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Abstract
We perform numerical studies of a thermally driven, overdamped particle in a random quenched
force field, known as the Sinai model. We compare the unbounded motion on an infinite
1-dimensional domain to the motion in bounded domains with reflecting boundaries and show
that the unbounded motion is at every time close to the equilibrium state of a finite system of
growing size. This is due to time scale separation: inside wells of the random potential, there is
relatively fast equilibration, while the motion across major potential barriers is ultraslow.
Quantities studied by us are the time dependent mean squared displacement, the time dependent
mean energy of an ensemble of particles, and the time dependent entropy of the probability
distribution. Using a very fast numerical algorithm, we can explore times up top 1017 steps and
thereby also study finite-time crossover phenomena.

1. Introduction

Among many models for subdiffusion, the Sinai model sticks out due to the fact that diffusion is ultraslow.
This means that the mean squared displacement grows slower than any power of time, namely like ln4t, see
[1] for a recent review on other such systems. Physically, the Sinai model describes the one-dimensional
thermal random motion of a particle in a random potential, more specifically, a potential which is
constructed from a Brownian path. If the spatial domain is infinite, as it is usually assumed when writing
down the model, the potential can have arbitrarily high barriers and arbitrarily deep wells, however, due to
the recurrence properties of Brownian paths in one dimension, there will be potential zero-crossings at
arbitrarily far distances from the origin.

This model was introduced by Yakov Sinai [2] as a special case of models with a site-dependent jump
probability and has found much attention in the literature since then, see, e.g., [3–8] for some thorough
analysis. The concept has found many applications, including the dynamics of random field magnets and
dislocation dynamics [7], glass dynamics [9], aging phenomena [10], random-field Ising models [11, 12]
and helix-coil boundaries in random heteropolymers [13, 14]. With the inherently quenched heterogeneity
of biomolecules, Sinai-type models describe mechanical DNA unzipping [15, 16], translocation of
biopolymers through nanopores [17, 18], and molecular motors [19]. Also, quantum transport in
disordered topological quantum wires [20] has been related to the Sinai model. More generally, there are
many phenomena of ultraslow diffusion in disordered systems of low dimension, such as in
vacancy-induced motion [21, 22], biased motion in exclusion processes [23], local relaxation dynamics in
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DNA [24], paper crumpling under a heavy piston [25] or compaction of granular systems [26], glassy
systems [27], statistics of extreme events [28], the ABC model [29], dynamics in nonlinear maps [30],
interacting many-particle systems [31], in dynamics of cooling granular gases [32, 33], and short range
correlated Gaussian potentials [34].

Analytical models describing such type of motion include continuous time random walks with
ultraheavy tailed distributions of waiting times [30, 35, 36], ultraslow scaled Brownian motion [37, 38],
ageing continuous time random walks [39], diffusion processes with strongly localised diffusivity [40, 41],
and distributed order fractional diffusion equations [42–44], see also [45] for more references. Moreover,
generalisations of the Sinai model including the presence of a fixed bias [7], random local bias [11, 46–48],
correlated and periodic disorder [49–51] have been studied. The first passage time, persistence probability
and the splitting probability of the Sinai model is also reported in [6, 14, 52].

Previous works concern the properties of a random walk in the Sinai model, for example the probability
density function (PDF), transport phenomena and the mean squared displacement, based on long-time
disorder-averaged dynamics by different approaches such as scaling arguments [7, 34], the renormalisation
group technique [46] and a discrete random walk model [49, 53, 54] as well as approaches based on
time-averaged observables [35]. However, experimental observations often relate to non-equilibrium
properties of the system, which is in the focus of the present paper. More specifically, based on a discrete
random walk model, we look into correlation phenomena and ageing when starting ensembles of
independent trajectories in the same realisation of the random potential but with their individual thermal
noises by analysis of the ensemble mean potential energy and of the Shannon entropy of the time
dependent probability density. We then average over the disorder of the potential. In our setup all particles
are starting from the origin and also the potentials performing a random walk from this point to both
directions. The main conclusion of this work is that due to the extreme slowness of the diffusion, the system
is always in quasi-equilibrium on the domain explored so far. This is formalised by the concept of infinite,
non-normalised densities which was developed for non-confining, i.e., asymptotically one dimensional flat
potentials [55], also for log potentials [56], and which allows one to represent a time dependent density by
the invariant density on a finite domain dressed by a time dependent factor.

For Sinai diffusion a remarkable result was obtained by Golosov: for a given realisation of a potential
landscape all trajectories with the same initial condition in the deepest well stay close together forever
[57–60]. More practically, Golosov proved that in the long time limit, the distribution of the relative
distance y = x(t) − m(t), where m(t) is the most probable position, after averaging over random potentials,
tends to a limit distribution [57]. However, by the renormalisation group analysis it was shown that for the
same thermal initial conditions the existence of the limit distribution for the random variable y, does not
imply that its moments remain finite in the long time limit [58–60]. Here we scrutinise the case of
non-equilibrium initial conditions and show that quasi-equilibrium states in the random potential emerge
due to a time scale separation with respect to escape times over larger local potential maxima. In contrast to
the Golosov result, however, these ‘local equilibria’ depend on the starting point of the trajectory and are
non-universal in this sense.

Our paper is organised as follows. In section 2 we introduce an ergodic lattice hopping model to study
the dynamics of the Sinai diffusion, followed by a numerical scheme using Markov matrix approach in
section 3. Sections 4 and 5 reports the time dependent properties of the Sinai model such as the mean
squared displacement, mean potential energy and the Shannon entropy, respectively. Equivalence of an
unbounded motion in an infinite system and the equilibrium sate of a finite system is then investigated in
section 6. We discuss the different energy regimes of the infinite system with open boundary condition
(open system) and the finite system with reflecting boundary condition (closed system) in section 7, and a
comparison with infinite densities presented in section 8. Finally, a summary and discussion is provided in
the last section.

2. Lattice Sinai model

We study a version of the Sinai model on the infinite lattice of integers, also called lattice hopping model
[61, 62]. To create the random potential, we start a lattice random walk at site i = 0 into both directions,
i.e., we define a path Vi with V0 = 0 and |Vi±1 − Vi| = 1, so that from one lattice site to its neighbour, Vi

jumps upward or downward by one unit with equal probability. Then Vi forms a lattice Brownian path in i,
which here is a spatial coordinate. We then interpret Vi to be the potential for an overdamped particle
which is driven by thermal noise. The balance between the deterministic downhill motion of an
overdamped particle in this potential V and thermal noise is determined by the parameter ε ∈ [0, 1], which
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Figure 1. Schematic of an arbitrary potential landscape and the hopping rate probabilities at different points of the potential.

enters in the probability for the particle at site i to hop either to the left or to the right or to stay:

qi→i+1 =
1

4
+

ε

4
(Vi − Vi+1),

qi→i−1 =
1

4
+

ε

4
(Vi − Vi−1),

qi→i = 1 − qi→i−1 − qi→i+1 =
1

2
+

ε

4
(Vi+1 − 2Vi + Vi−1), (1)

where evidently the sum qi→i+1 + qi→i−1 + qi→i = 1 irrespective of ε. Since |Vi − Vi±1| = 1, the
probabilities to jump to a neighbouring site is given by one of the two values 1/4 − ε/4(uphill, ) and
1/4 + ε/4(downhill, ), while the probability to stay is one of the three values 1/2( ), 1/2 − ε/2( ),
1/2 + ε/2( ), if the site i is either on a slope, at a maximum, or at a minimum of the potential, respectively
(see figure 1). This restricts 0 � ε � 1, where ε = 0 is the infinite temperature limit, in which the potential
does not influence the hopping rates, and ε = 1 is the zero-temperature limit in which only downhill
motion and resting, namely deterministic motion, with no fluctuations are possible and no particle can
escape a potential minimum.

In contrast to implementations of this model without resting probabilities, i.e. qi→i = 0, this version is
ergodic (no splitting into even and odd sub-lattices) [49, 62]. The even bigger advantage is that, as we will
show below, equation (1) has an exact analytical solution if we restrict the dynamics to a finite domain with
reflecting boundary conditions. Before we do so, let us discuss a special, non-random potential with infinite
walls which has a V-shape: Vi = |i|. The stationary probability distribution Pi is given through the detailed
balance condition as Piqi→i+1 = Pi+1qi+1→i. We compare this to the analytical solution of the continuous in
time and space Fokker–Planck equation with the potential V(x) = c|x|, where the constant c carries the
physical units. It is the Boltzmann distribution PB(x) = Z−1 exp

(
−c|x|/kBT

)
, where Z is the normalising

partition function, kB is the Boltzmann factor, and T is the temperature. Note that the diffusion coefficient
reads D = kBT/η where η is the damping, due to the Einstein relation. For a lattice point i in the slopes of
this potential, the ratio of the hopping rates is the ratio (1 − ε)/(1 + ε) of uphill probability and downhill
probability. The same ratio evaluated for the stationary solution of the Fokker–Planck equation is simply
e−c|a|/kBT , with the lattice size a = 1, which together yields

1 − ε

1 + ε
= e−c/kBT or kBT/c = ln−1

(
1 + ε

1 − ε

)
. (2)

Hence, we can relate ε also quantitatively to temperature and as stated before, T = 0 corresponds to ε = 1
and T = ∞ to ε = 0. In the numerical simulations we set c = 1.

If we consider the system with its random potential on a finite domain i ∈ [−L, L] with reflecting
boundary conditions, then an analytical expression for its invariant density Pi can be shown to be the
Boltzmann distribution. The derivation works as follows: the invariant distribution Pi satisfies detailed
balance, Piqi→i+1 = Pi+1qi+1→i. We fix arbitrarily the value P0 = 1 and normalise all Pi after we have
calculated them. The precise discrete space solution can be easily obtained in the following way:
Pi+1 = Piqi→i+1/qi+1→i and hence Pi+1 = P0

∏i
k=0qk→k+1/qk+1→k. Inserting the transition probabilities

defined in equation (1) we see that every ratio qk→k+1/qk+1→k can only assume the value (1 − ε)/(1 + ε) or
its inverse, depending on whether the jump is uphill or downhill. Hence, in the product, an equal number
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of uphill and downhill jumps cancel out their contributions, so that the result is:

Pi = P0

(
1 − ε

1 + ε

)Vi−V0

= P0 e−(Vi−V0)/kBT , (3)

where the latter is a consequence of equation (2). So we see that the equilibrium probabilities follow a
Boltzmann distribution which can be normalised for finite L by adjusting P0. These Pis can be calculated
numerically with high accuracy so that we can numerically evaluate all kinds of averages in thermodynamic
equilibrium. The above calculation represents a closed system with reflecting boundaries, since there is no
in- or outflow of probability to lattice sites outside [−L, L].

In order to study the dynamics of this model, in a straightforward numerical simulation one would first
generate the random potential Vi and then iterate a trajectory by random jumps from one lattice site to one
of its neighbours according to the probabilities of equation (1). Repeating this many times for the same
random potential, one would simulate an ensemble of non-interacting particles from which one can
approximate time dependent position distributions. We are interested in such distributions as a function of
time. However, since the diffusion in this potential is extremely slow, we need a much faster iteration
scheme, so that we are able to average also over many random potentials.

3. Numerical scheme for the non-equilibrium system

In the following, we focus on the initial condition Pi(t = 0) = δi,0, where all particles start at the lattice site
i = 0. Instead of time consuming single particle simulations, we use a Markov matrix approach: the
discreteness of our physical space and time allows us to summarise a single step in the time evolution of the
probability P(t) by the multiplication of a Markov matrix with the vector P(t), where the elements of the
Markov matrix are the transition probabilities qi→j from one lattice site to any other. These transition
probabilities are given by equation (1) and hence the Markov matrix M has nonzero entries only on the
diagonal and the two secondary diagonals. Hence, P(t + 1) = MP(t). Instead of performing this
multiplication one-by-one in time, we simply take squares of the actual Markov matrix and thereby create a
sequence of matrices M2, M4, M8, etc which generate P(tk), where tk = 2k, by k matrix multiplications.
Even though a single such operation scales like N3 where N is the rank of the matrix, we can quickly achieve
large tk. If the initial condition is P0(t = 0) = 1 and Pi�=0(t = 0) = 0, then the distribution at time tk = 2k is

simply the central row of M2k
, Pi(t = 2k) = (M2k

)0i. Since there is a non-zero probability that a particle
hops one step to the right in every iteration step, after 2k time steps in principle a range of 2k lattice points
might be explored by a trajectory. However, this probability, although theoretically strictly non-zero, in
practice is extremely small.

While the disorder-averaged mean squared displacement MSD grows very slowly in time, the motion in
a single realisation of the potential is more complicated. Actually, as we will illustrate later in more detail,
particles and also the time dependent probability distribution explore the lattice in a highly intermittent
way. If a particle is trapped (the probability is localised) in a deep potential well, then for a long time the
lattice will not be explored any further, only on a much larger time scale we will see hopping to an even
deeper well farther away from the origin. This slowness implies that on average over many such potentials
the exploration horizon grows only like ln2t [7, 8]. This is also true for most individual realisations of the
random potential, so that the rank of the matrix 2L + 1, which is given by the range −L : L of the lattice
which we model explicitly, can be chosen much smaller than N = 2kmax . Since our (truncated) Markov
matrix M is not conserving probability (there is leakage out of the finite range of the lattice which we
consider), eventually, the norm of P will decrease. We can detect this numerically, and we will stop the time
evolution when this leakage exceeds a total probability of 0.01. After which time this occurs depends on the
individual realisation of the random potential, on the size of the resolved domain, and on the temperature
T or the noise strength ε, respectively. In all the analyses below, we therefore vary the modelling range
[−L, L] of the open system, and we show results only up to times for which the leakage of probability was
sufficiently small. For comparison, we also include results obtained for closed systems (reflecting
boundaries) on equally large domains, obtained by the same numerical scheme.

On a standard workstation we thereby arrive at t > 1017 time steps for an ensemble of 104 potential
landscapes. Actually, there is another problem besides leakage, which prevents us from going to much larger
times: numerical inaccuracy. For k being larger than 58, the matrix elements are very heterogeneous in their
magnitude, so that under squaring such a matrix, we add very large and very small numbers. In such a
summation, the small numbers tend to be truncated by round-off. This expresses itself in resultant matrices
which from some number of squaring onward violate the normalisation of probability considerably,
independent of leakage. Hence, we trust our simulations only up to 258 ≈ 1017 time steps.
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Figure 2. Left: disorder-averages of R(t) = ˜MSD(t)/ln4 t, the mean squared displacement divided by ln4t with varying ε as
indicated. We compare numerical results obtained by powers of the Markov matrix for open systems where (symbols) only the
finite range [−L : L] is modelled (L = 4096), to results obtained for closed systems (lines). We stop the numerical simulation at
times when the computation reaches its limit as explained in the text. The black dashed curve shows how classical diffusion,
where the MSD(t) ∝ t looks in this representation, and the solid black line shows a constant MSD, i.e., 1/ln4t relation (which is

the asymptotic result for closed systems). Right: the same as the left panel but for R̂(t) = ˜MSD(t)/ln4(t/τ ). The coloured
triangles on the right side show the values of the pre-factor in equation (5).

Figure 3. Time dependent mean potential energy of the Sinai model, obtained from time dependent probability distributions
through the Markov matrix algorithm, and as disorder-average over 10 000 realisations of the potential. Left: for different size of
the interval [−L, L] (L = 32, 512, 4096). Right: for L = 4096, with different ε (temperature). In both panels, circles represent the
corresponding result for an open system and lines for a reflecting boundary condition on both sides of the interval, and the
coloured triangles on the right side show the equilibrium distribution results (Boltzmann distribution). The short black line in
the right panel shows a slope with coefficient −1.3kBT. However, this relation appears to hold only for T < 1.

Direct numerical validations for this algorithm are contained in figures 2–4, where in the long time
limit, averages of the Markov matrix simulations for finite, closed domains are compared to the numerical
evaluation of the exact invariant probability distributions in the same potentials, equation (3).

4. Mean squared displacement

We first reproduce the well known result for the ensemble averaged mean squared displacement, which is
defined as:

MSD(t) = 〈(x(t) − x(0))2〉 =
∑

i

i2Pi(t), (4)

where the latter is correct only for an ensemble of trajectories starting at i = 0, i.e., Pi(0) = δi,0. The
disorder-averages ·̃ are taken over realisations of the potential landscape and in an ensemble average 〈·〉 over
the thermal noises. In a trajectory-simulation, one would, for every potential landscape, run a large number
of trajectories with their own thermal noises. In the Markov matrix approach, the ensemble average over
the thermal noise is already built in.
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Figure 4. Time dependent Shannon entropy of the probability distributions obtained through the Markov matrix algorithm,
and as disorder-average over 10 000 realisations of the potential, with different ε (temperature). Left: different lines in the same
color code are for different interval lengths (L = 32, 512, 4096). Right: for a finite domain with size L = 4096 but different
temperatures. In both panels, circles represent the corresponding results for an open system and lines for the system with a
reflecting boundary condition on both sides, and the coloured triangles on the right end represent the equilibrium values for
closed systems (Boltzmann distribution).

The numerical results shown in figure 2 are in excellent agreement with the theoretical prediction
˜MSD(t) ∝ ln4 t [7, 11], if time t is sufficiently large, namely

˜〈x2(t)〉 � 61

180
λ2 ln4

( t

τ

)
, (5)

where the length scale λ and time scale τ defined as

λ =
η2D2

eff

γ
, τ =

η4D3
eff

γ2
, Deff =

(
180

61

) 1
4 kBT

η
. (6)

Here, η is the friction coefficient and γ denotes the strength of the disorder. Note that in all numerical
simulations we use η = γ = kB = 1. For smaller t we observe some deviations from the asymptotic
behaviour, which depend on the temperature T. This is emphasised in figure 2, where we divide the

numerically determined disorder-averaged MSD by the asymptotic behaviour, R(t) = ˜MSD(t)/ln4 t. Not
only does the constant of proportionality depend on T but also the speed of convergence: for ε = 0.6, i.e.,
kBT ≈ 0.7, the asymptotic behaviour is reached in the shortest time. For other values of kBT, either the free
diffusion (also shown as black line) or the deterministic attraction of the deeper wells (finite MSD)
dominate the short term behaviour.

This exercise leads us to the conclusion that if we want to observe asymptotic properties in the shortest
simulation time, we should use ε in a range of values of 0.6–0.8, or, respectively, kBT ≈ 0.5–0.7. However,
we will usually perform our numerical simulations for a whole range of ε-values.

5. More time dependent properties

On an infinite lattice, there is no stationary state. Due to the randomness of the potential in the Sinai
model, which has only a statistical self-similarity, we cannot expect some simple behaviour here. In order to
gain insight, we calculate the time dependent mean potential energy,

E(t) =
∑

i

ViPi(t), (7)

and the time dependent Shannon entropy of the probability distribution Pi(t),

S(t) = −
∑

i

Pi(t) ln Pi(t), (8)

where the sums extend over the whole infinite lattice and 0 ln 0 = 0. We study both quantities as averages
over many realisations of the potential landscape. Numerical results obtained by the Markov matrix method
are shown in figures 3 and 4.

The mean potential energy drops as a function of time. This is to be expected, since, the longer the
particle moves through the potential landscape, it will typically get trapped in even deeper potential wells.
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Figure 5. Example of the time dependent probability distribution up to time t = 240 for a single arbitrarily chosen potential
(ε = 0.6). One clearly sees the localisation of probability in the deepest potential well inside the exploration range, when the
initial distribution is P0(0) = 1 and Pi �=0(0) = 0. The black line represents the random potential and the initial delta-function
distribution on x = 0 is shown in red.

This is also exemplified by a sequence of snapshots of the time dependent probability distributions Pi(t) in
figure 5. In every instance, most of the probability is concentrated in deep potential wells, but when time
goes on, deeper and deeper wells are explored, and more shallow wells are vacated. Empirically, we observe
the following behaviour:

Ẽ(t) ≈ −c(T) ln t, (9)

with a temperature dependent pre-factor c(T). Numerics indicates that this pre-factor is c(T) ≈ 1.3kBT for
T < 1 (see figure 3, right panel). This observation can be explained as follows. Consider a particle explores
distance x(t). Then, since V(x) is Brownian motion we have Vmin(x) ∝

√
x(t) and since x(t) goes like ln2t,

we get the mentioned scaling of Ẽ(t) with ln t. This means that Ẽ(t) is controlled by the minimum of the
potential explored by the particle in time t, which is in agreement with other results in this paper.

Despite this non-stationarity, the snapshots of the time dependent density show some similarity in their
clustering (see figure 5). This clustering in quantified by the Shannon entropy, equation (8). For a uniform
distribution over N lattice points, S̃ = ln N, whereas for the initial δ-peak it is S̃ = 0. Numerically, we
observe convergence to an ε-dependent constant, S̃(t →∞) = const.. Its numerical value suggests that the
density asymptotically concentrates on a few lattice points. Figure 5 makes it plausible that this clustering of
the probability density takes place inside the deepest potential well in the explored region of the given
potential.

So the intuition which we gain from this low-temperature non-equilibrium simulation is that at time t
the particles explore a range Leff of the potential which scales like ln2t, and that they settle down in the
absolute minimum of this part of the potential. As time goes on, the range grows, and therefore new and
even deeper absolute minima are explored. This leads to a decrease of the mean potential energy but to
constancy of the entropy. The energy barrier after release from x = 0 at t = 0 is of order

√
γx, and the time

required to cross this barrier is given by the Arrhenius law, t � τ exp
(√

γx/kBT
)
. Here γ represents the

strength of the disorder and τ defines a fundamental time scale. According to these scaling relations, after
the time t the particle typically has covered the distance 〈x2(t)〉 � ln4(t/τ), see [7].

5.1. Golosov effect
We now address the localisation effect of the Sinai model described by Golosov in [57] (see also [7]) by
computing the standard deviation σ(t) =

√
〈x2(t)〉 − 〈x(t)〉2, in a semi-infinite domain where a particle

starts its motion from x = 0 with a reflecting boundary condition at the origin. In [57] it was stated that
this σ(t) would asymptotically for large t approach a finite value (disorder dependent), while the mean
value 〈x(t)〉 is governed by a function m(t) which tracks the deepest well in the explored range of the
random potential. More precisely, he proved that the disorder-averaged relative distance x(t) − m(t), in the
long time limit converges towards a limit distribution. Hence, in the Golosov scenario the width of a packet

7
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Figure 6. Left: disorder-averaged standard deviation ˜σ(t) for different values of ε of Sinai model in a semi-infinite domain with a
reflecting boundary condition at the origin. Lines represent simulation results obtained by the Markov matrix approach and
square symbols show the analytical asymptotic behaviour (10). Right: PDF of the standard deviation for ε = 0.6 at different
times in a semi-infinite domain obtained from 10 000 realisation of the random potential. As a guide to the eye the short black
line shows a slope of −1.3. Here we use L = 213.

of particles within a single realisation of the random potential does not grow with time, in the long time
limit. However, taking an average over different disorders leads to a divergent standard deviation. This is
due to those configurations of the random potential in which there are more than a single deep well, and
where the particles usually are localised in different spatially separated minima, which leads σ(t) to diverge
in the infinite-time limit (see also [53, 54]). Indeed, it has been shown that the disorder-averaged standard
deviation of the Sinai model has the following long-time asymptotic [10, 58, 63],

σ̃(t) � 61

180
λ ln3/2

( t

τ

)
, (10)

where λ and γ defined as equation (6). In figure 6 (left panel) we show the results of disorder-averaged
standard deviation for different temperatures (see equation (2)) and compare it with the asymptotic
behaviour (10). As can be seen, for large ε (low T), there is a very good agreement between the analytical
prediction and the numerical data. However, for small ε (high T), since this is affected by the finiteness of
system size L, we observe a deviation from the theory.

Moreover, in the right panel of figure 6 we demonstrate the PDF of the standard deviation for ε = 0.6 at
different times. As can be seen, at long times the PDF of σ(t) is almost time independent, which is in
agreement with Golosov’s theorem, with a power-law decay whose power guarantees normalisation but,
without cut-off, would yield a diverging mean value. The cut-off at large σ(t), however, is a function of t
since σ(t) in every individual potential is strictly bounded by the largest distance a particle can travel in
time t from the origin, and this propagation is extremely slow. Therefore, the mean values of these PDFs at
any finite time are finite, but slowly growing in time and eventually diverging, in full agreement with
equation (10). In this sense, the statement of Golosov’s theorem about an asymptotic shape of the
distribution of σ(t) and equation (10) are not in contradiction, as it is illustrated by our numerics, due to
the power-law tail with time dependent cut-off.

Our analysis in terms of entropy, however, shows that entropy S̃(t) converges to a finite value, which
characterises the localisation of the thermal particles regardless of whether this takes place in a single or in
multiple wells, and which is also insensitive to the distance between these wells. Therefore, the entropy is a
much more suitable indicator for localisation than the standard deviation.

6. Equivalence of equilibrium and non-equilibrium dynamics

In this section we want to prove our claim that the unbounded motion of the infinite system is always in
close vicinity of an equilibrium solution of a system whose size is given by the average exploration range of
the unbounded motion at the respective time.

For the open systems, we therefore fix the range [−L, L] on which we model its time evolution, and we
stop the iterations when probability starts to leak out through the open boundaries. We then calculate the
entropy and the energy of this probability distribution in the given potential, and again perform an average
over 10 000 realisations of the random potential. These values will then be compared to those calculated
with the Boltzmann distribution equation (3) in the same potentials.
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Figure 7. Disorder-average of the Shannon entropy of the equilibrium distributions of finite L Sinai models. The maximum
values are ˜S = ln(2L) and represent the uniform high-temperature limit. The saturation for low temperatures reflects the
localisation in the deepest well. Symbols represent the corresponding results to the Boltzmann distribution, dashed and dotted
lines show the results for reflecting boundary condition and open system, respectively. The maximum values of the entropy for
the open system are ˜S = ln(2Leff), in which Leff ≈ 0.87L.

Figure 8. Disorder-average of the mean potential energy in equilibrium of Sinai models of different size L. We rescale the energy
with 1/

√
2L since this is how the well depths scale. Symbols represent the corresponding results to the Boltzmann distribution,

blue dotted and orange dashed lines show the simulation results for an open system and a reflecting boundary condition,
respectively. As can be seen, at low temperatures in the system with reflecting boundaries, the mean potential energy deviates
from the values of the equilibrium due to the numerical error of the Markov matrix algorithm. The same phenomenon is
observed for the open system.

The dependence of both entropy and mean potential energy on the temperature for different lattice sizes
L are shown in figures 7 and 8, respectively.

Following the above argument, the random potential is given as a random walk, whose deviation from
the origin scales like

√
L. Assuming the same scaling for the deepest potential well on the finite range 2L, we

expect the equilibrium mean potential energy, which for small T is dominated by exactly the deepest well, to
scale like −

√
2L. This is similar to the above argument, in which instead of t we have L. Indeed, when

re-scaling Ẽ in this way, we obtain a nice data collapse for very small and very large temperatures, see
figure 8. Actually, the data collapse for T 
 1 is no surprise, since the mean potential energy is zero in this
limit of a uniform distribution, independent of L. For the intermediate range, one finds a data collapse as
well when re-scaling also temperature by 1/

√
2L, see figure 8.

This result can be explained as follows. Consider a system with size [−L, L]. We order the potentials at
each lattice point, from minimum to maximum. The two lowest potential traps are called Vmin and Vnext.
We can add more minima to the argument below, but we use only two deepest valleys and assume a
Boltzmann distribution. In this approximation, the mean energy reads

〈E〉 = 1

Z

(
Vmin e−Vmin/kBT + Vnexte

−Vnext/kBT
)

, (11)
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Figure 9. Ratios of the empirical probabilities ri = Pi(t)/e−Vi/kBT after different times t. Evidently, for every time there is a core
region where ri = O(1), and exterior regions where ri ≈ 0, with very narrow transitions (except at short times since there was not
sufficient time to relax to a flat shape). Different lines represent different times t = 2j up to j = 40. Here we use ε = 0.6
(or kBT ≈ 0.7) and L = 256.

Figure 10. PDFs of the Sinai diffusion at different times. Symbols represent the simulation results obtained through the Markov
matrix algorithm for an open system [−L, L] with length L = 2048, and dashed lines correspond to the analytical solution (13).

where Z is the partition function of this two level system, Z = exp(−Vmin/kBT) + exp(−Vnext/kBT). Note
that Vmin and Vnext are typically negative. Now, the usual argument is that Vmin = cmin

√
L and

Vnext = cnext

√
L, in which cmin and cnext are statistically independent of L, and specific to the system.

Inserting this in the ensemble average gives us

〈E〉 =
√

L

Z

(
e
−cmin

√
L

kBT + e
−cnext

√
L

kBT

)
. (12)

Therefore, plotting of 〈E〉/
√

L versus T/
√

L is L independent, as is shown in figure 8 (right panel). As
mentioned, we can also add other minima, and the same trick will work. Furthermore, the ensemble

10
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average over the disorder when added will give a non-random result (the result will not depend on the
specific values of cmin and cnext).

The entropy, in contrast, turns out to be independent of system size L in the T → 0 limit, since only the
shape of the deepest well and its degeneracy matters. The shape can be assumed to be independent of L.
There is a very slow increase with L since the bigger L the larger is the probability that there is a second,
independent well with the same depth and hence a larger degeneracy of the minimum.

As said, the open system results shown in figures 7 and 8 show mean values taken at the time when the
total probability in the range [−L, L] starts to drop, which means that the support of the time dependent
probabilities starts to extend beyond the range [−L, L]. Thus the time dependent exploration range Leff

becomes larger than the modelled domain, and this occurs after a time given by Leff ∝ ln2t. Hence, for the

open system, the behaviour Ẽ(t) ∝ − ln t observed above translates into Ẽ(t) ∝
√

Leff(t) in which

Leff ≈ 0.57L, thus is consistent with the equilibrium result Ẽ(L) ∝
√

L.
This analysis therefore suggests that the non-equilibrium dynamics relaxes close to equilibrium in the

finite range it has explored so far. This is an evident consequence of the time scale separation of the
problem: ultraslow diffusion across large scales, but thermal noises which are strong enough to have fast
local relaxation.

7. Three temperature regimes and scaling

For two types of dynamics, finite time simulation for finite L system and an open system, it is reasonable to
distinguish the low, medium, and high temperature regimes separately. In the low temperature limit, both
types of dynamics are related through the relationship of system size L and the exploration horizon Leff , as
explained above.

In the high temperature limit, the equilibrium distribution of a finite size system is uniform, hence the
mean potential energy is zero, and the entropy of this distribution is ln L. In the non-equilibrium situation,
high temperature implies irrelevance of the potential and hence free diffusion with its well known
properties. In particular, while the mean potential energy remains 0 for all times, the entropy increases as
ln t without upper bound8. Employing again the scaling of the MSD in time in order to translate time into
system size, we now have Leff ∝

√
t. The finite-time entropy of the infinite system therefore depends on the

effective system size as: S̃ � ln L2
eff ≈ 2 ln Leff. Apart from the mismatch of the prefactor, the difference of

the distributions (Gaussian versus uniform) make it evident that in the high temperature regime, there is no
equivalence of the non-equilibrium and equilibrium behaviour.

Finally, let us shortly discuss the regime of intermediate energies. We call energies intermediate, if the
equilibrium density is concentrated in many more wells of the potential than the deepest one but is still
localised. Due to the scaling of the energy landscape in system size, we expect that equilibrium systems of
different size are equivalent when the temperature divided by

√
L is the same. Actually, this is what we

observe in figure 8 in the central range of the temperature scale. Note that whenever we compare energies
for different system sizes, we normalise them by

√
L since this is the expectation value for the deepest well.

8. Relation to infinite densities

Recently, there has been much progress in the study of systems with asymptotically flat potentials. The
Boltzmann distribution e−V(x)/kBT for flat potentials is not normalisable, since it is constant for large |x|.
This gives rise to the notion of infinite densities and to approaches to deal with these, see [55, 56, 64–74].
Inspired by these works, we study here the ratio ri of the time dependent, numerically generated probability
Pi(t) and of the non-normalised Boltzmann distribution on the lattice, PB

i = e−Vi/kBT , namely ri = Pi(t)/PB
i .

For large |i|, Pi(t) = 0, and so is this ratio ri. However, inside the exploration range, this ratio is an
i-independent constant c(t) with a very narrow range. We eliminate this constant by summing up the
product Pi(t)eVi/kBT which is essentially (but not precisely) the norm of the Boltzmann distribution inside
the exploration range. Hence we use this value as normalisation of the Boltzmann distribution, see figure 9
for an illustration for a single random potential. This is another way to verify the validity of the concept of
local equilibrium: ensemble of the open system on the infinite lattice explores some range which its inside
almost always, to some good approximation, represents the equilibrium distribution of a finite, closed
system, while outside the probability to find the particle is essentially zero, with a narrow transition in
between. Note that time steps between the different snapshots in figure 9 are exponentials, t = 2j.

We finally study the time dependent probability distributions Pi(t) averaged over random potentials. For
continuous space and time, the long time behaviour of the Sinai diffusion PDF is as follows [3–6]

8 The Shannon entropy of a Gaussian is proportional to the logarithm of its standard deviation.
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˜P(x, t) ∼ 4

πλ ln2(t/τ)

∞∑
n=0

(−1)n

2n + 1
exp

(
− (2n + 1)2π2|x|

4λln2(t/τ)

)
, (13)

where λ and τ defined as equation (6). We compare this analytical results to our numerics for different
temperatures T in figure 10. On logarithmic scales, for T = 0.5 we see some mismatch at tails but an overall
good agreement9.

9. Conclusions

Sinai diffusion belongs to the class of classical hard problems in statistical mechanics and numerous
questions on its detailed behaviour are still open. Here we consider the local equilibrium behaviour of a
thermal particle in presence of a random force field. We make use of a very fast numerical scheme to study
the time dependent densities, mean potential energy and the Shannon entropy as well as the mean squared
displacement of the ensemble particles in a bounded domain with reflecting boundaries and in an open
system by averaging over 104 random potentials with a Brownian path. Our analysis in terms of the time
dependent densities shows that while the system is in a non-equilibrium state, as manifested in the time
dependent mean square displacement, still it exhibits some properties which are inherently related to
thermal equilibrium. For example with this insight we could use simple scaling arguments, based on the
extreme of the minima to find the energy of the system, see figure 8.

In contrast to the setup analysed by Golosov, who considered the localisation of a particle packet
released in the deepest well of a specific realisation of the random potential we here consider the case when
ensembles of particles are seeded in an arbitrary position of the random potential and allowed to evolve
independently. While Golosov stated that the variance of an ensemble of particles should be approximately
constant over time, we find instead that the variance continues to increase even in the long time limit, but
that instead the Shannon entropy converges to a constant. Together this implies that the time dependent
PDF is localised in a small number of potential wells, but that the distance between wells which are
populated at a time usually grows in time. In agreement with Golosov, we find that in an ensemble average
over different random potentials, there is convergence in time to a unique distribution with power law tails
but a time dependent cut-off, which hence yields a finite variance at any finite time. Comparing the
unbounded motion of the particles in an infinite 1-dimensional domain with the motion in finite, bounded
domains with reflecting boundaries we demonstrate that the unbounded motion is close to the equilibrium
state of a finite system of growing size at all times. This observation is due to the distinct time scale
separation, according to which inside the wells of the random potential, there is a relatively fast
equilibration, while the motion across major potential barriers is ultraslow. Our results shed new light on
the equlibration behaviour of particle packets in quenched, disordered potential landscapes.

Studying the time averaged spreading characteristics of a non-normalised state would be interesting
extensions of the present work. The quantitative characterisation in terms of trajectories, such as time
averaged MSD and width of the particle packet will be of use in the analysis of dynamic phenomena in
strongly disordered energy landscapes. For instance, the strong ageing observed in simulations of single
proteins may indicate that protein dynamics may belong to this class of problems [75].

Another open problem is how to relate between the infinite densities, namely the fact that within a range
the system is in a non-normalisable Boltzmann–Gibbs state, and the well known disorder average

propagation ˜P(x, t), equation (13).
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