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Abstract
The field of movement ecology has seen a rapid increase in high-resolution
data in recent years, leading to the development of numerous statistical and
numerical methods to analyse relocation trajectories. Data are often collected
at the level of the individual and for long periods that may encompass a range
of behaviours. Here, we use the power spectral density (PSD) to characterise
the random movement patterns of a black-winged kite (Elanus caeruleus) and
a white stork (Ciconia ciconia). The tracks are first segmented and clustered
into different behaviours (movement modes), and for each mode we measure
the PSD and the ageing properties of the process. For the foraging kite we find
1/ f noise, previously reported in ecological systems mainly in the context of
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population dynamics, but not for movement data. We further suggest plausible
models for each of the behavioural modes by comparing both the measured PSD
exponents and the distribution of the single-trajectory PSD to known theoretical
results and simulations.

Keywords: diffusion, anomalous diffusion, power spectral analysis, ecological
movement data

(Some figures may appear in colour only in the online journal)

1. Introduction

In natural stochastic phenomena, random fluctuations are often modelled via uncorrelated
‘white noise’, with finite mean and variance, and with a fluctuation amplitude that is inde-
pendent of the frequency [1]. However, a large class of natural systems exhibits so-called
1/ f noise, considered to be an emergent property of correlations that extend across multi-
ple temporal scales [2–7]. Traditionally, 1/ f noise is defined in terms of the power spec-
tral density (PSD). For an individual trajectory, the PSD of a d-dimensional path, x(t) =
(x1(t), x2(t), . . . , xd(t)), as a function of time t, is defined in terms of the sum of squares of
the Fourier transform over the d individual components [8, 9]

S( f , tm) =
1
tm

d∑
j=1

∣∣∣∣
∫ tm

0
ei f t x j(t)dt

∣∣∣∣
2

. (1)

Here, tm is the measurement time of the process and f the frequency. ‘Coloured noise’
corresponds to the asymptotic scaling 〈S( f )〉 ∝ 1/ f β of the averaged PSD at low fre-
quencies (see below), where angular brackets imply ensemble averaging, and 0 � β � 2
[10]. Notably, we here focus on the regime 1 � β � 2 where S( f ) is non-integrable as∫∞

0 S( f )d f ∼
∫∞

0 1/ f βd f →∞. Naturally, low frequencies that cause such divergence are
associated with infinitely long correlation and measurement times. This non-integrability is
often referred to as ‘the infrared catastrophe’, as it implies that infinite energy is stored in
the low frequency fluctuations, even in a bounded process, which is evidently not physical
[2, 11, 12]. Nevertheless, experimentally, power-law shaped PSDs attributed to 1/ f noise have
been inferred from finite-time observations in systems ranging from semiconductor devices and
metal films [2, 13] to earthquakes [14] and human cognition [15].

In recent years, the ‘paradox’ of the divergent power spectrum was resolved by showing
that at finite measurement times the exponent β is not sufficient to characterise all properties
of the PSD. Specifically, to physically interpret the apparent divergence at small f , one should
use the non-stationary, ageing power spectrum, of the form [16, 17]

〈S( f , tm)〉 ∼ t−z
m f −β, (2)

where z is called the ageing exponent. This form entails that the divergent nature of the
spectrum expected at infinite times manifests itself through the (finite-time) finite value of
a non-stationary power spectrum [16–18]. This ageing pattern has been measured in a range
of processes [19–23], including intermittent quantum dots [12], telomeres in the nucleus of
cells [9] and the motion of membrane proteins in living cells [24].

In ecology, 1/ f noise is primarily observed in population dynamics and thought to
account for the variability and autocorrelation of ecological time-series [25]. For example,
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the variability of the population density in multiple species has been shown to increase over
time, a phenomena that can be accounted for by 1/ f noise [26]. Rapid increase in high-
resolution movement data has led to the development of numerous statistical and numerical
methods [27, 28], as well as analytical methods [29] to analyse relocation trajectories. Data
is often collected for multiple individuals and for long periods that encompass a range of
behaviours, from local searches within a bounded patch, to long migratory flights [30]. Here,
the PSD is also used in the analysis of movement data, mainly to detect frequencies that
account for the variability across a movement path (see, e.g. [31]). However, to the best of
our knowledge, neither the PSD nor its ageing effects have been used to model and clas-
sify movement tracks in animal ecology. Specifically, ageing can have important implications
on the process, entailing if it is stationary and ergodic, which in turn affects the ability to
average over common observables (e.g., net and squared displacements, as well as velocity)
[32, 33].

In processes with 1/ f 2 noise (corresponding to Brownian noise), finite-time effects in the
power spectrum were shown to decay in the limit t →∞, and averaging over an ensemble of
independent trajectories, the value measured numerically from finite paths converges to a single
function 〈S( f )〉 as the path length is increased [8]. However, having an ageing power spectrum
with 1 � β < 2, the dependence of the PSD on both f and tm always persists. To account for
the time dependence, periodograms are often used [34]. Additionally, several recent studies
have focused on the PSD of individual trajectories, which enable data analysis of experimental
systems even where only few trajectories are available. It is commonly the case that the PSD
remains very stable across trajectories, as was explicitly shown for Brownian motion (BM) and
fractional Brownian motion (FBM) [8, 9].

Notably, the study of the ageing properties of the PSD is complementary to the study of the
ensemble-averaged (EA) and ensemble-averaged time-averaged (EA-TA) mean squared dis-
placement (MSD) [35]. The EA-MSD,

〈
x2(t)

〉
, is defined as the squared displacement of an

individual’s position with respect to a reference position, averaged over an ensemble of move-
ment paths. The EA-TA-MSD is given by averaging over the squared displacement performed
during a time lag τ , and then averaging again over the ensemble [36, 37]

〈
δ2(τ , t)

〉
=

〈
1

t − τ

∫ t−τ

0
[x(t′ + τ ) − x(t′)]2 dt′

〉
. (3)

The EA- and EA-TA-MSD are commonly used to study correlations and ergodicity in anoma-
lous systems [35], and when discrepancy between these quantities appears the process is said
to exhibit weak ergodicity breaking, see e.g. [38, 39]. An important observable characteristic
for different stochastic processes is the scatter of amplitudes of the TA-MSD at a given time lag
[35, 36]

In this study, we perform an empirical analysis of the PSD of movement tracks of a kite
and a stork. These animals are chosen as their recorded tracks are of different spatiotemporal
scales: high resolution data for the kite (0.25 Hz) and long track duration for the migrating
stork (>8 years). Additionally, for both animals the tracks are known to encompass a range of
different behaviours (see below). As animal movement typically varies across spatiotemporal
scales, and strongly depends on seasonality as well as behavioural mode [40], we focus here
on interpreting different movement modes of an animal, shown to each have different (non-)
stationary properties. We further analyse the single-trajectory PSD, which can vary depend-
ing on the physical process and on the dimension d. Finally, we find significant ageing effects
when the initiation time of the process differs from the initial measurement time. To interpret
our findings we use simulations and theoretical results developed in recent works for several
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well-known physical models, BM [8, 41], FBM [9] and the subordination of FBM to
continuous-time random walks (CTRW) [17, 24] (details below). These models allow us to
infer properties of the observed movement paths, particularly to distinguish subdiffusion from
superdiffusion, namely diffusion where then MSD grows slower or faster than linear in time,
and to quantify its non-stationary properties.

2. Materials and methods

2.1. Data collection

Black winged kite. An individual black-winged kite (Elanus caeruleus), residing in the Hula
Valley, Israel, was tracked using ATLAS, an innovative reverse-GPS system. ATLAS localises
extremely light-weight, low-cost tags [42], where each tag transmits a distinct radio signal
which is detected by a network of base-stations distributed in the study area. Tag localisation is
computed using nanosecond-scale differences in signal time-of-arrival to each station, alleviat-
ing the need to retrieve tags or have power-consuming remote-download capabilities [32, 42].
The kite was tracked for 164 consecutive days in years 2019–2020, with a mostly constant
tracking frequency of 0.25 Hz, see reference [32] for more details. Our analysis is limited
to data collected during the activity hours (omitting the nights for the diurnal kite) and we
further excluded data collected in proximity to the observed nest to focus on local search
behaviour.

White stork. An adult white stork (Ciconia ciconia) was tracked between May 2012 and
July 2020 using the configuration described in reference [43]. Here the GPS location and
speed were recorded during the day at a frequency of 1/300 Hz when solar recharge was
high (92% of the time), and at 1/1200 Hz otherwise. We omit days with lower frequency
(<1% of tracked days) and only include localisations that occur between the first recorded
velocity of >4 m s−1 [44].

2.2. Theoretical models

In this work we focus on empirical evidence for 1/ f noise and ageing of the PSD in ecological
movement data. In several cases it is possible to relate our findings to known physical models.
Here, we list those models, for which analytical results for the PSD have been reported in
recent years.

2.2.1. Brownian motion. For an overdamped, one-dimensional Brownian trajectory x(t), with
t ∈ [0, tm], the dynamics is given by the Langevin equation [45]

dx(t)
dt

= ξ(t), (4)

where ξ(t) is a Gaussian, delta-correlated white noise term with zero mean and
〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), and D is the diffusion constant. For a particle governed by

equation (4), the EA-TA- (equation (3) and EA-MSD are respectively given by
〈
δ2(τ , t)

〉
=

2Dτ and
〈

x2(t)
〉
= 2Dt [6, 37]. As both show identical scaling with time, the process is ergodic

in the (weaker) Boltzmann–Khinchin sense of equality between (long) time and ensemble
averages [35]. For this process, the mean of the PSD follows [41]

〈S( f )〉 � 4D
f 2

, (5)

4



J. Phys. A: Math. Theor. 55 (2022) 334004 O Vilk et al

entailing β = 2 and that the amplitude of the PSD is linear in D without explicit dependence
on tm. Here, the non-integrability of the noise is generally cured by considering an unbounded
process however it does demonstrate the significant difference between ‘white’ noise and
processes where the noise is Brownian (sometimes called ‘red’ or ‘brown’ noise [8, 25]).

For any finite tm the single-trajectory PSD will fluctuate from one realisation to the next.
The distribution of the single-trajectory PSD (equation (1)) around its ensemble average is then
quantified by the amplitude [8]

S( f , tm)
〈S( f , tm)〉 ≡ A( f , tm), (6)

where A is a random number that depends on the choice of the stochastic model (see exam-
ples below), and can also depend on the dimension d, the frequency f , and the measure-
ment time tm. The distribution of A is highly informative since it is model specific as shown
analytically for a number of processes [8, 9, 46, 47]. In particular, it is important in stud-
ies where only few paths are available, as it relates the single PSD to its average. For BM,
the distribution of the single-trajectory PSD around the mean (5) is given by equation (6),
with [8]

P(A) =
2
√
πA(d−1)/2

√
3Γ(d/2)

e−
4
3 AI(d−1)/2

(
2
3

A

)
, (7)

where Iξ(·) is the modified Bessel function of the first kind and Γ(·) is the gamma function.
Notably, the shape of the distribution depends on the dimensionality, where dimensions lower
than the embedding space of the process can be achieved by projection or component-wise
measurement [8, 9].

2.2.2. Fractional Brownian motion. As in the case of BM, FBM can also be defined in terms
of the Langevin equation (4), replacing the delta-correlated noise term ξ(t) with zero-mean,
power-law correlated fractional Gaussian noise ξfGn(t) defined by [35]

〈ξfGn(t)ξfGn(t′)〉 ∼ 2H(2H − 1)|t − t′|2(H−1) (8)

for t �= t′. Here, H is termed the Hurst exponent and, similarly to the case of BM, the process is

ergodic with
〈
δ2(τ , t)

〉
= 2D̃τ 2H and

〈
x2(t)

〉
= 2D̃t2H , where D̃ is an effective diffusion con-

stant [35, 48, 49]. In accordance with the definition of ξfGn(t), for H > 0.5 the noise is persistent
leading to a positively correlated process, while for H < 0.5 the noise is antipersistent leading
to a negatively correlated process. For FBM and other stationary (in increments) processes, the
PSD is written in terms of the EA autocorrelation function CEA(τ ) = 〈x(t)x(t + τ )〉 following
the Wiener–Khinchin theorem

〈S( f ,∞)〉 =
∫ ∞

−∞
ei fτCEA(τ )dτ. (9)

Here, CEA and the time averaged (TA) autocorrelation function, defined by

CTA(tm, τ ) =
1

tm − τ

∫ tm−τ

0
x(t)x(t + τ )dt, (10)

5



J. Phys. A: Math. Theor. 55 (2022) 334004 O Vilk et al

are identical at long times. In the limit of long measurement times it was shown that for
FBM [9]

〈S( f , tm)〉 ∼
{

t2H−1
m f −2 H > 1/2,

f −1−2H H < 1/2,
(11)

i.e., for persistent FBM the PSD is ageing, while it is not for subdiffusive FBM. Here, it is also
possible to obtain the distribution of the single-trajectory PSD around the mean; for example,
for superdiffusive FBM (H > 1/2) in d-dimensions it was found that [9]

P(A) =
Ad/2−1

2d/2Γ(d/2)
e−A/2, (12)

see reference [9] for more details and results. Here, the distribution P(A) is in general different
from that of BM, compare equation (7).

2.2.3. Subordinated FBM. Here we consider a process in discrete time steps, expressed
by the number of jumps n = 1, 2, 3, . . . , such that the autocorrelation function is
given by

〈xnxn+Δn〉 = Δx2[n2H + (n +Δn)2H − n2H], (13)

where Δx is a scaling parameter. Furthermore, H is analogous to the Hurst exponent of the
FBM, although here it is not directly related to the scaling of the EA-MSD on time (see below).
In this process, the discrete-time FBM (13) is subordinated to the operational time of the
CTRW, such that after each FBM step, the particle is immobilised for a random waiting time
τ drawn from a fat-tailed distribution [50]

ψ(τ ) ∼ τ−(1+α), (14)

with 0 < α < 1, such that 〈τ 〉 diverges. By combining the correlation structure of the jump
sizes of FBM with the unbounded waiting times of CTRW, this process effectively distin-
guishes the ‘operative clock’, defined by the sequence of jump events themselves, from the
‘real’ clock defined by t, thus allowing for both temporal correlations as well as ageing effects
(note that pure FBM only allows for the former, while CTRW allows for the latter8). Waiting
time distributions similar to equation (14) have been reported in multiple empirical systems,
e.g. [32, 51–54].

As subordinated FBM is a non-stationary process, CEA and CTA are not identical, and the
Wiener–Khinchin theorem no longer applies. Similar observations in other processes have led
to the development of the ageing Wiener–Khinchin theorem in recent years [16, 17], which
enabled analytical calculations of the PSD of both stationary and non-stationary processes,
relating the exponentsβ and z to underlying physical processes, see, e.g. [9, 17, 24, 46, 47, 55].
In particular, for subordinated FBM the PSD has been rigorously computed in reference [24].
The leading term of the spectrum was found to again differ between positively and negatively
correlated increments. It satisfies [24]

〈S( f , tm)〉 ∼
{

t2αH−1
m f −2 H > 1/2,

tα−1
m f −2+α(1−2H) H < 1/2.

(15)

8 When α > 1, since the mean sojourn time is finite, the operation time t becomes linear with the discrete time n, and
the process is equivalent to standard FBM, see section 2.2.2.
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In equation (15), for positively correlated increments H > 1/2, the process does not exhibit
1/ f noise (i.e., β = 2, as is the case for BM, see the discussion in [9]); however, the ageing
properties depend on α: for αH > 1/2 the spectrum increases with the measurement time tm
as in superdiffusive FBM [9], while for αH < 1/2 the spectrum amplitude decreases with tm.
In contrast, for anticorrelated increments in terms of the number of jumps n (H < 1/2), for
any α < 1 the spectrum displays 1/ f noise (β < 2) and ageing, effecting a decrease with the
measurement time (z < 0). Below we compare these theoretical predictions to the recorded
movement paths of a kite and a stork, for which we can obtain the values of α and H and infer
the non-stationary properties of different movement modes.

Importantly, the values of α and H in this model can also be obtained from independent
analysis of the EA-TA-MSD, equation (3). For the subordinated process, when 0 < α < 1 the
EA-TA-MSD is given by [56]

〈
δ2(τ , tm)

〉
∼ τ 1−α+2αH

t1−α
m

. (16)

The EA-TA-MSD was found for our empirical data (kite and stork) in a recent study [44];
however, the MSD (and in particular the EA-MSD) is typically a noisy observable [24], and
in some cases it was not possible to perform adequate power-law fits. Thus, the analysis of
the PSD can be highly valuable when comparing the data to theoretical processes, as shown
below. Finally, as the theoretical distribution of the single-trajectory PSD is yet unknown for
subordinated FBM, we compare our results to stochastic simulations of the process. Here, the
increments of the FBM, in discrete time n, are obtained using the python function fgn from the
package fbm (here fGn refers to fractional Gaussian noise—the increment process of the FBM).
The increments, δrn, are projected onto two dimensions by generating a random number θ ∈
[−π, π] and setting δxn = δrn cos θ and δyn = δrn sin θ. FBM in two dimensions is given by the
cumulative sums xn =

∑n
m=0δxm and yn =

∑n
m=0δym. The times between the (discrete-time)

steps are then drawn from a power-law distribution (14) using the python package powerlaw
[57]. Notably, there are also other ways to simulate FBM for d = 2 and in particular, to sample
from a power-law distribution9; yet, comparing between different methods is beyond the scope
of this paper.

2.3. Statistical analysis

To compare data and theory, we fitted the averaged PSD of empirical and simulated trajectories
to power laws. The PSD for each trajectory was computed in a straightforward manner from
definition (1), and the PSDs were averaged over the relevant ensemble. To obtain the averaged
PSD as a function of the measurement time, the averaged PSD was computed for different
values of tm, defined as the time passed from the first point of the trajectory. The resulting
curves, both as a function of f and tm, were then fitted to a straight line on a log-log curve,
using SciPy library’s curve-fit (nonlinear least squares method) in python 3.8. In all cases the
fit was performed for small frequencies f � 1, as to ensure the validity of the theory. Errors
were computed as the standard deviation when fitting the averaged PSD for different times
(when fitted versus f ) or different frequencies (when fitted versus tm). Direct errors of each
fit (obtained using curve-fit) were, in all cases, negligible compared to the standard deviations
described above.

9 In the diffusion limit of many jumps we do not expect any significant dependence on the input distribution as long
as it is asymptotically a power law.
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Figure 1. Averaged PSD, 〈S( f , tm)〉, of empirical trajectories of a kite for (a) unseg-
mented daily movement trajectories, compared to independent analysis of (b) area
restricted searches and (c) commutes, for different measurement times (coloured dots,
see legends). The averaged PSD is fitted to a power law (black dashed lines). In the
insets we plot the amplitudes (scaled by f β) as a function of tm for different fre-
quencies (coloured dots), with a fitted scaling (solid line). For searches (b) we find
〈S〉 ∼ f −1.50t−0.57

m , for commutes (c) 〈S〉 ∼ f−2t0.60
m , while for unsegmented tracks (a)

〈S〉 ∼ f −2.10t−0.66
m .

3. Results

3.1. Kite

Similarly to reference [32], the kite’s tracks were segmented into two behavioural modes: local
searches (area restricted search) and commutes (directed flights between local searches). Local-
isations were segmented by detecting switching points in the data—distinct points in which
the bird switches between the two behaviours [58]. Switching points were detected using spa-
tiotemporal criteria segmentation, such that localisations that are in proximity to one another
both in space and time, were segmented together [27]. In accordance with the conclusions of
reference [32] we independently analysed the time series ensemble that represents instances
of searches and the time series ensemble that represents commutes. Below, we compare these
analyses to an unsegmented ensemble of daily tracks, showing that ecological knowledge of
the underlying processes is crucial to correctly identify the noise properties of the data.

For searches, the PSD (figure 1(b)) displays 1/ f β noise with 〈S〉 ∼ f −1.50t−0.57
m . These

results are consistent with subdiffusive subordinated FBM with α = 0.43 ± 0.04 and H � 0,
see equation (15). Notably, the value of H is close to zero and the error is relatively large, thus
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Figure 2. Distribution of single trajectory PSD of empirical trajectories of a kite in d = 1
(red points) and d = 2 (blue points) dimensions, for (a) searches and (b) commutes. In
(a) the distributions are compared to simulations of subordinated FBM with α = 0.45
and H = 0.01, while in (b) they are compared to the theory for superdiffusive FBM,
equation (12) for d = 1, 2 (dashed red and blue lines respectively). Notably, for the case
of subordinated FBM the theoretical distributions are yet unknown.

an exact estimate of its value is hard to achieve. An analysis of the MSD for the same ensem-

ble of searches produces
〈
δ2(τ , t)

〉
∼ τ 0.55t−0.55, which is consistent with α = 0.45 ± 0.03

and H � 0, see equation (16). Here, both the analysis of the MSD and of the PSD suggest
that subordinated FBM is a plausible model for the movement within search grounds of this
kite. In contrast, for the commutes (figure 1(c)) we find that 〈S〉 ∼ f −2t0.60

m , consistent with
(ergodic) superdiffusive FBM with H = 0.80 ± 0.03, see equation (11). Here, analysis of the

EA-TA-MSD gives a scaling of
〈
δ2(τ , t)

〉
∼ τ 1.66, suggesting H = 0.83 ± 0.03, in agreement

with the analysis of the PSD.
We compare these results to the PSD of unsegmented daily trajectories (figure 1(a)). Here,

the trajectories include both the commutes and searches, each occurring at different tempo-
ral and spatial scales. We find that β = 2.10, however there is strong ageing in the process as
〈S〉 ∼ t−0.66

m . Notably, the 1/ f noise found during searches is completely skewed due to the
lack of segmentation, and the process is most likely a mixture of (at least) two different pro-
cesses, making these results hard to interpret. Additionally, the dependence of the PSD on tm
(figure 1(a), inset) does not provide a clear scaling form when normalised by f −β for differ-
ent f as is the case for searches and commutes (figures 1(b) and (c), insets). These findings
highlight the importance of correctly accounting for different movement phases, allowing us
to better interpret the 1/ f noise in the data.

Some discussion on stationarity is in order here. For searches, the longer we observe the sys-
tem, the smaller the amplitude A of the PSD becomes (figure 1(b), inset). This occurs because
the longer we track the searching bird, the more likely we are to find it ‘trapped’ at a specific
location for long periods; thus, the rate at which the animal moves is significantly reduced and
the noise levels decrease accordingly [12]. In a recent work we have shown that this effect
originates from long waiting times during searches [32]. The scaling exponent which is pro-
portional to α (see equation (15)) allows for yet another way to quantify this effect. In contrast,
for commutes the PSD increases with the measurement time (figure 1(c), inset). This process
can be modelled with the use of FBM (i.e., α > 1) and is Gaussian and ergodic in nature.
As these flights are highly correlated, persistent movement at increasingly long measurement
times increases the amplitude of the PSD—hence the growth of the PSD.

Finally, in figure 2 we plot the distribution of A given by equation (6) for searches and
commutes in d = 1 and d = 2 dimensions. For searches (figure 2(a)), we compare these

9
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distributions to simulation results for subordinated FBM with α = 0.45 and H = 0.01, which
are consistent with the results obtained above. For both dimensions we find excellent agree-
ment between the simulated and observed distributions. Interestingly, we find that for searches,
the empirical distribution does not strongly differ between d = 1 and d = 2. Here, for subor-
dinated FBM a theoretical distribution for A is yet unknown. In comparison, for the commutes
(figure 2(b)) the distributions are in good agreement with the theory given by equation (12) for
superdiffusive FBM.

3.2. Stork

The relatively low tracking frequency of the stork (one recorded point every five minutes)
does not allow to identify and independently analyse potential searches, as these will include
a very limited number of points (e.g., a search of 1 h will include ∼12 points). Thus, daily
tracks are not segmented but rather considered as a single process, limiting the scope of the
analysis. Nevertheless, to properly account for the PSD for different behaviours, daily paths
are clustered into subsets that represent distinct behaviours in a bird’s life cycle [43]. This is
done using a Gaussian mixture model (GMM) [59] based on the logarithm of the maximum
displacement (ΔX) that the stork performs during each day (figure 3(a)). We have found three
significant movement modes which are highly correlated to the time of year: the mode with
〈ΔX〉 = 3 km occurs primarily (>80%) between April and July, the mode with 〈ΔX〉 = 33 km
occurs primarily (>80%) between September and February, and the mode with 〈ΔX〉 = 211
km occurs primarily (>87%) during well-known migratory periods [43]. We thus refer to these
three modes as breeding, wintering and migrating respectively, and perform the analysis below
for each subset of daily paths separately. Note that the GMM identified another mode with
〈ΔX〉 = 0.4 km. However, as this mode includes a small number of daily paths (60 days out
of ∼2500), we discard it from our analysis.

For the breeding ensemble (966 days, figure 3(b)) we found 〈S〉 ∼ t−0.45
m f −1.9, which is

consistent with subordinated FBM with α = 0.55 ± 0.09 and H = 0.40 ± 0.05, i.e., a non-
stationary process with near 1/ f 2 noise. For the wintering mode (1068 days, figure 3(c))
〈S〉 ∼ t0.07

m f −2.10, i.e., the noise is approximately 1/ f 2 noise and we find no significant age-
ing patterns. Importantly, the fact that we measure exponents β = 2 and z = 0 in equation (2)
does not entail that the process is Brownian. On the contrary, subordinated FBM with any α
and H that fulfil 2Hα = 1.07 is a plausible model, as it is consistent with 〈S〉 ∼ t0.07

m f −2.10 and
equation (15). Here, the knowledge of the analytical scaling of the PSD (equation (15)) is not
sufficient to determine the values of both α and H independently, and complementary analysis
is crucial. For instance, based on the conclusions of reference [44] one can determine H � 0.7
and α � 0.77, which is consistent with the above relation. Below, we show that the distri-
bution of the single-trajectory PSD further supports this. For the migrating mode (480 days,
figure 3(d)) we get 〈S〉 ∼ t1.27

m f −2, which is consistent with the ballistic motion of a migrat-
ing stork. Here, the stork migrates approximately in a straight line towards a stationary target
(breeding and wintering grounds for spring and fall migrations, respectively), accounting for
the rapid increase in amplitude (figure 3(d), inset). Notably, the fact that the scaling with the
measurement time is steeper than linear implies that, in addition to the highly correlated nature
of this process, the animal is also accelerating, which is again consistent with the complemen-
tary analysis in reference [44].10 Indeed, storks roost in stopover sites during the night and

10 In particular, Lévy walks, that are often implicated as random search mechanisms for animals, were ruled out as
governing process behind these data [44].
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Figure 3. (a) Behavioural modes of a white stork. The clustering is performed using a
Gaussian mixture model [59], identifying four clusters, three of which account for more
than 18% of the path each and thus represent a large subset of daily paths. The cluster
identified on the far left includes<3% of the data and is thus discarded from any analysis.
(b)–(d) Average PSD for different measurement times (coloured dots, see legend in (d))
for each of the modes: (b) breeding, (c) wintering and (d) migrating. In the insets we
plot the amplitudes (scaled by f β) as a function of tm for different frequencies (coloured
dots), with a fit (solid line).

tend to depart in the late morning, when soaring conditions improve, facilitating faster flights
at lower energy costs [60].

In figure 4 we plot the distribution of the single-trajetory PSD around its average for breed-
ing, wintering and migration in one and two dimensions. For breeding we compare these
distributions to simulations of subordinated FBM with α = 0.55 and H = 0.40 (see above).
Similarly, for wintering we compare to subordinated FBM with α = 0.77 andH = 0.70. Here,
the predicted distributions (7) for BM for d = 1, 2, can be shown to be far from the empirical
distributions, entailing that this process is not Brownian. For both the breeding and wintering
modes the empirical distributions show good agreement with simulated subordinated FBM.
Note that although the ageing properties differ between these modes (see insets of figures 3(b)
and (c)), the distributions of the single-trajectory PSD (figures 4(a) and (b)) are similar, suggest-
ing some kind of unifying features of the underlying dynamics of the stork during breeding and
wintering, see reference [44] for further discussion. Finally, for migration (figure 4(c)) we find
that the distribution is in excellent agreement with the theoretical distribution for superdiffusive
FBM given by equation (12).

3.3. Ageing effects

In many applications, the initial measurement time (the time from which the process is first
observed) is different from the initiation time of the process, where the latter is often unknown.
For nonergodic processes, such a discrepancy can make an anomalous process appear closer
to normal diffusion, as the observed statistics of the initial unmeasured period can be distinct
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Figure 4. Distribution of single-trajectory PSD around the average PSD for the three
movement modes of a stork for d = 1 (red points) and d = 2 (blue points). In (a) the
distributions are compared to simulations of subordinated FBM with α = 0.55 and H =
0.40 (red and blue dashed lines for d = 1 and d = 2 respectively) and similarly in (b)
with α = 0.77 and H = 0.70. In (c) the distributions are compared to the theory for
superdiffusive FBM given by equation (12) (red and blue dashed lines for d = 1 and
d = 2 respectively).

Figure 5. Exponents β and z in 〈S〉 ∼ t−z
m f −β (equation (2), blue crosses) and exponents

γ and z in
〈
δ2(τ , t)

〉
∼ t−z

m τ−γ (orange circles) as measured for the kite’s trajectories,
as a function of the ageing time ta. In (a) the error bars represent variations between
different measurement times, while in (b) they represent variations between different
frequencies f or time-lags τ .

from the statistics of the measured period [18, 53, 61–63]. We denote the time between the ini-
tiation of the process and the beginning of the measurement by ta, and refer to it as ageing time
[35, 63]. Here, we measure the exponents β and z in equation (2) for the kite during searches,
as a function of ta, see figure 5. We vary ta between 1 and 512 by discarding all points occurring
at t < ta for each ta and obtain the PSD from the remaining points in the range [ta, T] (such that
tm = T − ta), T being the time since the unknown initiation of the process. Notably, searches
typically last 40 min (=2400 s), which is significantly longer than any choice of ta.

For the PSD of the searching kite, we find that variations in β are relatively small, with
<10% difference between its value at ta = 0 and its value at ta = 512. This entails that ageing
the trajectory (starting the measurement at increasingly long lag time ta instead of the initia-
tion time of the process) does not affect the power-law shape and 1/ f noise. In contrast, the
exponent z significantly changes with ta (>70%), meaning that ageing the trajectory changes
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the non-stationary properties of the system. For instance, if the process is modelled with sub-
ordinated FBM (section 3.1), analysis of the PSD can give different values of α, depending
on ta. This effect has important implications for ecologists, as it is often the case that the initi-
ation time of a motion and the initial measurement time are not the same. Importantly, similar
ageing effects can appear in the analysis of the EA-TA-MSD, as can be seen by comparing
equations (15) and (16). In figure 5 we show a remarkable agreement between the two methods
(PSD and MSD) with respect to the ageing analysis of the empirical tracks.

4. Discussion

In this work we analysed the PSD of ecological movement data. By segmenting and cluster-
ing the movement of a kite and a stork we were able to classify different behavioural modes
based on the properties of the PSD. For the kite we found different characteristics for bounded
searches and commutes. The PSD of the former displays 1/ f noise and strong ageing, both
indicative of a non-stationary process and long-range correlations, as highlighted by com-
parison to known theoretical results and simulations of subordinated FBM. In contrast, for
commutes, the process shows 1/ f 2 noise and an amplitude that increases with the measure-
ment time, suggesting superdiffusive movement patterns of the commuting kite. These results
are in agreement with the conclusions of reference [44] for both the search and commute
modes, strengthening the validity of the models suggested above. Comparing these results to
the analysis of unsegmented tracks highlights the improved insight one can obtain by prop-
erly identifying behavioural modes. Importantly, variations in the segmentation and clustering
of either data sets could potentially affect our analysis. However, we stress that these proce-
dures are either in agreement with reasonable ecological considerations (seasons of the storks),
or were validated in previous studies (searches and commutes of the kite), see section 2.1.
Although a detailed exploration of alternative segmentation and clustering procedures may
prove fruitful, it is beyond the scope of this paper.

For all movement modes of the stork we find approximately 1/ f 2 scaling of the PSD;
however, the ageing exponent z significantly varies between modes. While breeding is a non-
stationary process, wintering appears stationary as indicated by the exponent z, and migrating
yields a PSD that increases with time. Although this analysis may be limited by the reso-
lution of the data, as discussed above, we used known theoretical results and simulations to
show that these daily movement patterns can be modelled as a subordinated FBM (breeding
and wintering) or as an FBM (commuting). The analysis performed here highlights the impor-
tance of considering the ageing exponent of the data and not solely the 1/ f scaling. While the
three modes of the stork only slightly differ in their β values and may appear Brownian, they
significantly differ in the ageing exponent.

Although the time series for the stork are relatively short (∼110 points for each day), the
analysis presented in figure 3 spans multiple decades in frequency. This is in contrast to the
analysis performed in the temporal domain in reference [44] where the power-law scalings of
the MSD were local and differed significantly between temporal scales. This indicates that the
PSD is typically more robust, allowing for more accurate estimates of the underlying process.
However, we stress that the PSD analysis used here (specifically equation (15)) does not gen-
erally give a unique set of model parameters. As shown above for the wintering stork, the PSD
exponents can be consistent with a range of interconnected values of α and H. Moreover, one
could mistakenly assume that the process is close to Brownian. Here, complementary analy-
sis is vital for correct inference. For instance, analyses based on the amplitude scatter of the
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time-averaged MSD [35, 36], the p-variation method [64, 65], or the first-passage time distri-
bution [66, 67] are useful statistical observables for single particle tracking data. Nevertheless,
our analysis demonstrates that the PSD method provides vital information in the analysis of
movement data.

Finally, our results highlight possible future directions, particularly in the study of the sub-
ordinated FBM and the CTRW formalism. First, to better quantify the empirical distributions
found in figures 2 and 4, a theoretical study of the distribution of the PSD for CTRW and
subordinated FBM is required. Second, it has recently been shown that anomalous transport
processes, which do not obey the predictions of the Gaussian central limit theorem, can be
decomposed into three individual effects (exponents): non-stationarity, temporal correlations
and extreme events [44, 68–70]. It can thus be interesting to test whether the PSD method can
be extended as an independent method to extract these exponents (the PSD analysis we use here
only provides two independent exponents). To this end, it would also be useful to compare the
insights extracted directly from the ageing PSD of the data, with that obtained using more
data-driven approaches, such as machine-learning [71–76], or Bayesian maximum likelihood
analysis [77]. Notably, following the empirical evidence that an ageing time can drastically
affect the measured exponents, a general ageing theory for both CTRW and subordinated FBM
is needed.
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