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We study the crossing time statistic of diffusing point particles between the two ends of expanding and
narrowing two-dimensional conical channels under a transverse external gravitational field. The theoretical
expression for the mean first-passage time for such a system is derived under the assumption that the axial
diffusion in a two-dimensional channel of smoothly varying geometry can be approximately described as a
one-dimensional diffusion in an entropic potential with position-dependent effective diffusivity in terms of the
modified Fick-Jacobs equation. We analyze the channel crossing dynamics in terms of the mean first-passage
time, combining our analytical results with extensive two-dimensional Brownian dynamics simulations, allowing
us to find the range of applicability of the one-dimensional approximation. We find that the effective particle
diffusivity decreases with increasing amplitude of the external potential. Remarkably, the mean first-passage
time for crossing the channel is shown to assume a minimum at finite values of the potential amplitude.
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I. INTRODUCTION

The Brownian motion of molecules, particles, or even
living microorganisms in confined geometries such as pores
and channels, plays a key role on various scales in both
nature and technology [1–25]. Transport in confined geome-
tries within quasi-one-dimensional systems exhibits a very
rich and striking phenomenology and has been studied in-
depth in many contexts, examples including diffusion in
human metabolism, breathing, or medical drug delivery [26],
as well as in living cells [27], the motion of viruses and
bacteria [28,29], solid-state and protein nanopores as single-
molecule biosensors for the detection and structural analysis
of individual molecules [30–32], transport in zeolites [33],
synthetic nanopores [34–37], microfluidic devices [38], chan-
nels in biological systems [39], and artificial pores in thin solid
films [40].

A universal description of an unbiased Brownian particle
is given by the free diffusion coefficient D0 in homogeneous
systems. In heterogeneous environments with finite character-
istic length scales of the disorder, the particle motion becomes
Brownian at times sufficiently exceeding the correlation time
of the system [41], albeit the crossover time may be sig-
nificantly delayed [42]. When the diffusion takes place in
systems decorated with excluded-volume obstacles, the dif-
fusion may be locally free and characterized by the diffusivity
D0, while at long times the particle motion is again Brow-
nian but with an effective diffusion coefficient Deff [43–46].
Typically the mean squared displacement (MSD) in such sys-
tems monotonically crosses over from the short time behavior
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〈�x2(t )〉 � D0t to � Defft , where D0 > Deff . Another rele-
vant case is that of confinement by boundaries, in channels or
porous media, in which a significant slowdown of the MSD
is effected [47–49]. Spatial confinement modifies the equilib-
rium of the system and its dynamical properties, increasing
the hydrodynamic drag on such components and limiting the
configuration space accessible to its diffusing parts [50]. In
this sense, asymmetry plays a major role in the transport
of a Brownian particle through a channel [51,52], Brownian
pumps [53,54], and Brownian ratchets [14,55].

In simpler systems transitions across entropic or energetic
barriers effect single-exponential kinetics of processes such as
channel-facilitated transport of solutes to isomerization reac-
tions. Recent experiments with single biological nanopores,
pulling proteins and nucleic acids, as well as single-molecule
fluorescence spectroscopy have raised a number of questions
that stimulated the theoretical and computational investigation
of barrier-crossing dynamics [56–73]. The quantity of interest
in such studies is the time required for the system to pass
over the barrier region. This time, called direct-transit time
or transition path, is a random variable, characterized by the
associated probability density and mean value.

While the transition path quantifies exclusively success-
ful crossing events, the first-passage time counts the entire
time elapsed until the first accomplished crossing event. First-
passage problems arise in an extensive range of stochastic
processes of practical interest [12]. Indeed, examples for first
encounter-controlled events [74] include chemical and bio-
chemical reactions [75–78], distance-effects on rapid search
of signaling molecules [79,80], trafficking receptors on bi-
ological membranes [81], animal foraging [82–84], and the
spreading of sexually transmitted diseases in a human social
network or of viruses across the World Wide Web [85]. It is
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FIG. 1. Schematic representation of a two-dimensional asym-
metric conical channel formed by straight walls in the presence of
a constant transverse (“gravitational”) force G (shown as a green
downwards arrow). The lower boundary is given by h1(x) = λ1x − b
(shown as the blue solid line), while the upper boundary is given
by h2(x) = λ2x + b (shown as the blue solid line). The channel’s
variable width is given by w(x) = h2(x) − h1(x), and its straight
midline by y0(x) = [h1(x) + h2(x)]/2 (shown as the dotted orange
line). Panel (a) shows an expanding channel, i.e., the transition of
the particle occurs from the narrow to the wide end (n → w). In
such a case, the Brownian particle starts from the reflecting boundary
located at x = 0 and is then removed by the absorbing boundary at
x = L (shown as the red vertical dashed line). Panel (b) shows a
narrowing channel, i.e., the transition of the particle is from the wide
to the narrow end (w → n). In this case, the Brownian particle starts
from the reflecting boundary located at x = L and is removed by the
absorbing boundary at x = 0 (shown as the red vertical dashed line).

worth mentioning that it was recently shown that in confining
channel geometries the channel-intrinsic resistance is directly
proportional to the mean first-passage times (MFPTs) of the
molecule between the two channel ends [86]. Moreover, first-
exit times were analyzed recently in periodic channels with
narrow passageways and position-dependent diffusivity [87].

The aim of this article is to study the transitions of dif-
fusing point particles between the two ends of geometrically
expanding and narrowing two-dimensional conical channels
under a transverse gravitational external field by means of the
MFPT, as sketched in Fig. 1. The theoretical expression for the
mean-fist passage time for such a system is derived assum-
ing that the axial diffusion in a two-dimensional channel of
smoothly varying geometry can be approximately described
as one-dimensional diffusion with a position dependent diffu-
sion coefficient.

The remainder of this article is organized as follows. After
a brief introduction into the theory of diffusion in geometric

channels in Sec. II, in Sec. III we compare our theoreti-
cal results derived in the framework of the one-dimensional
description with the results obtained from two-dimensional
Brownian dynamics simulations. In Sec. IV we discuss our
findings and their implications.

II. ENTROPIC POTENTIAL AND EFFECTIVE
ONE-DIMENSIONAL DESCRIPTION

When diffusion occurs in quasi-one-dimensional channel
structures, one approach to treat the problem is to map the
particle motion onto an effective one-dimensional (1D) de-
scription in terms of the diffusion along the midline y0(x) of
the channel, as a function of the longitudinal coordinate x. The
key point of the derivation is the assumption of equilibration
in the transverse direction. The so-called Fick-Jacobs (FJ) ap-
proach consists of eliminating these fast transverse stochastic
degrees of freedom. The associated, approximate descrip-
tion relies on the modified Fick-Jacobs-like equation derived
by Zwanzig (Zw) for the probability density c(x, t ) in the
channel [2],

∂c(x, t )

∂t
= ∂

∂x

{
D(x)w(x)

∂

∂x

[
c(x, t )

w(x)

]}
, (1)

where w(x) is the channel width and D(x) is the position-
dependent diffusion coefficient. Equation (1) with a position-
independent diffusion coefficient, D(x) = D0, is known as
the ordinary FJ equation [1,88]. The effective 1D probability
density c(x, t ) is related to the 2D probability density ρ(x, y, t )
by the projection

c(x, t ) =
∫

w(x)
ρ(x, y, t )dy. (2)

It is well known that confinement in higher dimensions
may give rise to an effective entropic potential in reduced
dimensions. In fact, Eq. (1) is formally equivalent to the
Smoluchowski equation

∂ p(x, t )

∂t
= ∂

∂x

{
D(x)e−βU (x) ∂

∂x
[eβU (x) p(x, t )]

}
, (3)

where the entropic potential is given by −βU (x) =
ln[w(x)/w(x0)] with β = 1/(kBT ), where kB is the Boltzmann
constant, T is the absolute temperature, and U (x) at x = x0 is
taken to be zero.

The expression for the position-dependent effective diffu-
sion coefficient for a narrow 2D channel of varying width that
has a straight midline suggested by Reguera and Rubi (RR)
based on heuristic arguments reads

D(x) ≈ DRR(x) = D0[
1 + 1

4w′2(x)
]η , (4)

where w′(x) = dw(x)/dx. This last equation is a generaliza-
tion of Zwanzig’s expression [2]. Alternative derivations of
this equation were given by Kalinay and Percus [16], Martens
et al. [8] and García-Chung and co-workers [9].

Reguera and Rubi [6], Kalinay [21], and later Pompa-
García and Dagdug [20], studied how Eq. (1) is modified
when a gravitational and entropic potential coexist. Pompa-
García and Dagdug showed that for an overdamped Brownian
particle diffusing in a 2D asymmetric channel of varying
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cross-section in the presence of a constant force in the trans-
verse direction, Eq. (3) takes on the modified form [89]

∂c(x, t )

∂t
= ∂

∂x

{
D(x)A(x)

∂

∂x

[
c(x, t )

A(x)

]}
, (5)

where

A(x) =
∫ h2(x)

h1(x)
e−gydy = 1

g

[
e−gh1(x) − e−gh2(x)

]
. (6)

Equation (5) is obtained when a 2D asymmetric channel
is bounded by perfectly reflecting walls given by smooth
functions h1(x) and h2(x), and g = G/kBT , where G stands
for the constant transverse-direction force, and −βU (x) =
ln [A(x)/A(x0)]. In Eq. (6) the coupling between entropy
and energy barriers is reflected by the presence of the
term exp[ghi(x)] (i = 1, 2). For a symmetrical channel, when
h1(x) = −h2(x), A(x) reduces to (2/g) sinh[gh2(x)] [21].

Given the bulk diffusion constants Dx and Dy in the
longitudinal and transverse directions, respectively, we can
introduce the ratio ε = Dx/Dy of the diffusion constants in
the longitudinal and transverse directions. This quantity is
used as an expansion parameter of a perturbative series when
the projection method is applied. Then, the resultant second-
and higher-order derivatives of h(x) are neglected. Inspired by
RR’s and Kalinay’s work, Pompa-García and Dagdug found
the effective diffusivity with the same structure as Eq. (4),

ηa(gw, y′
0) = 1

sinh2
(

1
2 gw

)

×
{

1 + cosh2

(
1

2
gw

)
− gw coth

(
1

2
gw

)}

+ 4
y′

0

w′2

{
y′

0 − w′ coth

(
1

2
gw

)

+1

2
gww′csch2

(
1

2
gw

)}
, (7)

where y0(x) is the midline of the channel. One of the most
important features of Eq. (4) when η is given by Eq. (7)
is the breaking of symmetry for a strong field. Thus while
the predicted diffusivity is D0/[1 + h′2

1 (x)] when G tends to
infinity, for G going to minus infinity, the predicted diffusivity
is D0/[1 + h′2

2 (x)]. In both cases, this constrains the Brownian
dynamics to one dimension over the boundaries h1 or h2,
respectively. In Eq. (7), when y′

0 = 0, η(gh(x)) goes from 1/3
to 1, from negligible G to the strong field case, respectively.

It is worthhwile mentioning that when G goes to zero,
Eq. (7) is equal to 1/3 + 4y′2

0 /w′, and Eq. (4) for an asym-
metric 2D channel reduces to

D(x) = D0[
1 + 1

4w′2(x)
]1/3+4y′2

0 /w′2 . (8)

When y′
0 goes to zero the diffusivity for a 2D symmetric

channel, as proposed by RR, is recovered [6], and it differs
less than 1% from the expression obtained by Dagdug and
Pineda [18,20].

Along with the problem of deriving the modified FJ
equation, there are also questions of the range of applicabil-
ity of this approximate one-dimensional description and the

accuracy of the expressions for the effective position-
dependent diffusivity. To establish the range of applicability
of the effective diffusivity proposed by Pompa-García and
Dagdug, the present paper focuses on the wide-to-narrow and
narrow-to-wide transitions between the two ends of a coni-
cal channel under a transverse gravitational external field, as
shown in Fig. 1. We study the MFPT for various parameters
and observe a remarkable minimum of the MFPT at interme-
diate strengths of the external potential.

III. RESULTS AND DISCUSSION

We now consider a particle diffusing in a 2D asymmet-
ric conical tube of length L and variable width w(x) in the
presence of the transverse gravitational external field G, as
shown in Fig. 1. Note that here we use the arrow notation
xa → xb, which represents particles moving from xa to xb.
Then, τ (x0 → L) denotes the particle MFPT from the initial
position at x0 to the wide end of the channel located at x = L,
in the presence of a reflecting boundary at the narrow chan-
nel end located at x = 0, see the setup in Fig. 1, panel (a).
The MFPT, considered as a function of x0 and assuming that
the reduction to the effective 1D description is applicable by
means of Eq. (5), satisfies [90]

1

A(x0)

d

dx0

[
D(x0)A(x0)

dτ (x0)

dx0

]
= −1, (9)

subject to the boundary conditions

τ

∣∣∣∣
x0=L

= dτ (x0)

dx0

∣∣∣∣
x0=0

= 0. (10)

The solution for τ (x0 → L) is given by

τ (x0 → L) =
∫ L

x0

dx

D(x)A(x)

∫ x

0
A(y)dy. (11)

The MFPT τn→w is the MFPT encoded by Eq. (11) with initial
condition x0 = 0, τn→w = τ (0 → L).

Now, let τ (x0 → 0) be the MFPT from the initial position
x0 to the narrow end of the channel at x = 0, in the presence
of the reflecting boundary at the wider channel end at x = L,
see Fig. 1, panel (b). This MFPT satisfies Eq. (9) as well, with
the boundary

τ

∣∣∣∣
x0=0

= dτ (x0)

dx0

∣∣∣∣
x0=L

= 0. (12)

Integrating Eq. (9) with the boundary conditions (12) we
obtain

τ (x0 → 0) =
∫ x0

0

dx

D(x)A(x)

∫ L

x
A(y)dy. (13)

The MFPT τw→n is the MFPT in Eq. (13) with x0 = L,
τw→n = τ (L → 0). To compute the integrals in Eqs. (11)
and (13), A(x) given by Eq. (6), and the interpolation formula
for D(x) given by Eqs. (4) and (7) has to be replaced.

In Fig. 2 the effective diffusion coefficient for a conical
2D channel corresponding to Eqs. (4) and (7) are shown for
intermediate g values as well as the limiting cases, when
g → 0 and g → ∞ as functions of the position x and the
channel boundary slope λ. One of the main characteristics of
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FIG. 2. Top: Effective diffusion coefficient as function of x and
λ as predicted by Eqs. (4) and (7) for a 2D symmetrical cone-
shaped channel formed by straight boundaries h1 = −λx − 0.1 and
h2 = λx + 0.1. The channel width variation is given by w(x) =
h2(x) − h1(x) and w′(x) = 2λ. The surface graphs from top to bot-
tom correspond to g = 0, 5, 10, 20, and ∞ (almost coinciding with
the result for g = 20), respectively. Bottom: Plot of the effective
diffusion coefficient for fixed position x = 1 as function of λ. For
g = 10, 20, and ∞ the curves are almost indistinguishable.

the surface graphs is that all of them are enclosed between
the cases when g tends to zero or infinity. Another important
characteristic is that as x increases, the diffusivity for g differ-
ent from zero tends to the same value for a fixed value of the
channel boundary slope λ. In the bottom graph of Fig. 2 we
show the dependence of the effective diffusion coefficient at
position x = 1 as function of λ, for different values of g. The
convergence of the behavior for g � 10 is distinct. Given the
expression for the diffusivity and its numerical evaluation, we
are now able to compare the approximate theoretical results
for τn→w and τw→n with the corresponding results from 2D
Brownian dynamics simulations. For the purpose of compar-
ison, we use the same 2D symmetric conical channel from
Ref. [4] to perform our simulations. This channel is formed by
perfectly reflecting, symmetric boundaries given by h1(x) =
−λx − b and h2(x) = λx + b. In the simulations we consider
an overdamped, point-like Brownian particle diffusing inside
the 2D conical channel. We describe the particle dynamics,
subject to the constant perpendicular force G, by means of the
Langevin equation

dr
dt

=
√

2D0ξ(t ) − Gey, (14)

where r = (x, y), and ξ(t ) = (ξx(t ), ξy(t )) are zero-mean
white Gaussian noise terms with autocorrelation functions
〈ξi(t ), ξ j (t ′)〉 = 2δi jδ(t − t ′), where i, j = x, y.

In our simulations the interaction of particles with the
reflecting boundaries are treated entirely as elastic collisions,
such that the bouncing off from a boundary corresponds to
a geometrical reflection. Thus if the particle’s next position
would lie outside a channel boundary, the calculated trajec-
tory corresponds to a reflection of the trajectory’s portion
outside of the boundary. Simulations are run with the time step
�t = 10−8, and the bulk diffusivity is set to D0 = 1, so that√

2D0�t 
 1. Such a small time step is needed due to the
magnitude of the involved forces. Taking a larger �t would
lead to unmanageable bouncing effects with the boundaries,
caused by the missing information of the steps in the dis-
cretized positions of the Brownian particle.

Finally, we set thermal energy to unity, kBT = 1. Stochas-
tic averages were obtained as ensemble averages over
5.0 × 104 independent trajectories.

The results for the MFPT τw→n are shown in Fig. 3,
demonstrating very good agreement of the theoretical expres-
sions with the Brownian dynamics simulations. However, for
growing values of the channel wall slope λ we see that the the-
oretical results overestimates the MFPT somewhat, especially
for the force strength g = 10 (left panel of Fig. 3). In contrast,
the MFPT is somewhat underestimated for intermediate λ and
larger g values (right panel of Fig. 3). In this channel setup, the
external force directs the particles towards the boundary with a
positive slope, causing an effective drift away from the narrow
channel end. As can be seen in Fig. 3 the MFPT drastically
increases with growing external force strength. As function of
the channel slope λ all curves for different g values converge
to a unique value for τw→n in the limit of fully horizontal
boundaries, λ = 0. In this case, the channel passage is not
affected by the force, as can also be seen for the effective
diffusivity in Fig. 2. As a function of the force strength g,
the MFPT τw→n has different values for different channel
slopes λ in the limit of vanishing g. This behavior is the purely
geometric effect of a narrowing channel. We finally note that
both panels show a monotonic increase of the MFPT τw→n for
growing parameter g as function of the channel slope λ as well
as for growing slope λ as function of force strength g.

The results for the MFPT τn→w for channel passage from
the narrow to the wide end in Fig. 4 also show a very good
agreement between the theoretical predictions and the Brow-
nian dynamics simulations. Generally, the absolute values for
the MFPT are considerably lower than for the opposite case
τw→n. Moreover, the discrepancies are significantly less for
τn→w for all values of channel slope λ and force strength g.
Finally, we observe that the value of τn→w has the opposite
trend as function of λ and g as compared to τw→n: here,
growing slope as well as increasing force strength lead to an
effective drift towards the channel exit at the wide end, and
thus to a reduction of τn→w. In this narrow-to-wide configu-
ration we observe an interesting result. As can be seen in the
left panel of Fig. 4 there occurs an optimum for the channel
passage at higher values of the channel boundary slope λ.
Namely, the theoretical result for the MFPT for very high
force strength (g → ∞) exceeds the MFPT values for g = 20
(the curves cross at around λ = 0.5) and g = 50 (crossing at
around λ = 0.2).

This crossover behavior with an optimal MFPT warrants
some closer inspection, however. On the one hand it is
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FIG. 3. MFPT τw→n for channel passage from the wide to the narrow end. Left: τw→n predicted by Eq. (13) (continuous lines) compared
with the values obtained from Brownian dynamics simulations (symbols) for different values of force strength g in a 2D symmetrical cone-
shaped channel of length L = 1. The channel is formed by the straight and perfectly reflecting boundaries h1(x) = −λx − 0.1, and h2(x) =
λx + 0.1, see Fig. 1, panel (b). The limiting case when g → 0 is shown by the dark grey dashed line. Right: τw→n predicted by Eq. (13)
(continuous lines) compared with the values from Brownian dynamics simulations (symbols) for different values of λ as function of g.

physically reasonable to argue that such a minimal MFPT
at intermediate g values is the result of the two opposing
effects relevant for higher g. Namely, while moderate values
of g effect a resulting drift towards the wide channel exit,
when g gets too high it prevents the particle from exploring
the channel in the perpendicular y direction. As the MFPT
depends on the exact form of the diffusivity, we can use this
quantity to gain some insight for the theoretically counterin-
tuitive behavior when g → ∞. In this limiting case D(x) =
D0/[1 + h′2

i (x)] [20], where any information relating to the
external force is missing. Comparison with the simulations
therefore points out a limitation of the theory in this extreme
limit. This is one of the objectives of this study. The parti-
cle therefore cannot profit from the entropic force pushing
it towards the wider channel end. From this observation we
can appreciate the importance of the conspirative interplay be-
tween the transverse external field and the entropic potential.
We note that this interplay is hardly noticed in the right panel

of Fig. 4 in which the MFPT is depicted as a function of g,
for which only moderate g values are shown. On the other
hand, it remains unclear whether the approximations used
here to obtain the effective one-dimensional description with
effective entropic forcing remains valid in the limit g → ∞.
Concurrently, we cannot use our computer simulations to
explore the true g → ∞ limit, as the necessary time steps
become prohibitively short with increasing g.

From a physical vantage the stark difference in behavior
between the plotted case g = 105 and g → ∞ opens up the
possibility of a discontinuous transition of the MFPT dynam-
ics at g → ∞. Moreover, from a practical point of view this
interesting crossover behavior represents new possibilities for
controlling the transport of Brownian particles in narrow con-
fined structures for a range of potential applications, including
particle separation, fluid mixing, gating, and catalysis, among
others.

FIG. 4. MFPT τn→w for channel passage from the narrow to the wide end. Left: τn→w predicted by Eq. (13) (continuous lines) compared
with the values obtained from Brownian dynamics simulations (symbols) for different values of force strength g in a 2D symmetrical
cone-shaped channel of length L = 1. The channel is formed by the straight and perfectly reflecting boundaries h1(x) = −λx − 0.1 and
h2(x) = λx + 0.1, see Fig. 1, panel (a). The limiting cases when g → 0 and g → ∞ are shown by the dark grey dashed lines. Right: τw→n

predicted by Eq. (13) (continuous lines) compared with the values from Brownian dynamics simulations (circles) for different values of λ as a
function of g.
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IV. SUMMARY AND CONCLUSIONS

We studied the crossing dynamics of diffusing point parti-
cles of expanding and narrowing 2D conical channels under
the action of a transverse external gravitational field by means
of the MFPT. We derived the theoretical expression for the
MFPT under the assumption that the axial diffusion in the
2D channel with its smoothly varying geometry can be ap-
proximately described as a one-dimensional diffusion in an
entropic potential with position-dependent effective diffusiv-
ity in framework of the modified Fick-Jacobs equation. To
this end we use the theoretical expression by Pompa-García
and Dagdug [20] for the interpolation of the effective diffusiv-
ity, D0/[1 + (1/4)w′2(x)]−η(gw,y′

0 ), where spatial confinement,
asymmetry, and the presence of a constant transverse force
can be encoded in η, as a function of the channel width w,
channel midline y0, and transverse force G (g = G/kBT ). This
expression explicitly shows the coupling between the entropic
and energetic effects.

We found very good agreement between the approximate
theoretical result for the MFPT in the two possible config-
urations: channel passage from the narrow to the wide end
and vice versa. While some deviations are observed for the
wide-to-narrow case at intermediate channel boundary slopes
and larger g values, almost perfect agreement is observed for
the narrow-to-wide case. Despite these deviations the general
predictions of the approximate 1D description in terms of the
modified Fick-Jacobs equation is validated for this setting.

A remarkable effect is observed in the narrow-to-wide
configuration, where the theoretical result for the MFPT is
not monotonically decreasing with growing g, and thus not
bounded by the limiting case g → ∞. Instead, the MFPT
assumes a minimum at intermediate g values for larger val-
ues of the boundary slope λ. We interpret this result as an
optimum in the interplay between the effective drift exerted
by the entropic potential of the channel walls (widening to-
wards the channel exit) and a pinning down of the particle to
the channel wall by very high external forcing. In this case
the effect of the entropic force vanishes, and the resulting
MFPT increases. The fact that we can control the exit time
of a Brownian particle from a 2D channel in the presence
of an external transverse force may allow the development
of practical applications including particle separation, gat-

ing, controlling effective fluid mixing, and catalysis, among
others. However, even though the theoretical expressions can
be used to predict this crossover behavior of the MFPT values
under the influence of large external forces, their full range
of applicability remains somewhat tricky to establish. The
theoretical affirmation is based on the fact that we are trying to
predict the behavior of a two-dimensional system while using
an effective diffusivity obtained by means of a dimensional re-
duction, that removes the degree of freedom, which coincides
with the direction of the applied force. Moreover, the effective
diffusivity model, and as a consequence, the expressions for
the MFPT, does not contain any information about the di-
rect interaction between the boundary walls and the particle
further than its role as a boundary condition. Concurrently,
while for moderate to large g values the simulations tend to be
close to numerical results, simulations of confined particles
under a very high potential is subtle to implement because
the conditions of the system require a small time step and an
appropriate particle-wall interaction, involving a high compu-
tational cost. Thus, while this effect is physically interesting
and, to our knowledge, reported for the first time, further
research is needed to exactly establish the precise quantitative
behavior.

Here we considered a single-particle picture for diffusion
in the channel. This is an appropriate choice for low concen-
trations of tracer particles. At higher concentrations, particle
particle will become relevant. Adding such effects will offer
new perspectives to the concepts developed here, which will
be the focus of future work. It will also be interesting to verify
the effect of an external force perpendicular to the symmetry
axis of the channel in 3D settings as well as for channels
filled with complex liquids, e.g., when the particle exhibits
viscoelastic subdiffusion.
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