
����������
�������

Citation: Padash, A.; Sandev, T.;

Kantz, H.; Metzler, R.; Chechkin, A.V.

Asymmetric Lévy Flights Are More

Efficient in Random Search. Fractal

Fract. 2022, 6, 260. https://doi.org/

10.3390/fractalfract6050260

Academic Editor: Dumitru Baleanu

Received: 11 March 2022

Accepted: 30 April 2022

Published: 8 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Asymmetric Lévy Flights Are More Efficient in Random Search
Amin Padash 1 , Trifce Sandev 2,3,4,* , Holger Kantz 1 , Ralf Metzler 3 and Aleksei V. Chechkin 3,5,6,*

1 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany;
padash@pks.mpg.de (A.P.); kantz@pks.mpg.de (H.K.)

2 Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and
Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia

3 Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam, Germany;
rmetzler@uni-potsdam.de

4 Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University,
Arhimedova 3, 1000 Skopje, Macedonia

5 Hugo Steinhaus Center, Faculty of Pure and Applied Mathematics, Wroclaw University of Science and
Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland

6 Akhiezer Institute for Theoretical Physics National Science Center ”Kharkiv Institute of Physics and
Technology”, Akademichna 1, 61108 Kharkiv, Ukraine

* Correspondence: trifce.sandev@manu.edu.mk (T.S.); chechkin@uni-potsdam.de (A.V.C.)

Abstract: We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional
random search model performing asymmetric Lévy flights by leveraging the Fokker–Planck equa-
tion with a δ-sink and an asymmetric space-fractional derivative operator with stable index α and
asymmetry (skewness) parameter β. We find exact analytical results for the probability density of
first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short
and long times. We find that when the starting point of the searcher is to the right of the target,
random search by Brownian motion is more efficient than Lévy flights with β ≤ 0 (with a rightward
bias) for short initial distances, while for β > 0 (with a leftward bias) Lévy flights with α → 1 are
more efficient. When increasing the initial distance of the searcher to the target, Lévy flight search
(except for α = 1 with β = 0) is more efficient than the Brownian search. Moreover, the asymmetry in
jumps leads to essentially higher efficiency of the Lévy search compared to symmetric Lévy flights at
both short and long distances, and the effect is more pronounced for stable indices α close to unity.

Keywords: asymmetric Lévy flights; first-arrival density; search efficiency

1. Introduction

Search strategies, in general, and random search processes, in particular, have recently
attracted interest among scientists and practitioners who seek to understand food search
strategies of animals [1,2] and diffusion control of molecular processes in biological cells [3],
or aim at improving the performance of computer search algorithms [4,5] and optimise
search processes for military tasks (hunting for submarines, locating enemy vessels and
mines) [6,7]. In the concept of random search, the searcher has no prior knowledge about
the location of its target and performs a random walk until it encounters the target—this
process is called saltatory motion or blind search in the ecology literature [8]. In foraging
theory, this saltatory search is distinguished from cruise search, in which the searcher looks
out for targets (i.e., resource patches, mates, etc.) during its movements [9,10]. An essential
part of all these processes and applications are various forms of random walk models,
continuous or discrete in time.

The first studies on random search considered Brownian motion of the searcher as a
default strategy. A prominent early example, motivated by his contact with the malaria
researcher Ross, is Pearson’s idea of a drunken man performing a “random walk” on the
street grid of a city as a model for the spreading of malaria by mosquitoes in previously
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non-infested areas [11]. Later, Shlesinger and Klafter proposed that Lévy motions with a
scale-free, power-law distribution of jump lengths, represent a much more efficient strategy
than the standard random walk or (in the continuum limit) Brownian motion, in the search
for sufficiently sparse targets. Indeed, this higher efficiency is due to the combination of
the thorough local search with occasional long excursions and hence the exploration of
previously unvisited areas, thereby reducing the tendency towards ”oversampling” of
Brownian motion in one and two spatial dimensions [12]. The works on Lévy flight search
of albatrosses [13], and on the general optimality of Lévy search [1], have attracted broad
attention of researchers in the field of animal motility patterns and optimal search strategies.
Viswanathan and colleagues [1,14], in particular, proposed superdiffusive Lévy flights as an
optimal search strategy when searching for sparse targets in their ”Lévy flight hypothesis”.

For the random search processes based on the Lévy flight model, the distribution
of displacement lengths |x| has the asymptotic power-law form λ(x) ' |x|−1−α with
0 < α < 2 for which the second moment of the jump lengths diverges, i.e., 〈x2(t)〉 → ∞ [15].
The resulting motion is spatially scale-free, and fractional, qth-order moments 〈|x|q(t)〉
with 0 < q < α exist. Lévy flights have found various applications, ranging from the
famous flight of the albatross [13], spreading of spider-monkeys [16], grazing patterns of
bacteria [17], over economical data [18,19] to molecular collisions [20], plasmas [21–23] and
lattice gas automata [24,25]. In recent years, the search processes that optimise random
blind searches for sparse targets in different settings have been discussed [9,26,27]. In
particular, combinations of Brownian search and Lévy flights were studied [28].

In the last decade, other random search processes have been also proposed as alterna-
tives to Lévy flights and have attracted considerable attention in the scientific community.
Such models include intermittent dynamics that switch between local Brownian search
events and ballistic relocation phases [29,30], for which the relocation time probability
density may also be of the power-law form [27,31]. The intermittent strategy minimises
the search time [32], and, for instance, is observed for the dinoflagellate Oxyrrhis marina
when it preys on a microzooplankton [33], as well as for Nahua mushroom gatherers [34]
following the so-called area-restricted search strategy [35]. In computer science and data
mining (information retrieval) [36] one particularly popular search method is based on a
random walk model, in which a combination of local and long-range searches is imple-
mented, while in complex network theory, the calculation of the mean first-passage time
of a searcher to find the target on a given complex networks is of high importance [37,38]
for the description of a large number of real-world phenomena. Lévy flights have been
promoted as a preferred strategy when there is insufficient prior knowledge on the search
space. In particular, for sufficiently sparse targets, several analyses claim that the opti-
mal value for the power-law exponent is α = 1 [13,27,39,40], so that the jump lengths
are distributed according to the Cauchy law. The central advantage of the Lévy flight’s
strategy in comparison with the other strategies is its robustness: while other models work
best when their parameters are optimised for specific environmental conditions such as
the target density, Lévy flights remain close to optimal even when these conditions are
altered [27]. Random search processes based on Lévy flights in the presence of an external
drift (underwater current, atmospheric wind, a preference of the walker owing to prior
experience or a general bias in an abstract search space), have also attracted attention in
recent years [28].

From the mathematical point of view, the problem of calculating the first-hitting or
first-arrival time of a point or an interval in the class of stable processes was the subject of
several studies. We mention studies of the first-hitting time density of symmetric stable pro-
cesses [41–49] and spectrally positive stable process [50,51] in which the authors obtained
series expressions for the first-hitting density. Moreover, for asymmetric stable processes,
with the help of the Lamperti–Kiu representation of self-similar Markov processes, the
Mellin transform of the first-hitting time and a series expression for the first-hitting time
density was obtained [52]. With the use of space-fractional Fokker–Planck equations, the
first-hitting problems of symmetric Lévy flights and combined Lévy-Brownian motions
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were studied [9,28,53–57]. This method is also employed in the present paper to study
the first-hitting dynamics of asymmetric Lévy flights. Another method based on the
Langevin equation, known as the simulated annealing algorithm, which is a semi-local
search consisting of occasional long jumps based on the Cauchy distribution and Lévy
stable laws, was studied in [58–60], respectively. Moreover, the first-passage problem of
symmetric and asymmetric Lévy flights was studied by leveraging the Skorokhod theorem,
and the analytical results were confirmed by extensive numerical simulations based on the
numerical solutions of space-fractional Fokker–Planck equation and stochastic Langevin
equations [61–64]. We finally note studies of the related problem of barrier crossing of
Lévy flights [65–71].

By providing analytical and numerical investigations of random search based on
asymmetric Lévy flights, we here aim at understanding this search strategy by analysis
of the first-arrival time, the reliability and the efficiency. We seek to clarify under which
conditions this type of asymmetric motion optimises random search. This will be achieved
by investigation of both the (deterministic) Fokker–Planck equation with a δ-sink and
the associated (stochastic) Langevin equation. The structure of the paper is as follows.
In Section 2, we define the process of asymmetric Lévy flight search and compute the
first-arrival density in terms of Fox H-functions. We provide a detailed analysis of the
asymptotic behaviour of the first-arrival density in the short and long time limits. In
Section 3, the analytical results are confirmed by numerical use of the Langevin equation
for asymmetric Lévy flights. We also obtain the search efficiency and compare it with the
corresponding efficiencies for Brownian and Lévy search in Section 4. The Summary is
provided in Section 5. Details of the definition of α-stable processes, the definition and
properties of the Fox H-function, as well as technical details of derivations are presented in
the Appendices A–G.

2. Formulation of the Problem and Solution

We consider a space-fractional Fokker–Planck equation of the form:

∂

∂t
f (x, t) = Kα xDβ

α f (x, t)− ℘fa(t)δ(x), f (x, 0) = δ(x− x0), (1)

where x0 > 0 is the initial point, Kα is the generalised diffusion coefficient and xDβ
α for

0 < α ≤ 2 is an asymmetric space-fractional derivative operator of order α and asymmetry
parameter β, which is defined in the Fourier space as follows [72–75],

F
[

xDβ
α f (x)

]
(k) = −ψ

β
α (k)F [ f (x)](k), (2)

where:
ψ

β
α (k) = |k|α(1− iβsgnk tan(απ/2)), 0 < α ≤ 2, −1 ≤ β ≤ 1. (3)

In this paper, we exclude the special case α = 1 and β 6= 0 that requires special
attention. For convenience, in the analytical point of view we use the characteristic function
in the form:

ψ
ρ
α(k) = (ik)αe−iπαρ sgnk, 1−min(1, 1/α) < ρ < min(1, 1/α), (4)

where the following relation between the parameters is established (see details in
Appendix A) [63,72]:

ρ =
1
2
+

1
απ

arctan(β tan(απ/2)). (5)

Equation (1) is a generalisation of the space-fractional diffusion equation for symmetric
Lévy flights [15] in the presence of a δ-sink of strength ℘fa(t) [53], and describes a target
search by a walker exploring its accessible one-dimensional space by performing left-right
asymmetrical random jumps represented by the asymmetric space-fractional derivative
operator (2). The scale parameter Kα (along with the stable index α) physically sets the size
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of the Lévy flight jumps. The skewness parameter β may be related to an effective drift or
counter-gradient effect [76,77].

The consequence of the point sink at x = 0 is that the random walker is removed once
the target is hit (see Figure 1). Thus, the time dependent weight ℘fa(t) is the first-arrival
probability density. By integration of Equation (1) over the position co-ordinate x, we obtain
that ℘fa(t) is the negative time derivative of the survival probability

∫ ∞
−∞ dx f (x, t) [53], i.e.,

℘fa(t) = −
d
dt

∫ ∞

−∞
dx f (x, t). (6)

This means that ℘fa(t) is the probability density function (PDF) of first-arrival: once a
random walker arrives at the sink it is annihilated. In what follows, we solve Equation (1)
with the help of the Fourier–Laplace transform and various properties of the Mittag–Leffler
and Fox H-functions (see Appendix B).

Figure 1. Schematic of the random search process. A walker starts its motion from x0 and performs
random jumps in the search space until he finds the target at x = 0.

2.1. Diffusion Equation for Asymmetric Lévy Flights

Application of the Fourier transform to Equation (1) yields:

∂

∂t
f (k, t) = −Dαψ

ρ
α(k) f (k, t)− ℘fa(t), (7)

where [63,72]:

Dα =
Kα

cos (απ(ρ− 1/2))
. (8)

Let us first consider Equation (7) without the δ-sink, for the initial condition
f (x, 0) = δ(x− x0). In the Fourier–Laplace space, the solution is given by:

f (k, s) =
exp(ikx0)

s +Dαψ
ρ
α(k)

, (9)

from which it follows that:

f (k, t) = exp
(
−Dαψ

ρ
α(k)t + ikx0

)
. (10)

Note that solution (10) can be easily obtained from Equation (7) without applying the
Laplace transform. We add here Equation (9) in order to be consistent with the formula,
including the sink, see Equation (14) below. Applying the inverse Fourier transform, we
find (see details in Appendix C) [73]:

f (x, t) =
1

(Dαt)1/α
Lρ

α

(
x− x0

(Dαt)1/α

)
, 0 < α ≤ 2, (11)
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where Lρ
α(z) is the Lévy α-stable PDF defined as (A22) in terms of the H-function and z > 0.

In Figure 2, we plot the PDF of Lévy flights with different stable index α and asymmetry
parameter β. From Equation (11), by help of the Mellin transform of the H-function (A17)
and the symmetry property Lρ

α(−z) = L1−ρ
α (z) [72], we obtain the qth-order moment:

〈|x|q(t)〉 = sin(πρq) + sin(π(1− ρ)q)
πq

Γ(1 + q)Γ(1− q/α)(Dαt)q/α, −1 < q < α. (12)

One can check that the moments in (12) are positive (see details in Appendix D). Note
that for the case 0 < α < 1 with β = −1, 1, corresponding to ρ = 0, 1 respectively, the
qth-order moment reads:

〈|x|q(t)〉 = Γ(1− q/α)

Γ(1− q)
(Dαt)q/α, −∞ < q < α, (13)

where we use Euler’s reflection formula. For the symmetric case (ρ = 1/2), we recover the
result for symmetric Lévy flights [78–80].
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Figure 2. Probability density function of Lévy flights with Kα = 1 at time t = 1. The value α = 2 is
the Gaussian limit, so that β become irrelevant and the PDF is symmetric.

2.2. Presence of the δ-Sink and Calculation of the First-Arrival Density

Let us now consider the model, including the δ-sink. The solution of Equation (1), for
the initial condition f (x, 0) = δ(x− x0), in Fourier–Laplace space is given by:

f (k, s) =
exp(ikx0)− ℘fa(s)

s +Dαψ
ρ
α(k)

. (14)

By integration of Equation (14) over k we find:∫ ∞

−∞
dk f (k, s) = f (x = 0, s) = 0. (15)

Thus, the first-arrival density in the Laplace domain reads:

℘fa(s) =
I2(s)
I1(s)

, (16)

where for I1(s) and I2(s), we obtain (see details in Appendix E):

I1(s) =
∫ ∞

−∞
dk

1
s +Dαψ

ρ
α(k)

=
2π

α

s1/α−1

D1/α
α

sin(πρ)

sin(π/α)
, α > 1 (17)

and,

I2(s) =
∫ ∞

−∞
dk

exp(ikx0)

s +Dαψ
ρ
α(k)

=
2π

αx0

1
s

H2,1
2,3

[
x0

D1/α
α

s1/α

∣∣∣∣ (1, 1/α), (1, 1− ρ)
(1, 1/α), (1, 1), (1, 1− ρ)

]
. (18)
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We mention that for α < 1, I2(s) is finite while I1(s) diverges for any s, i.e., ℘fa(s) = 0.
For α = 1, with β = 0 (ρ = 1/2), I2(s) is finite for s 6= 0, whereas I1(s) still diverges for
s > 0, thus we have ℘fa(s) = 0 again. In the case α > 1 both I1(s) and I2(s) converge for
finite s, thus, ℘fa(s) is non-zero [28,55]. Equation (16) then assumes the form:

℘fa(s) =
D1/α

α

x0s1/α

sin(π/α)

sin(πρ)
H2,1

2,3

[
x0

D1/α
α

s1/α

∣∣∣∣ (1, 1/α), (1, 1− ρ)
(1, 1/α), (1, 1), (1, 1− ρ)

]
, 1 < α ≤ 2. (19)

By help of the inverse Laplace transform (see Equation (A16)) the first-arrival density
yields as:

℘fa(t) =
t−1+1/α

x0D−1/α
α

sin(π/α)

sin(πρ)
H2,1

3,3

[
x0

(Dαt)1/α

∣∣∣∣ (1, 1/α), (1, 1− ρ), (1/α, 1/α)
(1, 1/α), (1, 1), (1, 1− ρ)

]
, α > 1. (20)

Note that for α = 2, i.e., ρ = 1/2, D2 ≡ K2, by using the reduction property of the
H-function (see relations (A13) and (A14)), we obtain the Lévy–Smirnov distribution:

℘fa(t) =
K1/2

2 t−1/2

x0
H1,0

1,1

[
x0

(K2t)1/2

∣∣∣∣ (1/2, 1/2)
(1, 1)

]
=

2x0√
K2t3

H1,0
1,1

[
x2

0
K2t

∣∣∣∣ (−1/2, 1)
(−1, 2)

]

=
x0√

4πK2t3
H1,0

0,1

[
x2

0
4K2t

∣∣∣∣ (0, 1)

]
=

x0√
4πK2t3

exp

(
−

x2
0

4K2t

)
. (21)

In the latter equality, we used Equation (A10) and the duplication rule 22zΓ(z)Γ(z +
1/2) = 2

√
πΓ(2z) of the Γ-function. By help of Equations (A11) and (A12) the first-arrival

density (20) can be expressed in the following form:

℘fa(t) =
t−1+1/α

x0D−1/α
α

α sin(π/α)

sin(πρ)
H1,2

3,3

[
Dαt
xα

0

∣∣∣∣ (0, 1), (0, α), (0, α− αρ)
(0, 1), (0, α− αρ), (1− 1/α, 1)

]
. (22)

Inserting the series expansion of the H-function (A8) we obtain:

℘fa(t) =
t−1+1/α

x0D−1/α
α

α sin(π/α)

sin(πρ)

∞

∑
k=1

Γ(1 + k)Γ(1 + αk)
Γ(1 + αk− αρk)Γ(1/α + k)Γ(αρk− αk)

(−1)k

k!

(
Dαt
xα

0

)k

=
t−1+1/α

x0D−1/α
α

α sin(π/α)

π sin(πρ)

∞

∑
k=1

(−1)k−1 sin(πα(1− ρ)k)
Γ(1 + αk)

Γ(1/α + k)

(
Dαt
xα

0

)k
. (23)

This form can be shown to be equivalent to the corresponding expression in Theorem 3.14
of [52], in a dimensionless form. Therefore, from the equation above, the short time limit of
the first-arrival density has the asymptotic behaviour

℘fa(t) ∼
α sin(π/α) sin(πα(1− ρ))

π sin(πρ)

Γ(1 + α)

Γ(1/α + 1)
D1+1/α

α

x1+α
0

t1/α. (24)

We also provide another method to get the above expression in Appendix F.
In order to obtain the long time limit, we use the Laplace transform of the first-arrival

density (19) at small s, and then apply the Tauberian theorem [81] to get (see Appendix F
for details):

℘fa(t) ∼
sin(πα(1− ρ))

sin(πρ)

Γ(2− α)

Γ2(1/α)Γ(1− 1/α)

D−1+1/α
α

x1−α
0

t−2+1/α. (25)

This expression is in agreement with the results in [53] for the symmetric case (β = 0).
Note that the short and long time limit behaviours are also in agreement with intuition,
namely, the first-arrival density initially increases from zero as a power of time t, and
asymptotically decreases with a negative power of t (we note that this derivation assumed
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α > 1). Note also that, with the variation of ρ (see Equation (5)), Equations (24) and (25)
are non-negative.

The fractional-order moments of the first-arrival density with 1 < α < 2 read:

〈tq〉 =
∫ ∞

0
dt tq℘fa(t) =

sin(π/α) sin(π(1− ρ)(1 + αq))
sin(πρ) sin(π

α (1 + αq))
Γ(1− αq)
Γ(1− q)

xαq
0

Dq
α

,

− 1− 1
α
< q < 1− 1

α
, β 6= 1, (26)

where we use the Mellin transform of the H-function (see Equation (A17)). This form can
be shown to be equivalent to the corresponding result in [52] (see Theorem 3.9). Due to the
definition of ρ (Equation (5)), and from variations of q, it is obvious that the moments are
positive. For the case β = 1 with 1 < α < 2, we have ρ = 1− 1/α, and thus arrive at:

〈tq〉 = Γ(1− αq)
Γ(1− q)

xαq
0

Dq
α

, −∞ < q <
1
α

, β = 1, (27)

while for the limit of Brownian motion (α = 2), we get:

〈tq〉 = Γ(1− 2q)
Γ(1− q)

x2q
0

Kq
2

, −∞ < q <
1
2

. (28)

In Figure 3, we plot the fractional-order moments of symmetric (β = 0) and the
extremal two-sided (β = 1) Lévy flights as functions of the parameter q for different values
of the stable index α. As can be seen, the PDFs are normalised, 〈tq=0〉 = 1, but have
diverging means for all α.
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Figure 3. Fractional-order moments of the first-arrival density of Lévy flights for x0 = 1 and Kα = 1.

3. Langevin Equation Approach

A complementary view to the calculation of time dependent probabilities is the nu-
merical study of individual search paths. For such a simulation of asymmetric Lévy flights,
we use the (stochastic) Langevin equation for the particle position x [67],

dx(t)
dt

= K1/α
α ζ(t), (29)

driven by random noise ζ(t) with Lévy stable distribution, which is characterised by the
stable index α and the asymmetry parameter β. For simulation purposes we pass to the
discretised version of the Langevin equation,

xn+1 − xn = (Kα∆t)1/αζt, (30)
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taken at times tn = n∆t, n = 0, 1, 2, . . . , for more details, see [67]. The noise ζt is computed
according to the algorithm described in [82]. For each fixed value of α, β and Kα, the random
walker starts its motion at x0. When it hits the vicinity of the origin x = 0, the corresponding
event time t = n∆t is recorded and a new particle is released. This procedure is repeated
2× 106 times. The time steps to determine the long-time and short-time behaviours of
the first-arrival density were ∆t = 0.001 and 0.0001, respectively. For the very short-time
behaviour when t → 0 we chose ∆t = 0.00001. While we study analytically a point-like
target, in the simulations, we have to endow the target with a finite size d. This size
should be sufficiently large to be detected by the simulated walk—and small enough to
be considered as a point-like target and thus warrant proper statistics. This issue was
discussed in detail in [9,54]. We find that the appropriate size of the target should be
d ∼ 2(Dα∆t)1/α, as a function of the time step ∆t, stable index α, asymmetry parameter β
and the generalised diffusion coefficient Kα (see Equations (5) and (8)). Note that in contrast
to the symmetric case β = 0 studied in [9,54], here, the coefficient Dα depends on both α
and β, such that we should choose a smaller time step for simulations with α closer to unity.

Figure 4 shows the long-time asymptotic behaviour of the first-arrival PDF along with
the short-time behaviour and the behaviour around t = 0, respectively. The coloured solid
curves in the left and centre panels are obtained from the exact analytical solution (20), and
the symbols show the results based on numerical solution of the Langevin Equation (30).
The short black lines in the right panels represent the long-time asymptotic behaviour
t−2+1/α (see Equation (25)). From the short-time behaviour of the first-arrival density in
Figure 4 (left and centre panels), it can be seen that, initially (at t ≤ 0.1), particles moving
with negative skewness (β < 0) have a higher chance to find the target as compared with
particles with non-negative β. In physical terms, the negative skewness corresponds to
shorter jumps to the right occurring with higher frequency and longer jumps occurring with
lower frequency to the left. However, it is seen from the centre panels that at times longer
than 0.1 the random walker with positive β will detect the target with higher probability.
This is intuitively clear since such a walker performs more short jumps to the negative
direction (towards the target) for positive β, and when α tends to 1+ the number of short
jumps increases. Thus, the area on the left of the initial position x0 is densely covered,
whereas the random searcher with β < 0 performs long jumps to the left direction and may
more easily overshoot the target.

The short-time behaviour of the first-arrival density of asymmetric Lévy flights is
depicted in Figure 5 for different values of the stable index α and diffusion coefficient
Kα = 10. The results obtained from simulations (coloured symbols) are in good agreement
with the theoretical result (20). One can see that for the case β = 1 (left panel), the searcher
with smaller stable index α will find the target faster since, in this case, there are more short
jumps in the direction of the target. Respectively, in case of the negative skewness β = −0.5
(right panel) the searcher with larger α will find the target faster. These observations—valid
for close initial distance between the searcher and the target (x0 = 1)—are confirmed
by calculation of the search efficiency in the next Section. We note that, based on the
simulations whose results are shown in Figures 4 and 5 for different time scales, the
first-arrival probability densities are unimodal.
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Figure 4. Left and centre: short-time behaviour for the first-arrival density of Lévy flights with
different β, for α = 1.25, 1.5 and 1.75, from top to bottom, respectively. The solid lines are computed
from the full expression (20). The coloured symbols depict the simulation results of the Langevin
Equation (29). Right: same as the left panels but depicting the long-time behaviour. The short black
line shows the asymptote t−2+1/α. Note that for better visual comparison the results are multiplied
by a factor of 0.01 for β = 1, of 0.1 for β = 0.5, of 10 for β = −0.5 and of 100 for β = −1. We chose the
time steps ∆t = 0.00001 for the t→ 0 limit in the left panels, ∆t = 0.0001 to simulate the short-time
behaviour in the middle panels and ∆t = 0.001 for the long-time behaviour in the right panels, with
N = 2× 106 realisations. Moreover, Kα = 1 and with x0 = 1, and the target size was chosen as
2(Dα∆t)1/α. We note that for the case β = 1, a decrease of α means that the long-time asymptotic
behaviour will be observed at longer times.
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Figure 5. Short-time asymptotic of the first-arrival density of Lévy flights for different stable index α

with Kα = 10 and x0 = 1. Symbols show the simulation results based on the Langevin approach and
the dashed lines are computed from the exact analytical expression (20). We chose ∆t = 0.0001 for
N = 2× 106 realisations, and the target size is 2(Dα∆t)1/α.

4. Calculation of the Search Efficiency

In order to study the search efficiency, we make use of the definition proposed in [9],
which is defined by:

E =

〈
1
t

〉
=
∫ ∞

0
dt

℘fa(t)
t

=
∫ ∞

0
ds℘fa(s). (31)

A given search strategy is optimal when the efficiency E of the corresponding search
process reaches its maximum. The constructive meaning of such a definition of efficiency
was tested in [9] for Brownian motion with drift towards and away from the target. The
expediency of the definition was addressed in the first arrival problems for symmetric Lévy
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flights with drift in [9], for combined Lévy–Brownian and Lévy–Lévy search in [55,83] of
single and multiple targets. In all the cases, such a definition gives reasonable results, which
allow explanation at an intuitive level. Another strong motivation is its analytical simplicity,
which allows for getting exact analytical formulas in cases where the most probable value
of the first arrival time can be calculated only numerically.

The exact result for the search efficiency can be obtained by substituting Equation (19)
or (20) into the above expression and then using equation (A17). We find that:

E =
sin[π(1− ρ)(α− 1)]

sin(πρ)
Γ(α + 1)

Dα

xα
0

. (32)

Consequently, in general, the efficiency depends on the positive parameter ρ and,
hence, on the skewness parameter β. In particular, for the symmetric case ρ = 1/2 or β = 0
it turns out that [9]:

E = sin
(π

2
(α− 1)

)
Γ(α + 1)

Dα

xα
0

, (33)

and in the limit α = 2 for a Brownian walker, the efficiency is given by:

E =
2D2

x2
0

. (34)

In the Cauchy limit α = 1 (β = 0), the efficiency goes to zero. For the case α → 1+

with β 6= 0, substituting Equations (5) and (8) into Equation (32) yields:

E =
sin
[(

π
2 −

1
α arctan

(
β tan( απ

2 )
))

(α− 1)
]

cos
[

1
α arctan

(
β tan

(
απ
2
))]

cos
[
arctan

(
β tan

(
απ
2
))] Γ(α + 1)Kα

xα
0

. (35)

Finally, taking the limit α→ 1+, one gets (see details in Appendix G):

E =

{
∞ β > 0
2|β|

π
Kα
x0

β < 0
. (36)

In Figures 6–8, we use Equation (32) to compare the search efficiency for different
values of the stable index α, skewness β and initial distance x0. In Figure 6, we show the
dependence of the search efficiency on the stable index α for different values of β. We
observe that when the target is located on the left of the random searcher at the initial
distance x0, it is more probable to be detected by Brownian motion than by Lévy flights
with non-positive asymmetry parameter (β ≤ 0). This is intuitively clear: in contrast to the
Brownian walker, such a Lévy searcher performs long jumps to the left, which may easily
lead him far away from the target located at x = 0. Vice versa, Lévy flights with β > 0 are
always more efficient than Brownian search since for such searchers long jumps to the left
are forbidden, while they perform more shorter jumps to the left than the Brownian walker.
Such an intuitive picture stems from the shapes of the α-stable PDFs depicted in the left
panel of Figure 2.

In Figure 7, we illustrate the dependency of the search efficiency on the asymmetry
parameter β for different stable index α and for two different initial target distances. It can
be seen that for the close target (x0 = 0.5) Brownian motion is more efficient than the Lévy
search (except for Lévy flights with β > 0 and α → 1). By increasing the initial distance,
Lévy flights are more efficient as compared to the Brownian motion (except for α = 1 with
β = 0). Moreover, the asymmetry in the jumps leads to a higher efficiency, and this effect is
more pronounced for stable indices close to unity.
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Figure 6. Search efficiency E as function of the stable index α for different values of the skewness
parameter β with Kα = 1.
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Figure 7. Search efficiency E as function of the skewness parameter β for different values of α with
Kα = 1 in log-linear scale.

Finally, we study the effect of the initial distance x0 on the search efficiency for different
values of the asymmetry β in Figure 8. It was observed that for smaller values of α, the
asymmetry of the jumps led to higher search efficiency, and by increasing α→ 2 at a fixed
value of x0, all Lévy flights have almost the same search efficiency.

Another important quantity is the search reliability, defined as the cumulative ar-
rival probability [9],

P =
∫ ∞

0
dt℘fa(t). (37)

From relation (20), we find that P = 1, which means that in the case of asymmetric
Lévy flights, as in the case of symmetric Lévy flights, the searcher will always find the
target, and this statement is valid for α > 1 with all β (−1 ≤ β ≤ 1).
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Figure 8. Search efficiency E as function of the initial position x0 for different β with Kα = 1 on
log-log scale. The short solid line shows the asymptote x−α

0 (see Equation (32)).



Fractal Fract. 2022, 6, 260 12 of 23

5. Conclusions

We investigated the dynamics and performance of asymmetric Lévy flights as a ran-
dom search strategy by solving the deterministic Fokker–Planck equation with asymmetric
space-fractional derivative in the presence of a sink, which mimics a point target. We
found exact results for the resulting first-arrival or first-hitting density, its fractional order
moments and search efficiency in terms of the stable index α and the skewness parameter β
of the asymmetric Lévy flight. We observed that the first-arrival density is identically zero
for processes with α ≤ 1. For α > 1 the first-arrival density increases at short times as t1/α

and decreases at long times as t−2+1/α. Thus, the exponents of the short- and long-time
asymptotics are independent of the skewness β.

The efficiency of the search depends on both parameters, the stable index and skew-
ness, as well as on the initial distance x0 of the searcher to the target and the diffusion
coefficient Kα. We demonstrated that for a short initial distance x0, the Brownian strategy
is more efficient than Lévy flights, except when β > 0 with stable index α → 1. For long
initial distances, Lévy flights become more efficient than the Brownian motion. These
observations extend the results obtained in [9] to the asymmetric case. We also found that
the asymmetry in jump yields higher efficiency, especially for stable indices close to unity.
In the limiting case α → 1+, the search efficiency is infinite for positive skewness, and
the situation drastically changes for a negative skewness. It is observed that the search
efficiency in this limit case has a linear behaviour with respect to |β|.

It will be interesting to analyse the case of asymmetric Lévy flight search on multiple
targets, as was done for symmetric Lévy flights [83]. Another interesting search strategy
could be the case of combined search [55]: asymmetric Lévy flights with local Brownian
search. It is also of interest to study the random Lévy search in two and three dimensions,
as well as applications of such non-local asymmetric search processes in finding the global
extremum of potential functions [59]. Different definitions of the search efficiency are also
worth being analysed and compared.
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Appendix A. Characteristic Functions of α-Stable Processes

Among different forms for the parametrisation of α-stable laws in the literature, where
each form might be useful in a particular situation, we here present the standard form of
the characteristic function and show how to derive the Z-form [63,72] which is used in the
main text as more convenient for our purposes in analytical calculations. The standard
form of the characteristic function reads [84]:
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f (k, t) = e−Kαψ
β
α (k)t = exp(−Kαt|k|α[1− iβ tan(απ/2)sgnk]), 0 < α ≤ 2, −1 ≤ β ≤ 1. (A1)

We exclude the case α = 1 and β 6= 0. Changing the variable β tan(απ/2) =

tan(β
′K(α)π/2) leads to:

f (k, t) = exp
(
−Kαt|k|α

[
1− i tan

(
β
′K(α)π/2

)
sgnk

])
= exp

(
− Kαt

cos(β′K(α)π/2)
|k|α
[
cos
(

β′K(α)π/2
)
− i sin

(
β
′K(α)π/2

)
sgnk

])
= exp

(
− Kαt

cos(β′K(α)π/2)
|k|αexp

[
− iπ

2
β′K(α)sgnk

])
, (A2)

where K(α) = α − 1 + sgn(1 − α) [72]. Defining β′K(α) = α(2ρ − 1), leads us to the
desired result:

f (k, t) = e−Dαψ
ρ
α(k)t = exp(−Dαt(ik)αexp[−iπαρ sgnk]), (A3)

where:

ρ =
1
2
+

1
2α

β′K(α) = 1
2
+

1
απ

arctan(β tan(απ/2)), Dα =
Kα

cos(απ(ρ− 1/2))
. (A4)

Appendix B. Mittag–Leffler and Fox H-Functions

The two-parameter Mittag–Leffler (M-L) function has the series representation [85]:

Eα,β(z) =
∞

∑
k=0

1
Γ(αk + β)

zk

k!
, (A5)

and in the form of a Mellin–Barnes integral reads [86]:

Eα,β(−z) =
1

2πi

∫
Ω

ds
Γ(−s)Γ(1 + s)

Γ(β + αs)
zs. (A6)

The Fox H-function (or simply H-function) is defined by the following Mellin–Barnes in-
tegral [86]:

Hm,n
p,q

[
z
∣∣∣∣ (a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

]
= Hm,n

p,q

[
z
∣∣∣∣ (ap, Ap)
(bq, Bq)

]
=

1
2πi

∫
Ω

ds Θ(s)zs, (A7)

where Θ(s) =
∏m

j=1 Γ(bj−Bjs)∏n
j=1 Γ(1−aj+Ajs)

∏
q
j=m+1 Γ(1−bj+Bjs)∏

p
j=n+1 Γ(aj−Ajs)

, 0 ≤ n ≤ p, 1 ≤ m ≤ q, ai, bj ∈ C,

Ai, Bj ∈ R+, i = 1, . . . , p, j = 1, . . . , q. The contour Ω starting at c − i∞ and ending at
c + i∞ separates the poles of the function Γ(bj − Bjs), j = 1, . . . , m from those of the func-
tion Γ(1− ai + Ais), i = 1, . . . , n. The series expansion of the H-function is given by [86]:

Hm,n
p,q

[
z
∣∣∣∣ (ap, Ap)
(bq, Bq)

]

=
m

∑
h=1

∞

∑
k=0

∏m
j=1,j 6=h Γ

(
bj − Bj

bh+k
Bh

)
∏n

j=1 Γ
(

1− aj + Aj
bh+k

Bh

)
∏

q
j=m+1 Γ

(
1− bj + Bj

bh+k
Bh

)
∏

p
j=n+1 Γ

(
aj − Aj

bh+k
Bh

) (−1)kz(bh+k)/Bh

k!Bh
. (A8)

The connection between the two parameter M-L function and Fox H-function is
given by [86]:

Eα,β(−z) = H1,1
1,2

[
z
∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
. (A9)
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The relation between the exponential function and the Fox H-function reads:

B−1z
b
B exp

(
−z

1
B

)
= H1,0

0,1

[
z
∣∣∣∣ (b, B)

]
. (A10)

Moreover, the H-function has the following properties (n ≥ 1, q > m):

Hm,n
p,q

[
z
∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= Hn,m

q,p

[
1
z

∣∣∣∣ (1− bq, Bq)
(1− ap, Ap)

]
, (A11)

Hm,n
p,q

[
z
∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= cHm,n

p,q

[
zc
∣∣∣∣ (ap, cAp)
(bq, cBq)

]
, c > 0, (A12)

Hm,n
p,q

[
z
∣∣∣∣ (aj, Aj)1,p
(bj, Bj)1,q−1, (a1, A1)

]
= Hm,n−1

p−1,q−1

[
z
∣∣∣∣ (aj, Aj)2,p
(bj, Bj)1,q−1

]
, (A13)

Hm,n
p,q

[
z
∣∣∣∣ (aj, Aj)1,p−1, (b1, B1)
(bj, Bj)1,q

]
= Hm−1,n

p−1,q−1

[
z
∣∣∣∣ (aj, Aj)1,p−1
(bj, Bj)2,q

]
. (A14)

The Laplace transform formula for the H-function is [86]:

∫ ∞

0
dt e−sttδ Hm,n

p,q

[
atσ

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= s−1−δ Hm,n+1

p+1,q

[
as−σ

∣∣∣∣ (−δ, σ), (ap, Ap)
(bq, Bq)

]
, (A15)

where Re
(

δ + σ min1≤j≤m

( bj
Bj

))
> −1, δ ∈ C, s ∈ C (Re(s) > 0) and a, σ and θ are positive.

The parameter θ defined by θ = ∑n
j=1 Aj − ∑

p
j=n+1 Aj + ∑m

j=1 Bj − ∑
q
j=m+1 Bj. Moreover,

the inverse Laplace transform of the H-function reads:

L −1
{

s−δHm,n
p,q

[
asσ

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
; t
}

= tδ−1Hm,n
p+1,q

[
at−σ

∣∣∣∣ (ap, Ap), (δ, σ),
(bq, Bq)

]
, (A16)

where Re
(

δ + σ max1≤i≤n

(
1
Ai
− ai

Ai

))
> 0, δ, a, s ∈ C (Re(s) > 0), | arg a| < 1

2 π(θ − σ)

and σ > 0. The Mellin transform of the H-function is given by [86]:

∫ ∞
0 dx xξ−1Hm,n

p,q

[
ax
∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= a−ξ Θ(−ξ), (A17)

where Θ(ξ) is defined in Equation (A7).

Appendix C. Derivation of the Lévy α-Stable PDF

In order to obtain the solution of Equation (10), we first apply the inverse Fourier
transform, namely,

1
2π

∫ ∞

−∞
dk e−ikx f (k, t) =

1
2π

∫ ∞

−∞
dk e−ikx exp

(
−Dαψ

ρ
α(k)t + ikx0

)
=

1
2π

∫ ∞

−∞
dk e−ikz exp

(
−Dαψ

ρ
α(k)t

)
, (A18)
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where z = x− x0. By help of relation (A10) and using the Mellin–Barnes integral represen-
tation of the Fox H-function, we get:

1
2π

∫ ∞

−∞
dk e−ikz exp

(
−Dαψ

ρ
α(k)t

)
=

1
2π

∫ ∞

−∞
dk e−ikzH1,0

0,1

[
Dαψ

ρ
α(k)t

∣∣∣∣ (0, 1)

]
=

1
2π

∫ ∞

−∞
dk e−ikz 1

2πi

∫
Ω

ds Γ(−s)
(
Dαψ

ρ
α(k)t

)s

=
1

2πi

∫
Ω

ds Γ(−s)
1

2π

∫ ∞

−∞
dk e−ikz

(
Dαψ

ρ
α(k)t

)s
. (A19)

By substitution of ψ
ρ
α(k) (see Equation (4)) into the inner integral we get:∫ ∞

−∞
dk e−ikz

(
Dαψ

ρ
α(k)t

)s
=
∫ ∞

−∞
dk e−ikz(Dα(ik)α exp[−iπαρ sgnk]t)s

= (Dαt)s
(

eiπαρs
∫ 0

−∞
dk e−ikz(ik)αs + e−iπαρs

∫ ∞

0
dk e−ikz(ik)αs

)
= (Dαt)s

(
eiπαρs

∫ ∞

0
dk eikz(−ik)αs + e−iπαρs

∫ ∞

0
dk e−ikz(ik)αs

)
= i

(Dαt)s

z1+αs Γ(1 + αs)
(

eiπαρs − e−iπαρs
)
= 2

(Dαt)s

z1+αs Γ(1 + αs) sin(−παρs). (A20)

Therefore, Equation (A19) reads:

1
2π

∫ ∞

−∞
dk e−ikz exp

(
−Dαψ

ρ
α(k)t

)
=

1
2πi

∫
Ω

ds Γ(−s)Γ(1 + αs)
sin(−παρs)

π

(Dαt)s

z1+αs

=
1

2πi

∫
Ω

ds
Γ(−s)Γ(1 + αs)

Γ(1 + αρs)Γ(−αρs)
(Dαt)s

z1+αs =
1
z

H1,1
2,2

[
Dαt
zα

∣∣∣∣ (0, α), (0, αρ)
(0, 1), (0, αρ)

]
, (A21)

where, in the last equality, we used the Mellin–Barnes integral representation of the Fox
H-function (see Equation (A7)). Finally, by using the properties (A11) and (A12), we
arrive at:

1
2π

∫ ∞

−∞
dk e−ikz exp

(
−Dαψ

ρ
α(k)t

)
=

1
αz

H1,1
2,2

[
z

(Dαt)1/α

∣∣∣∣ (1, 1/α), (1, ρ)
(1, 1), (1, ρ)

]

≡ 1

(Dαt)1/α
Lρ

α

(
z

(Dαt)1/α

)
, 0 < α ≤ 2. (A22)

Appendix D. On the Positivity of the q-Order Moments

In this section we show that the moments in Equation (12) are positive if −1 < q < α,
and 0 < α < 2. To this end, we distinguish between 0 < α ≤ 1 and 1 < α < 2.

For α = 2, we have ρ = 1/2 (see Equation (5)), and the positiveness of fractional-order
moments is easily checked. Let us consider 1 < α < 2, and with the definition of ρ we have
1− 1/α < ρ < 1/α. First, we assume 0 < q < α. Then, together with the variation of ρ
we have:

πq(1− 1/α) < πqρ < πq/α (A23)

from where it follows that:

0 < πqρ < π. (A24)
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Therefore, we get sin(πqρ)
πq > 0. Since 1− 1/α < 1− ρ < 1/α, the same condition holds

for sin(πq(1−ρ))
πq > 0. Now, take −1 < q < 0. With the change of variable r = −q, we have

0 < r < 1. With the variation of ρ, we have:

−πr
α

< −πrρ < −πr
(

1− 1
α

)
, (A25)

and with 1 < α < 2,

−πr < −πrρ < −πr
α

, (A26)

then, we get −π < πqρ < 0, which gives sin(πqρ)
πq > 0. With the same procedure we get

sin(πq(1−ρ))
πq > 0.
For the case 0 < α ≤ 1, we have 0 < ρ ≤ 1, and, at first, we assume 0 < q < α. Thus,

0 < πqρ ≤ πq, which gives us 0 < πqρ < πα ≤ π. Hence, sin(πqρ)
πq ≥ 0, and the same

for sin(πq(1−ρ))
πq ≥ 0. Lastly, if −1 < q < 0, with the change of variable r = −q, we have

0 < r < 1. With the variation of ρ, we can write:

0 < rρ < 1→ −π < −πrρ < 0, (A27)

which means sin(πqρ)
πq > 0. Since 0 < 1 − ρ < 1, the same condition also holds for

sin(πq(1−ρ))
πq > 0.

Appendix E. Some Details of the Derivation of the First-Arrival Density of
Asymmetric Lévy Flights

We start from Equation (17),

I1(s) =
∫ ∞

−∞
dk

1
s +Dαψ

ρ
α(k)

=
∫ 0

−∞
dk

1
s +Dα(ik)αeiπαρ

+
∫ ∞

0
dk

1
s +Dα(ik)αe−iπαρ

=
∫ ∞

0
dk

1
s +Dα(−ik)αeiπαρ

+
∫ ∞

0
dk

1
s +Dα(ik)αe−iπαρ

. (A28)

By help of the integral [87],∫ ∞

0
dx

1
1 + xν

=
π

ν

1
sin(π/ν)

, ν > 1 (A29)

we obtain:

I1(s) =
π

α

1
sin(π/α)

s1/α−1

D1/α
α

(
ie−iπαρ − ieiπαρ

)
=

2π

α

s1/α−1

D1/α
α

sin(πρ)

sin(π/α)
, α > 1. (A30)

Note that for α ≤ 1, I1(s) is divergent. For Equation (18) we write:

I2(s) =
∫ ∞

−∞
dk

exp(ikx0)

s +Dαψ
ρ
α(k)

= 2π F−1

[
1

s +Dαψ
ρ
α(k)

]
(−x0)

= 2π F−1
[
L
[
e−Dαψ

ρ
α(k)t

]
(s)
]
(−x0) = 2π L

[
F−1

[
e−Dαψ

ρ
α(k)t

]
(−x0)

]
(s). (A31)



Fractal Fract. 2022, 6, 260 17 of 23

Recalling Equation (A22), as well as the property Lρ
α(−z) = L1−ρ

α (z) [72,73], we find:

I2(s) = 2π L

[
(Dαt)−1/αL1−ρ

α

(
x0

(Dαt)1/α

)]
(s)

=
2π

αx0

∫ ∞

0
dte−stH1,1

2,2

[
x0

(Dαt)1/α

∣∣∣∣ (1, 1/α), (1, 1− ρ)
(1, 1), (1, 1− ρ)

]

=
2π

αx0

∫ ∞

0
dte−stH1,1

2,2

[
(Dαt)1/α

x0

∣∣∣∣ (0, 1), (0, 1− ρ)
(0, 1/α), (0, 1− ρ)

]
, (A32)

where in the last equality, we used Equation (A11). Finally, with the help of Equation (A15),
we get:

I2(s) =
2π

αx0

∫ ∞

0
dte−st H1,1

2,2

[
(Dαt)1/α

x0

∣∣∣∣ (0, 1), (0, 1− ρ)
(0, 1/α), (0, 1− ρ)

]

=
2π

αx0

1
s

H1,2
3,2

[
D1/α

α

x0
s−1/α

∣∣∣∣ (0, 1/α), (0, 1), (0, 1− ρ)
(0, 1/α), (0, 1− ρ)

]
. (A33)

With the property (A11), we arrive at the desired result (18). We also mention that
I2(s) for s = 0 reads:

I2(0) =
∫ ∞

−∞
dk

exp(ikx0)

Dαψ
ρ
α(k)

=
2

Dαx1−α
0

sin(−πα(1 + ρ))Γ(1− α), α < 1, (A34)

which is convergent for α < 1. For the limiting case α = 1 with ρ = 1/2 (β = 0) we write:

I1(s) =
∫ ∞

−∞
dk

1
s +D1|k|

= 2
∫ ∞

0
dk

1
s +D1k

= 2 lim
a→∞

∫ a

0
dk

1
s +D1k

=
2
D1

lim
a→∞

ln(1 + aD1/s), (A35)

which diverges logarithmically as a→ ∞, and,

I2(s) =
∫ ∞

−∞
dk

exp(ikx0)

s +D1|k|
= 2

∫ ∞

0
dk

cos(kx0)

s +D1k

=
2
D1

sin
(

sx0

D1

) ∫ ∞

sx0
D1

dz
sin(z)

z
+

2
D1

cos
(

sx0

D1

) ∫ ∞

sx0
D1

dz
cos(z)

z
, (A36)

which is convergent for any finite s.

Appendix F. Derivation of the Short-Time and Long-Time Limit of the First-Arrival
Density of Asymmetric Lévy Flights

Here, we compute the power-law behaviour of the first-arrival density of asymmetric
Lévy flights in the limit of short and long times. For this aim, we first use the Mellin–Barnes
integral representation of the two-parametric Mittag–Leffler function (A6) and follow the
method in [73] by replacing α→ 1, β→ 1/α and z→ Dαt(ik)αe−iπα(1−ρ) sgnk. By applying
the inverse Fourier transform we get:

1
2π

∫ ∞

−∞
dke−ikx0 E1,1/α

(
−Dαt(ik)αe−iπα(1−ρ) sgnk

)
=

1
2π

∫ ∞

−∞
dke−ikx0

1
2πi

∫
Ω

ds
Γ(−s)Γ(1 + s)

Γ(1/α + s)

(
Dαt(ik)αe−iπα(1−ρ) sgnk

)s

=
1

2πi

∫
Ω

ds
Γ(−s)Γ(1 + s)

Γ(1/α + s)
1

2π

∫ ∞

−∞
dke−ikx0

(
Dαt(ik)αe−iπα(1−ρ) sgnk

)s
. (A37)
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Splitting the inner integral into two parts, we find:∫ ∞

−∞
dke−ikx0

(
dαt(ik)αe−iπα(1−ρ) sgnk

)s

= (dαt)s
(∫ 0

−∞
dk(ik)αse−ikx0+iπα(1−ρ)s +

∫ ∞

0
dk(ik)αse−ikx0−iπα(1−ρ)s

)
= i

(dαt)s

x1+αs
0

(
eiπα(1−ρ)s − e−iπα(1−ρ)s

)
γ(1 + αs) = 2

(dαt)s

x1+αs
0

sin(π(ρ− 1)αs)γ(1 + αs). (A38)

Substituting Equation (A38) into Equation (A37) we find:

1
2π

∫ ∞

−∞
dke−ikx0 E1,1/α

(
−Dαt(ik)αe−iπα(1−ρ) sgnk

)
=

1
2πi

∫
Ω

ds
Γ(−s)Γ(1 + s)

Γ(1/α + s)
(Dαt)s

πx1+αs
0

sin(π(ρ− 1)αs)Γ(1 + αs)

=
1

2πi

∫
Ω

ds
Γ(−s)Γ(1 + s)Γ(1 + αs)

Γ(−αs + αρs)Γ(1 + αs− αρs)Γ(1/α + s)
(Dαt)s

x1+αs
0

, (A39)

where, in the last equality, we use Euler’s reflection formula. By comparison with the
Mellin–Barnes integral representation (A7) of the Fox H-function, we notice that:

1
2πi

∫
Ω

ds
Γ(−s)Γ(1 + s)Γ(1 + αs)

Γ(−αs + αρs)Γ(1 + αs− αρs)Γ(1/α + s)

(
Dαt
xα

0

)s

= H1,2
3,3

[
Dαt
xα

0

∣∣∣∣ (0, 1), (0, α), (0, α− αρ)
(0, 1), (0, α− αρ), (1− 1/α, 1)

]
. (A40)

Therefore, in order to obtain the short-time asymptote of the first-arrival density, it is
convenient to write Equation (20) in terms of the Mittag–Leffler function,

℘fa(t) =
α sin(π/α)

sin(πρ)

(Dαt)1/α

x0t
H1,2

3,3

[
Dαt
xα

0

∣∣∣∣ (0, 1), (0, α), (0, α− αρ)
(0, 1), (0, α− αρ), (1− 1/α, 1)

]
=

α sin(π/α)

sin(πρ)

(Dαt)1/α

t
1

2π

∫ ∞

−∞
dke−ikx0 E1,1/α

(
−Dαt(ik)αe−iπα(1−ρ) sgnk

)
=

α sin(π/α)

sin(πρ)

(Dαt)1/α

t
1
π

[ ∫ ∞

0
dk cos(kx0)Re

[
E1,1/α

(
−Dαt(ik)αe−iπα(1−ρ)

)]
+
∫ ∞

0
dk sin(kx0)Im

[
E1,1/α

(
−Dαt(ik)αe−iπα(1−ρ)

)]]
. (A41)

Using the series representation of the Mittag–Leffler function (A5), we find:

℘fa(t) =
α sin(π/α)

sin(πρ)

(Dαt)1/α

πt

∞

∑
n=0

(−Dαt)n

Γ(n + 1
α )

{
Re
[
inαe−inπα(1−ρ)

] ∫ ∞

0
dk cos(kx0)knα

+ Im
[
inαe−inπα(1−ρ)

] ∫ ∞

0
dk sin(kx0)knα

}

=
α sin(π/α)

sin(πρ)

(Dαt)1/α

πt

∞

∑
n=0

(−1)n+1(Dαt)n

Γ(n + 1
α )

sin(nπα(1− ρ))Γ(1 + nα)x−nα−1
0

=
α sin(π/α)

π sin(πρ)

∞

∑
n=1

sin(nπα(1− ρ))
Γ(1 + nα)

Γ(n + 1
α )

(−1)n+1Dn+1/α
α

xnα+1
0

tn−1+1/α. (A42)

This expression can also be obtained with the help of Equation (A8).
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Another approach to find the long time asymptote of the first-arrival density goes
as follows. First, with the help of Equation (A8), we use the series representation of the
Laplace transform of the first-arrival density (19),

℘fa(s) =
D1/α

α

x0s1/α

sin(π/α)

sin(πρ)

×
[

∞

∑
k=0

Γ(1− α(1 + k))Γ(1 + k)
Γ(α(1− ρ)(1 + k))Γ(1− α(1− ρ)(1 + k))

α(−1)k

k!

(
x0s1/α

D1/α
α

)α(1+k)

+
∞

∑
k=0

Γ
(

1− 1+k
α

)
Γ
(

1+k
α

)
Γ((1− ρ)(1 + k))Γ(1− (1− ρ)(1 + k))

(−1)k

k!

(
x0s1/α

D1/α
α

)(1+k)]
. (A43)

Then, for the small-s asymptote of the Laplace transform, we put k = 0 and get:

℘fa(s) ≈ 1− sin(πα(1− ρ))

sin(πρ)

Γ(2− α)

Γ(1/α)Γ(2− 1/α)

D−1+1/α
α

x1−α
0

s1−1/α. (A44)

Then, with the help of the Tauberian theorem [81] (Chapter XIII, Section 5) we find
that the small-s asymptote of the Laplace transform,

℘fa(s) ≈ 1− b2sµ, b2 = b1Γ(1− µ)/µ, s→ 0 (A45)

corresponds to the long-time asymptote of the PDF ([88], Chapter 3)

℘fa(t) ≈ b1t−1−µ, 0 < µ < 1, b1 > 0. (A46)

Therefore, the resulting long-time asymptote of the first-arrival PDF corresponds to
Equation (25).

Appendix G. On the Calculation of the Efficiency for the Limit α → 1 with β 6= 0

Let us start from Equation (35) and take α = 1 + ε with ε > 0. Then, using
tan(π

2 + x) = − cot(x), arctan(−x) = − arctan(x), and cos(−x) = cos(x), we get:

E =
I1(ε)

I1(ε)

Γ(ε + 2)Kα

x1+ε
0

, (A47)

where:

I1(ε) = sin
[

επ

2
+

ε

1 + ε
arctan

(
β cot

( επ

2

))]
, (A48)

and:

I2(ε) = cos
[

1
1 + ε

arctan
(

β cot
( επ

2

))]
cos
[
arctan

(
β cot

( επ

2

))]
. (A49)

Now, we put ε→ 0+. Then,

cot
( επ

2

)
=

cos
(

επ
2
)

sin
(

επ
2
) =

2
επ

(
1 +O(ε2)

)
, (A50)

and since arctan(x) ' π
2 −

1
x + . . . as x → ∞, we have:

arctan
[

β cot
( επ

2

)]
' π

2

(
1− ε

|β|

)
sgnβ, (A51)
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Therefore, Equation (17) becomes:

I1(ε) '
ε→0

sin
[

επ

2
+ ε(1− ε)

π

2

(
1− ε

|β|

)
sgnβ

]

'
{

sin
(

επ
2 + επ

2
)
' επ, β > 0

sin
(

επ
2 −

επ
2

(
1− ε− ε

|β

))
' ε2 π

2

(
1 + 1

|β|

)
, β < 0

. (A52)

Similarly, plugging expression (A51) into (A49) leads us to:

I2(ε) '
ε→0

cos
[

π

2(1 + ε)

(
1− ε

|β|

)]
cos
[

π

2

(
1− ε

|β|

)]
' cos

[
π

2
(1− ε)

(
1− ε

|β|

)]
sin
[

επ

2|β|

]
= sin

[
επ

2

(
1 +

ε

|β|

)]
sin
[

επ

2|β|

]
' ε2 π2

4
1
|β|

(
1 +

1
|β|

)
. (A53)

Finally, plugging results (A52) and (A53) into expression (A47), we arrive at
Equation (36). We mention that it is also possible to obtain the same solution by using de
l’Hôpital’s rules for I1(ε) and I2(ε).
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