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Anomalous diffusion, aging, and nonergodicity of
scaled Brownian motion with fractional Gaussian
noise: overview of related experimental
observations and models

Wei Wang, ab Ralf Metzler a and Andrey G. Cherstvy a

How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and

statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via

studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking

(SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged

mean-squared displacements—denoted as the standard MSD hx2(D)i and TAMSD d2ðDÞ
D E

quantifiers—of

FBM featuring x2ðDÞ
� �

¼ d2ðDÞ
D E

/ D2H (where H is the Hurst exponent and D is the [lag] time) changes

in the presence of a power-law deterministically varying diffusivity Da(t) p ta�1—germane to the process

of scaled Brownian motion (SBM)—determining the strength of fractional Gaussian noise. The resulting

compound ‘‘scaled-fractional’’ Brownian motion or FBM–SBM is found to be nonergodic, with hx2(D)i p

Da+2H�1 and d2ðDÞ
D E

/ D2H . We also detect a stalling behavior of the MSDs for very subdiffusive SBM and

FBM, when a + 2H � 1 o 0. The distribution of particle displacements for FBM–SBM remains Gaussian, as

that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 o a o 2 and

0 o H o 1). The FBM–SBM process is aging in a manner similar to SBM. The velocity autocorrelation

function (ACF) of particle increments of FBM–SBM exhibits a dip when the parent FBM process is subdiffusive.

Both for sub- and superdiffusive FBM contributions to the FBM–SBM process, the SBM exponent affects the

long-time decay exponent of the ACF. Applications of the FBM–SBM-amalgamated process to the analysis of

SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and

computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM–SBM-like models of

diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological

systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water

diffusion in the brain, and, finally, to patterns of animal movements.

I Introduction

The flurry of new single-particle-tracking (SPT) datasets reporting
on and novel theoretical-analysis tools assessing the properties of
anomalous diffusion1–27 has established an unprecedented need
for novel theoretical models of diffusion and transport. Such
models should desirably embody certain characteristic features
of different ‘‘standard’’ anomalous-diffusion processes28–33 such
as, i.e., conventional Brownian motion (BM),34–41 fractional BM
(FBM)42–48 governed by fractional Gaussian noise, scaled BM

(SBM)49–61 and ultraslow SBM62,63 with a power-law time-
dependent diffusivity D(t) p ta�1, continuous-time random walks
(CTRWs),31,64,65 Lévy walks and flights,66 heterogeneous diffusion
processes (HDPs)52,53,67–69 with a power-law position-dependent
diffusivity, D(x) p |x|�a, etc.

In recent years, certain combinations of models were proposed,
including switching-diffusivity11,13,70–77 and annealed-transient-
time models (ATTM),78 BM with fluctuating or diffusing diffusivity
(DD),70,79–85 BM- and anomalous-diffusion-models with ‘‘super-
statistically’’ distributed model parameters,86–89 compound dif-
fusion processes of SBM-DD,84 SBM–HDPs,90,91 FBM-DD,92

FBM–HDPs,19,93 SBM with exponentially and logarithmically
varying D(t),94 CTRWs with random walks on fractal (RWFs),95

CTRW–FBM,16,96–98 as well as several other models,74,99–113

including fractional-Langevin-equation (FLE) motion. Renewal
processes involving alternation of different types of motions

a Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße

24/25, 14476 Potsdam-Golm, Germany. E-mail: weiwangnuaa@gmail.com,

rmetzler@uni-potsdam.de, a.cherstvy@gmail.com
b Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38,
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were proposed as well [with, e.g., switching between different
diffusion processes,20,100,114,115 processes with intermittent mobility
states,13 or with different anomalous scaling exponents12,103,116–119].
For some recent examples, we refer the reader to, e.g., the hybrid
models of alternating Lévy walks with BMs120,121 and Lévy
walks with CTRWs.122 Multifractional FBM-based processes
with a Hurst exponent varying in time49,123,124 were also con-
sidered recently.125–127 Such processes were used, e.g., in
mathematical-finance models with (multi-)fractional stochastic
volatility.128,129

This multifaceted picture of diffusion scenarios potentially
realizable for SPT datasets is, however, far from being complete,
and we develop here one more useful model of FBM–SBM. The
main objective is to examine how the temporal correlations of
fractional Gaussian noise—featuring persistent displacements
for superdiffusive and antipersistent displacements of a particle
for subdiffusive Hurst exponents H of FBM—‘‘interfere’’ with a
power-law deterministic D(t)-dependence of SBM.

The rest of the paper is organized as follows. In Section II we
introduce the concepts of ensemble- and time-averaging
and discuss ergodicity130 of FBM and SBM. Some details of
simulations are given in Section III A. The main results of the
theoretical analysis and of computer simulations for the FBM–
SBM model are presented in Section III. Specifically, the proper-
ties of the ensemble-averaged mean-squared displacement
(MSD) and of the time-averaged MSD (TAMSD), the aging
characteristics of the TAMSD, the probability-density function
(PDF), and increment/velocity autocorrelation function (ACF)
are considered in Section III B, III C, III D, and III E, respec-
tively. The discussion and conclusions are presented in Section
IV. The list of applications of FBM and SBM is overviewed in
Section IV A. The main features of experimental SPT datasets
and FBM-, SBM-, and FBM–SBM-related theoretical models are
summarized in Table 1, while several additional figures are
listed in Appendix A.

II Statistical properties of FBM and
SBM

FBM and SBM are formulated based on the Langevin
equation,131

dxðtÞ=dt ¼
ffiffiffiffiffiffiffi
2D
p

xðtÞ; (1)

driven by fractional Gaussian noise xH(t) for a constant diffusion
coefficient D for FBM and by white Gaussian noise x(t) for a
time-dependent diffusion coefficient Da(t) for SBM, see below.

A FBM

The parental process of FBM—as introduced in ref. 42 and 43
and developed in some of our recent studies,45,46,48,92 see
eqn (16) (below)—is stationary in increments and nearly as
ergodic31,44 as BM. For FBM, the exponent and magnitude of
the power-law anomalous28,31,132–135 growth of the MSD

x2ðtÞ
� �

¼
ð
x2Pðx; tÞdx ¼ 2K2Ht

2H (2)

and TAMSD

d2ðDÞ ¼ 1

T � D

ðT�D
0

½xðtþ DÞ � xðtÞ�2dt (3)

are equal at short lag times, D { T, where

d2ðDÞ � 2KbDb: (4)

Here, the exponent b = 2H is twice the Hurst exponent136 and
K2H is the generalized diffusion coefficient. The exponent
H = 1/2 demarcates the situations of persistent (positive) and
antipersistent (negative) correlations of particle displacements
realized for FBM at 1 4 H 4 1/2 and 0 o H o 1/2, correspond-
ingly, see ref. 45, 46, 48 and 92 and Section III A below. These
two regimes yield super- and subdiffusion respectively. The
discrete version of expression (3), used to rationalize various
SPT datasets, is

d2ð jdtÞ ¼ 1

Ndt� jdt

XN�j
k¼1

dt xðkdtþ jdtÞ � xðkdtÞ½ �2; (5)

where dt is the discretization step of a time series with N points.
For FBM, all individual TAMSD trajectories, being highly

reproducible,45,46,48,92 are equal to the MSD in the limit of long
measurement times T,

lim
D=T!0

d2ðDÞ ¼ x2ðDÞ
� �

: (6)

The mean TAMSD for an ensemble of N independent [and
statistically identical] trajectories for a given lag time D and
measurement time T is computed as the arithmetic mean,

d2ðDÞ
D E

¼ 1

N

XN
i¼1

di2ðDÞ: (7)

The magnitude of the TAMSDs is insensitive to the
trajectory length and thus FBM does not feature aging, see
ref. 31 and 44–46.

The PDF of FBM is Gaussian and the distribution of particle
displacement at time t has the form

Pðx; tÞ ¼ exp � x2

4K2Ht2H

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pK2Ht2H

p
; (8)

provided the initial PDF is P(x, t = 0) = d(x). We consider below
the free-space spreading dynamics, but emphasize that imple-
menting a physically self-consistent scheme for FBM in the
presence of confinement45,46 and reflecting boundaries137–139 is
a nontrivial task due to the nonlocality of FBM and possibly
variable degree of memory loss upon a reflection from a planar
boundary [depending, e.g., on the angle of incidence of the
jump to be reflected].

The ACF computed from the increments of particle positions,
normalized to the initial value at time t = 0, is

C
ðdÞ
v ðtÞ

C
ðdÞ
v ð0Þ

¼ ½xðtþ dÞ � xðtÞ�½xðdÞ � xð0Þ�h i
½xðdÞ � xð0Þ�2h i : (9)
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Here, d is the period of increment measurement. This ACF for
subdiffusive FBM starts with unity at the initial time t = 0,
exhibits a dip at short time lags with the depth13,140

C(d)
v (t = d)/C(d)

v (0) = 22H�1 � 1, (10)

and relaxes to zero from below in a power-law manner at n c 1
as,67,141,142

C(d)
v (t = ndt) p n2H�2. (11)

Here n is the number of elementary time-intervals dt used in
the analysis. The depth of this dip reflects the degree of
antipersistence of successive displacements for FBM with 0 o
2H o 1. For superdiffusive FBM, with 1 o 2H o 2, the velocity
ACF drops from unity at the initial time t = 0 to the same value
(10) which is now positive, indicative of persistence in displace-
ment correlations. At longer times the ACF approaches zero
from above, again as a power law (11).

B SBM

The inherently nonstationary process of SBM—as introduced
in ref. 51, 54 and 55 and developed recently, i.e., in
ref. 56–58—features the diffusion coefficient of the form,

Da(t) = aKata�1, (12)

with 0 o a o 2. SBM is a nonergodic process in the sense of
MSD-to-TAMSD nonequivalence.31,55,57 SBM, like FBM, is
an athermal process that can additionally be considered as a
‘‘mean field’’ over CTRWs.54 For subdiffusive SBM, for
instance, we observe a power-law-like MSD growth,

MSD(D) p Da, (13)

while at short lag times D/T { 1 the mean TAMSD is linear in
lag time,

TAMSD(D, T) p D1/T1�a. (14)

Note that the argument of the MSD is real physical time (even if
D is used for it below), while the argument of the TAMSD [per
definition] is the lag time. The decay of the TAMSD with the
trajectory length T for a o 1—underlying a slower dynamics of
subdiffusive SBM at later times—is a conspicuous feature of
SBM aging. The functional dependence of this decay on T as a
function of a is similar to that of subdiffusive CTRWs65,143–147

and subdiffusive HDPs.68,69,91

In contrast to CTRWs and HDPs, for SBM, the distribution
of TAMSDs is, however, narrow and the respective EB
parameter,28,31

EBðDÞ ¼ d2ðDÞ
� 	2
 ��

d2ðDÞ
D E

2 � 1; (15)

characterizing this small irreproducibility of the TAMSDs from
one realization to the next behaves often similar to that for BM,
see ref. 54, 56 and 91.

The process of SBM is Markovian and it features the same
PDF as FBM, with a trivial substitution 2H - a.

The ACF of SBM for sub- and superdiffusive realizations is
the same as that of BM for disjoint time intervals. Namely, the

ACF—normalized to the ACF at zero time shift—starts at unity,
drops within one step d = dt to zero, and—due to the absence of
temporal noise correlations on later stages—stays zero at
longer lag times t (see, e.g., Fig. 2 in ref. 60).

III Results for FBM–SBM
A Model and simulations

We examine the overdamped Langevin equation featuring the
power-law SBM-like diffusion coefficient (12) and FBM-
associated external fractional Gaussian noise xH(t),

dxðtÞ=dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DaðtÞ

p
xHðtÞ: (16)

Here, noise xH(t) for time instances |t1 � t2| c 0 features the
correlation function

hxH(t1)xH(t2)ip K2H2H(2H � 1)|t1 � t2|2H�2. (17)

These long-range temporal correlations for non-Markovian
FBM are contrasting memoryless white Gaussian noise giving
rise to BM. The diffusion coefficient in eqn (16)—stemming
from a subdiffusive source process of SBM—describes the
particle dynamics slowing down with time.

We emphasize that the underdamped Langevin equation131

and FBM for massive particles were considered recently too48

(see also ref. 148). The consideration of massive particles with
both a power-law SBM-like time-varying diffusivity Da(t) as well
as with the exponential and logarithmic dependencies D(t) were
recently presented, see ref. 57, 58, 62, 63 and 94, respectively.
For exponential-SBM, for instance, the MSD grows with time
as for a multiplicative process of geometric BM,149,150 see also
ref. 151.

For numerical simulation of eqn (16) we employ the same
standard forward-running Ito-like152,153 discrete iterative
scheme with a variable time-step dt, see the detailed description
in our previous studies for the simulations of HDPs,68,69

SBM–HDPs,91 and, particularly, of FBM–HDPs93 and FBM-DD92

processes.

B MSD and TAMSD

The compound FBM–SBM process is weakly nonergodic.
Specifically, the ergodic FBM behavior with the equivalent
MSD (2) and TAMSD (3) for FBM–SBM with 2 4 a 4 1
changes to

MSD(D) p D2H+a�1 (18)

and

TAMSD(D) p D2H. (19)

FBM–SBM with 0 o a o 1 is also nonergodic. For a growing-
in-time SBM diffusivity realized at 2 4 a 4 1 and for super-
diffusive FBM the MSD of FBM–SBM is considerably lower than
its TAMSD. The situation is the opposite for 0 o a o 1 when
the MSD at short times is much larger than the TAMSD of FBM–
SBM, see Fig. 1a and b, respectively. Naturally, as the Hurst
exponent approaches the BM limit H = 1/2, the MSD exponent
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of FBM–SBM is 2H and its MSD–TAMSD behavior turns into
that of pure SBM.† The process of FBM–SBM, as its parental
processes, is free of a typical time scale.

The derivation of the MSD (18) and TAMSD (19) of FBM–
SBM is as follows. Starting from (16), we get

x2ðtÞ
� �

¼ 2aKa

ðt
0

ds1

ðt
0

ds2ðs1s2Þ
a�1
2 xHðs1ÞxHðs2Þh i: (20)

At H = 1/2 the fractional noise reduces to the white Gaussian
noise and one arrives at pure SBM with hx2(t)iB ta. At H 4 1/2,
using the approximate expression (17) for the noise correla-
tions, the MSD reads

x2ðtÞ
� �

¼ 4aKaK2H2Hð2H � 1Þ

�
ðt
0

ds1

ðs1
0

ds2ðs1s2Þ
a�1
2 ðs1 � s2Þ2H�2

¼ 4aKaK2H

aþ 2H � 1

Gð2H þ 1ÞG aþ1
2

� 
G a�1

2
þ 2H

�  taþ2H�1:

(21)

The prefactor of this MSD as a function of exponents a and H of
the two parental processes is shown in Fig. 3a to demonstrate
the simulations vs. theory agreement. We find that in a large
region of exponents the MSD prefactor is of order unity,
corroborating the unit asymptotics used in Fig. 1. In special
cases of pure SBM (2H = 1 and K2H = 1/2) or pure FBM (a = 1 and
Ka = 1/2) the general MSD expression (21) for FBM–SBM yields,
respectively, the expected dependencies hx2(t)i = 2aKata for SBM
and hx2(t)i = 2K2Ht2H for superdiffusive FBM.

At H o 1/2, using the exact correlator of the noise,

xHðs1ÞxHðs2Þh i ¼ K2H

e2
ðjs1 � s2 þ ej2H þ js1 � s2 � ej2H

� 2js1 � s2j2HÞ; (22)

within the discretized scheme (see ref. 154), for the time step dt
and with e = dt the MSD after n steps and t = n � dt becomes

hx2(t)i = 4aKaK2HC(a, H, n) � (n � dt)a+2H�1, (23)

Fig. 1 MSD and TAMSD of FBM–SBM as function of time t and lag time D,
respectively. Superdiffusive parental FBM is considered, with H = 0.8. The
diffusion scenarios of super- and subdiffusive parental SBM correspond to
panels (a) and (b), respectively. The SBM exponents are provided in the legend.
Thick green and blue curves are the theoretical asymptotes (18) of the MSD and
(19) of the TAMSD (plotted with the unit prefactors (see also eqn (21) and Fig. 3)),
while the respective symbols are the results of simulations. The red curves are
the individual TAMSDs from simulations. Other parameters are as follows: the
initial position of the particles is chosen at x0 = 0, the total length of the diffusion
trajectory is T = 102, the time-step in the simulations is dt = 10�2, and ensemble
averaging is performed over N = 103 in silico-generated time series. For all plots,
the noise strength is set at K2H = 1/2 in eqn (17) and we use Ka = 1/2 in eqn (12).
For this, and all other plots expect Fig. 9, the time-step is dt = 0.01.

Fig. 2 Variation of the MSD scaling exponent of FBM–SBM from expres-
sion (18). The region of the MSD plateau 2H + a � 1 o 0 is indicated in the
blue color, while the green color designates the domain of growing-in-
time MSDs.

† We remind the reader here that for FBM–HDP and SBM–HDP the scaling exponents
of the MSD were found to be the products of the respective scaling exponents of the
parental processes (see eqn (35) in ref. 93 and eqn (20) in ref. 91, correspondingly; see
also Table 1). The position-dependent diffusion coefficient in these processes did not
‘‘interfere’’ with the properties of FBM-related noise and with the time-dependence of
the SBM Da(t). For FBM-SBM, the MSD exponent is the sum of the respective SBM and
FBM exponents because both processes ‘‘mix’’ along the time axis introducing temporal
changes of the diffusivity and temporal correlation of noise. We note also that for the
combination FBM-HDP the TAMSDs scales always as d2ðDÞ

D E
/ D2H [because the

TAMSD of HDPs per se is always linear in D], while for SBM-HDP the TAMSD is always

linear, d2ðDÞ
D E

/ D1 [as the TAMSDs of SBM and HDPs are linear in D]. We refer the

reader to eqn (36) in ref. 93 and eqn (22) in ref. 91 for these relations, respectively.
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where the coefficient

Cða;H;nÞ¼
Xn
i¼1

Xn
j¼1
ðijÞ

a�1
2
ðji� j�1j2Hþji� jþ1j2H �2ji� jj2HÞ

2n2Hþa�1
:

(24)

The MSD prefactor in eqn (23) for the power law pta+2H�1 is
shown in Fig. 3b. If a + 2H � 1 4 0, the C (a, H, n) B 1 and thus
hx2(t)i B ta+2H�1.

In contrast, for the region of exponents a + 2H � 1 o 0—
shown as the blue domain in Fig. 3b—the MSD is almost a
constant, see Fig. 7. The explicit dependence of the MSD (23) on
the time step dt—reciprocal in this regime of the parental
exponents—is a rationale for the time-step-dependent plateaus
of the MSD shown in Fig. 8.

Regarding the TAMSD, based on the intuition we gained
studying similarly constructed hybrid processes of SBM–HDP
and FBM–HDP with the TAMSD-to-MSD ratios (28) and (29)
provided below, respectively, the anticipated TAMSD-to-MSD
ratio for FBM–SBM given by (30) is fully supported by the
results of our computer simulations. We thus do not derive
here the explicit TAMSD expression analytically.

As FBM and SBM reveal a narrow amplitude spread of their
TAMSD trajectories, a similar behavior is also observed for their
combination FBM–SBM, see Fig. 1.

For FBM–SBM this ‘‘independence’’ of the parental pro-
cesses (characteristic, e.g., for FBM–HDP93 and SBM–HDP91)
is no longer present. The temporal correlations of fractional
Gaussian noise do interfere with the temporal decay or increase
of the SBM-related diffusion coefficient. The respective FBM
and SBM exponents in the MSD of FBM–SBM are, thus, being
summed instead of being multiplied, see the green domain
in the diagram of Fig. 2. For the TAMSD of FBM–SBM, rather
non-surprisingly, the same scaling exponent as for FBM is
observed.

We observe, however, a less obvious behavior for the situa-
tions of subdiffusive SBM and strongly subdiffusive FBM,
see the blue domain in Fig. 2. The TAMSD of the combined

FBM–SBM process still exhibits FBM-like scaling pD2H, whereas
the MSD very quickly stalls or stagnates at a plateau, see Fig. 7
and 8. The smaller the simulation step, the higher is the
observed MSD plateau, with the MSD-plateau level being reached
in the simulations within first couple of time-steps, Fig. 8. The
MSD quickly jumps to a plateau because the (effective) diffusivity
of the particles decays very quickly at longer times.‡

As the exponents for subdiffusive SBM and subdiffusive FBM
decrease, the crossover time—beyond which the stalling MSD
behavior is detected in the simulations—increases. As the
parental FBM process turns less subdiffusive, the MSD of
FBM–SBM in the limit of long times starts approaching the
asymptote (18), see Fig. 9. It is essential that the MSD exponent
of FBM–SBM is positive in this regime, a � 1 + 2H 4 0. In the
limit of short times, however, the MSD still reveals a depen-
dence on the step-size in simulations.

C Aging of the TAMSD

The aging behavior of FBM–SBM is consistent with our physical
intuition. Namely, as FBM is a nonaging process, aging of
FBM–SBM stems solely from that of SBM, yielding for the mean
TAMSD at short lag times (D { T) the relation

d2ðD;TÞ
D E

/ D2H=T1�a: (25)

Therefore, for subdiffusive SBM with 0 o a o 1 the magnitude
of the observed TAMSD of FBM–SBM decreases with the trace
length T, indicating a dynamics slowing down with time. The
scaling behavior (25) is supported by our computer simulations
for both sub- and superdiffusive parental SBM, see Fig. 4. The
TAMSD amplitude at short lag times is considered as the most
representative and statistically robust characteristics.31,94

We also stress that—similarly to subdiffusive HDPs and
subdiffusive CTRWs—pure SBM features a peculiar aging
property. Namely, the ratio of the aged mean TAMSD31

da2ðDÞ
D E

¼ 1

T � D

ðtaþT�D
ta

½xðtþ DÞ � xðtÞ�2dt

 �

(26)

to the nonaged mean TAMSD (3) is given for SBM by63,91

La(ta/T) = (1 + ta/T)a � (ta/T)a. (27)

Here, the aging time is denoted by ta. The same law is observed
for SBM–FBM, see Fig. 5, because FBM is a nonaging process.
Note also that expression (27) is valid for the aging behavior of
the TAMSD for subdiffusive HDPs and subdiffusive CTRWs too,
see eqn (15) in ref. 68 and eqn (39) in ref. 145, respectively.

Fig. 3 Visualization of the MSD prefactors in eqn (21) for superdiffusive
(panel a) and in eqn (23) for subdiffusive (panel b, after n = 25 steps)
parental FBM process, both yielding a growing-in-time MSDs of FBM–SBM
(2H + a � 1 4 0). The color scheme for the respective regions of
exponents is as in Fig. 2.

‡ The divergence of the respective MSD integral, as follows from eqn (16) for the
displacement increments, is the reason for this. These MSD plateaus indicate a
stalling dynamics of the particles: the subdiffusive SBM part progressively slows
down the diffusivity and—in addition to that—the anticorrelated successive
increments of the particle from parental subdiffusive FBM lead to nearly zero
net displacement. The plateaus are realized in the region of FBM and SBM
exponents where the cumulative MSD exponent of FBM–SBM is negative. Note
also that for pure SBM, e.g., negative MSD exponents are outside of the region of
allowed model parameters so that such stalling MSD situations were not
observed.55 Technically, however, the simulations of FBM–SBM in this parameter
region presents no complications.
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There exist close similarities in scaling relations for
the MSD-to-TAMSD ratios for the compound processes of
SBM–HDP, FBM–HDP, and FBM–SBM. For SBM–HDP with
D(x, t) p |x|�ata�1 we found that91 the MSD grows as hx2(D)i
p Dap, the TAMSD increases [at short lag times] as d2ðDÞ

D E
/

D1=T1�ap; and their ratio is

d2ðDÞ
D E.

x2ðDÞ
� �

¼ ðD=TÞ1�ap; (28)

where p = 2/(2 � �a) is the MSD exponent of pure HDPs.67,69

For FBM–HDP we demonstrated that93 hx2(D)i p D2Hp,

d2ðDÞ
D E

/ D2H
�
T ð1�pÞ2H , and

d2ðDÞ
D E

= x2ðDÞ
� �

¼ ðD=TÞð1�pÞ2H : (29)

For FBM–SBM [considered here] we observe that at short times

hx2(D)ip D2H+a�1, d2ðDÞ
D E

/ D2H=T1�a; and

d2ðDÞ
D E.

x2ðDÞ
� �

¼ ðD=TÞ1�a: (30)

These relations are valid for the MSD and TAMSD growing with
(lag) time.§ The scaling relations of this paragraph embody the
main characteristics of a family of SBM–HDP, FBM–HDP, and
FBM–SBM hybrid processes, see Table 1.

D PDF

For FBM–SBM with a nonstalling MSD behavior we always
observe PDFs of a Gaussian shape. This finding is intuitive
(results not shown) because the parental processes of FBM and
SBM are also Gaussian, eqn (8). The width of the PDFs
characterizing the dispersion of the particles grows in time in
full correspondence to the observed MSD-growth law, see
Fig. 11. What is more surprising is that the Gaussian PDFs
are also detected for situations with a stalling-MSD behavior of
FBM–SBM. The integration of the fitted PDFs of particle dis-
placements, eqn (2), in the stagnating/stalling regime of the
MSD yields for the second moment the plateau values in full
agreement with the simulations, as illustrated in Fig. 8.

E ACF

For FBM–SBM the ACF C(d)
v (t)/C(d)

v (0) behaves similarly to that
of FBM, see Fig. 12. Quantitatively, for subdiffusive FBM
contributing to FBM–SBM the depth of the minimal value
of the ACF shifts upwards for sub- and downwards for
superdiffusive SBM contributions. For superdiffusive FBM in
FBM–SBM the ACF curve shifts downwards and upwards for
sub- and superdiffusive SBM in FBM–FBM, respectively. The
decay law for the long-time tail of the ACF of FBM–SBM gets
modified as compared to (11) for FBM. Namely, using the
discretely defined ACF (9), we get

C(d)
v (t = ndt)/C(d)

v (0) p n2H�2+(a�1)/2, (31)

as illustrated in Fig. 13.
In terms of the MSD exponent (18), for FBM–SBM with

subdiffusive FBM and subdiffusive SBM the resulting process
is more subdiffusive than original FBM. For superdiffusive
FBM, the superdiffusive SBM contribution makes the resulting
FBM–SBM more superdiffusive. The behavior of the ACF mini-
mum, being computed naively as in Fig. 12 and described
above, therefore, does not agree with these trends of the
MSD exponents. This inconsistency gets ‘‘repaired/fixed’’ by a

Fig. 4 Variation of the TAMSD magnitude at short lag times with the
length of the trajectory, with the relation (25) shown as the asymptotes
(here, the ‘‘normalization’’ trace-length is T1 = 1). The values of FBM and
SBM exponents are provided in the legend. Due to the TAMSD ‘‘normal-
ization’’ employed here, the two different SBM exponents used define the
two aging exponents of FBM–SBM in the computer-simulation results.

Fig. 5 Dependence of the normalized TAMSD magnitude on aging time
, with the relation (27) shown as the solid curves. The scaling relations at

long aging times are given by the dashed lines. Parental FBM and SBM
exponents are provided in the legend.

§ The prefactors in the MSDs and TAMSDs above are rather complicated, but the
MSD-to-TAMSD ratio—characterizing the respective degree of ergodicity EBðDÞ ¼

d2ðDÞ
D E.

x2ðDÞ
� �

of a given process in this list—contains no prefactors. This ratio

is thus a valuable tool to assess the nonergodicity of an unknown dataset of time-
series, see Table 1. The absence of coefficients in these TAMSD-to-MSD
ratios—proven in Fig. 10 for several values of the exponents of parental SBM
and FBM processes—also renders the often tedious analytical calculations of the
MSD and [especially] of the TAMSD as separate quantities less important.
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time-dependent normalization of the ACF, namely

C
ðdÞ
v ðt; tÞ

C
ðdÞ
v ðt; 0Þ

¼ ½xðtþ tþ dÞ � xðtþ tÞ�½xðtþ dÞ � xðtÞ�h i
½xðtþ dÞ � xðtÞ�½xðtþ dÞ � xðtÞ�h i : (32)

Namely, as FBM–SBM is a nonstationary process, the time-
dependence of the instantaneous mean-squared displacement-
increments, scaling from eqn (16) as

h(dx(t)/dt)2i p D(t) p ta�1, (33)

should enter the ACF normalization (see, e.g., ref. 155 for the
consideration of nonstationary ACFs). From eqn (16) for
FBM–SBM it follows that

C
ðdÞ
v;FBM�SBMðt; tÞ

C
ðdÞ
v;FBM�SBMðt; 0Þ

¼
C
ðdÞ
v;FBMðt; tÞta�1 1þ t

t

� 	a�1
2

C
ðdÞ
v;FBMðt; 0Þta�1

¼
C
ðdÞ
v;FBMðt; tÞ

C
ðdÞ
v;FBMðt; 0Þ

1þ t
t

� 	a�1
2
:

(34)

The ACF of FBM–SBM normalized this way, that accounts for the
nonstationarity of SBM, is (nearly) the same as that of its parental
FBM, see the results of simulations shown in Fig. 6. This is expected

because the displacement-ACF of SBM—being similar to that of BM,
Section II B—is zero at long lag times. SBM, therefore, does not affect
the long-time tails of the properly-normalized ACF of FBM–SBM (34):
it renders the scaling behavior (31) equal to (11) for pure FBM, as
confirmed by the results of simulations presented in Fig. 14.

IV Discussion and conclusions
A Applications of FBM and SBM

Some recently observed mainly biophysical phenomena
describable (at least partially) by FBM and SBM are as follows.

The model of antipersistent subdiffusive FBM—including
the situations with ensemble-distributed values of 2H and
K2H—has been successfully applied to the description of the
spreading characteristics of tracers of various nature in living
biological cells13,140,156–159 as well as in various prototypical
in vitro crowded environments8,160–163 (sucrose, dextran, mucin,
etc.) mimicking the macromolecularly crowded cyto- and nucleo-
plasm of a cell. The list of endogenous and ‘‘introduced’’ tracers
includes micron-sized beads (both inert and interacting with the
medium), quantum dots (QDs), granules, polymer segments
(mRNA, chromosomal loci and telomeres,156 etc.), vacuoles and
particles,164 p-granules and organelles.12,140,165 Note that experi-
mental studies of non-equilibrium cytoskeleton-induced forces
impacting the subdiffusion of telomeres also exist.166

Some concrete biophysical examples of FBM-type motions
are as follows. The physical mechanisms potentially underlying
the anomalous dynamics of (i) potassium channels in the
plasma membrane,167 (ii) intracellular transport of insulin
granules,96 (iii) envelope glycoprotein gp41 transmembrane
proteins of human-immunodeficiency virus in the T-cell
plasma membranes,1 (iv) subdiffusion of chromosomal loci in
bacterial cells,156 (v) subdiffusion of endogenous lipid granules
in the living cells of fission yeast,157 (vi) lysosome and endo-
some intracellular movements [describable by FBM with a
stochastic Hurst exponent],12,19 to name a few, see Table 1.

As to SBM, one example concerns the in vivo observations
and physical interpretations of time-dependent diffusion of
water in white- and gray-matter tissues of the [human] brain.
The respective diffusion process features an SBM-like variation
of the time-dependent part of the diffusion coefficient on time,
as thoroughly studied recently168–175 [see also ref. 176 and our
recent coverage;94 we refer here to Table 1]. The experimentally
measured finite long-time diffusion coefficients—in nonconfin-
ing compartments, such as in the extra-cellular space, with long-
time diffusivity DN 4 0—are strongly supportive of the picture of
normal macroscopic water diffusion in the brain tissues, with
often Gaussian distribution of displacements.168,169,171,172 The
detailed features of possible transient anomalous diffusion of
water in neural tissues were discussed in ref. 177. For some
earlier studies of time-dependent diffusion—with the diffusivities
D(t) often decreasing with time—in barrier- or obstacle-containing,
compartmentalized, and labyrinthine tissue environments we refer
to ref. 168 and 178–185 for, D(t) in neural tissues, muscle tissues,
and prostate cancer. These diffusion-MRI studies aim at unravel-
ling the detailed microstructure of the respective tissues.

Fig. 6 ACF of FBM–SBM after the time-dependent renormalization (34) due
to the nonstationarity of SBM was taken into account (see the legend for the
parameter values). The results of pure FBM for different times t are included as
the FBM–SBM results with a = 1. The dashed and dot-dashed lines in panel (a)
indicate, respectively, the minimum (9) for pure FBM and the ACF = 0 level.

PCCP Paper

Pu
bl

is
he

d 
on

 0
7 

Ju
ne

 2
02

2.
 D

ow
nl

oa
de

d 
on

 8
/1

0/
20

22
 4

:0
0:

01
 P

M
. 

View Article Online

https://doi.org/10.1039/d2cp01741e


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 18482–18504 |  18489

T
ab

le
1

C
o

m
p

ar
at

iv
e

o
ve

rv
ie

w
o

f
se

ve
ra

lr
e

ce
n

t
(la

st
d

e
ca

d
e

)
e

xp
e

ri
m

e
n

ta
lS

P
T

an
d

si
m

u
la

ti
o

n
s-

b
as

e
d

d
at

as
e

ts
,w

it
h

th
e

ir
ty

p
ic

al
M

SD
an

d
T

A
M

SD
sc

al
in

g
re

la
ti

o
n

s
(a

t
sh

o
rt

an
d

lo
n

g
ti

m
e

),
th

e
ag

in
g

d
e

p
e

n
d

e
n

ce
o

f
th

e
T

A
M

SD
o

n
th

e
tr

aj
e

ct
o

ry
le

n
g

th
,t

h
e

o
b

se
rv

e
d

sc
at

te
r/

d
is

p
e

rs
io

n
o

f
in

d
iv

id
u

al
T

A
M

SD
re

al
iz

at
io

n
s

co
m

p
u

te
d

at
sh

o
rt

la
g

ti
m

e
s,

th
e

d
e

g
re

e
o

f
p

o
ly

d
is

p
e

rs
it

y
o

f
th

e
tr

ac
e

r
p

ar
ti

cl
e

s,
th

e
g

e
n

e
ra

l
fo

rm
o

f
th

e
A

C
F,

an
d

th
e

te
n

ta
ti

ve
m

at
h

e
m

at
ic

al
m

o
d

e
l(s

)
o

f
d

iff
u

si
o

n
.

T
h

e
se

q
u

an
ti

ti
e

s
ar

e
o

rg
an

iz
e

d
in

th
e

co
lu

m
n

s
o

f
th

e
ta

b
le

.
T

h
e

e
n

tr
ie

s
ar

e
o

rd
e

re
d

in
b

lo
ck

s
[s

e
p

ar
at

e
d

b
y

d
e

lim
it

e
rs

]
re

p
o

rt
in

g
th

e
FB

M
-l

ik
e

e
xp

e
ri

m
e

n
ta

l,
SB

M
-l

ik
e

e
xp

e
ri

m
e

n
ta

l,
SB

M
-l

ik
e

si
m

u
la

ti
o

n
al

,
an

d
,

fin
al

ly
,

FB
M

–
SB

M
-m

ix
e

d
st

u
d

ie
s

as
w

e
ll

as
h

yb
ri

d
-m

o
d

e
l-

b
as

e
d

d
yn

am
ic

s.
A

sy
st

e
m

w
it

h
w

e
ak

e
rg

o
d

ic
it

y
b

re
ak

in
g

fe
at

u
re

s
M

SD
(D

)
a

T
A

M
SD

(D
)

at
sh

o
rt

la
g

ti
m

e
s

D
at

as
et

M
SD

,
hx

2
(D

)i
T

A
M

SD
,

d2
ðD
Þ

D
E

A
gi

n
g

of

d2
ðD
;T
Þ

D
E

Sc
at

te
r

of
d2
ðD

1
Þ

Po
ly

d
is

pe
rs

it
y

of
tr

ac
er

s
Fo

rm
of

th
e

A
C

F
M

od
el

of
d

iff
u

si
on

R
ef

.
15

6,
ex

pe
r.

a
p

D
0

.4
(s

h
or

t
ti

m
es

)
p

D
0

.4
(s

h
or

t
ti

m
es

)
U

n
kn

ow
n

La
rg

e
(E

1.
5

d
ec

ad
es

)
M

ed
iu

m
to

la
rg

e
FB

M
-li

ke
FB

M
b

R
ef

.
19

5,
si

m
u

l.c
p

t2
/2

.2
6
p

t0
.8

8
N

ot
st

u
d

ie
d

N
ot

st
u

d
ie

d
N

ot
st

u
d

ie
d

N
on

e
FB

M
-li

ke
d

FB
M

R
ef

.
15

7,
ex

pe
r.

e
p

D
0

.8
0
..

.0
.8

5
(s

h
or

t
ti

m
es

)
p

D
1

(s
h

or
t

ti
m

es
),

p
D

0
.1

..
.0

.2
(l

on
g

ti
m

es
)

N
on

e,
p

1/
T

0
M

ed
iu

m
(E

0.
5

d
ec

ad
es

)
Pr

es
en

t,
n

ot
sp

ec
if

ie
d

C
on

fi
n

ed
-F

B
M

-
or

co
n

fi
n

ed
-

C
T

R
W

-li
ke

C
T

R
W

(s
h

or
t)

,F
B

M
(l

on
g

ti
m

es
)

R
ef

.
19

6,
ex

pe
r.

f
N

ot
sh

ow
n

p
D

0
.3

2
�

0
.1

2
(s

h
or

t
ti

m
es

,
10
�

2
..

.1
00

s)
p

D
1

.1
5
�

0
.4

4
(l

on
g

ti
m

es
,

3
�

10
2
..

.1
04

s)
N

on
e,

p
1/

T
0

M
ed

iu
m

(E
1

d
ec

ad
e)

M
ed

iu
m

to
la

rg
e

N
ot

st
u

d
ie

d
Po

ly
m

er
re

pt
at

io
n

g

R
ef

.
19

7,
ex

pe
r.

h
N

ot
sh

ow
n

p
D

0
.3

1
�

0
.1

1
(s

h
or

t
ti

m
es

,
10
�

2
..

.1
01

s)
p

1/
T

0
N

ot
pr

es
en

te
d

M
ed

iu
m

to
la

rg
ei

N
ot

st
u

d
ie

d
FB

M
,j

FL
E

R
ef

.
19

9,
ex

pe
r.

k
N

ot
pr

es
en

te
d

p
D

0
.4
�

0
.0

4
(a

ll
ti

m
es

)l
N

ot
sh

ow
n

N
ot

sh
ow

n
M

ed
iu

m
to

la
rg

e
N

ot
co

m
pu

te
d

FB
M

or
ob

st
ru

ct
ed

d
iff

u
si

on
R

ef
.1

61
an

d
16

2,
ex

pe
r.

m
p

D
0

.8
2
,
p

D
0

.9
8

(s
h

or
t

ti
m

es
)

p
D

0
.8

2
,
p

D
0

.9
8

(s
h

or
t

ti
m

es
)

N
on

e,
p

1/
T

0
n

N
ot

pr
es

en
te

d
Sm

al
l,

co
n

tr
ol

le
d

FB
M

-li
ke

FB
M

R
ef

.2
00

an
d

20
1,

ex
pe

r.
o

p
D

0
.6

(s
h

or
t

ti
m

es
)

p
D

0
.1

1
(l

on
g

ti
m

es
)p

p
D

0
.3

5
..

.0
.5

(s
h

or
t

ti
m

es
)

p
D

0
.3

5
..

.0
.5

(l
on

g
ti

m
es

)
p

1/
T

0
.2

6
.
..

0
.2

8

(S
lo

w
dy

na
m

ic
s)

M
ed

iu
m

(E
1.

..
1.

5
d

ec
ad

es
)

M
od

er
at

er
N

ot
co

m
pu

te
d

C
on

fi
n

ed
1

4
3

,2
0

2

su
bd

iff
.

C
T

R
W

ss

Sl
ow

d
yn

am
ic

s
[n

es
ti

n
g

pe
ri

od
s]

Sl
ow

d
yn

am
ic

s
U

n
kn

ow
n

(S
lo

w
d

yn
am

ic
s)

(S
lo

w
d

yn
am

ic
s)

p
D

1
.5

2
..

.1
.6

9
(a

ll
ti

m
es

)
p

D
1

.6
..

.1
.8

(a
ll

ti
m

es
)q

(F
as

t
dy

na
m

ic
s)

N
ot

co
m

pu
te

d
N

ot
ex

am
in

ed
Fa

st
d

yn
am

ic
s

[c
om

m
u

ti
n

g
pe

ri
od

s]
Fa

st
d

yn
am

ic
s

(F
as

t
d

yn
am

ic
s)

(F
as

t
d

yn
am

ic
s)

R
ef

.
20

3,
si

m
u

l.t
N

ot
re

po
rt

ed
u

p
D

0
.6

3
..

.0
.6

7
(s

h
or

t
ti

m
es

,
0.

01
..

.1
n

s)
p

D
0

.9
4
..

.0
.9

7
(l

on
g

ti
m

es
,

10
..

.1
00

n
s)

N
on

e,
p

1/
T

0
v

V
er

y
sm

al
l,

B
M

-li
ke

Sm
al

l
to

n
on

e
FL

E
-li

ke
FB

M
an

d
FL

E

R
ef

.
20

5,
si

m
u

l.w
N

ot
re

po
rt

ed
p

D
E

1
.5

..
.1

.7
x

(s
h

or
t

ti
m

es
,

1.
..

10
0

fs
),

p
D
E

0
.3

..
.0

.7
(i

n
te

rm
.t

im
es

,0
.0

1.
..

10
n

s)
,

p
D
E

0
.8

..
.1

.0
(l

on
g

ti
m

es
,

0.
1.

..
10

ms
)

N
ot

pr
es

en
te

d
Sm

al
l

(E
0.

5
d

ec
ad

e)
Sm

al
l

to
n

on
e

N
ot

pr
es

en
te

d
FB

M
an

d
FL

E

R
ef

.
20

4,
si

m
u

l.y
N

ot
re

po
rt

ed
p

D
0

.8
..

.0
.9

(s
h

or
t/

in
te

rm
.

ti
m

es
)

N
on

e,
p

1/
T

0
M

ed
iu

m
(E

0.
5.

..
1.

5
d

ec
ad

es
)

Sm
al

l
FL

E
-li

ke
FB

M
,

FL
E

R
ef

.
96

,
ex

pe
r.

z
N

ot
pr

es
en

te
d

p
D

0
.7

6
..

.0
.8

4
(s

h
or

t
ti

m
es

)
p

1/
T

0
.2

..
.0

.2
8

La
rg

e
(E

1.
..

1.
5

d
ec

ad
es

)
M

od
er

at
ea

a
N

ot
ex

am
in

ed
FB

M
-C

T
R

W
a

b

R
ef

.
16

7,
ex

pe
r.

a
c
p

D
0

.9
(s

h
or

t
ti

m
es

)
p

D
0

.8
(s

h
or

t
ti

m
es

)
p

1/
T

0
.1

La
rg

e
(E

1.
5

d
ec

ad
es

)
H

ig
h

,
w

it
h

cl
u

st
er

s
N

ot
pr

es
en

te
d

C
T

R
W

+
fr

ac
ta

l
B

M

R
ef

.1
42

,e
xp

er
.a

d
N

ot
st

u
d

ie
d

p
D

0
.7

4
�

0
.2

6
(0

.1
..

.1
s)

a
e

N
ot

st
u

d
ie

d
M

ed
iu

m
(E

1
d

ec
ad

e)
M

od
er

at
e

to
la

rg
e

FB
M

a
f

FB
M

a
g

R
ef

.
13

,
ex

pe
r.

a
h

N
ot

pr
es

en
te

d
p

D
0

.5
9

(s
h

or
t

ti
m

es
)

p
D

0
.4

6
(s

h
or

t
ti

m
es

)
N

ot
st

u
d

ie
d

Sm
al

l-m
ed

iu
m

(E
0.

5
d

ec
ad

e)
Sm

al
l

FB
M

-li
ke

a
i

FB
M

a
j

(N
oc

od
az

ol
e-

tr
ea

te
d

ce
ll

s)
R

ef
.1

64
,e

xp
er

.a
k

N
ot

sp
ec

if
ie

d
p

D
E

1
.4

..
.2

N
ot

sp
ec

if
ie

d
M

ed
iu

m
(E

1
d

ec
ad

e)
M

ed
iu

m
-la

rg
e

N
ot

pr
es

en
te

d
FB

M
w

it
h

d
ri

ft
R

ef
.

1,
ex

pe
r.

a
l

p
D

0
.6

1
,
p

D
0

.6
3
,
p

D
0

.8
1

p
D

0
.6

3
,
p

D
0

.5
0
,
p

D
0

.7
2

p
1/

T
0

.3
9
�

0
..

.0
8

a
m

V
er

y
la

rg
e

(E
3.

..
4

d
ec

ad
es

)
M

ed
iu

m
to

h
ig

h
a

n
FB

M
-li

ke
a

o
FB

M
an

d
R

W
F1 ;

FB
M

,B
M

,S
B

M
,B

M
-

D
D

,a
nd

H
D

Ps
27

Sl
ow

,
m

ed
iu

m
,

an
d

fa
st

d
iff

u
si

on
‘‘s

ta
te

s’
’

(s
h

or
t

ti
m

es
)

3
d

iff
u

si
on

‘‘s
ta

te
s’

’
(s

h
or

t
ti

m
es

)

R
ef

.1
65

,e
xp

er
.a

p
N

ot
pr

es
en

te
d

p
D

0
.4

8
�

0
.0

1
(0

.1
..

.1
0

s)
(P

ol
ym

er
iz

ed
m

ic
ro

tu
bu

le
s)

p
D

0
.3

(n
oc

od
az

ol
e-

tr
ea

te
d

ce
ll

s)

N
ot

st
u

d
ie

d
M

ed
iu

m
(E

1
d

ec
ad

e)
M

od
er

at
e

to
la

rg
e

FB
M

-li
ke

a
q

FB
M

a
r

Paper PCCP

Pu
bl

is
he

d 
on

 0
7 

Ju
ne

 2
02

2.
 D

ow
nl

oa
de

d 
on

 8
/1

0/
20

22
 4

:0
0:

01
 P

M
. 

View Article Online

https://doi.org/10.1039/d2cp01741e


18490 |  Phys. Chem. Chem. Phys., 2022, 24, 18482–18504 This journal is © the Owner Societies 2022

T
ab

le
1

(c
o

n
ti

n
u

ed
)

D
at

as
et

M
SD

,
hx

2
(D

)i
T

A
M

SD
,

d2
ðD
Þ

D
E

A
gi

n
g

of

d2
ðD
;T
Þ

D
E

Sc
at

te
r

of
d2
ðD

1
Þ

Po
ly

d
is

pe
rs

it
y

of
tr

ac
er

s
Fo

rm
of

th
e

A
C

F
M

od
el

of
d

iff
u

si
on

R
ef

.
10

3,
ex

pe
r.

a
s

M
SD

(D
)
E

T
A

M
SD

(D
)a

t
{p

D
0

.9
0
,
p

D
0

.8
6
,
p

D
0

.9
2
}a

u

fo
r

{N
av

1.
6,

K
v1

.4
,

C
D

4}
(s

h
or

t
ti

m
es

)

N
ot

st
u

d
ie

d
M

ed
iu

m
{E

1,
E

1.
5,

E
1}

d
ec

ad
es

fo
r

{N
av

1.
6,

K
v1

.4
,

C
D

4}

M
ed

iu
m

to
la

rg
ea

v
N

ot
st

u
d

ie
d

FB
M

or
R

W
Fa

w

R
ef

.
4,

ex
pe

r.
a

x
N

ot
sp

ec
if

ie
d

p
D

0
.9

2
(f

as
t

25
n

m
R

h
o-

N
Ps

),
N

ot
sp

ec
if

ie
d

M
ed

iu
m

(E
1

d
ec

ad
es

)
Sm

al
la

z
N

ot
an

al
yz

ed
C

T
R

W
b

a

N
ot

sp
ec

if
ie

d
p

D
0

.1
8

(s
lo

w
25

n
m

R
h

o-
N

Ps
);

N
ot

sp
ec

if
ie

d
La

rg
e

(E
2

d
ec

ad
es

)
N

ot
sp

ec
if

ie
d

p
D

0
.5

6
(7

5
n

m
R

h
o-

N
Ps

);
N

ot
sp

ec
if

ie
d

N
ot

sp
ec

if
ie

d
N

ot
sp

ec
if

ie
d

p
D

1
(2

0
n

m
Q

D
s,

sh
or

t
ti

m
es

[1
0

m
s]

),
p

1/
T

0
.3

u
n

d
ef

in
ed

La
rg

e
(E

1.
5

d
ec

ad
es

)
N

ot
sp

ec
if

ie
d

p
D

0
.7

(2
0

n
m

Q
D

s,
lo

n
g

ti
m

es
[1

s]
)

N
ot

w
el

l
d

ef
in

ed
N

ot
sp

ec
if

ie
d

p
D

0
.8

2
(2

0
n

m
Q

D
s,

al
l

ti
m

es
,

T
4

T
*)

a
y
p

1/
T

0
.3

La
rg

e
(E

2
d

ec
ad

es
)

R
ef

.1
40

,e
xp

er
.b

b
N

ot
sh

ow
n

{p
D

0
.1

..
.0

.9
,
p

D
0

.9
..

.1
.1

,
p

D
1

.1
..

.1
.6

}b
c

(s
h

or
t

ti
m

es
)

N
ot

st
u

d
ie

d
M

ed
iu

m
(E

1.
5

de
ca

de
s)

M
od

er
at

e
FB

M
-li

ke
b

d
FB

M
b

e

R
ef

.
19

,
ex

pe
r.

b
f

M
SD

(D
)
E

T
A

M
SD

(D
)b

g
{p

D
1

/2
,
p

D
1
,
p

D
1

.2
6
}b

h
(i

n
te

rm
.

ti
m

es
)

Pr
es

en
tb

i
V

er
y

la
rg

e
(E

1.
5.

..
2

d
ec

ad
es

)b
j

La
rg

e
FB

M
-li

ke
b

k
‘‘H

et
er

og
en

eo
us

’’
FB

M
bl

R
ef

.
97

,
ex

pe
r.

b
m

{p
D

1
,
p

D
0

.5
,
p

D
0

.6
}

{p
D

1
,
p

D
0

.7
,
p

D
0

.6
}

U
n

kn
ow

n
V

er
y

sm
al

l
Sm

al
l,

co
n

tr
ol

le
d

si
ze

N
ot

st
u

d
ie

d
{B

M
,

C
T

R
W

,
FB

M
}

3
tr

ac
er

si
ze

s
3

tr
ac

er
si

ze
s

(s
h

or
t

ti
m

es
)

3
tr

ac
er

si
ze

s
(s

h
or

t
ti

m
es

)
R

ef
.

6,
ex

pe
r.

b
n

p
D

1
.2

8
(s

h
or

t
ti

m
es

)
p

D
1

.3
7

(s
h

or
t

ti
m

es
)

p
1/

T
0

.3
La

rg
e

(E
1.

5
d

ec
ad

es
)b

o
M

ed
iu

m
-h

ig
h

N
ot

co
m

pu
te

d
N

ot
ex

am
in

ed
R

ef
.1

11
,e

xp
er

.b
p
p

t1
.3

8
..

.1
.4

1
an

d
p

t1
.3

0
..

.1
.3

3

(s
h

or
t

ti
m

es
,
t

10
0

m
in

)b
q

N
ot

pr
es

en
te

d
N

ot
st

u
d

ie
d

M
ed

iu
m

b
r

M
ed

iu
m

-t
o-

la
rg

e
N

ot
sh

ow
n

B
ia

se
d

ra
n

d
om

w
al

k
or

PR
W

b
s

R
ef

.
21

5,
ex

pe
r.

b
t
p

t1
.4

4
..

.1
.5

3
(s

h
or

t
ti

m
es

,
t

10
0

m
in

)b
u

N
ot

sh
ow

n
N

ot
st

u
d

ie
d

N
ot

sh
ow

n
M

ed
iu

m
-t

o-
la

rg
eb

v
A

lw
ay

s
po

si
ti

ve
,

d
ec

ay
in

gb
w

PR
W

,
an

is
ot

ro
pi

c
PR

W
b

x

R
ef

.
10

,
ex

pe
r.

b
y

M
SD

(D
)
E

T
A

M
SD

(D
)

p
D

1
.2

..
.1

.4
(i

n
te

rm
.

ti
m

es
)b

z
N

ot
ex

am
in

ed
M

ed
iu

m
(E

1
d

ec
ad

e)
ca

La
rg

ecb
FB

M
-li

ke
cc

Pa
ra

m
et

er
-

d
is

tr
ib

u
te

d
FB

M
R

ef
.2

17
,

ex
pe

r.
cd

N
ot

sh
ow

n
p

D
0

.5
7
�

0
.0

2
N

ot
st

u
d

ie
d

V
er

y
la

rg
ece

(E
2.

5.
..

3
d

ec
ad

es
)

La
rg

ecf
Su

bd
iff

u
si

ve
-

FB
M

-li
ke

FB
M

cg

R
ef

.
8,

ex
pe

r.
ch

{p
D

0
.4

6
,
p

D
0

.2
8
,
p

D
0

.3
6
}

3
pH

va
lu

es
(s

h
or

t
ti

m
es

)
{p

D
1

.0
9
,
p

D
0

.7
5
,
p

D
0

.9
4
}

3
pH

va
lu

es
(s

h
or

t
ti

m
es

)
U

n
kn

ow
n

ci
{V

er
y

la
rg

e
(E

3
d

ec
ad

es
),

m
ed

iu
m

(E
1.

5
d

ec
ad

es
),

sm
al

l
(E

0.
5

d
ec

ad
es

)}
3

pH
va

lu
es

Sm
al

l,
co

n
tr

ol
le

d
FB

M
-li

ke
cj

FB
M

,ck
al

so
B

M
an

d
B

M
-D

D

R
ef

.
70

,
ex

pe
r.

cl
p

D
0

.8
4
�

0
.0

5
(a

ll
ti

m
es

)
p

D
0

.9
5
�

0
.0

5
(a

ll
ti

m
es

)
p

1/
T

0
.1

7
�

0
.0

5
M

ed
iu

m
-la

rg
e

(E
1.

5
d

ec
ad

es
)

Sm
al

l
N

ot
pr

es
en

te
d

B
M

w
it

h
p D

(D
)cm

R
ef

.
16

,
si

m
u

l.cn
p

D
1

(s
h

or
t

ti
m

es
),

p
D

0
.2

..
.0

.4
(l

on
g

ti
m

es
)

p
D

0
.4

8
(s

h
or

t
ti

m
es

),
p

D
0

.9
(l

on
g

ti
m

es
)

p
1/

T
0

.3
4

M
ed

iu
m

(E
0.

5
d

ec
ad

es
)

N
on

e
or

co
n

tr
ol

le
d

FB
M

-li
ke

co
FB

M
-C

T
R

W
h

yb
ri

d

R
ef

.
21

8,
ex

pe
r.

cp
{p

D
0

.4
4
,
p

D
0

.6
2
,
p

D
0

.8
2
,

p
D

0
.9

2
}

4
h

u
m

id
it

y
va

lu
es

(s
h

or
t

ti
m

es
)

{p
D

0
.4

9
,
p

D
0

.6
6
,
p

D
0

.8
4
,
p

D
0

.9
5
}

4
h

u
m

id
it

y
va

lu
es

(s
h

or
t

ti
m

es
)

p
1/

T
0

cq
N

ot
pr

es
en

te
d

Sm
al

lcr
FB

M
-li

ke
cs

FB
M

,
FB

M
su

b-
or

d
in

at
ed

to
C

T
R

W

R
ef

.
21

9,
si

m
u

l.
p

D
2

(s
h

or
t

ti
m

es
,

1
ps

)
N

ot
st

u
d

ie
d

N
ot

st
u

d
ie

d
N

ot
st

u
d

ie
d

Sm
al

l
W

it
h

a
n

eg
at

iv
e

d
ip

cu
G

en
er

al
iz

ed
La

n
ge

-
vi

n
eq

u
at

io
n

cv
p

D
0

.3
..

.0
.6

(i
n

te
rm

.
ti

m
es

,
B

10
1
..

.1
04

ps
)
p

D
1

(l
on

g
ti

m
es

,
40

0
n

s)

R
ef

.
57

,
si

m
u

l.cw
p

D
1

/6
(s

h
or

t
ti

m
es

)
p

D
7

/6
,
p

D
1

p
1/

T
5

/6
,p

1/
T

1
V

er
y

sm
al

l,
SB

M
-li

ke
N

on
ecx

N
ot

an
al

yz
ed

SB
M

cy

R
ef

.1
68

an
d

16
9,

ex
pe

r.
cz

p
D

1
�
W

(s
h

or
t

ti
m

es
,

0
o

W
o

1)
p

D
1

(l
on

g
ti

m
es

)
N

ot
m

ea
su

re
d

N
ot

m
ea

su
re

d
N

ot
m

ea
su

re
d

Sm
al

l
or

n
on

e
N

ot
st

u
d

ie
d

N
ot

ex
am

in
ed

d
a

R
ef

.
62

,
si

m
u

l.d
b

p
D

1
(s

h
or

t
ti

m
es

,
D
{

t 0
)

p
D

1
(s

h
or

t
ti

m
es

,
t 0

{
D
{

T
)

p
1/

T
V

er
y

sm
al

l,
SB

M
-li

ke
N

on
e

N
ot

sh
ow

n
d

c
U

lt
ra

sl
ow

SB
M

p
lo

g[
D

](
lo

n
g

ti
m

es
,t

0
{

D
{

T
)
p

(D
/T

)l
og

[T
/D

]
(l

on
g

ti
m

es
,
D
c

t 0
)

PCCP Paper

Pu
bl

is
he

d 
on

 0
7 

Ju
ne

 2
02

2.
 D

ow
nl

oa
de

d 
on

 8
/1

0/
20

22
 4

:0
0:

01
 P

M
. 

View Article Online

https://doi.org/10.1039/d2cp01741e


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 18482–18504 |  18491

T
ab

le
1

(c
o

n
ti

n
u

ed
)

D
at

as
et

M
SD

,
hx

2
(D

)i
T

A
M

SD
,

d2
ðD
Þ

D
E

A
gi

n
g

of

d2
ðD
;T
Þ

D
E

Sc
at

te
r

of
d2
ðD

1
Þ

Po
ly

d
is

pe
rs

it
y

of
tr

ac
er

s
Fo

rm
of

th
e

A
C

F
M

od
el

of
d

iff
u

si
on

R
ef

.
58

an
d

63
,

si
m

u
l.d

d
p

D
2

(s
h

or
t

ti
m

es
,
D
{

1/
g 0

)
p

D
2

(s
h

or
t

ti
m

es
,
D
{

1/
g 0

)
p

D
1

+
a

(i
n

te
rm

.
ti

m
es

,
D
{

D
*
{

T
)

p
D

1
(i

n
te

rm
.

ti
m

es
,
D
c

D
*
c

t 0
)

p
1/

T
1
�
a

(i
n

te
rm

.
ti

m
es

)
N

ot
pr

es
en

te
d

d
e

N
on

e
N

ot
an

al
yz

ed
U

n
d

er
d

am
pe

d
SB

M
p

D
1

(in
te

rm
.t

im
es

,1
/g

0
{

D
{

t 0
)

p
D
a

(l
on

g
ti

m
es

,
D
c

t 0
,
a
4

0)
R

ef
.

58
,

si
m

u
l.d

f
p

D
2

(s
h

or
t

ti
m

es
,
D
{

1/
g 0

)
p

D
2

(s
h

or
t

ti
m

es
,
D
{

1/
g 0

)
p

1/
T

(s
h

or
t

an
d

in
te

rm
.

ti
m

es
)

V
er

y
sm

al
l,

SB
M

-li
ke

N
on

e
N

ot
sh

ow
n

U
lt

ra
sl

ow
u

n
d

er
-

d
am

pe
d

SB
M

p
D

1
(in

te
rm

.t
im

es
,1

/g
0
{

D
{

t 0
)
p

D
1

(i
n

te
rm

.
ti

m
es

,
D
{

D
*)

p
lo

g[
D

]
(l

on
g

ti
m

es
,
D
c

t 0
)

p
(D

/T
)l

og
[T

/D
]

(l
on

g
ti

m
es

,
D

*
{

D
{

T
)

R
ef

.
94

,
si

m
u

l.d
g

Se
e

T
ab

le
1

in
re

f.
94

Se
e

T
ab

le
1

in
re

f.
94

/
e2

~ ~ aT
=
T

d
h

p
1/

T
d

i

Sm
al

l-t
o-

m
od

er
at

e,
~ ~ a-

d
ep

en
d

en
t

N
on

e
N

ot
st

u
d

ie
d

E
xp

on
en

ti
al

SB
M

R
ef

.
94

,
si

m
u

l.d
j

Se
e

T
ab

le
1

in
re

f.
94

Se
e

T
ab

le
1

in
re

f.
94

p
lo

g[
T

/~t
0
]d

k
Sm

al
l

N
on

e
N

ot
st

u
d

ie
d

Lo
ga

ri
th

m
ic

SB
M

R
ef

.
55

,
si

m
u

l.d
l

p
D
a

(s
h

or
t

ti
m

es
,
D
{

1/
k)

p
D

1
(s

h
or

t
ti

m
es

)
N

ot
st

u
d

ie
d

N
ot

pr
es

en
te

d
N

on
e

N
ot

st
u

d
ie

d
C

on
fi

n
ed

SB
M

p
D
a�

1
(l

on
g

ti
m

es
,
D
c

1/
k)

p
D

0
(l

on
g

ti
m

es
)

R
ef

.
22

0,
si

m
u

l.d
m

p
D
a

(s
h

or
t

ti
m

es
,
D
{

1/
r)

N
ot

st
u

d
ie

d
N

ot
st

u
d

ie
d

N
ot

st
u

d
ie

d
N

on
e

N
ot

st
u

d
ie

d
R

es
et

SB
M

p
1/

ra
(l

on
g

ti
m

es
,
D
c

1/
r)

R
ef

.
92

,
si

m
u

l.d
n

p
D

2
H

(s
h

or
t

ti
m

es
)

p
D

2
H

(s
h

or
t

ti
m

es
)

N
on

e,
p

1/
T

0
Sm

al
l-m

ed
iu

m
(E

0.
5

d
ec

ad
es

)
N

on
e

FB
M

-li
ke

d
o

FB
M

-D
D

p
D

2
H

(l
on

g
ti

m
es

,
1/

2
o

H
)

p
D

2
H

(l
on

g
ti

m
es

,
1/

2
o

H
)

p
D

1
(l

on
g

ti
m

es
,

H
o

1/
2)

p
D

1
(l

on
g

ti
m

es
,

H
o

1/
2)

R
ef

.
48

,
si

m
u

l.d
p

p
D

2
H

+
2

(s
h

or
t

ti
m

es
)

p
D

2
(s

h
or

t
ti

m
es

)
N

ot
st

u
d

ie
d

FB
M

-li
ke

d
q

N
on

e
N

ot
st

u
d

ie
d

U
n

d
er

d
am

pe
d

FB
M

p
D

2
H

(l
on

g
ti

m
es

)
p

D
2

H
(l

on
g

ti
m

es
)

R
ef

.
45

an
d

46
,

si
m

u
l.d

r
M

SD
(D

)
=

T
A

M
SD

(D
)

p
D

2
H

(s
h

or
t

ti
m

es
)

N
ot

st
u

d
ie

d
FB

M
-li

ke
d

s
N

on
e

N
ot

st
u

d
ie

d
C

on
fi

n
ed

FB
M

p
D

0
�

L2
/3

(l
on

g
ti

m
es

,
2K

2
H
D

2
H
c

L2
)

R
ef

.2
22

,s
im

u
l.d

t
p

D
2

H
(s

h
or

t
ti

m
es

,
D
{

1/
r)

p
D

2
H

(s
h

or
t

ti
m

es
,

0
o

H
o

1/
2)

N
ot

st
u

d
ie

d
Sm

al
l

to
m

ed
iu

m
d

u
N

on
e

N
ot

st
u

d
ie

d
R

es
et

FB
M

p
1/

r2
H

(l
on

g
ti

m
es

,
D
c

1/
r)

p
D

1
(s

h
or

t
ti

m
es

,
1
4

H
4

1/
2)

p
2/

r2
H

(l
on

g
ti

m
es

)
R

ef
.

15
4,

si
m

u
l.d

v
iM

SD
(D

)
=

T
A

M
SD

(D
)d

w
p

D
2

H
(s

h
or

t
ti

m
es

,
D
{

1/
r)

N
on

e,
p

1/
T

0
d

x
Sm

al
l

to
m

ed
iu

m
N

on
e

N
ot

st
u

d
ie

d
St

at
io

n
ar

y
re

se
t

FB
M

fo
r

0
o

H
o

1/
2

p
D

1
(s

h
or

t
ti

m
es

,
D
{

1/
r)

fo
r

1/
2
o

H
o

1
p

1/
r2

H
(l

on
g

ti
m

es
,
D
c

1/
r)

R
ef

.
95

,
si

m
u

l.d
y

p
D

2
H
b

D
1
�
b

+
2

H
b

1/
T

1
�
b

N
ot

re
po

rt
ed

N
on

e
N

ot
re

po
rt

ed
C

T
R

W
w

it
h

R
W

F
R

ef
.2

23
,s

im
u

l.d
z
p

lo
g2

(t
)ea

p
D

1
,

fo
r

la
rg

e
po

si
ti

ve
x 0

p
D

1
an

d
p

D
1

/2
,

fo
r

x
(0

)
E

5
Pr

es
en

t,
n

ot
st

u
d

ie
d

D
ep

en
d

en
t

on
x 0

ec
N

on
e

N
ot

st
u

d
ie

d
E

xp
on

en
ti

al
H

D
P

p
D

1
/2

,
fo

r
la

rg
e

n
eg

at
iv

e
x 0

R
ef

.2
23

,s
im

u
l.ed

p
x 0

2
+

2D
lo

g(
x 0

)
�

t1
p

2D
lo

g(
x 0

)
�

D
1

Pr
es

en
t,

n
ot

st
u

d
ie

d
M

ed
iu

m
-t

o-
la

rg
eee

N
on

e
N

ot
st

u
d

ie
d

Lo
ga

ri
th

m
ic

H
D

P

R
ef

.
91

,
si

m
u

l.ef
p

D
a�

2
/(

2
�

� a)
p

D
1

p
1/

T
1
�
a
�

2
/(

2
�

� a)
La

rg
e,

H
D

P-
li

ke
,

� a-
d

ep
en

d
en

t
N

on
e

N
ot

co
m

pu
te

d
eg

SB
M

–H
D

Peh

R
ef

.
93

,
si

m
u

l.ei
p

D
2

H
�

2
/(

2
�

� a)
p

D
2

H
p

1/
T

(1
�

2
/(

2
�

� a)
)2

H
La

rg
e,

H
D

P-
li

ke
,

� a-
d

ep
en

d
en

t
N

on
e

N
ot

co
m

pu
te

d
FB

M
–H

D
P

T
h

is
st

u
d

y,
si

m
u

l.ej
p

D
2

H
+
a�

1
p

D
2

H
p

1/
T

1
�
a

Sm
al

l,
SB

M
-

an
d

FB
M

-
li

ke
N

on
e

FB
M

-li
ke

FB
M

–S
B

M

Paper PCCP

Pu
bl

is
he

d 
on

 0
7 

Ju
ne

 2
02

2.
 D

ow
nl

oa
de

d 
on

 8
/1

0/
20

22
 4

:0
0:

01
 P

M
. 

View Article Online

https://doi.org/10.1039/d2cp01741e


18492 |  Phys. Chem. Chem. Phys., 2022, 24, 18482–18504 This journal is © the Owner Societies 2022

a Dataset on nonergodic subdiffusion of chromosomal loci in live
bacterial cells.
b With distributed p(Kb) and p(b) in the short-lag-time fit (4).
c Diffusion of a fictitious zipping fork along a polymer chain under-
going a Rouse dynamics, as studied by computer simulations.
d The decay of the negative part of the ACF for the subdiffusive
dynamics, with the tail scaling pt2H�2 = t�1.12, observed in these
simulations is consistent with the FBM-based exponents of the MSD
growth as well as with the growth of the variance s2 of the detected
PDF, namely s2(t) p t2H

p MSD(t).
e The SPT-microscopy dataset on and the statistical analysis of diffu-
sion of lipid granules in fission-yeast cells.
f Telomere diffusion in mammalian U2OS cancer cells.
g Ergodic model of polymer dynamics; with the observed irreproduc-
ibilities of the TAMSD diffusion coefficients (with ca. 20 times varia-
tion) attributable to inhomogeneities of the diffusion environment and
to variabilities of local chromosome organization.
h SPT dataset on the dynamics of telomeres in the nucleus of mamma-
lian U2OS osteosarcoma cells.
i A typical size of telomeres is 50 to 100 nm.197

j See also ref. 198 for an independent confirmation of the FBM model
for this dataset based on the statistics of tracer increments and the
generalized p-variation test.
k Statistical analysis and SPT in vivo measurements of diffusion of
telomere in 3T3 mouse embryonic fibroblast cells.
l After the correction terms due to the effects of measurement noise
were taken into account. This has improved the initial assessment of
the TAMSD growth with pD0.24 at short and pD0.65 at long lag times
(in a heterogeneous population of tracers and noisy original data).
m SPT dataset on subdiffusion of fluorescent beads (50 nm in diameter)
in artificial crowded fluids, such as sucrose and dextran.
n M. Weiss, personal communication, 2022.
o Dataset on tracking of avian predators to study the statistics of their
slow-dynamics area-restricted search patterns and of directed, nearly
ballistic commuting paths.
p M. Assaf, personal communication, 2022.
q Note that fitting the MSD growth at short times (typical for the SPT-
data analysis) would yield significantly smaller MSD and TAMSD
scaling exponents of this mode.
r Heterogeneities in the size distribution of tracked animals, in specific
terrestrial Beschaffenheiten, as well as in individual behavioral traits
can affect the degree of the TAMSD spread observed25,200,201 in each
mode of the spreading dynamics.
s Note, however, the change in the detected MSD scaling behavior.
t Molecular-dynamics-based large-scale computer simulations of diffu-
sion of lipids and proteins in pure/noncrowded lipid membranes.
u The MSD behavior was not reported in ref. 203 and 204, mainly
employing sliding averaging (TAMSDs and mean TAMSDs). For the
case of a homogeneous system in the liquid-disordered state the MSD-
to-(mean TAMSD) equality in scaling and magnitude was confirmed by
computer simulations at short-to-intermediate times (0.01. . .10 ns,
where the results of ensemble averaging were still reliable) [J.-H. Jeon,
personal communication, 2022]. For diffusion of cholesterol in lipid
membranes as well as for the lipid dynamics in the gel-phase lipid
systems—where the spread of the TAMSDs becomes significant, see
Fig. S8 and S12 (ESI) in ref. 203—the MSD-to-TAMSD equivalence—being
a prerequisite of the FBM- and FLE-based model descriptions—was not
confirmed in simulations.
v Although for diffusion in noncrowded membranes no aging was
observed, under the crowded conditions some diffusing lipids did rarely
display trapping events on their entire trajectories. This fact not only
produced a significantly larger individual-TAMSD spread, but also resulted
in aging of the TAMSDs and a slower than expected31,44 EB B 1/T decay of
the ergodicity breaking parameter with the trace length T (see Fig. 8 in ref.
204). No aging was however observed after averaging over all diffusing
particles [M. Javanainen, personal communication, 2022].
w Large-scale computer simulations of lateral diffusion of lipids in lipid
membranes.
x Purely ballistic initial diffusion with the exponent b = 2 was not
observed at short times in simulations [M. Javanainen, personal com-
munication, 2022].
y Large-scale computer simulations of lipid diffusion in membranes.
z Two-dimensional SPT dataset of diffusion of insulin granules in live
MIN6 cells.

aa The granules are ca. 250. . .350 nm in diameter.
ab FBM subordinated to CTRW [responsible for distributed waiting
times of binding-unbinding events of the granules] is described in the
supplement of ref. 96, see also ref. 95 for CTRW and RWF.
ac SPT dataset of both ergodic and nonergodic anomalous-diffusion
dynamics of Kv2.1 potassium channels in the plasma membrane.
ad Examination of the SPT dataset on diffusion of chromosomal loci in
the presence of particle-localization uncertainties.
ae After both static and dynamical errors were taken into account, see
Fig. S3 in ref. 142.
af Examined both in terms of the minimum of and the overall form of
the ACF, for H in close agreement with the inferred MSD exponents.
ag Static SPT-localization errors206 due to photon statistics and the
dynamical errors due to finite exposure times [motion blur] were
examined i.e. in ref. 142 in their effects onto the short-time MSD
behavior and the ACF features for subdiffusive FBM-like motion. The
minimum of the ACF becomes shallower at larger time shifts d for
static errors contributing to the data, corroborating a less subdiffusive
MSD exponent at later times [and the up-shift of short-time MSD]. In
the presence of dynamical localization errors, in contrast, the ACF
minimum goes down for larger d shifts, consistent with a more
subdiffusive MSD exponent at later times [with the short-time MSD
acquiring a downward shift] for FBM-like diffusion. For a confined
diffusion, the same downward shift of the ACF negative peak at later
time-lags is found, see ref. 207. Reexamination of the conclusions on
the inferred anomalous exponents and the extent of the region of
subdiffusion for a number already studied SPT datasets [i.e., some from
this table] regarding the effects of localization errors—either unknown,
considered not important, or neglected in the original studies—would
thus be informative/compelling, especially for the datasets yielding low
magnitudes of the short-time TAMSDs, time-varying TAMSD scaling
exponent from a transiently subdiffusive to a more ‘‘normal’’ behavior,
or featuring confined/adsorbed states with the internal dynamics of the
tracers to be inferred.
ah SPT experiments of QDs in the cytoplasm of living mammalian HeLa
cells.
ai With the precise form of the ACF, including the depth of its
minimum due to subdiffusion, being in full correspondence with the
theoretical FBM-based prediction for the exponent 2H as determined
from the TAMSD-evolution data.
aj Intermittent and heterogeneous FBM—with alternations between the
two states characterized by different tracer mobilities—describes the
data. Such dichotomous switching also gets reflected in the two states
visible in the PDF (as, e.g., in ref. 163).
ak SPT dataset on motor-driven highly superdiffusive active motion of
endogenous intracellular particles in the amoeboid cells of Acantha-
moeba castellanii.
al SPT dataset of diffusion of transmembrane parts of the HIV-spike
proteins in the plasma membrane of immune T-cells.
am The mean over the TAMSD-aging exponents in each of 30 T-cells in
the dataset is computed here, see ref. 27 for the detailed statistical
analysis [complementary to that presented in ref. 1].
an With transient and permanent clusters of the traced proteins being
possible.
ao The computed ACF1 is reminiscent of that of subdiffusive FBM.
Note, however, that for slow- and medium-mobility subpopulations the
depth of the initial dip [indicative of the degree of anticorrelations for
FBM and RWF] does not change with the time shift, whereas for the
fast subpopulation this minimum becomes deeper at later times
(compare to the opposite trend observed in ref. 16).
ap SPT dataset and the analysis of anomalous diffusion of network
elements of the endoplasmic reticulum.
aq With the depth of the ACF minimum increasing measurably as
longer time-intervals dt are being used in the ACF analysis.
ar With the distributed diffusivities p(Kb) and skewed Rayleigh-like
distribution of the TAMSD exponents, p(b).
as SPT dataset and the statistical analysis of the nonergodic dynamics
of membrane proteins on the somatic surface of hippocampal neurons.
at Approximately, in magnitude and exponent [for the entire length of
the recorded traces]. A nearly ergodic dynamics was observed after the
removal of immobilized segments of the trajectories, whereas prior to
that the strongly subdiffusive periods of motion yielded MSD c

TAMSD and also disparate anomalous scaling exponents.103

au These mean scaling exponents were computed after removing
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strongly subdiffusive parts of the trajectories (bound tracers), based on
the evaluated time-local TAMSD exponents.
av With a transient formation of nanoclusters by the tracer molecules.
aw FBM or RWF were proposed (but not confirmed) as the mathema-
tical models of diffusion. Widely distributed and strongly positively
correlated Kb and b were experimentally detected [being computed for
the full trajectories].
ax SPT dataset of nanosized-tracers diffusion in the cytoplasm of
mammalian cells and the statistical analysis of particle-medium inter-
actions and medium heterogeneities.
ay See the detailed discussion in ref. 8 on implications of various preset
conditions for a SPT dataset, specifically, for the effects of [distributed,
minimal/maximal, etc.] trajectory lengths, the number of fitting points
used for assessing the TAMSD exponents for individual SPT time series
(see also ref. 142, 199 and 208–210), polydisperse tracer particles and
heterogeneous environments (see also ref. 211), etc.
az For NPs and QDs, thoroughly controlled; with a tracer-size depen-
dent polydispersity.
ba With a power-law distribution of the tracer-environment immobili-
zation times, c(t) B 1/tg+1, with large variabilities of the particle
mobilities realized for 0 o g o 1.
bb Tracking of membraneless organelles (p-granules) in single-cell state
of Caenorhabditis elegans embryos.
bc For subdiffusive, nearly normal, and superdiffusive subpopulations
of p-granules, respectively.
bd With the characteristic ACF features expected for the respective
values of FBM exponents of tracer subpopulations, see footnote bc.
be Broadly distributed and strongly positively correlated trajectory-
specific generalized TAMSD transport coefficients with the distribution
p(Kb) and TAMSD scaling exponents with the distribution p(b) were
observed,140 alike in ref. 8.
bf SPT trajectories and statistical analysis of diffusion of endosomes in
a heterogeneous media inside living eukaryotic cells, with the tracers
displaying switching between persistent and anti-persistent modes of motion.
bg In magnitude and exponent at intermediate times, whereas at short
times a levelling off of the MSD and TAMSD curves is observed [see also
footnote ag].
bh For slow subpopulation, all tracers, and fast tracers, respectively.
bi But not studied in detail in ref. 19. The short-time values of the MSDs
and TAMSDs for the trajectories with T 4 2 s are larger than those for a
subset of traces with T 4 8 s.
bj Dependent on the number of fitting points used to extract the
generalized diffusivities and scaling exponents from the source data
[N. Korabel, personal communication, 2022], see also the discussion in
ref. 6 and 8. The transport coefficients and scaling exponents were
found to be strongly positively correlated.19

bk With a pronounced negative peak for a slow subpopulations of the
tracers.
bl The heterogeneity was observed in experiments and achieved in the
accompanying computer simulations of a subdiffusive FBM in terms of
particular distributions of trace lengths f(T) p T�1.85 and diffusion
coefficients D(T) p T�0.6 among the trajectories. These distributions
can, e.g., yield the MSD function surprisingly decreasing with diffusion
time, see Fig. 2a and 4 in ref. 19 [N. Korabel, personal communication,
2022]. How much bias such hard-to-control—but SPT-experimental-
conditions-predisposed and thus inevitable (see also the discussion in
ref. 8)—distributions of the trace lengths, particle mobilities, medium
heterogeneities, etc. have on the results, conclusions, and interpreta-
tion of numerous existing/published SPT datasets regarding, first and
foremost, the temporal duration and actual degree of anomalous
diffusion remains to be understood via a thorough and comparative
analysis of the effects of systematically varied ‘‘preparatory’’ conditions
in and the data-analysis parameters of various SPT datasets.
bm SPT dataset of diffusion of polystyrene colloids (0.25 and 0.75
micron in radius) in the polymerized solutions of G-actin polymers.
bn SPT-data on and the statistical analysis of the two-dimensional
spreading dynamics of shape-heterogeneous amoeboid cells of Dictyos-
telium discoideum.
bo With distributed and negatively correlated Kb and b values.
bp Tracking and statistical analysis of self-propelled metastatic glio-
blastoma U87-MG brain-cancer cells invading a three-dimensional
extracellular matrix.
bq For gradient-containing and gradient-free migration assay, correspond-
ingly; 2D projections of 3D migration patterns in Matrigelt were recorded.

br Heterogeneous distributions of the TAMSD trajectories were
observed, with distributed trace-specific persistence times and propul-
sion speeds in terms of the underlying persistent random walk (PRW).
With the cells moving radially and superdiffusively outward in the
spheroid-induced gradient, the individual TAMSDs were fitted by the
Fürth-Ornstein formula for PRWs,212–214 to extract these individual
diffusion parameters.
bs As other statistical properties—such as TAMSD aging or ACF—were
not studied, an interpretation of these data in terms of FBM-SBM
model cannot be excluded too.
bt The same system as for ref. 111.
bu Variable MSD scaling exponents, depending on the concentrations
of the extracellular matrix.
bv A large spread of the TAMSDs for individual trajectories is detected,
reflecting rather broad distributions of times of persistent motion and
of migration speeds of the cells [L. Jauffred, personal communication,
2022].
bw A double-exponential decay of the observed ACF was proposed
(rather than a single-exponent decay, as for standard PRWs216), with
the characteristic decay times varying with the penetrability of the
diffusion matrix. Fitting the ACF with superdiffusive-FBM-like func-
tional form might also be a plausible alternative.
bx With different persistent times along the main and auxiliary direc-
tion of cell motion. Distinct subpopulations of the cancer cells—with
the persistent time of about 15 minutes and a much more persistent
subpopulation (superspreaders)—were detected, underlying a hetero-
geneity of the cells’ proliferation properties.
by SPT dataset reporting transient superdiffusion of polydisperse
vacuoles in motile amoeboid cells of Acanthamoeba castellanii.
bz The mean TAMSD is somewhat subdiffusive at short times (see
footnotes ag and eb for possible reasons) and it turns superdiffusive
at intermediate lag times, closely matching the MSD in these time
domains.
ca With broad distributions of p(Kb) and p(b). The trajectory-specific
diffusivities and scaling exponents are strongly positively correlated at
the start of the TAMSDs of vacuoles and (surprisingly, see also footnote
bl) reverting this behavior into pronounced anticorrelations of Kb and b
at the late stages of vacuole diffusion.10

cb With a division of the time series into subpopulations corresponding
to small, medium, and large vacuoles being performed in the analysis.
cc With the FBM-commensurate behavior of the velocity-ACF in the
region of short-time subdiffusion and intermediate-time superdiffu-
sion of vacuoles.
cd SPT dataset on diffusion of histone-like nucleoid-structuring H-NS
proteins in living cells of Escherichia coli.
ce With power-law distributed diffusivities of the trajectories, with p(Kb)
p Kb

�(1.94�0.07), see also footnote bl and ref. 89. The measured
diffusivities and scaling exponents increase as the length of bacteria
grows for older cells (being divided into 3 cell-length subpopulations in
the analysis), being supported by the measurements of their more
fluidized cytoplasm.
cf With the measured distribution of the number of proteins per
protein cluster being P(n) p pn, with p E 0.95.
cg With widely distributed tracer sizes and mobility parameters.
ch SPT dataset and the statistical analysis of tracer diffusion in mucin
hydrogels at varying pH.
ci The physical age of samples was not precisely controlled and the
trajectory-length-variations of the computed TAMSD magnitudes were
not measured.
cj Depending on the pH values, the ACFs are, respectively, BM-,
subdiffusive-FBM-, and BM-like.
ck FBM was shown to dominate the results of the Bayesian model-
assessment analysis at all pH values used in the experiments,8,163

with the distributed p(Kb) and p(b) among the trajectories of the
tracers.
cl SPT dataset of nonergodic diffusion of receptor molecules on living-
cell membranes.
cm The diffusion model based on the overdamped Langevin equation
with diffusion coefficients distributed along each trajectory according
to a Gamma-distribution pD(D) B Ds�1e�D/D0 and with the exponen-
tially distributed transit times was used to rationalize the experimental
data.
cn All-atom supercomputer simulations and the statistical analysis of
diffusion of doxorubicin drug molecules in silica nanoslits.
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co But with the dip of the ACF becoming shallower for longer time
shifts d, see Fig. 14 in ref. 16, as compared to the constant depth (10)
for FBM.
cp SPT dataset of diffusion of rhodamine molecules in water nanofilms
on hydrated silica surfaces at varying humidity levels.
cq Apart from a relatively small TAMSD decrease/aging present for very
short trajectories, irrespective of the degree of subdiffusion.
cr The heterogeneities of the diffusion environment in terms of the
strength of the adsorption sites were however pronounced.
cs The depth of the ACF negative peak decreases measurably at higher
humidities (see Fig. S2 of ref. 218) corroborating the accompanying
transition from subdiffusion to nearly normal diffusion observed for
the MSD and TAMSD.
ct Molecular-dynamics simulations of laterally diffusing M2-receptor
proteins (at infinite dilution) in a hydrated mixed lipid membranes
(with up to 50 percent of cholesterol).
cu The velocity-ACF reflected the MSD behavior, with a region of
negative correlations at B10. . .50 ps for diffusing proteins. The
velocity-ACF- and the MSD-behaviors for lipids were also similar, with
the respective regions of the dynamics shifted earlier by about one
order of time.
cv A model of this equation with specific memory kernels was used to
described the crossovers in protein diffusion from the short-time
ballistic, to the intermediate-time strongly subdiffusive, and, ulti-
mately, to the long-time Brownian behavior of the MSD.
cw Particle-collisions and events-based large-scale computer simula-
tions of the dynamics in a free-cooling granular gas.
cx Particles of the same size were used in simulations [A. Bodrova,
personal communication, 2022].
cy With the MSD scaling exponent being a = 1/6 and time-dependence
of the temperature being T(t) p 1/t2�5/6, as recently confirmed
experimentally.190 The MSD and TAMSD for the data190 regarding the
applicability of the SBM model were not analyzed, as the tracers were
not tagged rendering a time-series-based analysis impossible [M. Sperl,
personal communication, 2022].
cz Water diffusion and D(t) time-dependent diffusion coefficients in the
brain tissues.
da Possibly, SBM-like short-time diffusion is realized. In diffusion-
magnetic-resonance imaging, the diffusion coefficient is measured
and commonly reported as D(t) = hx2(t)i/(2t). If one defines the
instantaneous diffusion coefficient as Dinst(t) = qhx2(t)i/q(2t), then at
long times Dinst(t) = DN + Const � t�W, where W = (p + d)/2 is the
exponent of temporal correlations (here p is the structural exponent
and d is the system dimensionality).168 This SBM-like dependence of
Dinst(t) � DN describes a correction to the asymptotically normal,
Gaussian diffusion with the bulk diffusivity DN [D. Novikov, personal
communication, 2022].
db Theory and computer simulations of the overdamped Langevin
equation with the diffusivity D(t) B 1/(1 + t/t0).
dc Expected to be SBM-like.
dd Theory and simulations of the underdamped Langevin equation
with the time-varying temperature T(t) B (1 + t/t0)2a�2, the damping
coefficient gðtÞ �

ffiffiffiffiffiffiffiffiffi
TðtÞ

p
, and the diffusivity given by the time-

dependent Einstein relation, D(t) B T(t)/g(t).
de Expected to be small and SBM-like.
df SBM for massive particles in the case a = 0.
dg Stochastic computer simulations of both massless and massive
particles with exponentially time-varying diffusivity, DexpðtÞ ¼ D0e

�2~~at.
dh For massless particles with DexpðtÞ / eþ2

~~at, see eqn (A27) in ref. 94.
di For massless particles with DexpðtÞ / e�2

~~at, see eqn (B22) in ref. 94.
dj As in footnote dg, but for the diffusion coefficient varying logarith-
mically in time, Dlog(t) = D0 log[t/~t0].
dk For massless particles, see eqn (C36) in ref. 94.
dl Computer simulations and the theoretical analysis of SBM confined
in a parabolic potential, U(x) = kx2/2.
dm Theory and computer simulations of renewal Poissonian-reset SBM
with exponentially distributed waiting times between the reset events
c(t) = re�rt in the model of overdamped Langevin equation [here r is the
reset rate].
dn Stochastic computer simulations of the FBM-DD system of equations
in the overdamped limit.
do ACF was not shown in ref. 92, but checked by us later via computer
simulations [results not shown].

dp Simulations of the underdamped Langevin equation (particle mass
m) driven by fractional Gaussian noise.
dq The dispersion of individual TAMSDs for massive FBM decreases
with T as for standard FBM, see footnote ds. In addition, for the
particles of small-to-intermediate masses at short lag times48 EB(m) p
m1 for 0 o H o 3/4 and EB(m) p m4�4H for 1 4 H 4 3/4.
dr Simulations of the overdamped Langevin equation driven by frac-
tional Gaussian noise and confined to an interval [�L, L]. We refer the
reader also to ref. 137, 138 and 221 where non-Gaussian PDFs of
boundary-reflected FBM were observed, with depletion and accumula-
tion of particles near the wall for reflected sub- and superdiffusive
FBM, respectively.
ds With the spread of the short-lag-time TAMSDs decreasing
dramatically for smaller confining intervals. The ergodicity-breaking
parameter EB31 at short lag times decreases with the trace length
T as EB(T) p 1/T for 0 o H o 3/4 and as EB(T) p 1/T4�4H for 1 4
H 4 3/4.
dt The same as in ref. 220, but for Poisson-reset FBM.
du For strongly subdiffusive initial FBM the spread of TAMSDs of reset
FBM is very small (FBM-like), while for strongly superdiffusive reset
FBM it can reach 1–2 decades, see Fig. 2 and 13 of ref. 222. The TAMSD
dispersion of frequently reset superdiffusive FBM, in addition, depends
reciprocally on the reset rate: the respective ergodicity-breaking
parameter31 computed at short lag times decreases as EB(r) p 1/r,
see Fig. 4 and 5, and of ref. 222.
dv The same as in ref. 222, but with Poisson-reset FBM considered in
the stationary regime.
dw The increment-MSD222 computed in the nonequilibrium steady
state equals the mean TAMSD at short times (both for sub- and
superdiffusive FBM exponents) as well as at long times in the
TAMSD-plateau region, restoring the ergodicity, as compared to the
results of ref. 222.
dx Provided the reset process is stationary and the trajectory length is
much longer that the relaxation time.
dy Theory and simulations of heavy-tailed subdiffusive CTRWs as
subordinated walks on fractal structures (CTRW and RWF). The PDF
of waiting times is c(t) B 1/t1+b, the MSD is hx2(D)i p D2Hb, and the

short-lag-time TAMSD growth is d2ðD;TÞ
D E

/ D1�bþ2Hb=T1�b. The

TAMSD thus resembles that of FBM–SBM, being nonlinear in D and
featuring a CTRW-like aging behavior for varying T, with the exponents
of the source processes of CTRW and RWF entering the exponent of the
MSD of the resulting process also multiplicatively, as in SBM–HDP91

and FBM–HDP.93

dz Diffusion of the massless particles with the diffusivity varying
exponentially in space, Dexp(x) p e�2ax.
ea At long times, after the relaxation of the initial conditions, x0 = x(0).
eb Splitting of the entire ensemble of trajectories into two subpopula-
tions with distinctly different growth of the TAMSDs with the lag time
D. Scalings are valid both at short and long lag times.
ec Large scatter of the TAMSDs of 2. . .3 decades for large negative x0
values (in the region of exponentially high diffusivity) and vanishing
scatter of the TAMSDs (with very low overall magnitudes) for large
positive x0 values.
ed The same as in footnote dz, but for logarithmically varying diffusiv-
ity, Dlog(x) p log[(x/%x)2 + 1].
ee The scatter of 1. . .4 decades decreases for larger initial positions x0,
where the space-variation of the diffusivity Dlog(x) is progressively
smaller.
ef Stochastic simulations of the SBM–HDP-related overdamped Lange-
vin equation.
eg A HDP-like ACF is expected, which itself is reminiscent of the ACF of
FBM, see Fig. C1 in ref. 67, with the HDP subdiffusive exponent of the
MSD 2/(2 � �a) o 1 corresponding to the Hurst exponent 2H o 1.
eh With the space-time dependence of the diffusivity of the form D(x, t)
p |x|�ata�1 and p(�a) = 2/(2 � �a). Note that such power-law D(x, t) were
proposed, e.g., to rationalize data on diffusion laws in turbulence,90,224

that is one of the first examples of a non-Fickian and anomalously fast
hx2(t)ip t3 relative dispersion for a pair of molecules.225,226 Power-law-
like D(x) were also employed to describe animal dynamics.227

ei Stochastic simulations of the overdamped FBM–HDP Langevin equa-
tion.
ej Stochastic simulations of the FBM-SBM-related overdamped Lange-
vin equation.
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The second example of a physical system amenable for the SBM
description is nonergodic diffusion of particles57 in free-cooling

granular gases,186–190 see Table 1. Nonelastic collisions of particles/
constituents in such gases lead to energy dissipation and, as a
result, the effective temperature of the environments decreases in
accord with (12), along with the particle diffusivity. Note, however,
that for a cooling gas of rapidly aggregating particles the standard
Haffs191 temperature law57,190 T(t) p 1/t2 can be inverted yielding
an increasing—rather than decreasing—energy of an aggregate
particle in time, as advocated recently.189

Lastly, for the experiments on fluorescence recovery after photo-
bleaching in the presence of passive and active particle motion the
effective diffusion coefficient has, e.g., a time-dependent
correction192 D(t) = D(1 + v2t/(4D)) to yield the MSD hx2(t)i = 4D(t)
� t = 4Dt + v2t2. Diffusion of BM-tracers in expanding or contracting
media (like our Universe) produces a time-space-rescaled stochastic

Fig. 7 The plateau behavior of the MSD for subdiffusive SBM and very sub-
diffusive FBM exponents such that a� 1 + 2Ho0 (see the legend for the values).
The notations and colors for the curves and symbols are the same as in Fig. 1.

Fig. 8 The plateau behavior of the MSD for subdiffusive SBM and very
subdiffusive FBM exponents such that a � 1 + 2H o 0, shown for the scaling
exponents used in Fig. 7 for varying values of the time-step (see the legend).

Fig. 9 The same as in Fig. 8 but for somewhat larger Hurst exponent,
plotted for different time-steps used in the simulations. The long-time
MSD asymptote (18) is shown as the dashed line.

Fig. 10 Ratio of the TAMSD to MSD for FBM–SBM, with the asymptote
(30) shown as the dashed line. Parameters are provided in the legend. At
the last point, we find MSD(T) = TAMSD(T), as expected for the MSDs
growing in time. For the model parameters in the blue region of Fig. 2 and
for a stagnating MSD this statement regarding the last-point MSD-to-
TAMSD equality is no longer valid, see also Fig. 7.31

Fig. 11 MSD growth in the simulations (solid symbols) as compared to the
fitted MSDs, obtained via integrating the Gaussian PDFs extracted as a fit of
the actual distributions of particle displacements (empty symbols con-
nected by the lines). FBM and SBM parental exponents are given in the
legend. The laws of the MSD growth are also consistent with (18).
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process similar to SBM (in terms of its long-time MSD).193 Generally,
the spreading kinetics slowing down in time—as, e.g., in the
polymerization or aggregation reactions of polymers194—where
the diffusivity drops with the typical particle size [e.g., in a Stock-
esian p1/size fashion] and with diffusion time—can potentially be
considered as SBM with a power-law (or more complicated) func-
tional forms for D(t).

B FBM–SBM

The FBM–SBM process introduced here enriches the armamen-
tarium of anomalous-diffusion processes applicable to the
description of SPT datasets. Some ‘‘paradoxical’’55 features of
nonstationary SBM coupled to a power-law decaying memory of
FBM yields a so-called scaled-fractional process of FBM–SBM,
certain characteristics of which are unveiled in the present
study. The combination of SBM and FBM yields a nonlinear-
in-lag-time FBM-like growth of the TAMSD and the presence of
aging for FBM–SBM is reflected in the SBM-like dependence of
the TAMSD magnitude [at short lag times] on the trajectory
length, eqn (25). The MSD exponent for FBM–SBM is the ‘‘sum’’
of the SBM and FBM scaling exponents. The magnitude and
scaling relation of the MSD are disparate from those of the
TAMSD and, thus, FBM–SBM features weak ergodicity breaking.

These two essential attributes—nonequal scaling exponents of
the MSD and TAMSD as well as a pronounced aging of the
TAMSD—are particularly useful (indispensable) when selecting
for or envisaging the most appropriate models of anomalous
and nonergodic diffusion in a statistical analysis of SPT datasets.
For instance, the TAMSD dependencies nonlinear in lag time and
TAMSD aging with the trace length as in (25) were observed for
diffusion of micron-sized beads in hydrogels of mucin polymers,8

propulsive chemotaxis-free dynamics of amoeboid cells,6 diffusion
of doxorubicin drug molecules in silica nanoslits,16 as well as
diffusion of gp41 transmembrane proteins in the plasma mem-
branes of surface-adhered immune T-cells.1,27 The process of
FBM–SBM is thus applicable to nonstationary physical systems
with power-law-like varying SBM-like diffusion coefficient and
FBM-like memory-containing correlations of particle displace-
ments in successive time steps.

To conclude, paraphrasing the classics, ‘‘knowing is not enough,
we must apply’’ the mathematical models of anomalous diffusion to
real experimental data to check if really ‘‘all models are wrong, but
some are useful’’. We hope that Table 1—targeting primarily the
experimental SPT community—unveils the usefulness of some pure
and hybrid mathematical models of anomalous diffusion as exam-
ination tools for rationalizing, understanding, and categorizing
some relevant and measurable attributes of natural physical

Fig. 12 ACF of FBM–SBM for subdiffusive (panel a) and superdiffusive
(panel b) parental FBM process, with the results being plotted for varying
SBM scaling exponent and variable time shifts used in the computation.
The legends report the values of the model parameters; t = 1 � dt.

Fig. 13 Scaling of the ACF tail of FBM–SBM for superdiffusive FBM (see
the legend for actual parameters, t = 1 � dt), with expression (31) presented
as the asymptote.

Fig. 14 The same as in Fig. 13 after the time-dependent ACF renorm-
alization, shown for varying times t.
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phenomena, as gained from the experimental SPT observations as
well as from (toy-)model-based in silico studies.

Abbreviations

PDF Probability-density function
MSD Mean-squared displacement
TAMSD Time-averaged MSD
SPT Single-particle tracking
BM Brownian motion
SBM Scaled BM
FBM Fractional Brownian motion
FLE motion Fractional-Langevin-equation motion
HDPs Heterogeneous diffusion processes
CTRW Continuous-time random walk
ATTM Annealed transient-time model
RWF Random walk on a fractal
PRW Persistent random walk
DD model Diffusing-diffusivity model
QDs Quantum dots
NPs Nanoparticles
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M. M. Tamkun and D. Krapf, Ergodicity breaking on the
neuronal surface emerges from random switching between
diffusive states, Sci. Rep., 2017, 7(1), 5404.

104 Y. Liang, S. Wang, W. Chen, Z. Zhou and R. L. Magin, A
survey of models of ultraslow diffusion in heterogeneous
materials, Appl. Mech. Rev., 2019, 71(4), 040802.

105 Y. Chen and X. Wang, Novel anomalous diffusion phenom-
ena of underdamped Langevin equation with random
parameters, New J. Phys., 2021, 23(12), 123024.
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