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Abstract
Stochastic resetting is a rapidly developing topic in the field of stochastic processes and their
applications. It denotes the occasional reset of a diffusing particle to its starting point and effects,
inter alia, optimal first-passage times to a target. Recently the concept of partial resetting, in which
the particle is reset to a given fraction of the current value of the process, has been established and
the associated search behaviour analysed. Here we go one step further and we develop a general
technique to determine the time-dependent probability density function (PDF) for Markov
processes with partial resetting. We obtain an exact representation of the PDF in the case of general
symmetric Lévy flights with stable index 0< α⩽ 2. For Cauchy and Brownian motions (i.e.
α= 1,2), this PDF can be expressed in terms of elementary functions in position space. We also
determine the stationary PDF. Our numerical analysis of the PDF demonstrates intricate crossover
behaviours as function of time.

1. Introduction

Stochastic processes represent a core field in non-equilibrium statistical physics and physical chemistry [1, 2].
They are used as ‘schematisations’ [3] for systems, that are too complex to describe in microscopic detail [4],
and in which the dynamic of an observable is apparently random. Stochastic processes are quite ubiquitous
in nature. Examples include, inter alia, archetypical Brownian motion [5], the passive diffusion of molecules
in biological cells [6, 7], animal motion [8], the motion of active particles beyond their persistence time [9],
tracer motion in geophysical systems [10], charge carrier motion in semiconductors [11], stock prices on
financial markets [12], or disease spreading [13].

One central question in the study of stochastic processes is their ability to locate a specific target in space
[14]. In an unlimited space a diffusing particle may significantly stray away from its starting point and may
not be able to locate a small target in a finite interval of time. Even in a finite domain the diffusive search may
have very broad distributions of search times, and the typical search time may be significantly different from
the mean [15–17]. Speedup of the diffusive search may, e.g. be achieved by ‘facilitated diffusion’, in which the
diffusion intermittently occurs in the embedding space and on a surface with reduced dimension—a
prominent example is the search of binding proteins for a site on a long DNA chain [18, 19]. The central idea
in facilitated diffusion is the combination of thorough local search and decorrelations by bulk diffusion [20,
21]. Similar principles in random search are processes with long-tailed jump length distributions (Lévy
flights and walks) [22–31] and intermittent search [14, 32–34].

Another way to optimise the search for a target at a finite distance away from where the searching particle
is released, is stochastic resetting (SR) [35, 36]. In its simplest version, SR considers a Brownian particle, that

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/aced1d
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aced1d&domain=pdf&date_stamp=2023-8-10
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3803-1174
https://orcid.org/0000-0001-6865-5474
https://orcid.org/0000-0001-9257-1115
https://orcid.org/0000-0002-6013-7020
mailto:rmetzler@uni-potsdam.de


New J. Phys. 25 (2023) 082002

experiences repeated restarts, i.e. resets to its starting position, either at fixed periods or stochastically with a
fixed rate [35–39]. A central feature of SR is that the stochastic search of a diffusing particle for a target at a
given distance from its starting point can be optimised for a specific resetting frequency [35–37]. The idea is
that SR prevents long departures of the particle away from its target. Overly frequent resetting, in contrast,
keeps the particle always close to the starting point, such that it cannot reach the target. At intermediate
resetting frequencies, therefore, the mean search time is minimised [35–37]. For mean search times a unified
approach allows to determine the optimal SR-rate [40] and, at optimality, first-passage time fluctuations
have a universal coefficient of variation [41], see also recent results on extremes in SR [42]. SR leads to a
non-equilibrium steady state with a well-defined limiting displacement distribution [35–37]. A renewal
approach to resetting was established and exploited to show that constant pace resetting minimises the mean
hitting time [43]. Moreover, linear response and fluctuation–dissipation relations for SR were discussed [44].
Aspects of SR in quantum walks have also been addressed [45]. A recent review of SR and applications in
different disciplines can be found in [46]. Importantly, we mention that the effect of SR was demonstrated
experimentally [37, 47, 48].

Various aspects beyond Brownian SR have been discussed. Inter alia, non-instantaneous returns [49] and
soft resetting by switching harmonic potentials [50] were studied. SR of anomalous diffusion processes
include heterogeneous diffusion processes with distance-dependent diffusion coefficient [51–53], scaled
Brownian motion with time-dependent diffusivity in renewal and non-renewal settings [54, 55], and
continuous time random walk processes with complete and incomplete [56] as well as with power-law [57]
resetting. Reset rotational motion was studied in terms of a time-fractional Fokker–Planck equation (FPE)
[58]. Different effects due to resetting were demonstrated for geometric Brownian motion without [59] and
with drift [60], and effects on income dynamics explored [61]. Aspects of ergodicity restoration in
anomalous diffusion processes were also analysed [62]. For SR on networks [63–65], the minimisation of
global mean first passage times for specific centrality-based SR mechanisms were reported [66]. We note that
results similar to SR for a single absorbing target were obtained for multiple as well as partially absorbing
targets [67, 68]. Moreover, a concept similar to SR is preferential relocations, which take the walker back to
any previously visited site [69, 70].

Here we address the question as to what happens when the particle is not reset to its origin, but to some
value in between the instantaneous co-ordinate and the initial value. Such partial SR (PSR) has been studied
in mathematical [71, 72], financial and actuarial [73–77] literature, and in queuing theory [78] for piecewise
deterministic processes. The basic idea behind many models in these fields is that there is a growing
observable (like the income of an insurance company or the amount of traffic over the internet), subjected to
random unexpected events leading to a substantial decrease of this quantity (claims in an insurance company
or failures in internet connections). PSR has also been recently considered in physics literature [79], where
the authors studied the two distinct cases of independent and dependent random resetting amplitudes: for
independent resetting, the amplitude is arbitrary, so that the particle can also be reset to negative values,
while for dependent resetting amplitudes the current value of the particle is multiplied by a number between
zero and unity, thus guaranteeing positivity of the value after reset. In [79] the authors discussed PSR for
both scenarios in terms of moments and the particle probability density function (PDF). The case of
dependent resetting was recently also analysed further [80, 81]. PSR finds its motivation in different settings.
One is stratigraphy, studying sediment layering in geology [79]: deposits by a gradual sedimentation, e.g. in a
river delta, can be partially washed away by sudden events such as extreme rainfall. A similar model is used in
population dynamics, when the gradual growth dynamic is interrupted by sudden, catastrophic population
decimation [82–86]. Recently, the scenario of resetting to a random position has also been addressed [87].

Going significantly beyond recent work [80, 81] reporting the FPE and the stationary PDF for Brownian
PSR [80] and the time-dependent PDF in Fourier–Laplace space when the initial condition is at the origin,
we here develop a general technique to determine the time-dependent PDF for homogeneous Markov
processes with Poissonian resetting, in which the process is partially reset by multiplication with the constant
factor 0< c< 1 at random times T1,T1 +T2, . . .. The limiting cases c→ 0 and c→ 1 of this model
correspond to total resetting [35] and a stochastic process without resetting, respectively. An exact
representation of the PDF in the real space-time domain is derived for the case of general symmetric Lévy
flights with stable index 0< α⩽ 2, including Brownian motion and Cauchy flights as particular cases for
α= 2 and 1, respectively. We also determine the stationary PDF for symmetric Lévy flights in terms of Fox
H-functions and present the particular cases α= 2 and 1 in terms of elementary functions. For the case of
non-zero initial conditions, we report highly asymmetric non-stationary PDFs for α= 2 and the emergence
of non-trivial inhomogeneous multimodal regimes with α ̸= 2.
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Figure 1. Plot of two possible trajectories of the system in the specific cases of Brownian motion (left panel) and symmetric
Cauchy random walk (right panel). The process without PSR (Xt) is depicted in orange on both panels, while the process with
PSR (Yt, with rate r= 1.0 and amplitude factor c= 0.5) is displayed in black. We highlighted partial resetting events with red
segments. For better visibility the black/red lines are rendered with a thicker line width. The processes Xt and Yt in either panel
were generated from the same random seed.

2. Propagator for partial resetting

We consider a stochastic process Xt with initial condition X0 = x0 whose PDF is p0(x, t|x0, t0). We assume
homogeneity in both space and time, such that p0(x, t|x0, t0) = p0(x− x0, t− t0|0,0). Without limitation of
generality, we set t0 = 0 and use the simplified notation p0(x, t), keeping the initial condition x0 implicit. At
random times T1,T1 +T2,T1 +T2 +T3, . . ., the position of the particle is partially reset, i.e. multiplied by
0< c< 1. Thus Ti represents the time between the (i− 1)st and ith partial reset. We assume that the Ti are
independent, identically distributed (i.i.d.) random variables with PDF ψ(t) = Pr{t⩽ T1 ⩽ t+ dt}. Clearly,
c= 0 represents the full resetting case, while setting c= 1 we retrieve the unperturbed stochastic process. Let
Yt denote the PSR process. We then have

Yt = x0 + [((XT1 · c+XT2) · c+XT3) · c+ . . . ] · c+Xt−TNt

= x0 + cNtXT1 + cNt−1XT2 + . . . cXTNt
+Xt−TNt

, (1)

where Nt denotes the number of partial resetting events in the time interval [0, t]. The meaning of this
expression is quite intuitive: the process is unperturbed until the time T1, moving from x0 to x0 +XT1 ; then
the process is multiplied by c, and it stays unperturbed again between times T1 and T1 +T2, and so on. Some
possible trajectories of Yt are depicted in figure for Brownian and Cauchy random walks (see below) in
absence and presence of PSR figure 1. Generally we notice that in the presence of PSR the resulting
trajectories tend to be closer to the origin, while they experience long excursions in the unperturbed case.
This hints at the existence of a stationary state, that we will examine more closely below.

We are interested in finding the PDF pr(x, t|x0) of the PSR process Yt. Since we choose Xt to be
time-homogeneous, it follows that Yt is also homogeneous in time. However, partial resetting according to
equation (1) leads to an inhomogeneity in space. Thus, in the PDF pr(x, t|x0) we removed the dependence on
the initial time t0 (taken as t0 = 0) but we retain the dependence on x0. The reason for the loss of spatial
homogeneity is quite intuitive: consider the first partial resetting event, occurring at time T1. The position
YT+

1
depends on YT−

1
, and YT−

1
in turn depends on x0. Due to partial resetting the shape of the resulting

time-dependent PDF due to this effect attains more complicated shapes, as we will discuss in the next
sections.

For the specific case of Poissonian resetting times, i.e. ψ(t) = re−rt for all i, the expression of pr can be
found through the last renewal equation, which reads

pr(x, t|x0) = e−rtp0(x, t|x0)+
ˆ t

0
dt ′re−rt ′

ˆ ∞

−∞
dypr(y, t− t ′|x0)p0(x, t ′|cy). (2)

The meaning of this relation is quite simple: the first term on the right hand side takes into consideration all
realisations in which no partial resetting occurred, while the second term considers all realisations in which
the last resetting event occurred at time t− t ′. During the time interval [0, t− t ′] the particle diffuses to
position y with propagator pr(y, t− t ′|x0), while during [t− t ′, t] it diffuses without PSR, hence with
p0(x, t ′|cy). This term must be integrated over all possible realisations of t′ and y. The solution of the integral
equation (2) can be obtained via the series expansion
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pr(x, t|x0) = e−rt
∞∑
n=0

rnqn(x, t|x0), (3)

where the set of functions {qn}∞n=0 can be found through the recursion relation

q0(x, t|x0) = p0(x, t|x0), qn(x, t|x0) =
ˆ t

0
dt ′
ˆ ∞

−∞
dyqn−1(y, t

′|x0)p0(x, t− t ′|cy). (4)

We prove this result in appendix A. In the recursion relation (4) we now perform a Laplace transform to
obtain6

q̃n(x, s|x0) =
ˆ ∞

−∞
dyq̃n−1(y, s|x0)p̃0(x− cy, s|0), (5)

where we used the space-homogeneity property p̃0(x, t− t ′|cy) = p̃0(x− cy, s|0) in the Laplace transform.
Note that the explicit dependence on x0 is also inherent in these transformed functions. Applying an
additional Fourier transform7,

ˆ̃qn(k, s|x0) = ˆ̃qn−1(kc, s|x0)ˆ̃p0(k, s), (6)

where, for simplicity, we denoted ˆ̃p0(k, s|0)≡ ˆ̃p0(k, s). Thus we can find the general expression by simply
iterating

ˆ̃qn(k, s|x0) =

(
n−1∏
l=0

ˆ̃p0(kc
l, s)

)
ˆ̃p0(kc

n, s|x0). (7)

Since p0 is spatial homogeneous we can use the relation ˆ̃p0(kcn, s|x0) = eikc
nx0 ˆ̃p0(kcn, s|0)≡ eikc

nx0 ˆ̃p0(kcn, s) to
obtain

ˆ̃qn(k, s|x0) = eikc
nx0

n∏
l=0

ˆ̃p0(kc
l, s). (8)

Hence, combining (3) and (8) we may write the full PDF in Fourier–Laplace space as

ˆ̃pr(k, s|x0) =
∞∑
n=0

rneikc
nx0

n∏
l=0

ˆ̃p0(kc
l, r+ s). (9)

Equation (9) is the first main result of the paper, generalising previous results [79–81]. In [79] the authors
considered the case of deterministic ballistic motion with constant speed and PSR. The propagator for this
process which was not reported in [79] can be found from result (9) by setting p0(x, t) = δ(x− vt),
where v is the speed. Moreover, the results in [80, 81] follow from (9) by setting x0 = 0 and
p0(x, t) = (4πDt)−1/2 exp(−x2/(4Dt)).

For consistency, we check the limit of c→ 1, for which we find

ˆ̃pr(k, s|x0) = eikx0 ˆ̃p0(k, r+ s)
∞∑
n=0

(
rˆ̃p0(k, r+ s)

)n
= eikx0 ˆ̃p0(k, r+ s)

1

1− rˆ̃p0(k, r+ s)

= eikx0 ˆ̃p0(k, s), (10)

where in the last step we used an identity for Markov processes proved in appendix B. As expected, we
retrieve the PDF for the stochastic process without resetting. In the case c→ 0, we obtain

6 We use the notation

L {f(t)}(s) =
ˆ ∞

0
e−stf(t)dt= f̃(s).

7 The Fourier transform is defined as

F{g(x)}(k) =
ˆ ∞

−∞
eikxg(x)dx= ĝ(k).
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ˆ̃pr(k, s|x0) = ˆ̃p0(k, r+ s)
∞∑
n=0

(
r

r+ s

)n

=
r+ s

s
ˆ̃p0(k, r+ s), (11)

which is the same result as the one for total resetting [46].

3. Lévy flights

Let us consider now the general case in which the underlying process Xt is a symmetric Lévy flight [12, 89].
The associated characteristic function p̂0(k, t) of a symmetric Lévy stable PDF is then given by [89–93]

p̂0(k, t) = e−D|k|αt, (12)

which in Fourier–Laplace space reads (see also [94])

ˆ̃p0(k, s) =
1

s+D|k|α
. (13)

In real space this PDF becomes

p0(x, t) =

ˆ ∞

0

dk

π
cos(kx)e−D|k|αt, (14)

with α ∈ (0,2]. The case α= 2 corresponds to a Gaussian PDF, while for α ∈ (0,2) the asymptotic scaling of
the PDF has the power-law tails p0(x, t)≃ |x|−1−α [89–93]. The inverse Fourier transform in (14) can be
performed by use of Fox H-functions (see below), while in the special cases α= 1,2 simple, explicit forms
for the PDF p0(x, t) can be found in terms of a Cauchy PDF and a normal Gaussian, respectively. We will
treat these two special cases in detail in the next sections.

In Fourier–Laplace space, using equations (8) and (13) we obtain the functions

ˆ̃qn(k, s|x0) = eikc
nx0

n∏
l=0

1

s+Dcαl|k|α
, (15)

and with equation (9) we find

ˆ̃pr(k, s|x0) =
∞∑
n=0

rneikc
nx0

n∏
l=0

1

r+ s+Dcαl|k|α
. (16)

This PDF solves the fractional FPE8 (as shown in appendix C)

∂pr(x, t|x0)
∂t

= D
∂α

∂|x|α
pr(x, t|x0)− rpr(x, t|x0)+

r

c
pr
(x
c
, t|x0

)
, (17)

where the space-fractional operator is defined in terms of its Fourier transform, F{∂αg(x)/∂|x|α}=
−|k|αg(k) [95]. Setting α= 2 and x0 = 0 we retrieve the dynamic equation obtained in [81] corresponding to
Brownian motion with PSR, see also below. For 0< c< 1 we can simplify equation (15) by using the partial
fraction decomposition9

ˆ̃qn(k, s|x0) =
eikc

nx0

sn

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m

1

s+Dcαm|k|α
, (18)

where the symbols in the parentheses denote the q-Pochhammer symbol defined as [97]

(a;q)n =
n−1∏
l=0

(1− aql). (19)

8 This differential equation is sometimes called ‘pantograph’ form, where this term means that there are multiple points as arguments of
the functions, in this case x and x

c
, compare [99].

9 Suppose having a function f : z ∈ C→ C having n poles z1,z2, . . . , zn of order 1. Then it holds that

f(z) = 2π i
n∑

i=1

1

z− zi
Res(f,zi) ,

where Res( f,zi) denotes the residue of the function at the pole zi [98].

5
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After inverse Laplace transform of ˆ̃qn we obtain

q̂0(k, t|x0) = eikc
nx0−D|k|αt, (20)

for n= 0 and, by use of the convolution theorem,

q̂n(k, t|x0) = eikc
nx0

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m

ˆ t

0
dt ′

(t− t ′)n−1

(n− 1)!
e−Dcαm|k|αt ′ (21)

for n⩾ 1. We now perform an inverse Fourier transform,

qn(x, t|x0) =
n∑

m=0

1

(c−α; c−α)m(cα; cα)n−m

ˆ t

0
dt ′

(t− t ′)n−1

(n− 1)!
p0(x− cnx0, c

αmt ′), (22)

for n⩾ 1. Then the formula for the propagator may be written in the compact form

pr(x, t|x0) = e−rt
∞∑
n=0

rn
n∑

m=0

1

(c−α; c−α)m(cα; cα)n−m

×
ˆ t

0
dt ′
(
(1− δn0)

(t− t ′)n−1

(n− 1)!
+ δn0δ(t− t ′)

)
p0(x− cnx0, c

αmt ′), (23)

where δij denotes the Kronecker delta and δ(t) denotes the Dirac δ-function. The formula above is the second
main result of the paper.

Let us show that expression (23) is indeed normalised. To this end we integrate over x. Since p0 is
normalised, we get

ˆ ∞

−∞
dxpr(x, t|x0) = e−rt

∞∑
n=0

(rt)n

n!

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m
. (24)

We prove in appendix D that

n∑
m=0

1

(c−α; c−α)m(cα; cα)n−m
= 1, (25)

and therefore pr(x, t|x0) in (23) is normalised, as it should be.

3.1. Stationary distribution
The stationary distribution for Lévy flight-PSR can be obtained by setting the time derivative in (17) to 0 and
applying an inverse Fourier transform,

−D|k|αp̂(s)r (k)− rp̂(s)r (k)+ rp̂(s)r (kc) = 0, (26)

which after iteration produces

p̂(s)r (k) =
∞∏
l=0

r

r+Dcαl|k|α
. (27)

In the limiting case α= 2 we obtain the same result as in [80, 81]. Alternatively, we could have obtained this

result by taking the limit lims→0 sˆ̃pr(k, s|x0) in equation (16). This, indeed, corresponds, according to the final
value theorem, to the limit for t→∞. We will not show how to take the aforementioned limit in (16) since it
was already shown in appendix G of [81] for α= 2. The derivation uses Stolz–Cesaro’s theorem [96] and can
be straightforwardly extended for general α. Equation (27) can be transformed by using partial fraction
decomposition, yielding

6
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p̂(s)r (k) =
∞∑
n=0

r

r+Dcαn|k|α
∞∏

l=0,l̸=n

1

1− cα(l−n)
=

1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n

r

r+Dcαn|k|α
, (28)

which is the third main result of the paper. We note that for k= 0, by using a well-known identity for
q-Pochhammer symbols first discovered by Euler [97],

1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n
= 1, (29)

we see that the PDF is normalised. After inverse Fourier transform in equation (28) we obtain the stationary
PDF in position space,

p(s)r (x) =
1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n

ˆ ∞

0

dk

π
cos(kx)

r

r+Dcαn|k|α
. (30)

This is another central result of this paper. We note that in the previous formula the generic term of the series
is a Linnik distribution, that is discussed in more detail in [88]. In this reference, the authors derived the
propagator of an α-stable diffusion with resetting. In particular, in the stationary case, this propagator is a
Linnik distribution. For large |x| a series of Linnik distributions has the same scaling as a single Linnik
distribution, which, apart from prefactors, decays as≃ |x|−α−1 for α ∈ (0,2), and as≃ e−const|x| for α= 2. In
other words, the value of the parameter c ∈ [0,1) does not affect the scaling.

In the last expression the Fourier cosine integral can be solved analytically in terms of Fox H-functions
[100]. To this end we note first that the image function can be identified with the H-function

1

1+ D
r c

αn|k|α
=H1,1

1,1

[
D

r
cαn|k|α

∣∣∣∣ (0,1)
(0,1)

]
=

1

α
H1,1

1,1

[(
D

r

)1/α

cn|k|
∣∣∣∣ (0,1/α)
(0,1/α)

]
, (31)

where in the second step we made use of a well known theorem of H-functions [100]. The cosine transform
then is merely a manipulation of indices [101], and we find

p(s)r (x) =
1

(cα; cα)∞

∞∑
n=0

1

(c−α; c−α)n

1

α|x|
H2,1

2,3

[
λ1/α|x|

cn

∣∣∣∣ (1,1/α),(1,1/2)
(1,1),(1,1/α),(1,1/2)

]
, (32)

another main result of this work. Here we defined λ= r/D. We will consider in detail the cases α= 1,2 in
the following sections.

4. Brownianmotion with PSR

In the Gaussian case α= 2 the PDF p0 reads

p0(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
, (33)

hence the propagator (23) becomes

pr(x, t|x0) = e−rt 1√
4πDt

exp

(
− (x− x0)2

4Dt

)
+ re−rt

∞∑
n=1

ˆ t

0
dt ′

[r(t− t ′)]n−1

(n− 1)!

×
n∑

m=0

C(2)
n,m

1√
4πDc2mt ′

exp

(
− (x− cnx0)2

4Dc2mt ′

)
. (34)

Here we used the abbreviation

C(α)
n,m =

1

(c−α; c−α)m (c
α; cα)n−m

. (35)

7
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Figure 2. Propagator for Brownian motion with partial resetting. Solid lines represent the analytical distribution (36), while
symbols represent the simulations results. In (a) the starting position is x0 = 0, while in (b)–(d) it is x0 = 5. The resetting factor c
was chosen as c= 0.5 in (a), c= 0.1 in (b), c= 0.5 in (c), and c= 0.9 in (d). D= 1, r= 1 in all simulations.

Figure 3. Propagator for Brownian motion with PSR with starting position x0 = 5, and for different values of the resetting factor
c. The time is chosen as (a) t= 1 and (b) t= 10. D= 1, r= 1 in all simulations.

The integral over time can be performed analytically, yielding

pr(x, t|x0) = e−rt 1√
4πDt

exp

(
− (x− x0)2

4Dt

)
+ re−rt

∞∑
n=1

(rt)n−1

2D(n− 1)!Γ
(
n+ 1

2

)
×

n∑
m=0

C(2)
n,mc

−2m

[
(n− 1)!cm

√
Dt 1F1

(
−n+

1

2
;
1

2
;− (x− cnx0)

2

4Dc2mt

)
+

−Γ

(
n+

1

2

)
|x− cnx0| 1F1

(
1− n;

3

2
;− (x− cnx0)

2

4Dc2mt

)]
, (36)

where 1F1 denotes the Kummer confluent hypergeometric function. We note that in [81], the authors derived
the Fourier–Laplace transform of the propagator for the special initial condition x0 = 0. Our results above
extend this result to an arbitrary initial condition and we invert this general form to real space.

The PDF (36) is shown in figures 2 and 3 for different choices of the parameters. The agreement between
theory and simulations is excellent. The simulated PDF was obtained with the algorithm described in
appendix E. We note that while the PDF stays symmetric around the origin when the process is initiated in

8
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x= 0, when the initial condition is away from the origin, strong asymmetries of the PDF are observed. These
asymmetries relax as function of time, and eventually converge to a stationary, symmetric form. As seen in
figure 2 the relaxation to stationarity requires more time when the resetting factor c is closer to the value
c= 1 in absence of any resetting.

To obtain a concrete form for the stationary distribution, we set α= 2 in equation (32) to get

p(s)r (x) =
1

2(c2; c2)∞

√
r

D

∞∑
n=0

c−n

(c−2; c−2)n
e−

√
r/D c−n|x|, (37)

which is in agreement with [80].

5. PSR for the Cauchy case

In the case α= 1, for which the Lévy stable density is given by the Cauchy (Lorentz) distribution, the
function p0 reads

p0(x, t) =
1

π

Dt

x2 +D2t2
. (38)

With equation (23) we therefore find

pr(x, t|x0) =
Dt

x2 +D2t2
+ re−rt

∞∑
n=1

ˆ t

0
dt ′
[
r(t− t ′)n−1

]
π(n− 1)!

n∑
m=0

C(1)
n,m

1

π

Dcmt ′

(x− cnx0)2 +(Dcmt ′)2
. (39)

The integral can be performed analytically, yielding

pr(x, t|x0) =
1

π

Dt

x2 +D2t2
+

1

π
e−rt

∞∑
n=1

(rt)n

(n+ 1)!

n∑
m=0

C(1)
n,m

Dcmt

(x− cnx0)2

× 3F2

(
1,1,

3

2
;
n

2
+ 1,

n

2
+

3
2;

−D2c2mt2

(x− cnx0)2

)
, (40)

where pFq(a1, . . . ,ap;b1, . . . ,bp;z) is the generalised hypergeometric function [97]. The stationary PDF
follows from equation (30)10. The integral for α= 1 is computed explicitly in [88], and we find

p(s)r (x) =
1

π(c; c)∞

∞∑
n=0

1

(c−1; c−1)n

λ

cn

[(
π

2
− Si

(
λ|x|
cn

))
sin

(
λ|x|
cn

)
− cos

(
λx

cn

)
Ci

(
λ|x|
cn

)]
, (41)

where we again used λ= r/D, and where the sine/cosine integrals Si(x) and Ci(x) are defined as

Si(x) =

ˆ x

0

sin(t)

t
dt, Ci(x) =

ˆ ∞

x

cos(t)

t
dt. (42)

In the case of total resetting with c= 0, this result coincides with the one obtained in [88].
In figure 4 we plot the PDF (40) and the associated stationary PDF (41) along with examples for Gaussian

and other Lévy flight processes with α= 2.0, α= 1.5, and α= 0.5. For the latter cases expression (23) was
evaluated numerically. The agreement with numerical simulations is excellent in all cases. A distinct feature
is the strong asymmetries in the PDF due to the initial condition. For lower α, i.e. longer-tailed stable
densities, the multimodal structure becomes more spiky. We conclude this section with a short discussion of
the origin of the multimodal regime of the PDF at short times. To this end, we inspect equation (23), which
is a series over the summation index n. We note the following: (i) the generic nth term is centred around
cnx0; (ii) each term is the integral from 0 to t of a positive function; and (iii) each term is divided by (n− 1)!,
hence we expect that terms with a large n are suppressed. The multimodality clearly comes from the property
(i). As pr(x, t|x0) can be interpreted as an average over many trajectories, the peak centred around cnx0 is the
contribution coming from all trajectories that experienced exactly n PSR events. Conversely, when the total
time t increases, the integral over dt ′ in (23) will increase as well. Thus, at longer t more and more terms in
the series will provide a non-negligible contribution. As the PDF must be normalised at all times, we hence
may qualitatively state that the probability is ‘flowing’ from terms of the series with small index n to those
with larger n. Therefore, the peaks are gradually disappearing with time. Eventually, the particle will totally
forget its initial position and the stationary PDF will be symmetric around the origin, as it should. We also
note that another interesting example of multimodality induced by resetting was recently reported [106].

10 We may alternatively set α= 1 in equation (32).
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Figure 4. Propagator for Brownian motion and Lévy flight with PSR for (a) α= 2 (Brown), (b) α= 1.5, (c) α= 1.0 (Cauchy),
and (d) α= 0.5. Parameters: x0 = 5, D= 1, r= 1, t= 1, and c= 0.5.

6. Conclusions

We established a framework to calculate the time-dependent PDF in the presence of partial resetting effects
for homogeneous Markov processes with Poissonian resetting, in which the process is partially reset by
multiplication with a constant factor 0< c< 1 at random times. We showed that, consistently, the limiting
cases c→ 0 and c→ 1 of this model correspond to total resetting [35] and a stochastic process without
resetting, respectively. We derived an exact representation of the PDF in the real space-time domain for the
case of general symmetric Lévy flights with stable index 0< α⩽ 2, including Brownian motion and Cauchy
flights as particular cases for α= 2 and 1. As our approach is valid for generic Markov processes, in the future
other densities such as asymmetric Lévy stable forms can be studied. For the case of non-zero initial
conditions, we reported highly asymmetric non-stationary PDFs for α= 2 and the emergence of non-trivial
inhomogeneous multimodal regimes with α ̸= 2. We also determined the stationary PDF for symmetric Lévy
flights in terms of Fox H-functions and presented the particular cases α= 2 and 1 in terms of elementary
functions. Moreover, we also showed how the resetting factor c influences the relaxation speed towards
stationarity.

We expect that our results will find applications in systems ranging from the generic theory of search
processes over financial mathematics to population dynamics and geophysics. In the future it will be relevant
to work out the precise relaxation dynamics towards the steady state and the tails of the PDFs under PSR
dynamics. Moreover, it will be important to determine the associated first-passage behaviour. Finally, as
another challenge we mention the description of non-Markov PSR-processes.
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Appendix A. Solution of last renewal equation

As stated in the main text, the solution of the last renewal equation (2) is given by expressions (3) and (4). We
now check this by inserting (3) and (4) into (2),

e−rt
∞∑
n=0

rnqn(x, t|x0) = e−rtq0(x, t|x0)+ r

ˆ t

0
dt ′e−rt ′

ˆ ∞

−∞
dye−r(t−t ′)

∞∑
n=0

rnqn(y, t− t ′|x0)p0(x, t ′|cy)

= e−rtq0(x, t|x0)+ re−rt
∞∑
n=0

rn
ˆ t

0
dt ′
ˆ ∞

−∞
dyqn(y, t− t ′|x0)p0(x, t ′|cy)

= e−rtq0(x, t|x0)+ e−rt
∞∑
n=0

rn+1qn+1(x, t|x0)

= e−rt
∞∑
n=0

rnqn(x, t|x0) (A.1)

which completes the proof.

Appendix B. Fourier–Laplace identity

At the end of section 2, we used the following identity when we were checking the limit c→ 1,

ˆ̃p0(k, r+ s)

1− rˆ̃p0(k, r+ s)
= ˆ̃p0(k, s), (B.1)

which is valid for time and space-homogeneous propagators. First we point out that the right hand side does
not depend on r. This should not be surprising: we are considering the limit in which PSR does not affect the
motion, hence the rate r should not play any role in this case. Nevertheless, this identity is indeed valid for
general Lévy processes. It can be proved by using the Lévy–Khinchine theorem [92] which gives an analytical
general expression for the characteristic function of Lévy process,

p̂0(k, t) = exp

(
t

(
aik− 1

2
σ2k2 +

ˆ
R\{0}

(
eikx − 1− ikx1|x|<1

)
Π(dx)

))
, (B.2)

where a ∈ R, σ ⩾ 0, and Π is the Lévy measure of the process. Hence, the Laplace transform of this
expression has the following form

ˆ̃p0(k, s) =
1

s+ f(k)
, (B.3)

for some function f (k). Let us substitute this expression into the left hand side of (B.1),

1

r+ s+ f(k)

(
1− r

r+ s+ f(k)

)−1

=
1

s+ f(k)
, (B.4)

so that we showed that the left and right hand sides are identical.

Appendix C. Equivalence between first renewal and Fokker–Planck equation (FPE)

We stated in the main text that the system may be equivalently described via the fractional FPE (17). We
show here that the solution (16) we obtained for Lévy flights is indeed a solution of the FPE. The FPE in
Fourier–Laplace space reads

− eikx0 + sˆ̃pr(k, s|x0) =−(r+D|k|α)ˆ̃pr(k, s|x0)+ rˆ̃pr(kc, s|x0), (C.1)

which can be rearranged in the form

(r+ s+D|k|α)ˆ̃pr(k, s|x0) = eikx0 + rˆ̃pr(kc, s|x0). (C.2)

Substituting (16) in the last equation we get

∞∑
n=0

rneikc
nx0

n∏
l=1

1

r+ s+Dcαl|k|α
= eikx0 + r

∞∑
n=1

rneikc
nx0

n∏
l=1

1

r+ s+Dcαl|k|α
, (C.3)
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where we changed the summation index and use the convention that the empty product
∏0

l=1 = 1.
Alternatively, we could have derived equation (16) from (C.2). Nevertheless, we preferred adopting the more
general equation (9) for the specific case of symmetric Lévy flights.

Appendix D. Normalisation identity

When we discussed normalisation we encountered the identity (25). This identity is an immediate
consequence of the q-binomial theorem and may be proved by using corollary (c) in section 10.2.2 of [97].
Indeed, we know from this reference that the following result holds for |x|< 1 and |q|< 1,

n∑
m=0

(q;q)n
(q;q)m(q;q)n−m

(−1)mq
1
2m(m−1)xm = (x;q)n. (D.1)

If we set x= q in the previous formula we get

n∑
m=0

(q;q)n
(q;q)m(q;q)n−m

(−1)mq
1
2m(m+1) = (q;q)n. (D.2)

The factor (q;q)n can now be simplified on both sides, and the general term of the summation can be
rewritten as

n∑
m=0

1

(q;q)m(q;q)n−m
(−1)mq

1
2m(m+1) =

n∑
m=0

1

(q;q)n−m

(
m∏
l=1

1

1− ql

)
(−1)m

q−
1
2m(m+1)

= 1, (D.3)

where we used the definition of the q-Pochhammer symbol to rewrite the term (q;q)m. We now notice that(
m∏
l=1

1

1− ql

)
(−1)m

q−
1
2m(m+1)

=
m∏
l=1

1

1− q−l
=

1

(q−1;q−1)m
. (D.4)

Therefore,

n∑
m=0

1

(q−1;q−1)m(q;q)n−m
= 1, (D.5)

which completes the proof.

Appendix E. Numerical simulations

To confirm our analytical results, we simulated the stochastic process and compared the results with the
analytical distributions given in equations (23) and (30). Numerical simulations are pretty straightforward
and simple. Nevertheless, for the sake of clarity, we include a brief summary of the simulations strategy. The
algorithm to generate the random variable Yt is

(i) Sample the total number of partial resetting events Nt from a Poissonian distribution with rate r;
(ii) Sample T1,T2, . . . ,TNt uniformly on the interval [0, t]. This is equivalent to sampling all random variables

{Ti}Nt
i=1 until saturation of the total time t;

(iii) Sample displacements between partial resetting events XT1 , . . . ,XTNt
from a symmetric α-stable distribu-

tion by using the library AlphaStableDistributions.jl available in the Julia language package;
(iv) Use equation (1) to compute Yt.

In all cases we sampled 5 · 107 values of the random variable Yt and we computed a histogram. Therefore,
our naive algorithm only allows the sampling of typical values of the random variable Yt.

Concerning the analytical distribution, we directly implemented equations (23) and (30) computing the
integral with adaptive Gauss–Kronrod integration as implemented in the GNU Scientific Library. Since the
integrand value of p0 is often very small, we instead calculated the integral for exp(κ)p0(x− cnx0, cαmt) with
suitable shift, e.g. κ= (x− cnx0)2/(4cαmt) for a Gaussian, and multiplied the integral with exp(−κ)
afterwards. For this purpose and for performing the sums, also because the summation terms often have
alternating sign and strongly varying magnitudes, we used the high precision library mpfr with 200 bits
precision for these operations. We also point out that, concerning the Brownian and the Cauchy cases, the
explicit formulas (36) and (40) are not easy to compute due to the poor implementation of hypergeometric
functions. To the authors’ knowledge, this issue is common in many programming languages.
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