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Abstract
We study a heterogeneous diffusion process (HDP) with position-dependent
diffusion coefficient and Poissonian stochastic resetting. We find exact results
for the mean squared displacement and the probability density function. The
nonequilibrium steady state reached in the long time limit is studied. We also
analyse the transition to the non-equilibrium steady state by finding the large
deviation function. We found that similarly to the case of the normal diffusion
process where the diffusion length grows like t1/2 while the length scale ξ(t)
of the inner core region of the nonequilibrium steady state grows linearly with
time t, in the HDP with diffusion length increasing like tp/2 the length scale ξ(t)
grows like tp. The obtained results are verified by numerical solutions of the
corresponding Langevin equation.
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1. Introduction

Anomalous diffusion is characterised by a mean squared displacement (MSD) of the power
law form

〈
x2(t)

〉
∼ tβ(β �= 1) and has been observed in a wide variety of systems [1–5]. Con-

sequently, it has been theoretically modelled in terms of different stochastic processes such as
continuous time random walks with power-law distributed waiting times between successive
jumps [6], as well as fractional Brownian motion [7] and the closely related fractional Langevin
equation motion [8], which are driven by long-range correlated in time Gaussian noise. In gen-
eral, these theoretical approaches are based on the assumption that the environment of the
diffusing particle is homogeneous or that the heterogeneity of the media is coarse-grained over
an increasing time or length scale, again leading to homogeneity.

However, various studies, including biological cells [9–11] and porous media [12, 13], have
demonstrated that the underlying structure of the environment results in systematic variations
of the local diffusion coefficient, and thus has a strong effect on the particle movement. These
effects can be captured by heterogeneous diffusion models which describe the environment
by using a position-dependent diffusion coefficient D(x) varying in space according to the
power, exponential, or logarithmic laws [14]. Diffusion models with spatially varying diffusiv-
ity lead to anomalous diffusion and are used to describe transport processes on random fractals
[15, 16], and in heterogeneous media [14, 17–25]. Heterogeneous diffusion processes (HDPs)
in the following are defined as the motion of a diffusing particle subjected to a power-law
space-dependent diffusion coefficient of form

D(x) = Dα|x|α, α < 2. (1)

The resulting MSD for HDPs behave as [14]

〈
x2(t)

〉
∼ tp, p =

2
2 − α

, (2)

which exhibits different diffusion regimes. Particularly, for α = 0 (p = 1), we have normal
diffusion. The case of subdiffusion is observed for α < 0 (0 < p < 1), while superdiffusion
for 0 < α < 1 (1 < p < 2). Additionally, for 1 < α < 2 (p > 2) one observes hyperdiffusion,
and the result for α = 1 corresponds to the ballistic motion (p = 2).

Motivated by optimal random search strategies, diffusion with stochastic resetting were
introduced by Evans and Majumdar [26] who showed that the diffusing particles in presence
of Poisson distributed reset to the initial position reach a non-equilibrium steady state (NESS)
[26–29]. The mean first-passage time to a target [30] of a diffusive process in the presence
of resetting, was shown to be reduced [26, 31–34]. The problem of stochastic resetting has
been of interest in different contexts, starting from random search processes [30, 35–38], such
as foraging dynamics [39] where the resetting can increase the performance of the search of
foraging animals, for different diffusion processes [40–43], to quantum dynamics [44, 45].
Ergodicity in systems with resetting has also been recently analysed in references [46, 47]. An
experimental realisation of the first-passage under stochastic resetting has been demonstrated in
reference [48] with holographic optical tweezers. The number of papers on resetting in the last
years is increasing so rapidly that it is impossible even to mention here all relevant directions
of research. We refer to the recent review [28] for an exhaustive list of works in the field of
stochastic resetting.

In this paper, we consider the problem of HDP with and without resetting. Analytical results
for the probability density function (PDF) and MSD are found for the position-dependent dif-
fusivity (1), including the transition dynamics to the stationary distribution. We show how the
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obtained results turn to the known solution for a particular case when the initial position of a
particle (and respectively, its position after the reset) coincides with the extremum of the dif-
fusivity profile. We develop an alternative approach to analyse such a particular case in detail
for a smooth diffusivity profile of form D(x) ∼ (ε+ |x|)α, ε > 0, α < 2.

The paper is organised as follows. In section 2 we analyse the heterogeneous diffusion with-
out resetting and find the PDF and MSD. The corresponding heterogeneous diffusion model
with resetting is introduced in section 3, where we find the PDF and corresponding MSD based
on the results in absence of resetting. We also analyse their asymptotic behaviour. The transi-
tion dynamics to the NESS described by the large deviation function (LDF) is presented, as
well. Specifically, in subsection 3.4 we simulate the HDP by using the Langevin equation with
position-dependent diffusion coefficient and compare the results with our analytical theory.
In section 4 we solve the heterogeneous diffusion equation with initial position at the origin
x0 = 0 and a smoothened diffusion coefficient of the formD(x) = (ε+ |x|)α, ε > 0 andα < 2.
Comparison between analytical results and simulations is quite favourable. A summary is pro-
vided in section 5. At the end of the paper in appendices A and B we provide details related
to the calculation of the nth moment of the PDF, and to three equivalent representations of the
HDP with stochastic resetting.

2. HDP without resetting

Let us consider an HDP obeying the Langevin equation with position-dependent diffusion
coefficient

ẋ(t) =
√

2D(x) ξ(t), (3)

where ξ(t) is white Gaussian noise with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′). Equation (3) requires
the choice of interpretation for the multiplicative noise, among which the Itô [49, 50],
Stratonovich [51] and Hänggi–Klimontovich [52, 53] schemes are the most frequently used.
The Stratonovich prescription is a natural choice if one aims to study the influence of an exter-
nal noise with zero mean and short, but not infinitely short, autocorrelation time [54, 55].
In [56] the relevant reasons for using the Stratonovich interpretation for physical systems
described by Langevin equations with non-additive fluctuations are discussed, particularly the
consistency of the corresponding Fokker–Planck approach to the standard techniques used by
physicists such as the cumulant expansion, projection operator and perturbative approaches.
Such interpretation also seems most relevant for biological applications, since biological sys-
tems are typically far from equilibrium, the fluctuation–dissipation relation does not hold [57],
and the Langevin equation approach with an external noise is meaningful [58]. Therefore, we
here consider the HDP in the Stratonovich interpretation, while the corresponding problem in
the Hänggi–Klimontovich and Itô interpretations will be analysed elsewhere [59]. With the
position-dependent diffusivity (1), we here consider the Langevin equation [14, 24]

ẋ(t) =
√

2Dα |x|α/2 ξ(t), (4)

with corresponding Fokker–Planck equation for the PDF P(x, t) [14, 24, 51]

∂

∂t
P(x, t) = Dα

∂

∂x

{
|x|α/2 ∂

∂x

[
|x|α/2P(x, t)

]}
. (5)
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The initial condition is given by P(x, t = 0) = δ(x − x0) while the boundary conditions are
set to zero at infinity. We remind the readers that in the Stratonovich prescription stochastic
integrals are treated in the same way as conventional integrals. Therefore, in order to analyse
the HDP governed by equations (4) and (5), we introduce a new variable, see for example
[14, 24],

y ≡ f (x) = p× sgn(x) |x|1/p, (6)

where p = 2/(2 − α) and sgn(x) is the sign function, which equals −1 for x < 0, 0 for
x = 0, and 1 for x > 0, such that dy/dx = 1/|x|1−1/p. Therefore, by using ẋ(t) = dx

dt = dx
dy

dy
dt =

|x|1−1/pẏ(t), equation (4) becomes a Langevin equation for ordinary Brownian motion, in y(t),

ẏ(t) =
√

2Dα ξ(t). (7)

Let us find the initial condition in respect to the variable y which corresponds to the initial
condition P(x, t = 0) = δ(x − x0). By using the transformation

P̄(y, t) =
∫

δ(y − f (x))P(x, t) dx (8)

we find the new initial condition

P̄(y, t = 0) =
∫

δ(y − f (x))P(x, t = 0) dx

=

∫
δ
(

y − p× sgn(x) |x|1/p
)
δ(x − x0) dx = δ(y − y0), (9)

where y0 = p× sgn(x0)|x0|1/p. The solution of the diffusion equation, which corresponds to
the Langevin equation (7), for initial condition P̄(y, t = 0) = δ(y − y0) is the Gaussian PDF

P̄(y, t) =
1√

4πDαt
exp

(
− [y − y0]2

4Dαt

)
. (10)

Knowing the PDF in respect to the variable y, we will find the PDF of the original problem,
which is the solution of equation (5), through the transformation

P(x, t) =
∫

δ
(
x − f −1(y)

)
P̄(y, t) dy. (11)

From relation (6), it follows that

x = sgn(y)
|y|p
pp

, (12)

and thus we have

P(x, t) =
1√

4πDαt

∫
δ

(
x − sgn(y)

|y|p
pp

)
exp

(
− [y − y0]2

4Dαt

)
dy. (13)

4
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For the δ-function, we use the relation

δ(g(y)) =
δ(y − yi)∑

i |g′(yi)|
, (14)

where yi are the roots of g(y), i.e. g(yi) = 0. Here

g(y) = sgn(y)
|y|p
pp

− x, (15)

whose root is yi = p× sgn(x)|x|1/p, and

g′(y) =
|y|p−1

pp−1
→ |g′(yi)| = |x|1−1/p (16)

and thus

δ

(
sgn(y)

|y|p
pp

− x

)
=

δ
(
y − p× sgn(x)|x|1/p

)
|x|1−1/p

. (17)

Therefore, from equations (13) and (17), for the solution of the heterogeneous diffusion
equation (5) one finds

P(x, t) =
|x|1/p−1

√
4πDαt

exp

(
− p2

[
sgn(x) |x|1/p − sgn(x0) |x0|1/p

]2
4Dαt

)
. (18)

One can easily check that the PDF is normalised to one, see appendix A. For x0 = 0, the PDF
simplifies to [14]

P(x, t) =
|x|1/p−1

√
4πDαt

exp

(
− p2|x|2/p

4Dαt

)
. (19)

For α = 0 (p = 1) the PDF yields the expected Gaussian form of the PDF. Notably, in the limit
α = 2, and x, x0 > 0, the PDF (18) turns into the log-normal distribution for the geometric
Brownian motion [23, 60, 61].

Let us now find the MSD
〈

x2(t)
〉
=
∫∞
−∞ x2P(x, t) dx. We obtain (see appendix A)

〈
x2(t)

〉
=

Γ (1 + 2p)
p2p

(Dαt)p

Γ (1 + p) 1F1

(
−p,

1
2

,−p2 |x0|2/p

4Dαt

)
, (20)

where 1F1(a, b, z) is the confluent hypergeometric function of the first kind. For the limiting
case x0 = 0 (and thus 1F1(a, b, 0) = 1), we obtain the known result [14]

〈
x2(t)

〉
=

Γ (1 + 2p)
p2p

(Dαt)p

Γ (1 + p)
. (21)

Forα = 0 (p = 1) the MSD transforms to the MSD for Brownian motion
〈

x2(t)
〉
= x2

0 + 2D0t.
By asymptotic expansion of (20) for t →∞, we have

〈
x2(t)

〉
∼ Γ (1 + 2p)

p2p

(Dαt)p

Γ (1 + p)

[
1 + 2p3 |x0|2/p

4Dαt

]

= C1(p)(Dαt)p + C2|x0|2/p(Dαt)p−1, (22)

5
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where C1(p) = Γ(1+2p)
p2pΓ(1+p)

and C2(p) = p3

2 C1(p). Thus, for t →∞, the dominant term is〈
x2(t)

〉
∼ Γ(1+2p)

p2p
(Dα t)p

Γ(1+p) , which is the same as the MSD for x0 = 0 as it shall be. For the case

α = 0 (p = 1) we recover the result for ordinary Brownian motion
〈

x2(t)
〉
= 2D0t + x2

0. For

the short time limit t → 0, the MSD behaves as
〈

x2(t)
〉
∼ |x0|2 + 2(2p− 1)|x0|

2(p−1)
p Dαt.

Results for the general-order moments, are given in appendix A. From these results one can

analyse the kurtosis k(t) = 〈(x−〈x〉)4〉
(〈x2〉−〈x〉2)2 − 3 and skewness g(t) = 〈(x−〈x〉)3〉

(〈x2〉−〈x〉2)3/2 of the obtained
distribution.

3. HDP with resetting

We now study the situation when the particle motion governed by the heterogeneous diffusion
equation (5) is interrupted after a random time interval τ by resetting the particle to its initial
position. We consider a Poissonian resetting with the resetting time PDF p(τ ) = r e−rτ . There-
fore, the PDF Pr(x, t|x0) of the HDP with resetting can be expressed in terms of the PDF P(x, t)
of HDP in absence of resetting via the renewal equation [42, 62–64]

Pr(x, t|x0) = e−rtP(x, t) +
∫ t

0
r e−rτP(x, τ ) dτ , (23)

meaning that each resetting event to the initial position x0 renews the process at a rate r.
Between two consecutive renewal events, the particle undergoes heterogeneous diffusion with
position-dependent diffusion coefficient. The first term on the right-hand side of the equation
corresponds to the case when there is no resetting event up to time t, while the second term
describes multiple resetting events.

3.1. Probability density function of the HDP with resetting

By taking the Laplace transform of equation (23), one concludes that the PDF of the process
with resetting can be calculated from the PDF in absence of resetting in Laplace space via

P̂r(x, s|x0) =
s + r

s
P̂(x, s + r), (24)

where P̂(x, s) is the Laplace transform of the PDF (18),

P̂(x, s) = L [P(x, t)] =
|x|1/p−1

√
4Dα

s−1/2 exp

(
−p
∣∣∣sgn(x)|x|1/p − sgn(x0)|x0|1/p

∣∣∣√ s
Dα

)
.

(25)

In the long time limit, we find that the PDF reaches the NESS given by

Pr,st(x) = lim
t→∞

Pr(x, t|x0) = lim
s→0

sP̂r(x, s|x0) = rP̂(x, r)

=
|x|1/p−1√

4Dα/r
exp

(
−p

∣∣sgn(x)|x|1/p − sgn(x0)|x0|1/p
∣∣√

Dα/r

)
. (26)
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Figure 1. Graphical representation of the PDF (23) in the NESS, equation (26), for
Dα = 1, x0 = 7, r = 0.01 and α = 0.5 (blue solid line), α = 0 (the Laplace distribu-
tion, red dashed line), α = −0.5 (black dotted line). Linear–linear plot in the left panel
and log–linear plot in the right panel.

For x0 = 0, the PDF in the NESS reads

Pr,st(x) =
|x|1/p−1√

4Dα/r
exp

(
−p

|x|1/p√
Dα/r

)
, (27)

which was obtained in reference [47]. Forα = 0, equation (26) reduces to the PDF in the NESS
for the normal diffusion process with stochastic resetting [26]

Pst(x) =
1√

4πD0/r
exp

(
−|x − x0|√

D0/r

)
. (28)

A graphical representation of the PDF in the NESS (26) is shown in figure 1. From the figure
we observe that for α = 1/2 the PDF has a sharp maximum at x = 0, while for α = −1/2
it has a minimum. These extrema can be explained qualitatively as follows. For small x and
α > 0 the intensity of the multiplicative noise in the Langevin equation becomes very small,
and thus the particle spends more time around the origin before it resets to the initial position
x0. On the contrary, for small x and α < 0 the intensity of the multiplicative noise becomes
very large, and the particle does not spend much time near the origin. Also, the cusp of the PDF
in the initial position x0 to which the particle is reset is observed since the resetting mechanism
introduces a source of probability at x0.

3.2. Mean squared displacement of the HDP with resetting

After multiplication of both sides of equation (24) by x2 and integration over x, we find the
MSD in Laplace space,

〈
x̂2(s)

〉
r =

∫ ∞

−∞
x2 P̂r(x, s|x0) dx =

s + r
s

〈
x̂2(s + r)

〉
, (29)

where
〈

x̂2(s)
〉

is the Laplace transform of equation (20). The inverse Laplace transform of
equation (29) yields

〈
x2(t)

〉
r
= e−rt

〈
x2(t)

〉
+

∫ t

0
r e−rt′ 〈x2(t′)

〉
dt′, (30)

7
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where
〈

x2(t)
〉

is given by equation (20). From here we find the long time behaviour of the MSD
in presence of resetting, which reads

〈
x2(t)

〉
r
∼
∫ ∞

0
r e−rt′ 〈x2(t′)

〉
dt′ = r

〈
x̂2(s = r)

〉
, (31)

where
〈

x̂2(s)
〉

is the Laplace transform of the MSD (20) calculated at s = r. The short time
limit yields the same behaviour of the MSD as in the case without resetting, see equation (20).

For x0 = 0, from equations (21) and (29), for the MSD we find the general form

〈
x2(t)

〉
=

Γ (1 + 2p)
p2p

Dp
αL−1

[
s−1

(s + r)p

]
=

Γ (1 + 2p)
p2p

Dp
αtpEp

1,p+1 (−rt), (32)

where

Eδ
ρ,β(z) =

∞∑
n=0

(δ)n

Γ(ρn + β)
zn

n!
(33)

is the three parameter Mittag–Leffler function [65], with the Pochhammer symbol
(δ)n = Γ(δ + n)/Γ(δ). By asymptotic expansion of the three parameter Mittag–Leffler func-
tion [66]

Eδ
ρ,β(−z) =

z−δ

Γ(δ)

∞∑
n=0

Γ(δ + n)
Γ(β − ρ(δ + n))

(−z)−n

n!
, (34)

with z > 1, and 0 < ρ < 2, for the MSD in the short and long time limit we find

〈
x2(t)

〉
∼ Γ (1 + 2p)

p2p
Dp

α

{
tp/Γ (1 + p) , rt � 1,

1/rp, rt  1.
(35)

In the long time limit, the MSD tends to a constant, thus indicating the emergence of a NESS.

3.3. Transition to the stationary state

From equations (27) and (35) we see that the system reaches a NESS. This also can be shown
from the renewal equation (23) as the dominant contribution in the long time limit comes from
the second (integral) term of the equation.

The analysis of the transition to the steady state might be far from a trivial task. In a system
with x →−x symmetry, the NESS is established in an inner core region [−ξ(t), ξ(t)] around the
point x0 to which the system is reset, where ξ(t) is the time-dependent length scale. Outside of
this region, the system is in a transient state, which is not yet relaxed to the NESS. In absence of
an x →−x symmetry, the NESS is established in an inner core region [−ξ−(t), ξ+(t)] around
the point to which the system is reset. This region grows as ξ±(t) ∼ t1/ε± [28, 67, 68], where
ε± are positive exponents, which depend on the particular underlying displacement process7.
On this scale x ∼ ξ±(t) the PDF has the large deviation form

Pr(x, t|x0) ∼ exp
(
−t I(x/ξ±(t))

)
, (36)

7 For example, for the normal diffusion process without resetting, the typical diffusion length scale grows algebraically
as t1/2, i.e. ε = 2, while in case of Poissonian resetting it grows as t1, i.e. ε = 1 [26, 28].
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where I(w) is the LDF [67].
Let us estimate the integral term in the renewal equation (23) by the Laplace method

[28, 67]. By using t′ = tτ , i.e. dt′ = t dτ , we have

r
∫ t

0
e−rt′ P(x, t′) dt′ =

r|x|1/p−1

√
4πDα

∫ ∞

0

exp

(
−rt′ −

p2
[

sgn(x) |x|1/p−sgn(x0) |x0|1/p
]2

4Dαt′

)
dt′

√
t′

=
r|x|1/p−1

√
4πDα

√
t
∫ 1

0
τ−1/2 e−tΦ(τ ,w) dτ , (37)

where

Φ(τ ,w) = rτ + p2 w2

4Dατ
, (38)

and

w =

∣∣sgn(x)|x|1/p − sgn(x0) |x0|1/p
∣∣

t
.

From here, one concludes that if sgn(x) = sgn(x0) we have we =
∥∥x|1/p − |x0|1/p

∣∣ /t, while if
sgn(x) �= sgn(x0) we have wne =

(
|x|1/p + |x0|1/p

)
/t. Next, we should estimate the integral of

the form

I(t) =
∫ 1

0
e−t f (z) g(z)dz (39)

for large t. With the Laplace method it is given by [69]

I(t) ≈ e−t f (z0) g(z0)

√
2π

t| f ′′(z0)| , (40)

which requires the evaluation of the minimum of the function f (z), i.e. f ′(z0) = 0, if
0 < z0 < 1. If the extremum point z0 is outside the integration limits (z0 > 1), then the approx-
imation result is calculated at z0 = 1. In our case, the function f (z) corresponds to the function
Φ(τ ,w), with z → τ . Thus, from d

dτΦ(τ ,w)
∣∣
τ=τ∗

= 0 we find

τ∗ =
p√

4Dαr
w (41)

and one can see that the PDF in the NESS has the form of equation (36), where ξ(t) ∼ tp, and
the LDF is given by

I (w) =

⎧⎪⎪⎨
⎪⎪⎩

p

√
r
Dα

w,
∣∣∣sgn(x)|x|1/p − sgn(x0)|x0|1/p

∣∣∣ � (4Dαr)1/2

p
t,

r +
p2

4Dα
w2,

∣∣∣sgn(x)|x|1/p − sgn(x0)|x0|1/p
∣∣∣ � (4Dαr)1/2

p
t.

(42)

9
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Therefore, for sgn(x) = sgn(x0), the LDF reads

I (we) =

⎧⎪⎪⎨
⎪⎪⎩

p

√
r
Dα

we,
∣∣∣|x|1/p − |x0|1/p

∣∣∣ � (4Dαr)1/2

p
t,

r +
p2

4Dα
w2

e ,
∣∣∣|x|1/p − |x0|1/p

∣∣∣ � (4Dαr)1/2

p
t,

(43)

and

I (wne) =

⎧⎪⎪⎨
⎪⎪⎩

p

√
r
Dα

wne, |x|1/p + |x0|1/p � (4Dαr)1/2

p
t,

r +
p2

4Dα
w2

ne, |x|1/p + |x0|1/p � (4Dαr)1/2

p
t,

(44)

for sgn(x) �= sgn(x0).
For the symmetric case x0 = 0, we find

Φ(τ ,w) = rτ +
p2

4Dτ
w2/p, (45)

and

I

(
|x|
ξ(t)

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p

√
r
D

(
|x|
tp

)1/p

, |x| � (4p2Dαr)p/2tp,

r +
p2

4Dα

(
|x|
tp

)2/p

, |x| � (4p2Dαr)p/2tp.

(46)

It generalises the classical result for normal Brownian motion to the case of anomalous dif-
fusion. Indeed, in normal diffusion, the diffusion length grows like t1/2, whereas the length
scale ξ(t) grows linearly with t. In anomalous diffusion, we have the diffusion length ∼tp/2,
whereas ξ(t) grows like tp. So, this anomalous scaling is fully consistent with the normal diffu-
sion behaviour under the reset. We also conclude that the boundary between the NESS region
and the transient region given in equation (46) moves with a non-constant velocity given by

v(t) = p
(
4p2Dαr

)p/2
tp−1 � tα/(2−α). (47)

In the case of a constant diffusion coefficient (α = 0), we recover the constant velocity of
the boundary between the region with NESS and the transient region, given by v =

√
4D0r

[28, 67].
The LDF (46) for different α is shown in figure 2. All trajectories that satisfy

|x| � (4p2Dαr)p/2 tp relax to the NESS, represented by the first line in the LDF (46). Those
trajectories have experienced a large number of resetting events. The trajectories for which
|x| � (4p2Dαr)p/2 tp (second line of equation (46)) are in the transient regime. Those particles
have experienced almost no resetting up to time t, which is a very rare event, and the corre-
sponding probability density is of the form e−rtP(x, t), where P(x, t) is the PDF of the process
without resetting. In figure 3 we represent the PDF (23) for different parameters α at t = 100.
For plotting the PDF we use relations (24) and (25) for x0 = 0, and employ the numerical
inverse Laplace transform algorithm in Mathematica [70].

10
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Figure 2. LDF (46) for Dα = 1, r = 1 plotted in scaled form. Black dotted line and
blue solid line correspond to the first and second lines in equation (46), respectively, for
α = 0.5 in the left panel and α = −0.5 in the right panel. Pink dot–dashed line and red
dashed line correspond to the first and second lines in equation (46), respectively, for
α = 0.

Figure 3. PDF for Dα = 1, r = 1 and x0 = 0 and t = 100 for α = 0.5 (blue solid line),
α = 0 (red dashed line) and α = −0.5 (black dot–dashed line). Linear–linear plot in
the left panel and log–linear plot in the right panel.

3.4. Numerical simulations

In order to perform numerical simulations of the HDP with stochastic resetting, we consider
the Langevin equation in the presence of resetting (see references [71, 72])

x(t +Δt) =

⎧⎪⎨
⎪⎩

x(0), with prob. rΔt,

x(t) +
√

2D(x)Δt η(t) +
2 − A

2

√
2D(x)

d
√

2D(x)
dx

Δt, with prob. (1 − rΔt).

(48)

Here we introduce an additional positive parameter A which allows one to consider different
interpretations of the Langevin equation. Namely, at A = 1 we get a discretised version of the
Langevin equation in Stratonovich interpretation, which we use in our analytical calculations.
The drift term in equation (48) is a consequence of the conversion of the Stratonovich stochastic
differential equation equation (3) into an Itô stochastic differential equation which is then inte-
grated using the Euler–Maruyama scheme (see [24, 73, 74]). The equation corresponds to the

11
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Figure 4. PDF (18) in the absence of resetting for Dα = 1, x0 = 7, t = 25, r = 0 and
α = 0.5 (blue line), α = 0 (red line), and α = −0.5 (black line). Results from Langevin
simulations are shown by squares, triangles and circles for α = 0.5, 0 and −0.5, respec-
tively. The PDF shapes are shown in linear (left panel) and log–linear (right panel)
scales.

Itô interpretation for A = 2 and can be also used to model the Klimontovich–Hänggi interpre-
tation when using A = 0. In order to avoid particle trapping and divergencies of the diffusion
coefficient at the origin x = 0, we use a modified form of the diffusion coefficient such that
D(x) = Dα(ε+ |x|)α. All simulations have been performed with ε = 0.1 and Δt = 0.01. The
noise η(t) is sampled from the Gaussian normal distribution N(0,Δt). The effect of stochastic
resetting is modelled by sampling a resetting time from an exponential distribution with a rate
r, representing the time between two events in a Poisson point process. In between two events
the particle undergoes heterogeneous diffusion and resets at x0 afterwards. To analyse the tem-
poral evolution of the PDF, we simulate an ensemble of 1.5 × 106 particles for different values
of α (such that α < 2) across a time span of 104 to observe the convergence of the process to
the stationary state.

Graphical representations of the PDF for different values of α are shown in figure 4 for the
case without resetting and in figure 5 for the case with resetting. For plotting the analytical
results for the PDF we use the numerical inverse Laplace transform algorithm in Mathemat-
ica [70]. Excellent agreement with the simulations is observed. The MSD obtained from the
analytical results and the simulations is presented in figure 6. From the figure, one observes
that the MSD saturates at around t = 103. This means that the PDF reaches the NESS at times
beyond t = 103. In figure 7 we plot the PDF at t = 1000 and we observe that it coincides with
the PDF (23) in the NESS.

4. HDP with smooth diffusivity profile

The HDP with resetting to the initial position x0 = 0 can be represented by the following
equation

∂

∂t
Pr(x, t|0) =

∂

∂x

{√
D(x)

∂

∂x

[√
D(x)Pr(x, t|0)

]}
− rPr(x, t|0) + rδ(x), (49)

with Pr(x, t = 0|0) = δ(x), and position-dependent diffusion coefficient of the form D(x) =
Dα(ε+ |x|)α, and where r is the rate of resetting to the initial position x0 = 0. The second term
on the right-hand side of equation (49) represents the loss of probability from the position x due
to reset to the initial position x0 = 0, and the third term accounts for the gain of probability at
x0 = 0 due to resetting from all other positions. For α = 0 one obtains the standard diffusion

12
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Figure 5. PDF (23) in the presence of resetting forDα = 1, x0 = 7, t = 25, r = 0.01 and
α = 0.5 (blue line), α = 0 (red line), and α = −0.5 (black line). Langevin simulations
results are shown by squares, triangles and circles for α = 0.5, 0 and −0.5, respectively.
The PDF shapes are shown in linear (left panel) and log–linear (right panel) scales.

Figure 6. MSD in the absence (r = 0) and presence of resetting (r = 0.01) for Dα = 1,
x0 = 1 and α = 0.5 (blue lines), α = 0 (red lines), α = −0.5 (black lines). Langevin
simulations results for α = 0.5 are shown by white squares (r = 0) and blue squares
(r = 0.01), for α = 0 by white triangles (r = 0) and red triangles (r = 0.01), and for
α = −0.5 by white circles (r = 0) and black circles (r = 0.01).

equation with stochastic resetting [26, 27, 41]. In what follows, we solve equation (49) and
show the connection with the results obtained above. For alternative representations of HDP
with stochastic resetting see appendix B.

4.1. PDF

The Laplace transform of equation (49) reads

(s + r)P̂r(x, s|0) − s−1(s + r)δ(x) = Dα
∂

∂x

{
(ε+ |x|)α/2

× ∂

∂x

[
(ε+ |x|)α/2P̂r(x, s|0)

]}
. (50)
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Figure 7. PDF (23) in the presence of resetting for Dα = 1, x0 = 1, t = 1000, r = 0.01
and α = 0.5 (blue solid line), α = 0 (red dashed line), and α = −0.5 (black dot–dashed
line). The PDF shapes are shown in linear (left panel) and log–linear (right panel)
scales. We checked that the PDF at t = 103 coincides with the PDF (23) in the NESS,
equation (26).

By differentiation with respect to x one finds

(s + r)P̂r(x, s|0) − s−1(s + r)δ(x) = Dα

[
αδ(x)(ε+ |x|)α−1P̂r(x, s|0)

+
(α− 1)α

2
(ε+ |x|)α−2P̂r(x, s|0)

+ (2θ(x) − 1)
3α
2

(ε+ |x|)α−1 ∂

∂x
P̂r

× (x, s|0) + (ε+ |x|)α ∂2

∂x2
P̂r(x, s|0)

]
, (51)

where θ(x) is the Heaviside step function. By using |x| = y, P̂r(|x|, s|0) = P̂r(y, s|0) =
Cε(s) f̂ (y, s|0) and d

dx θ(x) = δ(x), we transform equation (51) to

(s + r)Cε(s) f̂ (y, s|0) − s−1(s + r)δ(x) = Dα
(α− 1)α

2
Cε(s)(ε+ y)α−2 f̂ (y, s|0)

+Dα α(ε+ y)α−1Cε(s)δ(x) f̂ (y, s|0)

+Dα
3α
2

(ε+ y)α−1Cε(s)
∂

∂y
f̂ (y, s|0)

+ 2DαCε(s)(ε+ y)αδ(x)
∂

∂y
f̂ (y, s|0)

+DαCε(s)(ε+ y)α
∂2

∂y2
f̂ (y, s|0). (52)

Therefore, we obtain the system of equations
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2

∂y2
f̂ (y, s|0) +

3α/2
ε+ y

∂

∂y
f̂ (y, s|0) +

[
− (s + r)

Dα
(ε+ y)−α +

(α − 1)α
2

1
(ε+ y)2

]
f̂ (y, s|0) = 0,

−s−1(s + r) = Dα Cε(s)

[
α(ε+ y)α−1 f̂ (y, s|0) + 2(ε+ y)α

∂

∂y
f̂ (y, s|0)

]∣∣∣∣
y=0

.

(53)
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The first equation in (53) is the Lommel-type equation [75] (ε+ y → ȳ)

z′′(ȳ) +
1 − 2β′

ȳ
z′(ȳ) +

[(
aα′ȳα

′−1
)2

+
β′2 − ν2α′2

ȳ2

]
z(ȳ) = 0, (54)

with solution

z(ȳ) = ȳβ
′
Zν

(
iaȳα

′
)

,

where Zν(ȳ) = C1Jν(ȳ) + C2Nν(ȳ) is the Bessel function. The boundary condition at infinity
equals zero and due to the complex argument of the Bessel function (i is the imaginary unit),
the solution is given by

z(ȳ) = ȳβ
′
Kν

(
aȳα

′
)

,

where Kν (ȳ) is the modified Bessel function of the third kind. Here we find that

a =
2

2 − α

√
s + r
Dα

, α′ =
2 − α

2
, β′ =

2 − 3α
4

, ν =
1
2
.

Thus, from the first equation in the system (53), we find the solution (p = 2
2−α )

P̂r,ε(x, s|0) = Cε(s) f̂ (|x|, s|0)

= Cε(s)(ε+ |x|)β′K1/2

(
a(ε+ |x|)α′

)

= Cε(s)(ε+ |x|)β′−α′/2

√
π

2a
e−a(ε+|x|)α′ , (55)

where a = p
√

s+r
Dα

,α′ = 1
p , β′ = 3−2p

2p , while Cε(s) is obtained from the second equation in (53)

and reads

Cε(s) =
D−3/4

α√
2π/p

s−1(s + r)3/4 exp

(
p

√
s + r
Dα

ε1/p

)
. (56)

Therefore, the solution (55) becomes

P̂r,ε(x, s|0) =
s−1(s + r)1/2

√
4Dα

(
ε+ |x|

)−1+1/p
exp

(
−p

√
s + r
Dα

[(
ε+ |x|

)1/p − ε1/p
])

.

(57)

In the limit ε→ 0, we recover the result (19). In the absence of resetting the PDF becomes

P̂0,ε(x, s|0) =
s−1/2

√
4Dα

(
ε+ |x|

)−1+1/p
exp

(
−p

√
s
Dα

[(
ε+ |x|

)1/p − ε1/p
])

, (58)
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which by inverse Laplace transform yields

P0,ε(x, t) =

(
ε+ |x|

)−1+1/p

√
4πDαt

exp

⎛
⎜⎝−p2

[(
ε+ |x|

)1/p − ε1/p
]2

4Dαt

⎞
⎟⎠ . (59)

From equation (57) one finds that the PDF in the presence of resetting can be derived from the
PDF in the absence of resetting through the renewal equation

Pr,ε(x, t|0) = e−rtP0,ε(x, t) +
∫ t

0
r e−rt′P0,ε(x, t′)dt′. (60)

In the general case the integral has to be evaluated numerically.

4.2. MSD

From the PDF (57) we find the MSD

〈
x2(s)

〉
r,ε

=
2Dp/2

α

pp−1

s−1

(s + r)p/2
exp

(
p

√
s + r
Dα

ε1/p

)

×
[(

p

√
s + r
Dα

)−p

Γ

(
2p, p

√
s + r
Dα

ε1/p

)
− εΓ

(
p, p

√
s + r
Dα

ε1/p

)]
, (61)

where Γ(a, z) is the incomplete gamma function. For ε→ 0, we use that Γ(a, z) ∼ Γ(a) for
z → 0 and recover the result (32) for the MSD. In the long time limit, the MSD saturates,

〈
x2(t)

〉
r,ε

∼ lim
s→0

s
〈

x2(s)
〉
=

2
pp−1

(
Dα

r

)p/2

exp

(
p

√
r
Dα

ε1/p

)

×

⎡
⎢⎣Γ
(

2p, p
√

r
Dα

ε1/p
)

(
p
√

r
Dα

)p − εΓ

(
p, p

√
r
Dα

ε1/p

)⎤⎥⎦ . (62)

In the limit ε→ 0, the MSD reduces to

〈
x2(s)

〉
r,ε=0

=
2Dp/2

α

pp−1

s−1

(s + r)p/2

(
p

√
s + r
Dα

)−p

Γ (2p) =
Γ(2p+ 1)

p2p
Dp

α

s−1

(s + r)p
, (63)

which by inverse Laplace transform becomes

〈
x2(t)

〉
r,ε=0

=
Γ (1 + 2p)

p2p
Dp

αtpEp
1,p+1 (−rt) =

Γ (1 + 2p)
p2p

Dp
α

rp

[
1 − Γ(p, rt)

Γ(p)

]
, (64)

and is equivalent to the result (32).
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Figure 8. PDF (59) in absence of resetting for Dα = 1, x0 = 0, t = 50, r = 0 and
α = 0.5 (blue line: exact solution; squares: simulations), α = 0 (red line: exact solu-
tion; triangles: simulations), α = −0.5 (black line: exact solution; circles: simulations).
The PDF is shown using linear scale in the left panel and in for log–linear scale in the
right panel.

4.3. NESS and LDF

From the PDF (57) in Laplace space, we find that in the long time limit the solution reaches a
NESS, given by

Pst(x) = lim
s→0

sPr,ε(x, s|0) =
r1/2

√
4Dα

(
ε+ |x|

)−1+1/p
exp

(
−p

√
r
Dα

[(
ε+ |x|

)1/p − ε1/p
])

.

(65)

The way to calculate the LDF is the same as in section 3.3. Following the procedure outlined
there, we find

Φ(τ ,w) = rτ +
p2

4Dτ
w2, (66)

where

w =
(ε+ |x|)1/p − ε1/p

t
.

For the extremum point we then obtain τ∗ =
p√

4Dαr
w, and the LDF becomes

I (w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p

√
r
D

(ε+ |x|)1/p − ε1/p

t
, (ε+ |x|)1/p � ε1/p +

(4Dαr)1/2

p
t,

r +
p2

4Dα

(
(ε+ |x|)1/p − ε1/p

t

)2

, (ε+ |x|)1/p � ε1/p +
(4Dαr)1/2

p
t.

(67)

4.4. Numerical simulations

We again consider the Langevin equation (48) in the presence of resetting, based on the reg-
ularised diffusion coefficient D(x) = Dα(ε+ |x|)α and the same parameters as in section 3.4.
The initial position of the particle is at the origin, x0 = 0. A comparison between the analytical
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Figure 9. PDF (60) in case of resetting for Dα = 1, x0 = 0, t = 50, r = 0.01 and
α = 0.5 (blue line: exact solution; squares: simulations), α = 0 (red line: exact solu-
tion; triangles: simulations), α = −0.5 (black line: exact solution; circles: simulations).
The PDF is shown using linear scale in the left panel and for log–linear scale in the right
panel.

results for the PDF, obtained via the numerical inverse Laplace transform algorithm in Math-
ematica [70] and the simulations results for different values of the parameter α are shown in
figures 8 and 9 in the absence and presence of resetting, respectively. Very good agreement is
observed.

5. Summary

We presented a detailed analysis of an HDP in the presence of stochastic resetting with Poisso-
nian statistic. The heterogeneity is characterised by the position-dependentdiffusion coefficient
D(x) ∼ |x|α, α < 2, and using the Stratonovich interpretation of the Langevin equation of
motion. In the short time limit compared to the inverse resetting rate, we reproduce all results
for the PDF and MSD for the case without resetting. In the long time limit, we show how
the MSD saturates due to the resetting mechanism, and how the corresponding PDF reaches
a NESS. The transition to this state is analysed in terms of the LDF. We showed that the dif-
fusion length in the presence of resetting scales like ξ � tp, in contrast to the scaling ξ � tp/2

in the absence of resetting. In particular, we show that the boundary separating the central
region, in which the NESS is achieved, from the domain, in which the system is still in a
transient state, expands with the non-constant velocity v(t) � tα/(2−α). In the normal diffu-
sion case (α = 0) this result corresponds to the known formula with a constant velocity of
the boundary movement. The analytical results were verified by extensive numerical simula-
tions using the Langevin equation with resetting. Similar analysis can be performed for the
Itô and Hänggi–Klimontovich interpretation of the HDP, and we leave it as a task for future
research. Our further research includes the study of the first passage properties of HDP with
resetting as well as similar analysis of the other prescriptions (Itô and Hänggi–Klimontovich)
and differences/similarities between them. We also note that very recently the first study of
heterogeneous process with resetting in Hänggi–Klimontovich interpretation was undertaken
in reference [76].
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Appendix A. Calculation of moments

Here we provide a detailed calculation of the moments 〈xn(t)〉 =
∫∞
−∞ xnP(x, t)dx, where

n = 0, 1, 2, . . . , of the PDF (18). For even moments n = 2m, with m = 0, 1, 2, . . . , we have

〈x2m(t)〉 =
∫ ∞

−∞

x2m|x|1/p−1

√
4πDαt

exp

(
− p2

[
sgn(x) |x|1/p − sgn(x0) |x0|1/p

]2
4Dαt

)
dx

=

∫ ∞

0

x2mx1/p−1

√
4πDαt

exp

(
− p2

[
x1/p − sgn(x0) |x0|1/p

]2
4Dαt

)
dx

+

∫ 0

−∞

x2m|x|1/p−1

√
4πDαt

exp

(
− p2

[
|x|1/p + sgn(x0) |x0|1/p

]2
4Dαt

)
dx

= Ie,1 + Ie,2. (A.1)

For the first integral, by introducing x1/p = y, i.e. 1
p x1/p−1 dx = dy, we find

Ie,1 =

∫ ∞

0

py2mp

√
4πDαt

exp

(
− p2

[
y − sgn(x0) |x0|1/p

]2
4Dαt

)
dy, (A.2)

while for the second integral, where we first introduce z = −x and then z1/p = y, we find

Ie,2 =

∫ ∞

0

py2mp

√
4πDαt

exp

(
− p2

[
y + sgn(x0) |x0|1/p

]2
4Dαt

)
dy. (A.3)

Thus, for the even moments, we have

〈x2m(t)〉 =
2p exp

(
− p2

4Dα t |x0|2/p
)

√
4πDαt

∫ ∞

0
y2mp exp

(
− p2

4Dαt
y2

)
cosh

(
2 sgn(x0) |x0|1/py

)
dy

=
2p exp

(
− p2

4Dα t |x0|2/p
)

√
4πDαt

Γ(2mp+ 1)

2
(

2 p2

4Dα t

)mp+1/2
exp

(
1
2

p2

4Dαt
|x0|2/p

)

×

⎡
⎣D−(2mp+1)

⎛
⎝−

√
2

p2

4Dαt
|x0|1/p

⎞
⎠+ D−(2mp+1)

⎛
⎝
√

2
p2

4Dαt
|x0|1/p

⎞
⎠
⎤
⎦ , (A.4)
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where Dμ(z) are parabolic cylinder functions [75], given by

Dμ(z) = 2μ/2 e−
z2
4

[ √
π

Γ
(

1−μ
2

) 1F1

(
−μ

2
,

1
2

,
z2

2

)
−

√
2πz

Γ
(
− μ

2

) 1F1

(
1 − μ

2
,

3
2

,
z2

2

)]
. (A.5)

This yields

〈x2m(t)〉 = Γ(mp+ 1/2)
p2mp

√
π

(4Dαt)mp
1F1

(
−mp,

1
2

,− p2

4Dαt
|x0|2/p

)
, (A.6)

where we use the property

1F1(a, b, z) = ez
1F1(b − a, b,−z). (A.7)

From here we find that 〈x0(t)〉 = 1, i.e. the PDF is normalised, while for the MSD and fourth
moment, we obtain

〈x2(t)〉 = Γ(p+ 1/2)
p2p

√
π

(4Dαt)p
1F1

(
−p,

1
2

,− p2

4Dαt
|x0|2/p

)
(A.8)

and

〈x4(t)〉 = Γ(2p+ 1/2)
p4p

√
π

(4Dαt)2p
1F1

(
−2p,

1
2

,− p2

4Dαt
|x0|2/p

)
, (A.9)

respectively. By using Γ(z)Γ(z + 1/2) = 21−2z√π Γ(2z) with z = p+ 1/2 in equation (A.8),
we obtain equation (20).

For odd moments n = 2m + 1, with m = 0, 1, 2, . . . , we have

〈x2m+1(t)〉 =
∫ ∞

−∞

x2m+1|x|1/p−1

√
4πDαt

exp

(
− p2

[
sgn(x) |x|1/p − sgn(x0) |x0|1/p

]2
4Dαt

)
dx

=

∫ ∞

0

x2m+1x1/p−1

√
4πDαt

exp

(
− p2

[
x1/p − sgn(x0) |x0|1/p

]2
4Dαt

)
dx

+

∫ 0

−∞

x2m+1|x|1/p−1

√
4πDαt

exp

(
− p2

[
|x|1/p + sgn(x0) |x0|1/p

]2
4Dαt

)
dx

= Io,1 + Io,2. (A.10)

In the first integral we introduce x1/p = y, to find

Io,1 =

∫ ∞

0

py(2m+1)p

√
4πDαt

exp

(
− p2

[
y − sgn(x0) |x0|1/p

]2
4Dαt

)
dy, (A.11)
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while in the second integral we first introduce z = −x and then z1/p = y to find

Io,2 = −
∫ ∞

0

py(2m+1)p

√
4πDαt

exp

(
− p2

[
y + sgn(x0) |x0|1/p

]2
4Dαt

)
dy. (A.12)

The odd moments become

〈x2m+1(t)〉 =
2p exp

(
− p2

4Dαt |x0|2/p
)

√
4πDαt

×
∫ ∞

0
y(2m+1)p exp

(
− p2

4Dαt
y2

)
sinh

(
2 sgn(x0) |x0|1/py

)
dy

=
2p exp

(
− p2

4Dαt |x0|2/p
)

√
4πDαt

Γ([2m + 1]p+ 1)

2
(

2 p2

4Dαt

)mp+(p+1)/2 exp

(
1
2

p2

4Dαt
|x0|2/p

)

×

⎡
⎣D−([2m+1]p+1)

⎛
⎝−

√
2

p2

4Dαt
sgn(x0)|x0|1/p

⎞
⎠

− D−([2mp+1]+1)

⎛
⎝
√

2
p2

4Dαt
sgn(x0)|x0|1/p

⎞
⎠
⎤
⎦ , (A.13)

which can be transformed to

〈x2m+1(t)〉 = 2pΓ
( [2m+1]p

2 + 1
)

p(2m+1)p
√
π

(4Dαt)
(2m+1)p−1

2 sgn(x0)|x0|1/p

× 1F1

(
1 − (2m + 1)p

2
,

3
2

,− p2

4Dαt
|x0|2/p

)
. (A.14)

Therefore, the first and third moments read

〈x(t)〉 = 2pΓ
( p

2 + 1
)

pp
√
π

(4Dαt)
p−1

2 sgn(x0)|x0|1/p
1F1

(
1 − p

2
,

3
2

,− p2

4Dαt
|x0|2/p

)
(A.15)

and

〈x3(t)〉 = 2pΓ
( 3p

2 + 1
)

p3p
√
π

(4Dαt)
3p−1

2 sgn(x0)|x0|1/p
1F1

(
1 − 3p

2
,

3
2

,− p2

4Dαt
|x0|2/p

)
,

(A.16)
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respectively. Knowing the first fourth moments one can calculate the kurtosis and skewness of
the PDF.

Appendix B. Equivalent formulations of HDP with stochastic resetting

Here we provide alternative approaches to the HDP. Let us consider the Fokker–Planck
equation for the PDF Pr(x, t|x0),

∂

∂t
Pr(x, t|x0) =

∂

∂x

{√
D(x)

∂

∂x

[√
D(x)Pr(x, t|x0)

]}
− rPr(x, t|x0) + rδ(x − x0), (B.1)

with initial position Pr(x, t = 0|x0) = δ(x − x0), where r is the rate of resetting to this ini-
tial position x0. The second term on the right-hand side of equation (B.1) represents the loss
of probability from position x due to reset to x0, and the third term accounts for the gain of
probability at x0 due to resetting from all other positions. For α = 0 one obtains the standard
diffusion equation with stochastic resetting [26, 27, 41].

By using the Laplace transform of equation (B.1) we have

sP̂r(x, s|x0) − δ(x − x0) =
∂

∂x

{√
D(x)

∂

∂x

[√
D(x)Pr(x, s|x0)

]}

− rP̂r(x, s|x0) +
r
s
δ(x − x0), (B.2)

which can be rewritten as

sP̂r(x, s|x0) − δ(x − x0) = s × 1
s + r

∂

∂x

{√
D(x)

∂

∂x

[√
D(x)P̂r(x, s|x0)

]}
. (B.3)

The inverse Laplace transform yields the heterogeneous diffusion equation with exponential
memory kernel,

∂

∂t
Pr(x, t|x0) =

∂

∂t

∫ t

0
η(t − t′)

∂

∂x

{√
D(x)

∂

∂x

[√
D(x)Pr(x, t′|x0)

]}
dt′, (B.4)

where η(t) = e−rt, which is equivalent to equation (B.1), see also [77]. This is the second possi-
ble form of HDP with resetting. We note that the HDP with memory kernel from the left-hand
side of the equation, for x0 = 0 has been recently analysed in reference [78].

Let us now consider the heterogeneous diffusion equation (5) without resetting. By applying
the Laplace transform we have

sP̂(x, s) − δ(x − x0) =
∂

∂x

{√
D(x)

∂

∂x

[√
D(x)P(x, s)

]}
. (B.5)

By using s → s + r it becomes

(s + r)P̂(x, s + r) − δ(x − x0) =
∂

∂x

{√
D(x)

∂

∂x

[√
D(x)P(x, s + r)

]}
, (B.6)

i.e.

s + r
s

P̂(x, s + r) − 1
s
δ(x − x0) =

1
s + r

∂

∂x

{√
D(x)

∂

∂x

[√
D(x)

s + r
s

P(x, s + r)

]}
. (B.7)
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Let us introduce the function Pr(x, t|x0), which in Laplace space is defined by

P̂r(x, s|x0) =
s + r

s
P̂(x, s + r). (B.8)

From this equation we notice that the PDF in the presence of resetting can be represented by

P̂r(x, s|x0) =
s + r

s
P̂(x, s + r) =

s + r
s

∫ ∞

0
P(x, u)e−u(s+r) du, (B.9)

which has the form of a subordination integral in Laplace space,

P̂r(x, s|x0) =
∫ ∞

0
P(x, u)ĥ(u, s)du, (B.10)

where

ĥ(u, s) =
s + r

s
e−u(s+r) (B.11)

is the so-called subordination function (for details on subordination see [6, 79]). By inverse
Laplace transform of equation (B.10) we arrive at the known form for the subordination
integral,

Pr(x, t|x0) =
∫ ∞

0
P(x, u)h(u, t)du, (B.12)

where

h(u, t)= L−1

[
s + r

s
e−u(s+r)

]
= e−rt δ(t − u) + r e−ru θ(t − u).

Therefore,

Pr(x, t|x0) =
∫ ∞

0

[
e−rt δ(t − u) + r e−ruθ(t − u)

]
P(x, u)du

= e−rtP(x, t) +
∫ t

0
r e−ruP(x, u)du, (B.13)

which is the renewal equation (23). This is the third possible representation of the HDP with
resetting, in addition to those in equations (B.1) and (B.4).
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