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Abstract. We examine by Monte-Carlo simulations the behavior of a kinetic exchange-trading model for
various initial distributions of money in the system of agents. Our goal is to analyze the characteristics of
the Pareto laws for the long-time money distribution, in both closed and open systems. We consider three
different initial distributions for these two situations. We first briefly summarize the concepts and results
of some agent-based money-exchange models. Then, via employing the Monte-Carlo computer simulations,
for both types of systems we obtain the long-time money distributions for the initially homogeneous or
constant, for positive random, and finally, for both positive and negative random distributions of money
among the agents. We conclude that the Pareto laws and their exponents remained nearly the same in all
these situations showing little sensitivity to the initial conditions imposed.

1 Introduction

The distribution of income or wealth in a society or
country often follows the Pareto law [1], that is used to
quantify the degree of inequality [2–4]. As first observed
empirically by Pareto in 1897, the higher end of the
distribution of incomes f(x) follows a power law [1,5–
7]

f(x) ∼ x−α−1 (1)

with the scaling exponent estimated to be α + 1 ≈
3/2. Nearly the same scaling exponents were observed
by Pareto for Italian cities, England, several German
states, and Prussia as well as for ancient Peru and the
Cherokee Indians [7]. For the last hundred years, this
value of the Pareto exponent changed only slightly, both
in time and across various capitalistic economies (see
Ref. [8] for comparison to, e.g., Islamic economies). In
1931 Gibrat [9] clarified that the Pareto law is valid only
for the high-income range. In some detailed empirical
studies, it was demonstrated that the income distribu-
tions obey a log-normal law for x → 0 and a power law
for large x values [10,11].

The Pareto principle—as found by him for the dis-
tribution of land among Italian land-owners and stat-
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ing that 80% of wealth is accumulated in the hands of
20% of the population—has since then been observed
for a number of economic- and sales-related situations.
Examples include, e.g., the splitting costs in the wealth-
care spending, the distribution of cases in the criminal
records, etc. The empirical and theoretical studies of
inequality in different societies have become prolific in
recent years [12–26].1

In addition to a flourishing diversity of recent data-
based studies of inequality, some examinations in terms
of various agent-based money-exchange statistical-
mechanics models have also delivered a number of inter-
esting results [6,26,31–43]. Importantly, for models of
money-exchanging agents with random saving propen-
sities the Pareto exponent α = 1 was concluded in Ref.

1 Inequality is likely to be growing in recent decades due
to, i.a., formation of huge corporate conglomerates, over-
all globalization of economies, rosy tax-evading schemes for
”big global players”, as well as due to other tricks invented
by capitalistic magnates via, e.g., their political involve-
ments and lobbying of appropriately ”designed” laws. A
80/20 Pareto-type principle of wealth splitting and the
steepness of the firm-size distribution [27,28] is likely to be
even more drastic in modern times. Known as the Matthew
effect from biblical times, a pronounced inequality per se is
a rather negative factor for a long-term economic develop-
ment and sustainable growth [29,30]: it can namely desta-
bilize the ”foundation” of the wealth-distribution pyramid
and eradicate the middle-class, the core of many established
capitalistic systems.
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Fig. 1 Schematic illustration of money redistribution in a society of people (ensemble of traders) with initially nonequal
amounts of money, as established via multiple money-exchange operations. The size of the agents/figures reflects the amount
of their money. The red and green colors indicate, respectively, the presence and the absence of debt. Courtesy http://www.
pixabay.com for the source images and to Alexey A. Cherstvy for preparing the artwork

[33]. In many economies, based on real data, the Pareto
exponent in Eq. (1) is however varying and is located
between α = 0 and α = 2 [13,20].

Previously, for example, in Refs. [44,45] we analyzed
the Pareto law for an open system of agents correspond-
ing to a non-conservative economic model. By adding
”traps” into the model, such a closed conservative sys-
tem is being transformed into an open one. In Ref. [44]
we demonstrated that the Pareto exponents remained
unchanged for different densities of traps in the system.
Additionally, in Ref. [45] we have shown that different
Pareto exponents can be generated by using position-
exchange dynamics of agents in both closed and open
systems.

Most agent-based money-exchange models assume
that all agents start initially with a positive and equally
distributed amount of money [46]. A model with ”debt”
was also developed [47], but its Pareto exponents were
not discussed in detail there. The concepts of nega-
tive money and debt for money-exchange agent-based
models were discussed in Refs. [48–50]. Unlike mod-
els, in real economic systems, everyone participates in
the ”game” with different amounts of money, and some
agents may be in debt. In third-world countries, e.g.,
the majority of poor people are in debt of some kind.
For this category of people, the initial amount of money
is thus negative [51]. As an example, economic crashes
[52–54] can cause some sort of wealth ”resetting” [55–
58], acting as a Pyrrhos war on the vitality of a com-
munity.

Here, we consider different distributions of money
for both closed and open systems of agents in order
to examine their Pareto distributions, see Fig. 1. Via
simulating the kinetic agent-based exchange model, we
obtain the Pareto distributions for different specific sce-
narios and conditions in both types of systems. The
Pareto exponents are found to be universal.

The structure of the paper is as follows. In Sect. 2
we briefly recapitulate the main concepts of the agent-

based money-exchange models. We provide the under-
lying money-exchange algorithms and the definition of
the money distributions. In Sect. 3 we consider a closed
conservative exchange system of agents and examine its
Pareto distributions. In Sect. 4 we present the results for
the Pareto distributions for an open non-conservative
system for various initial money distributions, the main
results of this study. Finally, we list and discuss the con-
clusions in Sect. 5.

2 Money-exchange models and
distributions

A statistical model of a closed money-exchange system—
that is analogous to the kinetic model of ideal gases—
can be solved exactly or simulated numerically. In
such a model, N agents exchange pairwise a measure
x that can be denoted as wealth or money (we use
below the term ”money”). The state of the nth agent
is characterized by its amount of money, xn, where
n = {1, 2, . . . , N}, while the total money is conserved,
X =

∑N
n=1 xn = const, as the energy in a system of

colliding gas molecules.
The evolution of the money distribution follows the

prescribed trading rules between the agents. This evolu-
tion can be interpreted as a Monte-Carlo optimization
procedure aimed at finding an equilibrium distribution
(if it exists). At every time step, two agents i and j
are chosen randomly from the system and an amount
of money Δxij is exchanged between them,

x′
i = xi − Δxij , x′

j = xj + Δxij . (2)

Note that the quantity x′
i +x′

j = xi +xj is conserved in
every transaction. We examine an interconnected sys-
tem in which only two neighboring agents interact at
each time-step, but the pairs of these agents are chosen
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randomly on the lattice of agents for each exchanges of
money. Therefore, effectively long-ranged interactions
are present in this system.

Several exchange lattice-gas models exist in the liter-
ature, such as the basic models without saving [47,59–
61], as well as with a constant global [10,62], with ran-
dom [63–65], and fixed [66] saving factor propensities.
Note that the models with diversified saving parame-
ters were introduced in Refs. [65,67,68] to generalize
the model of Refs. [63,64].

In the current study, we use a random saving factor
λi distributed in the range 0 < λi < 1. We use the
following money-exchange rules

x′
i = λixi + εij [(1 − λi)xi + (1 − λj)xj ] ,

x′
j = λjxj + (1 − εij) [(1 − λi)xi + (1 − λj)xj ] , (3)

with

Δxij = (1 − εij) (1 − λi) xi − εij (1 − λj) xj , (4)

where the stochastic parameter εij is distributed uni-
formly on the interval [0,1]. The dynamics of money
in all the scenarios (without and with traps, positive
and negative money, etc.) follow these equations. In
the presence of traps, no equilibrium can be reached
because the money is not conserved: we then are mainly
interested in the long-time stationary value of the
Pareto exponent.

A debt represents former financial obligations of a
given agent rendering the amount of its money negative
(e.g. in real world, a credit taken in a bank to cover a
bankruptcy, a property exchanged for a loan, etc.). The
traps [44] perform here the very same way for positive
and negative money of an agent interacting with it: in
both cases the money is annihilated upon a contact with
a trap. In a model with traps, the amount of money
was shown to decay in time according to a stretched
exponential function [44].

The values of λi are generated on each lattice site (or
agent) for each realization of the system. These values
stay constant in all the exchanges taking place within
a given simulation run. For the next run, a new distri-
bution of λi over all N lattice sites is created, yielding
a statistical ensemble for later averaging of the results.
In contrast, the values of εij—which are also random in
the model—are generated new for each money exchange
taking place between a given pair of two agents on the
lattice.

Note that as λ → 1 the relaxation time in the system
gets progressively longer. Thus, likely longer simulation
times would be required to check if the tail of the money
distribution has reached the stationarity. Note that the
latter for a general non-conservative system is meant
here as the constancy of the Pareto exponent in the
tail of the distribution.

Note that, in addition to the stationary money dis-
tribution, a class distribution [69] can also be consid-
ered [44,45]. Specifically, the amount of money in the
interval [x, x + Δx] for a conservative system with the

probability distribution p(x),

f(x) =
∫ x+Δx

x

x′p(x′)dx′, (5)

corresponds to a certain amount of agents with this
amount of money. The class distribution is the distri-
bution of fractions of a population possessing money in
the interval [x, x + Δx].

3 Closed conservative systems

3.1 Parameters of computer simulations

We now consider a 1D-model to simulate money
exchanges between the traders. To keep the simulation
time manageable on a single PC, we set—if not spec-
ified otherwise—the lattice size to L = L0 = 100, the
number of realizations to R = R0 = 1000, and the
total simulation time to t = t0 = 1000 steps, with each
exchange taking place with the time-step of Δt = 1. In
all the simulations, both for closed and open systems,
we use the exchange model (3) with a random saving
propensity 0 < λ < 1. The computer simulations with
different initial conditions are performed in Sects. 3
and 4.

3.2 Homogeneous or constant initial-money
amounts

We start with considering the initially homogeneous
money distribution in a closed system to demonstrate
the Pareto distributions in the case of random saving
propensity 0 < λi < 1, with i = {1, . . . , N}, based
i.a. on the previous studies [63–65,67]. We set the ini-
tial money of each trader to x = 10 units. The results
for the long-time money distribution for the homoge-
neous starting distribution of money among the agents
is presented in the auxiliary Fig. 5. As it can be seen,
a maximum of the money distribution f(x) at small x
values exists. The tail of this function for large x gives
a Pareto inverse-power-law distribution, see the inset of
Fig. 5, enabling a Pareto exponent to be extracted.

Often, in money-exchange models of similar type, at
x < xc where xc is the ”critical” amount of money, the
distribution of money is of Gibbs-Boltzmann type. That
is, in this region it takes a nearly exponential form,

f(x) ∼ e−x/xc . (6)

At large x values, power-law dependence governs the
money distribution,

f(x) ∼ x−α−1. (7)

In our case, the observed Pareto exponent is α ≈ 1.02,
see the inset of Fig. 5. General interpolating functions
between the forms (6) and (7) is an interesting issue
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that is, however, beyond the scope of this study, see
Ref. [70]

The features of the observed money distribution
are consistent with the previous well-known theoreti-
cal and empirical results [63,64,66,71] supporting the
concept of agent-based exchange models as a powerful
statistical-mechanics tool for modeling money distribu-
tions in a population of agents. We refer the reader
to the study [72] where differences of the Gamma vs.
exponential vs. log-normal distributions for the money
distributions were examined. Note also that the size of
a large system does not affect the scaling exponents of
the money distributions we find in simulations (results
not shown).

3.3 Random initial-money amounts

3.3.1 “Positive” money

Here, we examine a special case when all agents have
random amounts of money initially, that is a random
distribution for 0 < x < xmax = 10 is realized at
t = 0. The results of our Monte-Carlo simulations are
presented in the supplementary Fig. 6. The red circles
in this figure show the results for the Pareto distribu-
tion at a homogeneous initial money (as obtained in
Sect. 3.2 and shown in Fig. 5), while the green rhom-
buses are the results for the initial randomly-distributed
amounts of money. The inset of Fig. 6 demonstrates the
initial-money distribution along the lattice.

The tails of the stationary money distributions for
both conditions yield the same Pareto exponent α =
1.02 in Eq. (1). The maxima of the two distributions
are shifted, in part because agents in these two scenar-
ios have different amounts of money at t = 0. Similar
”shift”-effects were found in our study of the agent-
based models with traps [44,45]. Small-money holders
thus act like temporary ”traps”.

The initial total amounts of money in the case of
homogeneous and randomly distributed initial money
are not the same for the simulation procedure we
employed. This is the reason why the curves in some
plots—which compare the results of the two scenarios
such as, e.g., those in Fig. 6—do not have the same area
underneath them.

3.3.2 “Negative” money

In Sects. 3.2 and 3.3 we considered the money-exchange
model with homogeneous and randomly-distributed
amounts of ”positive” initial money. Now, within the
same exchange model (3), we allow the initial money to
be random with both ”positive” and ”negative” signs.
The latter represents people in a society with a nonzero
debt. Initial amounts of money vary uniformly on an
interval xmin < x < xmax, where −xmin = xmax = 10.
Other parameters are the same as in Sect. 3.1; we set
below L = L0, R = R0, and t = t0.

Via performing the Monte-Carlo simulations we
obtained the long-time distributions of both positive

Fig. 2 The data on money distributions from Figs. 6 and 7
are shown in one plot (see the legend for notations). Param-
eters for f±(x) are the same as in Fig. 7. The asymptotes
with the exponent-2 are shown, f(x) ∝ x−2

and negative money among the agents, see Fig. 7 in
the Appendix. The blue crosses denote the agents with
x > 0, while the cyan stars represent the traders with
x < 0. Figure 7 shows that these two subclasses of
traders yield similarly looking Paretian distributions
f±(x), decaying with the same exponent. This indicates
that—after numerous rounds of trader-trader interac-
tions via exchanges—participants without and with
debt follow the Paretian distributions with the same
α values. For a system with a conserved amount of
total money and with a finite number of agents it is
not surprising that the tails of the final distributions
scale virtually independently of the initial conditions.
The behavior of the system with a finite number of
agents in the long-time limit is expected to be ergodic
[73].

For a homogeneous and random initial distribution of
money, we conclude that the Pareto exponents for both
subclasses of traders are the same. This means that the
inverse power-law behavior of f(x) given by (1) keeps its
universality. Note that the agents with negative money
can be considered as temporary trap-points in a process
of reaching a stationary distribution in this system, as
shown in Fig. 2.

To check whether the stationarity is reached —meant
here only in terms of constant scaling exponent in the
tail of the money distribution—we run the code for dif-
ferent simulation times. We observed a clear conver-
gence of the long-time results, as shown in Fig. 8, indi-
cating that a sufficient number of simulation steps was
used in the current analysis.
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Fig. 3 Money distributions f+(x) for random initial
amounts of positive money in the system with traps (see the
legend), evaluated for the parameters of Fig. 2. The results
of a trap-free model of Fig. 6 are shown for comparison as
well

4 Open non-conservative systems

Here, we examine the Pareto distributions in an open,
non-conservative system, as discussed also in Refs. [44,
45]. One can turn a closed system into an open one
by adding so-called ”traps” which ”absorb” the money
when a given site is involved in a money exchange. Such
traps, therefore, diminish the overall amount of money
in the system with time acting as ”sinks”2 capable of
changing the distribution of money in such systems.
Previously, we have shown that traps do not alter the
Pareto distribution and its exponent [44].

Here, we consider three different scenarios of the ini-
tial money distributions for open systems in Sects. 4.1,
4.2.1, and 4.2.2 within the 1D exchange-based model of
Eq. (3). In the simulation procedure, we set the lattice
size to L = L0 and the realization number to R = R0.
The time required to properly conduct the Monte-Carlo
simulations varies due to different numbers of traps in
the lattice: the overall times are thus chosen from the
requirement of getting the stationary final results.

2 In a real economic system, the total amount of money
is not preserved: a country can lose some of its wealth as
a consequence of e.g. inflation, unexpected debt [to cover
the costs of war, for example], a big natural catastrophe
[drought, etc.], etc. Such a model could, thus, explain an
effective decline of the wealth per capita.

Fig. 4 Money distribution f±(x) for random initial money
(both positive and negative) and in the presence of traps.
Trap densities and notations for the curves are provided in
the legend

4.1 Initially homogeneous distribution of money

We first revisit the results for the effects of traps
for initially homogeneous amounts of money. We set
xmax = 10, L = L0, R = R0, and t = t0. For two dif-
ferent trap densities with the fraction of trapping sites
ρ = {0.02, 0.04} [44,45] the results of simulations are
shown in Fig. 9. We find that the long-tail decay of the
final money distributions is still a power-law with nearly
the same exponent. As, after a given number of simu-
lation steps, the amount of ”liquid” money remained
in the system with a higher density of traps is smaller,
the respective distribution has smallest area under its
profile, see the curve for ρ = 0.04 in Fig. 9. Perpetual
leakage of money into traps prohibits an open system
from reaching an equilibrium, as compared to a closed
system in Sect. 3. To better understand this issue, we
conducted the Monte-Carlo simulations for varying sim-
ulation times, with t = {1 × t0, 5 × t0, 10 × t0, 15 × t0},
and found nearly the same values for the Pareto expo-
nent, as illustrated in Fig. 10.

4.2 Initially random money distributions

4.2.1 “Positive” money

The results of the analysis of the money distribution
in the system of agents with traps and randomly dis-
tributed initial money the most general situation in the
current analysis are presented in Fig. 3. For comparison,
the results of a trap-free model are also shown here. We
find that the final distributions have similar shapes and
reveal similar Pareto exponents in their tails.
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4.2.2 “Negative” money

We finally analyze the effects of traps in the system of
agents with randomly distributed initial money of both
signs, see Fig. 4. The most general system with positive-
and negative-money agents and in the presence of traps
is thus considered here. To facilitate the comparison,
the results of the previous models and the same start-
ing conditions are shown in this plot. We find that the
decay exponents in the tails of the distributions stay
remarkably similar in these situations as well.

Similarly to Fig. 8 performed for a conservative sys-
tem, for a nonconservative system here we also run
simulations for varying total times. The results demon-
strate the stationarity of the value of the Pareto scal-
ing exponent in the tails of the money distributions,
Fig. 10. The total amount of money is changing with
time (see Fig. 11) and thus no universal normalization
of these distributions is possible. The amount of money
in a system with traps is not conserved: the higher the
density of traps, the quicker both positive and negative
money decreases with time, see Fig. 11.

5 Discussion and conclusions

We considered various initial-money distributions for
closed and open systems of money-exchanging agents
in order to test the universality of the realizable
Pareto distributions. Via simulating the 1D agent-based
money-exchange models, we demonstrated that the
Pareto exponents remain the same, independent of the
initial conditions, consistent with some previous obser-
vations [44,45,67,74]. We also showed that the result-
ing distributions of positive and negative money in the
system can be treated separately yielding again the
same characteristic Pareto exponents in their tails. Nei-
ther different money-exchange rules nor the presence of
traps in the system of agents had a significant effect
onto the final Pareto exponent.

The obtained universality is clearly the finding from
computer simulations (no analytics) and will not stay
universal if other distributions of parameter λ are cho-
sen (see, e.g., Refs. [67,68]). While for a conservative
system [49] and positive-only money these conclusions
are rather expected (see Ref. [33]), for a general non-
conservative system—in the presence of debt (nega-
tive money acting as traps) and of money traps—these
statements are much less obvious. We demonstrated the

universality of the Pareto exponent in all these situa-
tions within the current model: this is the main novel
result of the current study.

This work can shed new light onto the principles of
money distribution in different societies where numer-
ous ”initial conditions” can realize. In order to arrive at
different exponents in the tails of the money distribu-
tions, as observed from the data in different economies,
however, other features than traps and debt considered
here are to be included in agent-based models of this
type. This is the matter for future investigations.

In the current model, as shown in Fig. 7, each agent
or site on the lattice has an equal probability to belong
to a cohort with or without a debt. In a more general
model—with the initial condition of unbalanced pro-
portions of agents with positive and negative money in
the system—it would be interesting to investigate the
dynamics of the percentage of “bankrupt” agents with
time in such a “society” of interacting agents. This can
be another subject of future studies.

Acknowledgements We thank two careful referees for
their insightful comments which enabled us to improve the
manuscript. E. A. is grateful to Humboldt Universität zu
Berlin for support and to Potsdam Universität for hospital-
ity. This work was partially supported by DAAD (Project
57588362). R. M. acknowledges financial support by the
German Science Foundation (DFG Grant ME 1535/12-1).

Author contributions

EA performed Monte-Carlo Simulations and analyzed
the data; EA, AGC, RM and IMS discussed the results
and wrote the manuscript.

Data availibility statement No data is associated with
the current manuscript.

Appendix A: Auxiliary figures

Here, we present some supplementary plots supporting the
claims of the main text (see Figs. 5, 6, 7, 8, 9, 10, 11).
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Fig. 5 Money distribution f(x) for the simulated 1D
traps-free exchange model. Inset: a log–log plot of the same
f(x) yielding the Pareto exponent −(1 + α) = −2.0

Fig. 6 Money distributions f(x) for randomly distributed
and homogeneous initial amounts of positive money (green
squares/rhombuses and red circles, correspondingly). The
inset shows the initial money amounts for each site of the
lattice. In our simulations, each agent positioned at each
site of the 1D lattice acquires a certain random amount
of money at the start of the simulation procedure. Each
simulation run these numbers are chosen anew so that a
statistical ensemble for later averaging of the results is being
created

Fig. 7 Money distribution f±(x) for randomly distributed
initial amounts of positive and negative money (see the leg-
end for notations), used as the starting conditions in simu-
lations. Parameters: L = L0, R = R0, and t = t0

Fig. 8 Long-time money distribution for a closed system
with debt shown for different lengths of simulations, see the
legend. Other parameters are the same as in Fig. 2
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Fig. 9 Money distributions f+(x) for random initial con-
ditions, shown for two densities of the trapping sites ρ (see
the legend). As a reference, the results for a homogeneous
money distribution from Fig. 6 are also shown

Fig. 10 The same quantities as in Fig. 8 but for an open
system with positive and negative money and in the pres-
ence of traps, computed for different trajectory lengths (see
the legend for the values of parameters)

Fig. 11 Evolution of money in a system with variable den-
sity of traps and with both positive- and negative-money
agents. Other parameters are the same as in Fig. 4
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