU process. The curves with symbols are obtained from numerical integration of equation (15),
and they are in good agreement with the approximate result (16) represented by the solid lines in the moderate to high friction
limits. In the insets, the plots are enlarged to highlight the underdamped regime. Other parameters used here are T= 0.01,m= 1,
xc = 1, κb = 1, κw = 1, and kB = 1.

For high barriers, ϵA ≫ 1, the mean TPT can be approximated as (see equation (D.3))

⟨tTP⟩ ≈
2

λ− γ
ln

(
4λeγe

λ+ γ

)
+

2

λ− γ
ln(ϵA)+O

(
1

ϵA

)
, (16)

where γe ≈ 0.577216 is the Euler–Mascheroni constant. Figure 2 shows results from numerical integration of
equation (15). The approximate result (16) agrees well with the numerical evaluation of the full expression.
Notice that the mean TPT scales with ϵA logarithmically for both the passive and active cases. However, as we
already mentioned that ϵp > ϵA, the mean TPT ⟨tTP⟩ for the active case is lower as compared to the passive
case. Thus an active particle needs, on average, comparatively less time for the effective barrier crossing. In
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Figure 3. Log-linear plots of the mean transition-path time as function of the persistence time τA of the active noise for the two
models: (a) the OU process and (b) the MOU process. The curves with open symbols are obtained from numerical integration of
equation (15), they compare nicely with the simulations results represented by filled symbols. Other parameters used here are
σ0 = 2.5, σm = 2.5, T= 0.01,m= 1, xc = 1, κb = 1, κw = 1, and kB = 1.

the high-friction limit, ⟨tTP⟩ ≈ (mγ)/(κb) ln(2eγeϵA), which means that the mean TPT increases linearly
with the friction coefficient, as depicted in figure 2. This is obvious as the dynamics gets slowed down in the
presence of large friction, and thus it becomes more difficult for the particle to overcome the energy barrier.
For γ→ 0, ⟨tTP⟩ ≈

√
m/κb ln(4eγeϵA), which is independent of γ. But this limiting case does only exist if the

particle gets enough time to attain the steady state within the well, i.e. for γϵA ≫
√
κw/γ.

The insets of figures 2(a) and (b) show the variation of the TPT for different values of τA in the
underdamped regime, and the trend is very similar to that of τm. To get a good an idea about this behaviour,
we compute the TPTs from direct numerical simulation, which are then compared with the ones obtained
from equation (15): the results of both methods are in good agreement. The TPT is plotted as a function of
τA for three different values of the friction coefficient, as shown in figure 3. Let us first consider the OUP
case, in which the effect of the persistence time τA is more prominent than the (effective) inertia in
determining the dynamical properties [97]. For any value of γ, the TPT increases with τA, particularly at a

significant rate in the high τA limit. The reason is that the correlation strength given by σ2
0

τA
(see equation (3))

decreases substantially with τA, thus hindering a directed trajectory to be successful in crossing the barrier.
Let us now discuss the results of the model in which the active noise is characterised by the MOU process (see
equation (5)). In order to explain the findings depicted in figure 3(b), one should consider two opposing
mechanisms: randomisation and persistence. In the overdamped limit (γ > 1), very few transitions are
expected to occur, and the rate will be faster if it is aided by a longer persistence of the motion. On the other
hand, there are more frequent transitions in the underdamped limit (γ < 1), and so the competition between
these opposing mechanisms is a vital factor. In the low τA limit, the particles get easily randomised, effecting
an equilibrium-like situation, which can be characterised by an effective temperature Teff. With τA, the value
of Teff increases, thus scaling the effective energy barrier to lower values. So the transitions are faster and the
TPT decreases until it reaches a point at which the randomisation process starts to be disturbed by longer
persistent motion. Therefore, with further increase of τA, the particle gets oriented in specific directions.
This causes easier transitions only for those particles oriented in the forward direction while making it even
worse for the others to escape. So for a highly persistent, underdamped motion, the TPT increases with τA, as
shown in figure 3(b). Such nonmonotonic variation of TPT is reminiscent of Kramers turnover, a
well-known behaviour in chemical dynamics of passive systems. We note that such a turnover was recently
found for levitated nanoparticles [104]. All these results for the TPT are consistent with the previous analyses
presented in figures 1 and 2.

4. Conclusion

We studied the transition-path properties of a particle crossing a parabolic energy barrier in the presence of
an exponentially correlated noise, modelled as OUP as well as MOUP process. In contrast to the previous
study in [27] we here explicitly consider the underdamped dynamics and include the inertia of the particle as
an effective parameter for the reduced description of a biomolecular reaction. Particularly, this effect was
shown to become relevant when the dynamics is non-Markovian [81]. At moderate and high friction limits,
the TPT is reduced with decreasing friction coefficient, which indirectly suggests that the underdamped
dynamics facilitates effective crossings over the barrier. The shape of the transition-path distribution (TTD)
remains exponential at long times for the active system, but the TTD shifts towards shorter time scales.
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Similar to the passive case [34, 105], we also found that the TPT scales logarithmically with the effective
energy barrier. However, in the presence of active noise, the effective diffusivity (Deff) is higher as compared
to the passive case, and therefore the particle experiences a lower energy barrier ϵA, leading to shorter TPTs.
Apart from the active diffusivity DA, ϵA also depends on the persistence time τA and the stiffness of the well.
In the OUP-noise case, the TPT increases monotonically with τA for any value of γ, although the increment
is significantly higher in the overdamped limit, as has been found previously in [27]. Its behaviour is quite
interesting in the MOUP case, namely, the TPT decreases as a function of τA in the overdamped limit while it
shows a nonmonotonic variation in the underdamped regime (γ < 1), which is resultant of two competing
processes: (i) rapid randomisation in the short τA limit and (ii) longer persistence due to higher values of τA.
A very similar observations was found in [94] for an ABP in the underdamped limit In conclusion, we
showed that without inertia the TPT is determined by the effective temperature. Taking the underdamped
effects into consideration, and for a model where the interplay between inertial time and persistence time is
important (e.g. in the MOUP case), two dynamical situations with two different escape kinetics emerge at
two opposite limits of τA, and, therefore, a behaviour similar to the Kramers turnover is observed in an active
system. One may employ our model in describing transition-path properties of activation-barrier limited
biomolecular reactions occurring at non-equilibrium conditions. In future, it may be further extended to
incorporate an asymmetric energy barrier instead of the symmetric parabolic shape used here, or to include
the ruggedness of the potential landscape [12, 106–108].

Data availability statement

No new data were created in this study.

Appendix A. Derivation of the PDF with free boundary conditions

To get the propagator for the dynamics, we employ the phase-space path integral technique. In this
formalism, one starts with the characteristic functional of the zero-mean white Gaussian noise η(t)
[109, 110],

⟨
exp

(
i

ˆ t

0
dt1p(t1)η(t1)

)⟩
η

= exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
. (A.1)

Taking the inverse Fourier transformation and mapping it to position space we can express the probability
functional as [61]

P[x] =

ˆ
exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
exp

(
−i

ˆ t

0
dt1p(t1)

[
1

γ
ẍ(t)+ ẋ(t)− κb

mγ
x(t)

])
×
⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

Dp, (A.2)

where equation (6) has been used, and the angular bracket ⟨·⟩σ denotes the average over all possible
trajectories of the noise σ(t). After some mathematical calculations, the above equation can be rewritten as

P[x] =

ˆ
exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
× exp

(
−i

1

γ
ptvt + i

1

γ
p0v0 + i

1

γ
ṗtxt − i

1

γ
ṗ0x0 − iptxt + ip0x0

)
× exp

(
−i

ˆ t

0
dt1x(t1)

[
1

γ
p̈(t1)− ṗ(t1)−

κb
mγ

p(t1)

])
×
⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

Dp, (A.3)

where x(t) = xt, x(0) = x0, ẋ(t) = vt, and ẋ(0) = v0. Therefore, the PDF to find the particle at position xt
with velocity vt after time t, conditioned that it starts at position x0 with velocity v0, can be expressed as

8
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P(xt,vt, t|x0,v0, t= 0) =

ˆ x(t)=xt,ẋ(t)=vt

x(0)=x0,ẋ(0)=v0

P[x]Dx

=

ˆ
exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
× exp

(
−i

1

γ
ptvt + i

1

γ
p0v0 + i

1

γ
ṗtxt − i

1

γ
ṗ0x0 − iptxt + ip0x0

)
×
⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

Dp

×
ˆ x(t)=xt,ẋ(t)=vt

x(0)=x0,ẋ(0)=v0

exp

(
−i

ˆ t

0
dt1x(t1)

[
1

γ
p̈(t1)− ṗ(t1)−

κb
mγ

p(t1)

])
Dx. (A.4)

The path integration over x can be performed easily, as it leads to the delta functional

δ

(
1

γ
p̈(t1)− ṗ(t1)−

κb
mγ

p(t1)

)
. (A.5)

This implies

p(t1) =
1

exp(λt)− 1

[
p0

(
exp

(
1

2
t1(γ−λ)+λt

)
− exp

(
1

2
t1(γ+λ)

))
+pt

(
exp

(
1

2
(t(λ− γ)+ t1(γ+λ))

)
− exp

(
1

2
(t1 − t)(γ−λ)

))]
(A.6)

where λ= γ
√
1+ 4κb/(mγ2). Using the values of p(t), equation (A.4) can further be simplified to

P(xt,vt, t|x0,v0, t= 0) =
1

2π

ˆ
dpt

ˆ
dp0

⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

× exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
× exp

(
−i

1

γ
ptvt + i

1

γ
p0v0 + i

1

γ
ṗtxt − i

1

γ
ṗ0x0 − iptxt + ip0x0

)
. (A.7)

The particle reaches the final exit point with a distributed velocity vt . Thus we should integrate the
propagator over all values of vt , i.e.

P(xt, t|x0,v0, t= 0) =

ˆ ∞

−∞
dvtP(xt,vt, t|x0,v0, t= 0)

=
1

2π

ˆ
dpt

ˆ
dp0 exp

(
−DT

ˆ t

0
dt1p

2(t1)

)⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

×
ˆ ∞

−∞
dvt exp

(
−i

1

γ
ptvt + i

1

γ
p0v0 + i

1

γ
ṗtxt − i

1

γ
ṗ0x0 − iptxt + ip0x0

)
=

1

2π

ˆ
dpt

ˆ
dp0 exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
δ

(
1

γ
pt

)⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

× exp

(
i
1

γ
p0v0 + i

1

γ
ṗtxt − i

1

γ
ṗ0x0 − iptxt + ip0x0

)
=

ˆ
dp0
2π

exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
exp

(
i
1

γ
p0v0 + i

1

γ
ṗtxt − i

1

γ
ṗ0x0 + ip0x0

)
×
⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

, (A.8)

where p(t1) = p0 exp
(
γt1
2

)
sinh

(
λ
2 (t− t1)

)
/ sinh

(
λ
2 t
)
, as pt = 0.

As mentioned earlier, the particle is at a non-equilibrium steady state inside the left well at time t= 0. We
assume the potential of the well as harmonic, of the specific form Vw(x) =

1
2κw(x+ xw)2, where κw and xw

are the stiffness of the well and the position of the minimum, respectively. Thus the velocity of the particle in
the harmonic potential follows the Boltzmann distribution with an effective temperature (defined by the
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kinetic energy) Teff, which is different from the ambient temperature T=mγDT/kB. The distribution of the
initial velocity v0 is given by [97]

P(v0) =

√
1

2π∆2
exp

(
− v20
2∆2

)
, (A.9)

where∆2 = γ
(
DT +DA/[1+ γτA +

κw
m τ

2
A]
)
. The (unnormalised) propagator for the position can then be

expressed as

P(xt, t|x0, t= 0) =

ˆ
dv0P(xt, t|x0,v0, t= 0)P(v0)

=
1

2π

√
1

2π∆2

ˆ
dv0

ˆ
dp0 exp

(
− v20
2∆2

)
exp

(
−DT

ˆ t

0
dt1p

2(t1)

)
×
⟨
exp

(
−i

ˆ t

0
dt1p(t1)σ(t1)

)⟩
σ

exp

(
i

γ
p0v0 +

i

γ
ṗtxt −

i

γ
ṗ0x0 + ip0x0

)
=

ˆ
dp0
2π

exp

(
−DTp

2
0

ˆ t

0
dt1e

γt1
sinh2

(
λ
2 (t− t1)

)
sinh2

(
λ
2 t
) − ∆2

2γ2
p20 +

i

γ
ṗtxt −

i

γ
ṗ0x0 + ip0x0

)

× exp

(
− DA

2τA

ˆ t

0
dt1

ˆ t

0
dt2p(t1)exp

(
−|t1 − t2|

τA

)
p(t2)

)
. (A.10)

Note that the propagator must satisfy the normalisation condition
´
dxtP(xt, t|x0 =−xc, t= 0) = 1.

Therefore, from the above equation, one can find that the normalisation constant is
√
ϕ21/(4γ

2), where
ϕ21 = λ2eγt/ sinh2(λt/2). Using this constant, we write the normalised propagator as

P(xt, t|x0, t= 0) =

√
ϕ2

2π
exp

(
−ϕ

2

2
(xt − x0ψ0)

2
)
, (A.11)

where the average position is

ψ0(t) = e−γt/2 cosh

(
λt

2

)
+
γ

λ
e−γt/2 sinh

(
λt

2

)
, (A.12)

and the variance of the position is

ϕ2(t) =

(
ϕ1
ϕ2

)2

. (A.13)

Here we used the additional abbreviation

ϕ22 = 4∆2 +
4γDT

(
−2γ2 −λcsch2 (λt/2) [λ−λeγt + γ sinh(λt)]

)
(γ−λ)(γ+λ)

+ 8
γDAcsch

2 (λt
2

)
[(γ−λ)(γ+λ)(τA(γ−λ)+ 2)(τA(λ− γ)+ 2)(τA(γ+λ)− 2)(τA(γ+λ)+ 2)]

×
[
(γ−λ)(γ+λ)(γτA − 2)+ 2λ2eγt (γτA + 1)(−γτA +λτA + 2)(τA(γ+λ)− 2)

× (γτA −λτA + 2)(τA(γ+λ)+ 2)+ 4γλτ 2A(γ−λ)(γ+λ)e
1
2 t
(
γ− 2

τA

)

×
(
(γτA + 2) sinh

(
λt

2

)
+λτA cosh

(
λt

2

))
− γ (γτA −λτA + 2)(τA(γ+λ)+ 2)

×
[(
τA
(
γ2 +λ2

)
− 2γ

)
cosh(λt)+ 2λ(γτA − 1) sinh(λt)

]]
. (A.14)

Appendix B. Numerical method for the computation of℘(t)

Numerical simulations of equation (6) are performed employing the Euler–Maruyama algorithm for 104

particles with time-step dt= 10−3, and the trajectories of active noise are generated using the discretised
version of equations (2) and (4) for the OU and MOU processes, respectively. The particles are initially at
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position−xc and are allowed to evolve in the inverted parabolic potential V(x) =− kb
2 x

2 according to
equation (6). The initial velocities are chosen from the steady-state distribution given in (A.9), and for each
particle, the active force is initially sampled from the normal distribution with zero mean and variance DA

τA
for

the OUP case (and variance DA for the MOUP case). While the particle is in the region x<−xc, it is
discarded as a no-transition event. When a particle crosses the point xc =+1 (absorbing boundary) it is
counted as a transition event, and the time is recorded as the TPT. The time data are represented as the
histogram shown in figure 1. Note that here we only consider the forward rate, i.e. the rate of transition from
−xc to+xc, as the reverse rate may differ due to the imposition of a nonequilibrium condition.

Appendix C. Limiting values of q(t) and εA

We first consider two limiting cases for q(t), given by equation (9). In the long-time limit, i.e. for γt≫ 1 and
λt≫ 1, one gets

ψ0 ∼
λ+ γ

2λ
e−γt/2+λt/2

[
1+

λ− γ

λ+ γ
e−λt

]
, (C.1)

ϕ21 ∼ 4λ2eγt−λt, (C.2)

ϕ22 ∼ 4∆2 +
8γ2DT

λ− γ
+

16γ2DA

(λ− γ)(τA(λ− γ)+ 2)
(C.3)

ϕ2 ∼ ϕ21
ϕ22

∼ 4λ2eγt−λt

4∆2 + 8γ2DT

λ−γ + 16γ2DA

(λ−γ)(τA(λ−γ)+2)

. (C.4)

Thus q(t) has the asymptotic limit

q2(t) =
ϕ2

2
(xc + xcψ0)

2 ∼ ϵA

[
1+

2λ

λ+ γ
e−

λ
2 t+

γ
2 t

]2
, (C.5)

where ϵA is the barrier height divided by a modified (or effective) total energy as given by expression (13). For
the passive case, DA → 0, and as a result, ϵA changes tomx2c/(2kBT), which is denoted here as ϵp. Notice that
ϵp > ϵA, and ϵA decreases with DA as ϵA ∝ 1/DA. From equation (12) we infer that Q0(xc)active > Q0(xc)passive,
as illustrated in figure C1. This result is not surprising as the number of successful crossings increases with
the help of the higher energy provided by the active fluctuations of the surroundings. With the increment of
κb, the particle has to climb up a steeper (higher) energy barrier, and as a result, Qc(t,xc) decreases. In the
limit τA → 0, the correlation of the active (OUP) noise becomes a delta function and thus it can be thought
of as a source of an extra thermal energy with active temperature kBTA =mγDA. Consequently, ϵA is given by
the barrier height divided by an effective thermal energy, i.e. ϵA =mx2c/[2kB(T+TA)].

In the short-time limit t→ 0, one can approximate q(t), yielding

q2(t)≈ 2x2c
γt2

1

DT +
DA

1+γτA+
κw
m τ 2

A

. (C.6)

For the passive case, DA → 0, and so q2(t) reduces to q2(t)≈ 2mx2c/(kBT)t
−2, which is the same as the one

obtained in [26]. At short times, the particle mostly stays near the minimum, which means that the
contributions to the total energy mainly come from its motion, which exhibits short-time ballistic behaviour.
For q2(t) in the active case, the energy is solely kinetic, like the passive case, but it is scaled by a relatively
higher, supplied to the particle due to the presence of active fluctuations. Therefore, one has
q(t)passive > q(t)active, which, by virtue of expression (8), immediately suggests that Qc(t)passive < Qc(t)active.
This is depicted in figure C1. From equations (C.5) and (C.6), one can see that q(t) varies between∞ and√
ϵA over the time interval t ∈ (0,∞). Similarly, one has Qc(t,xc) ∈ (0,Q0(xc)).
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Figure C1. Absorption function (solid curves) as function of time for (a)–(b) the OUP-noise model and (c)–(d) the MOUP-noise
model. In panels (a) and (c), the variation of Qc(t,xc = 2) is shown for different values of the active forces (σ0, σm), the friction
coefficient γ, and the curvature κb of the potential around x= 0, for τA = 0.01 and τA = 0.1, respectively. The solid curves
(equation (8)) in panels (b) and (d) correspond to different values of τA and κb, keeping σ0 = 10 and σm = 10 fixed, respectively.
The dashed lines correspond to the asymptotic values of the absorption function given by equation (12). Other parameters are
taken as unity.

Appendix D. Approximation of ⟨tTP⟩

To obtain the average TPT in the high-energy barrier limit (i.e. for ϵA ≫ 1), we change the variable of
integration in equation (15) from t to q, as demonstrated in [26]. Then the average TPT can be rewritten
using equation (15), producing

⟨tTP⟩=
ˆ ∞

0
dt ′t ′℘(t ′) =

´∞√
ϵA
dqt(q)e−q2

´∞√
ϵA
dqe−q2

=

´∞
0 dx t(x)√

1+x/ϵA
e−x

´∞
0 dx 1√

1+x/ϵA
e−x

. (D.1)

In the last step we used x= q2 − ϵA. In the long-time limit, one can write the time t as a function of q(t)
using equation (C.5), resulting in

t≈ 2

λ− γ
ln

(
2λ

λ+ γ

)
− 2

λ− γ
ln

(
q(t)
√
ϵA

− 1

)
≈ 2

λ− γ
ln

(
2λ

λ+ γ

)
− 2

λ− γ
ln
(√

1+ x/ϵA − 1
)
. (D.2)

Considering ϵA ≫ 1, we can perform the integration in equation (D.1), finding

⟨tTP⟩ ≈
2

λ− γ
ln

(
2λ

λ+ γ

)
− 2

λ− γ

ˆ ∞

0
dx ln

(
x

2ϵA

)
e−x +O

(
1

ϵA

)
≈ 2

λ− γ
ln

(
2λ

λ+ γ

)
+

2

λ− γ
ln2+

2

λ− γ
γe

+
2

λ− γ
ln(ϵA)+O

(
1

ϵA

)
, (D.3)

where γe =−
´∞
0 dx ln(x)e−x ≈ 0.577216 is the Euler–Mascheroni constant.
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