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Abstract
The stochastic trajectories of molecules in living cells, as well as the dynamics in many other
complex systems, often exhibit memory in their path over long periods of time. In addition, these
systems can show dynamic heterogeneities due to which the motion changes along the trajectories.
Such effects manifest themselves as spatiotemporal correlations. Despite the broad occurrence of
heterogeneous complex systems in nature, their analysis is still quite poorly understood and tools
to model them are largely missing. We contribute to tackling this problem by employing an integral
representation of Mandelbrot’s fractional Brownian motion that is compliant with varying motion
parameters while maintaining long memory. Two types of switching fractional Brownian motion
are analysed, with transitions arising from a Markovian stochastic process and scale-free
intermittent processes. We obtain simple formulas for classical statistics of the processes, namely
the mean squared displacement and the power spectral density. Further, a method to identify
switching fractional Brownian motion based on the distribution of displacements is described. A
validation of the model is given for experimental measurements of the motion of quantum dots in
the cytoplasm of live mammalian cells that were obtained by single-particle tracking.

1. Introduction

The statistical analysis of particle trajectories recorded with single-particle tracking has revolutionised the
field of cellular biophysics [1–5]. To name a few representative examples, exquisite information is found on
lipid membranes [6–8], receptors [9–11], ion channels [12–14], nucleic acids [15, 16], filaments [17], and
organelles [18–20]. Further, synthetic particles can be used as probes to study cellular rheology [21–23].
Beyond intracellular dynamics, individual stochastic trajectories are studied in a large variety of fields,
including the motion of flagellated organisms [24], larvae [25], marine predators [26], and birds [27, 28], as
well as the fluctuations in financial markets [29, 30] and percolation in porous materials [31–33]. All these
complex systems can be characterised in terms of similar statistics, such as the second moment, the
distribution of displacements, temporal correlations, and spectral components [34–36]. Frequently,
trajectories in complex systems exhibit anomalous diffusion defined by a non-linear mean squared
displacement (MSD). In particular, the MSD of a process X(t) is often observed to scale as a power-law in
time, i.e. ⟨X2(t)⟩ ∝ tα, where the angular brackets denote an ensemble average. The parameter α is the
anomalous diffusion exponent and it classifies the process as being subdiffusive when α< 1 and
superdiffusive when α> 0. In contrast, Brownian motion has a linear MSD, α= 1, and ballistic, wave-like
motion corresponds to α= 2.
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Several models have been successfully employed to describe particle motion within the framework of
anomalous diffusion [34]. From single-particle trajectories, anomalous diffusion processes can be
distinguished by complementary statistical observables [34] enabling the construction of decision trees [37],
or by Bayesian as well as deep learning approaches [38–44]. Among the anomalous diffusion processes, the
continuous time random walk (CTRW) with scale-free sojourn times [45–47] and fractional Brownian
motion (FBM) with long-ranged temporal correlations [48, 49] are the most widespread. In the CTRW
model, a particle performs a random walk in which the waiting times between jumps are stochastic with a
probability density function (PDF) ψ(t). When the PDF of the waiting times has the scale-free form
ψ(t)∼ t−1−β with 0< β < 1, the mean waiting time diverges and the motion follows a subdiffusive pattern.
The scale-free CTRW has many counterintuitive properties because the process is non-stationary [34]. FBM
describes a self-similar process with stationary, power-law correlated, and Gaussian increments, of which
Brownian motion constitutes a special case. FBM is particularly useful in modelling anomalous transport
with memory effects [50–52].

While many correlated motions are well described by FBM, in multiple instances it is found that the
increments are not Gaussian [14, 23, 53–55]. Further, in other striking observations, correlated motions
exhibit non-ergodicity, that is, the nonequivalence between the ensemble-averaged MSD and the
time-averaged MSD for sufficiently long trajectories [12, 56, 57]. Importantly, Gaussianity and ergodicity are
hallmarks of unconfined FBM [58]. The underlying key reasons for these complex effects, non-Gaussianity
in particular, in FBM-like correlated processes are heterogeneities that arise both from trajectory to trajectory
and, even, within individual trajectories. Notably, it is often observed that the state of a system can change in
time due to dynamic interactions or a shift in the properties of the environment. Heterogeneous dynamics
have been identified in trajectories from proteins and lipids in the plasma membrane [14, 54, 59–62], vesicles
that move along cytoskeleton filaments [63], intracellular transport of endosomes and lysosomes [64], and
DNA-binding proteins [65]. In figure 1(a) we show three trajectories of quantum dots recorded within live
HeLa cells [23], as a visual example for experimental trajectories, in which the state changes within
individual trajectories. On top of these examples, other fields, in which regime changes play a significant role
within individual trajectories with anomalous dynamics, include biomedical signals [66], speech [67], traffic
flows [68], econometrics [69, 70], ecology [71], solar activity [72], and river flows [73].

Despite the large number of experimental systems unveiling anomalous transport that exhibits
transitions between diffusive states, their computational and theoretical analyses are mostly missing. This
type of analysis is critical to understanding spatiotemporal kinetics in heterogeneous complex systems. One
of the main issues is the lack of tools to simulate processes that continuously maintain long-range
correlations after a regime change is encountered. The standard procedure relies on the assumption that the
process encounters a renewal at each regime change, i.e. the memory is lost when the state changes.
Alternatively, subordination schemes can be used for the study of immobilisations. However, what is missing
is a tool that allows for computational studies of switching long-range correlated motion.

In this article, we employ a modified stochastic integral representation to simulate FBM trajectories with
discretely switching parameters. Our representation is based on Lévy’s formulation [74] and it is generalised
to having time-dependent diffusion coefficient D and anomalous diffusion exponent α. In particular, D and
α are considered to be stochastic processes, so that the trajectory switches between different states as function
of time. We study two specific processes; in the first case, the dwell times in each state are exponentially
distributed and, in the second, a state has dwell times with a heavy-tailed distribution. The latter yields a
process that is aging and non-ergodic. The numerical simulations are analysed in terms of the MSD and the
power spectral density (PSD). Closed-form asymptotic formulas are obtained for both analyses. Our results
are compared to those obtained from the experimental trajectories of quantum dots in the cytoplasm of
mammalian cells [23], which is a well-characterised system showing correlated increments with random
switching between two states.

2. Methods

2.1. Numerical simulations
The classical FBM BH(t) is a continuous process with autocovariance function [49]

⟨BH (t)BH (s)⟩= D
(
t 2H + s2H − |t− s|2H

)
, (1)

where H ∈ (0,1] is the Hurst exponent and the generalised diffusion coefficient D is a constant with units
length2/time2H. For H= 1/2 and D= 1/2, the process becomes the standard Brownian motion B(t), so
B1/2(t) = B(t). Equation (1) yields an MSD of the form

〈
B2
H(t)

〉
= 2Dt2H, which implies that the anomalous

diffusion exponent is α= 2H. The FBM is well-defined for all t ∈ R. For t⩾ 0, which is of our interest, the
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Figure 1. Representative switching FBM trajectories. (a) Experimental trajectories obtained from single-particle tracking of
nanocrystals in live HeLa cells. The trajectories exhibit two states, which are identified using the local convex hull, and shown in
red and blue [23]. The scale bar is 500 nm. (b), (c) Numerical simulations obtained using equation (2). The two states in the
trajectories are D1 = 1, H1 = 0.1, and D2 = 10, H2 = 0.3. The upper panels show the Hurst exponent and the diffusivity of the
specific trajectories as a function of time. Panel (b) shows Markovian switching with τ = 25, while in panel (c) one of the states
has a power-law waiting time distribution with β= 0.7. The other state has exponentially distributed waiting times with τ = 15.
The time in panel (b) is up to 300 in dimensionless units, while that in panel (c) is up to 2000, to emphasise the long dwell times
in the scale-free system.

process can be approximated via Lévy’s formulation [49, 74] of non-equilibrated FBM in terms of a
Riemann–Liouville fractional integral, BH(t) =

√
4DH

´ t
0 (t− s)H−1/2dB(s). Following our recently

introduced process for time-dependent Hurst exponent [75] we consider D and H to be explicitly
time-dependent,

X(t) =

ˆ t

0

√
4D(s)H(s) (t− s)H(s)−1/2 dB(s) . (2)

To simulate switching FBM trajectories we use an Euler approximation to discretise the integral. Namely, we
generate time series of Brownian motion B(t) increments and those of stochastically varying Hurst
exponents H(t) and diffusivities D(t), in an interval [0,T]. We then employ the discretised integral (2) to
generate a switching FBM. The specifics of the time series H(t) and D(t) depend on the process under
investigation. In the section 3, we present processes with two states where H= 0.1, 0.3, 0.6, or 0.8, and D= 1,
10, or 100. The dwell times in each state are drawn from exponential (see equation (5)) or Pareto (see
equation (9)) distributions. For exponential distributions, we employ mean dwell times τ = 15, 25, or 45,
and, for Pareto distribution, we use a scale parameter t0 = 15 and shape parameter β= 0.7. For each case, we
generate 1000 realisations of 8192 data points.

2.2. MSD and PSD
We characterise the diffusion processes in terms of two broadly used analyses, the MSD and the PSD. Most
typically, the MSD is evaluated as a time average because it substantially augments the statistics. The
time-averaged MSD is defined as

δ2 (∆,T) =
1

T−∆

ˆ T−∆

0
[X(t+∆)−X(t)]2 dt, (3)

3
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where∆ is the lag time and T the measurement time. Further, an ensemble average is performed over the
time-averaged MSD, i.e. ⟨δ2(∆,T)⟩.

The PSD of a single-trajectory is defined as

S(ω,T) =
1

T

∣∣∣∣∣
ˆ T

0
exp(iωt)X(t) dt

∣∣∣∣∣
2

, (4)

where ω is the frequency. While for stationary processes, the PSD is usually defined in the limit that T
approaches infinity, we employ a more general definition where the spectral content explicitly depends on
both frequency and observation time, S(ω,T) [36]. As with the MSD, the ensemble average of the
single-trajectory PSD is computed, i.e. ⟨S(ω,T)⟩.

To simplify the notation, in the following we will refer to the ensemble-averaged time-averaged MSD and
the ensemble-averaged single trajectory PSD, as the MSD and PSD, respectively.

2.3. Quantum dot imaging and single-particle tracking
Full experimental details were previously described [23]. Carboxylate functionalised quantum dots (Qdot
655 ITK, ThermoFisher, Waltham, MA) were incorporated into HeLa (human cervical cancer) cells by bead
loading. Cells were plated 36–48 h prior to bead loading on 35mm dishes (Delta T culture dish, Bioptechs,
Butler, PA), coated with 0.5% matrigel (Corning Life Sciences, NY). Images were acquired with an EMCCD
camera at 10 frames s−1 on a custom-built microscope equipped with an Olympus PlanApo 100x NA1.45
objective, and a CRISP ASI autofocus system. During imaging, cells were maintained at 37 ◦C and the
quantum dots were excited at 561 nm. Trajectories were extracted from image stacks using the TrackMate
ImageJ plugin.

3. Results

3.1. Markovian switching between states
We first consider a switching FBM with two states whose dwell times are exponentially distributed. Thus, for
each state,

ψi (t) =
1

τi
e−t/τi , t> 0, (5)

where ψi(t) is the probability density function of dwell times t> 0 and τ i (i = 1,2) are the mean dwell times
in the two states (the corresponding switching rates are then 1/τi). This case corresponds to the state of the
system alternating according to a Markov process, i.e. the switching between the two states is governed by a
transition matrix.

We evaluate two different scenarios. In the first one, the Hurst exponent H remains constant and the
generalised diffusion coefficient D changes according to a dichotomous Markov process, where the
probability densities of the dwell times are given by equation (5). In the second case, also the Hurst exponent
changes, thus, the two states are classified according to their diffusivity Di and Hurst exponent Hi, where
i = 1,2 denotes the state. It is futile to consider a special case where only H changes and D remains constant
because the units of D depend on H, vis, length2/time2H. Therefore, even if one would attempt to consider
the same diffusivity in both states, they would still be different upon a change of units such as transforming
cm into µm. As a visual example of the process, figure 1(b) shows the first 300 points of a trajectory and the
corresponding time series of H and D.

A systematic evaluation of the two-state Markovian switching indicates that, in the long time limit, the
MSD is simply a weighted average of the MSDs of the two original underlying processes. Given two states Di

and Hi with mean dwell times τ i, the MSD of the two parent FBM processes are ⟨δ2i (∆)⟩= 2Di∆
2Hi , and the

MSD of the switching FBM is 〈
δ2 (∆)

〉
= A1

〈
δ21 (∆)

〉
+A2

〈
δ22 (∆)

〉
, (6)

where Ai = τi/(τ1 + τ2).
Figure 2 shows the MSD of different simulations built from states with H= 0.1,0.3 and D= 1,10. The

MSD of the parent FBMs, i.e. without any switching, are shown in figure 2(a). Next, figure 2(b) shows the
MSD when D changes but H= 0.3 is kept constant and both states have the same mean dwell time τ = 25.
Interestingly, in this case, the anomalous diffusion exponent is the same as that of the parent FBMs, α= 2H.
Figure 2(c) shows a case in which also H changes, while the mean dwell times τ i are the same in both states.
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Figure 2.MSD of two-state FBM with Markovian switching exponents. (a) Standard (single-state) FBM simulated using
equation (2). (b) Two-state switching FBM where D1 = 1 and D2 = 10. The Hurst exponent is H= 0.3 in both states and their
mean dwell times are τ = 25. The dashed line indicates the average of the two underlying FBM processes. (c) Two-state switching
FBM where the parameters of state 1 are D1 = 1, H1 = 0.1, and the parameters of state 2 are D2 = 10, H2 = 0.3. The mean dwell
times are τ = 25 for both states. The dashed line indicates the average of the two underlying FBM processes. (d) Two-state
switching FBM with the same parameters as in (b), but with mean dwell times 15 and 45 in states 1 and 2, respectively. The

dashed line indicates the weighted average of the two underlying FBM processes, i.e. ⟨δ2(∆)⟩= 0.25⟨δ21(∆)⟩+ 0.75⟨δ22(∆)⟩.

In figure 2(d), the dwell times are different, with τ2 = 3τ1. In all examined cases, the MSD shows excellent
agreement with the weighted average as given by equation (6).

The PSD of the switching FBM for two states having exponentially distributed dwell times is shown in
figure 3. Following the same structure as the MSD in figure 2, the PSD of the parent FBMs with H= 0.1,0.3
and D= 1,10 are shown in figure 3(a) and the PSD of the switching FBM alternating between these states are
shown in figures 3(b)–(d). These states correspond to subdiffusive FBM. The PSD of FBM with H> 1/2
depends on the observation time T [76] and such cases for which the parent FBMs are superdiffusive will be
discussed later. Again, the PSD of the switching process is given by the weighted average

⟨S(ω)⟩= A1⟨S1 (ω)⟩+A2⟨S2 (ω)⟩, (7)

where, once more, Ai = τi /(τ1 + τ2). The individual PSD of the original subdiffusive FBM is
⟨S(ω)⟩ ∼ 1/ω1+2H and, thus, the switching FBM exhibits a similar spectral dependence,

⟨S(ω)⟩ ∼ 1/ω1+α. (8)

3.2. Processes with scale-free relaxation times
We now turn to study two-state dichotomous processes in which the dwell times in one of the states are
random variables with a heavy-tailed distribution, namely, they are distributed according to a Pareto PDF,

ψ (t) =
βtβ0
t1+β

, t> t0, (9)

5
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Figure 3. PSD of two-state FBM with Markovian switching exponents. (a) Standard (single-state) FBM simulated using
equation (2). (b) Two-state switching FBM where D1 = 1 and D2 = 10. The Hurst exponent is H= 0.3 in both states and their
mean times are τ = 25. The dashed line indicates the average of the two underlying FBM processes. (c) Two-state switching FBM
where the parameters of state 1 are D1 = 1, H1 = 0.1, and the parameters of state 2 are D2 = 10, H2 = 0.3. The mean times are
τ = 25 for both states. The dashed line indicates the average of the two underlying FBM processes. (d) Two-state switching FBM
with the same parameters as in (b), but with time scales 15 and 45 for transitions from states 1 and 2, respectively. The dashed line
indicates the weighted average of the two underlying FBM processes, i.e. ⟨S(ω)⟩= 0.25⟨S1(ω)⟩+ 0.75⟨S2(ω)⟩.

with scale parameter t0 > 0 and shape parameter 0< β < 1. The second state is considered to have
exponentially distributed dwell times. Such dichotomous processes, in which one of the states exhibits a
dwell time distribution with an exponential tail and the second state has a power-law distribution, have
received attention in diverse physical systems [61, 77–79]. The first 2000 points of a representative trajectory
and its corresponding H and D time series are shown in figure 1(c).

Because one of the states has a dwell time with infinite mean, the process is expected to exhibit ageing
and ergodicity breaking [34, 62, 76]. Figure 4 shows the MSD and PSD of processes of this type, for which
the Hurst exponents of both states are subdiffusive, Hi < 1/2. The dependence on observation time is
evident for both the MSD and the PSD. Figures 4(a) and (c) show, respectively, the MSD and PSD of a system
in which the Hurst exponent is the same for both states, H= 0.3, and the generalised diffusion coefficient
changes 10-fold. The obtained statistics yield〈

δ2 (∆,T)
〉
∼
(
ATβ−1 + 2D1

)
∆2H (10)

and

⟨S(ω,T)⟩ ∼ CTβ−1 + S1
ω1+2H

, (11)

where state 1, is the one with power-law sojourn times. The amplitude of the MSD (PSD) of the switching
FBM is such that it slowly approaches (in a power-law) to the amplitude of the MSD (PSD) of state 1, see the
insets of figures 4(a) and (c). To be precise, the MSD converges to 2D1∆

2H and the PSD to S1/ω1+2H, where

6
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Figure 4. Two-state switching subdiffusive FBM for which one of the states exhibits scale-free dwell times. The MSD and PSD are
computed for different observation times T. As guides to the eye, the dashed lines show the analysis of ordinary FBM processes.
(a) MSD of two-state switching FBM with the same Hurst exponent H= 0.3 but different generalised diffusion coefficients, such
that D2 = 10D1. The dwell times in the first state are distributed according to a Pareto distribution, such that it is asymptotically a
power-law with exponent β= 0.7. The second state has an exponentially distributed dwell time with a mean τ = 15. The MSD
depends on the observation time. Inset: The amplitude of the MSD decays as a power-law toward the MSD of the state with
power-law waiting times, in agreement with equation (10). (b) Two-state FBM for which both the Hurst exponent and the
diffusivity change. Namely, D1 = 1, H1 = 0.1, and the parameters of state 2 are D2 = 10, H2 = 0.3. The waiting times in the first
state have a heavy-tailed distribution. The second state has exponentially distributed waiting times. (c) PSD of the simulations in
panel (a). The inset shows that the amplitude of the PSD decays as a power-law toward the PSD of the state with power-law
waiting times, in agreement with equations (12) and (14). (d) PSD of the simulations in panel (b).

S1 = 2D1Γ(2H+ 1) sin(πH) [76]. For any experimental time T, in the long lag-time limit, the MSD scales as
∆2H and the PSD scales as ω−(1+2H).

When the Hurst exponents of the two states are different, the MSD and PSD still converge towards those
of the state with power-law sojourn times. However, the results are fairly different in that, now, the MSD
dependence on lag time∆ and the frequency dependence of the PSD have exponents that depend on the
experimental time T. In this case, 〈

δ2 (∆,T)
〉
∼ A(T)∆α(T) (12)

and

⟨S(ω,T)⟩ ∼ C(T)

ω1+α(T)
, (13)

where the amplitudes A(T) and C(T), and the exponents α(T) are given by

A(T) = A0T
β−1 + 2D1,

C(T) = C0T
β−1 + S1, (14)

7



New J. Phys. 25 (2023) 103031 M Balcerek et al

Figure 5. Two-state superdiffusive FBM for which one of the states exhibits scale-free dwell times. The PSD (panel (a)) and MSD
(panel (b)) are computed for different realisation times. The process consists of two states with H1 = 0.6 and H2 = 0.8. The
sojourn times in state 1 are exponentially distributed and those of state 2 have a heavy-tailed distribution with β= 0.7. The inset
in panel (a) shows the ageing in the traditional FBM for H= 0.8 in dependence of the observation time T.

and

α(T) = α0T
β−1 +α1, (15)

where A0, C0, and α0 are constants that depend on the occupation fraction in state 1 during the initial time
of the process and α1 = 2H1 is the anomalous diffusion exponent of state 1.

3.3. Switching superdiffusive FBM
FBM can be subdiffusive (H< 1/2) or superdiffusive (H> 1/2). While the MSD in both cases scales as
⟨δ2(∆)⟩ ∼∆2H, the scaling of the PSD differs among the two classes. As discussed above, for subdiffusive
FBM, ⟨S(ω)⟩ ∼ 1/ω1+2H, but when the FBM is superdiffusive, the frequency scaling of the PSD resembles
that of Brownian motion, albeit with a dependence on observation time, ⟨S(ω,T)⟩ ∼ T2H−1/ω2 [76].
Therefore, the analysis of switching superdiffusive FBM needs separate attention.

Figure 5 shows the PSD and MSD of switching FBM consisting of two states with the Hurst exponents
H1 = 0.6 and H2 = 0.8, and power-law distributed sojourn times in state 2. The outcome involves a
dependence on observation time that arises from both the switching mechanism and the FBM itself. Namely,
the PSD has a dependence on frequency of the form 1/ω2, and a dependence on experimental time with a
scaling factor Tα(T)−1 from the FBM and a scaling factor (CTβ−1 + S1) due to the switching between states.
In addition, the MSD involves a change in the anomalous diffusion exponent α, similar to that in
equation (15). When the first state is subdiffusive (H1 < 0.5, data not shown) the obtained results do not
exhibit any difference from those when both processes are superdiffusive. Namely for the mixed sub- and
superdiffusive case, the PSD and MSD asymptotically converge to those of the state with power-law dwell
times.

3.4. Analysis of experimental data: quantum dots in the cytoplasm of live cells
In order to highlight the use of the switching FBM process in the analysis of real world data, we analyse the
PSD of quantum dot trajectories in the cytoplasm of living HeLa cells. These data have been thoroughly
analysed in terms of their MSD, velocity autocorrelation function, and distribution of displacements [23], as
well as via the use of a hidden Markov model approach [80], the intermediate scattering function [81] and
the decomposition of the Hurst exponent into components involving non-stationarity, heavy-tailed
distributions, and long-range correlations [27]. These extensive analyses show that the diffusive motion of
quantum dots stochastically alternates between two states, with both states having correlations of the type of
subdiffusive FBM. Thus, quantum dot dynamics in the cytoplasm presents an excellent system to test some of
the predictions of the switching FBMmodel. The switching between the two states in this experimental
system obeys a Markov process and the MSD is subdiffusive with a mean anomalous diffusion exponent
α= 0.59 [23, 80]. Our predictions indicate that the PSD should not exhibit ageing effects and its spectral
dependence, according to equation (8), is expected to be ⟨S(ω)⟩ ∼ 1/ω1+α.

The difficulty in the analysis of experimental data lies in the fact that long trajectories are not available
because eventually particles leave the field of view, or they become dark (due to long blinking in the case of
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Figure 6. Analysis of experimental trajectories of quantum dots in the cytoplasm of live mammalian cells. The projection of
quantum dot trajectories along the x axis is analysed, for different measurement times T, in terms of (a) the MSD and (b) the

PSD. For different measurement times, the MSDs overlap (no ageing) and exhibits a behaviour ⟨δ2(∆)⟩ ∼∆0.59 at short
lag-times, indicating an apparent anomalous diffusion exponent α= 0.59, as obtained previously by averaging the anomalous
diffusion exponents of individual trajectories [23]. In agreement with the predictions for Markov switching, the PSDs overlap for
the three measurement times and show a scaling ⟨S(ω,T)⟩ ∼ 1/ω1.59. The dashed red lines are guides to the eye indicating a
scaling∆0.59 in panel (a) and ω1.59 in panel (b).

quantum dots or photobleaching in the case of organic fluorophores). The analysed quantum dot data
consist of 3834 trajectories of only 100 time points each. Such short trajectories present unique problems in
the statistical analysis. Further, experimental data is unavoidably corrupted by experimental noise, such as
static and dynamic localisation errors inherent to single-particle tracking [82].

The MSD and PSD analysis of quantum dot trajectories along the projections on one axis is presented in
figure 6. The MSD at short times is seen to scale as ⟨δ2(∆)⟩ ∼∆α with α= 0.59. Despite the short length of
the trajectories and the presence of localisation errors, the agreement with the predicted PSD is remarkable.
The analysis is performed for three observation times (T= 1.6 s, 3.2 s, and 6.4 s) consisting of 16, 32, and 64
time points. The three PSDs are observed to fall on the same line, i.e. there is no evident ageing, and the slope
of the PSD agrees with the prediction 1/ω1.59.

3.5. Distribution of displacements
Both the MSD and PSD of switching FBM with exponentially-distributed dwell times resemble those of
classical FBM, making it impossible to rely solely on these statistics to identify the model. The problem is less
severe when the distribution of dwell times have heavy tails because in these cases, the MSD and PSD exhibit
ageing in stark contrast to ordinary FBM processes. One clear signature of heterogeneous or intermittent
processes lies in the distribution of displacements which is typically non-Gaussian. Figure 7 shows the
distribution of displacements for switching FBM realisations with exponential dwell time distribution. Here
we present a process with characteristic dwell times τ = 25 and displacements over times that span a scale
from much shorter to much longer times than this characteristic time. Namely, displacements were
computed at four different times,∆t= 1, 5, 50, and 250.

For times much shorter than the characteristic time (figures 7(a) and (b),∆t≪ τ ), the distribution of
displacements is very close to the sum of two Gaussian functions. Specifically, the two parent FBM have a
normal distribution of displacements with standard deviations σ1 and σ2. Then, the switching FBM process
has a distribution that is a sum of two Gaussians with the same standard deviations, namely
P∆t(∆x) =

∑
i Ai exp(∆x2/2σ2i ), where σ

2
i ∝∆t2Hi .

For times longer than the characteristic dwell time (∆t> τ ), the situation is rather different. In fact, as
the times over which the displacements are computed become much longer than the characteristic time
(∆t≫ τ ), the distribution of displacements approaches a normal distribution. Figure 7(d) shows the
behaviour at time∆t= 250, i.e.∆t= 10τ , and here the deviations from Gaussianity are very small.

4. Discussion and conclusions

We studied FBM, a stochastic process driven by long-ranged correlated Gaussian noise, in which both
diffusion coefficient and Hurst exponent are stochastic processes themselves. We modelled these for cases
with exponential and scale-free dwell time distributions. This model belongs to the class of doubly-stochastic
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Figure 7. Distributions of displacements for switching FBM process are not Gaussian. The PDF of the displacements is estimated
for a process with Markov switching, whose mean dwell time in each state is τ = 25, the Hurst exponent of both states is H= 0.3
and the diffusivities are D1 = 1 and D2 = 10. The times over which the displacements are computed are (a)∆t= 1, (b)∆t= 5,
(c)∆t= 50, and (d)∆t= 250. In panels (a) and (b) (shoter times), the two coloured dashed lines show a decomposition into
two Gaussian functions with the standard deviations of the distributions of the two parent FBM. The green solid line indicates the
superposition of the two Gaussian functions. In panels (c) and (d) (longer times), the solid green line shows a superposition of
two Gaussian functions and the thick cyan line shows a fit to a single Gaussian peak.

processes (both the driving noise but also the model parameters are stochastic) that currently receive
increased attention. In particular, we analysed the time-averaged MSD and the PSD of the emerging
dynamics.

Markovian switching resembles ordinary FBM both in terms of the PSD and the MSD. Thus, these
metrics are not sufficient to dissect the process and recognise that it is not driven by a single FBM. In other
words, the switching dynamic does not have any clear fingerprint in the MSD or the PSD. An additional
statistic that provides information on the switching can be obtained from the distribution of displacements,
which in this case is non-Gaussian (figure 7). Such distributions have also been observed experimentally,
e.g. in quantum dot trajectories in the cytoplasm for which the non-Gaussian nature of the displacement
hints at a more complex process than FBM. However, as the displacements are computed over increasingly
longer times in the switching FBMmodel, deviations from Gaussianity subside. Such effects are also
observed for experimental data, where, as time increases, the distribution of displacements approaches a
Gaussian distribution [23]. Thus, in order to identify a Markov switching process, it is necessary to obtain
measurements with a temporal resolution better than the characteristic dwell times. If this type of data is
available, the two states can be identified using a change point detection tool [61, 83, 84].

Going beyond Markov switching, scale-free processes, in which at least one of the states has a
heavy-tailed distribution of dwell times are inherently non-ergodic and have non-stationary increments. The
quintessential process of this type is the continuous time random walk [34]. When one of the states has a
heavy-tailed distribution of dwell times, both the MSD and the PSD depend explicitly on time.

An interesting case is that of superdiffusive FBM, based on persistent active stochastic dynamics, such as
intracellular motion driven by molecular motors in living cells [85] or animal motion [27, 28]. This should
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not be taken to indicate that active motion will always lead to superdiffusion; as soon as there exists a finite
persistence time, the motion will be Brownian at times longer than this time scale [86, 87]. Moreover,
transient superdiffusion may arise in passive systems, such as bulk-mediated diffusion [8]. Superdiffusive
FBM has a PSD that depends on experimental time T [76] and, thus, also the Markovian switching for which
at least one of the states is superdiffusive exhibits a PSD that depends on realisation time. However, the PSD
is still found as a weighted average of the parent (time-dependent) PSDs.

A simple visual inspection allows one to determine whether the two states in the switching FBM have the
same Hurst exponent H. In the case that H does not change, the anomalous diffusion exponent as
determined by the PSD and the MSD does not depend on the experimental time T. In such cases, the MSD
(and PSD) exhibit the same slope when visualised in a log-log plot for different realisation times
(figure 4(a)). The MSD (PSD) converges to the MSD (PSD) of the FBM with power-law waiting times.
However, the convergence has a power-law character. When H changes, the MSD (PSD) still converges to the
state with heavy-tailed waiting times but in this case each experimental time exhibits a different exponent.
We foresee that switching FBM with different Hurst exponents can have multiple direct applications in cell
biology, such as the heterogeneous dynamics of intracellular endosomes [64].

To simplify the analyses, we restricted our work in switching FBM to two states. However, there is no
actual limit to the number of states that can be included. In particular, a multi-state Markov process can
include a full transition matrix between the different states. This work opens the way to modelling
heterogeneous anomalous dynamics, where the underlying heterogeneity leads to dynamic transitions.
Moreover, the results obtained allow for future theoretical investigations of correlated random walks in
complex systems where regime changes dominate the transport.
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Appendix. Extended numerical methods

Here, we describe the simulation procedure of the switching FBM.

A.1. General case
We first consider the general case since equation (2), which defines switching FBM, is a special case of the
integral representation of the process

X(t) =

ˆ ∞

−∞
ft (s)dB(s) . (16)

To simulate the process X(t), we need to numerically approximate the integral (16). Usually, this is done in
two steps: first, truncating the limits of integration (this step depends on the form of ft), and, second,
approximating the truncated integral by a Riemann sum.

First step. ForM1,M2 ∈ R we have

ˆ ∞

−∞
ft (s)dB(s)≈

ˆ M2

M1

ft (s)dB(s) . (17)

In general, it is advised to choose reasonably large valuesM1 andM2. In practice, the truncation parameters
may also depend on t.

Second step. We divide the interval [M1,M2] into I equal parts of length λ= M2−M1
I , and consider points

si =M1 + iλ for i = 0,1, . . . , I. Then

ˆ M2

M1

ft (s)dB(s) =
I−1∑
i=0

ˆ si+1

si

ft (s)dB(s) . (18)
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Now, we assume that each subinterval [si, si+1) is small (I is large) and we apply a Riemann (or Euler) type of
approximation, i.e. we calculate the function ft(s) at si for i = 0,1, . . . , I− 1 and obtain

X(t)≈
I−1∑
i=0

ˆ si+1

si

ft (si)dB(s) =
I−1∑
i=0

ft (si) [B(si+1)−B(si)] =
I−1∑
i=0

ft (si)ξi, (19)

where ξi are i.i.d. random variables with N(0,λ) distribution.
Finally, we note that to simulate a trajectory of the process X(t) at various time points t1, t2, . . . , tn, we rely

on one sequence of ξi’ s (a single trajectory of the process B(s) for all possible values of s).

A.2. Switching FBM
In this particular case, to generate a single trajectory of switching FBM we first need to generate trajectories
of the processes D(s) and H(s). We do this by generating waiting times from the selected distribution. Then,
having a single trajectory of both D and H we use the approximation given in equation (19) with

ft(s) =
√
4D(s)H(s)(t− s)H(s)−

1
2 1[0,t)(s), t ∈ [0,T].

The points s0, s1, . . . , sI are chosen so that s0 =M1 = 0 and sI =M2 = T. In all simulations performed, the
length of the trajectories n= 213, ti = i∆t, i = 0,1, . . . ,n,∆t =

T
n and I= 50n. Thus, to calculate a next time

step X(tj) we use an additional 50 new steps si, e.g. to calculate X(t1) we use ft1(s) in points s0, s1, . . . , s49, to
calculate X(t2) we use ft2(s) in points s0, s1, . . . , s49, s50, . . . , s99, and so on.
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