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We analyse mobile–immobile transport of particles that switch between the
mobile and immobile phases with finite rates. Despite this seemingly simple
assumption of Poissonian switching, we unveil a rich transport dynamics
including significant transient anomalous diffusion and non-Gaussian
displacement distributions. Our discussion is based on experimental par-
ameters for tau proteins in neuronal cells, but the results obtained here are
expected to be of relevance for a broad class of processes in complex systems.
Specifically, we obtain that, when the mean binding time is significantly
longer than the mean mobile time, transient anomalous diffusion is observed
at short and intermediate time scales, with a strong dependence on the
fraction of initially mobile and immobile particles. We unveil a Laplace dis-
tribution of particle displacements at relevant intermediate time scales. For
any initial fraction of mobile particles, the respective mean squared displace-
ment (MSD) displays a plateau. Moreover, we demonstrate a short-time
cubic time dependence of the MSD for immobile tracers when initially all
particles are immobile.
1. Introduction
Already in the 1960s, there was considerable interest in the transport of
chemical tracers, especially pesticides, nitrates and heavy metals through
water-carrying layers of soil [1]. A typical description for such contaminant
transport was the diffusion–advection equation (sometimes called
the convective–dispersive equation) [2]

@

@t
Cðx, tÞ ¼ D

@2

@x2
Cðx, tÞ � v

@

@x
Cðx, tÞ, ð1:1Þ

where C(x, t) is the contaminant concentration at distance x after time t, v is
an advection velocity chosen as zero in the following and D is the diffusion
constant (dispersion coefficient typically measured in units of cm2 d−1).
Measurements revealed, however, that not all of the contaminant concentration
was mobile at any given time, but that a fraction could be (transiently) trapped
in stagnant volumes. Building on earlier models by Deans [3] and Coats &
Smith [4], van Genuchten & Wierenga [5] analysed the exchange between
mobile (Cm(x, t)) and immobile (Cim(x, t)) fractions. The mobile–immobile
model under advection–diffusion conditions has been investigated intensively
in the literature over the last 50 years [3,4,6–8]. Application of the mobile–
immobile model includes the advective–diffusive transport of contaminants in
the mobile domain of porous media [3,4,6–8], electrons in photoconductors [9],
chemicals in chromatography [10] and adsorbing solutes in soil [11]. In many
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Figure 1. Schematic of tau protein dynamics in axons of neuronal cells. Dif-
fusing tau proteins bind to longitudinally aligned microtubules inside the axon
with the rate t�1

m . Upon binding, they remain immobile for the average dur-
ation tim and unbind with the rate t�1

im . The green markers represent
fluorescent proteins attached to the tau proteins. Because of the elongated
shape of the axons, the tau protein dynamic can effectively be described in
one dimension. In our model, we assume a homogeneous binding site density.
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geophysical systems equations of the type (1.1) aremodified to
account for anomalous transport, in which molecular trans-
port no longer follows the linear time dependence 〈Δx2(t)〉 =
〈x2(t)〉− 〈x(t)〉2 = 2Dt of Brownian motion, but follows laws
of the type 〈Δx2(t)〉 = 2Dαt

α, for which α≠ 1 [12]. Indeed,
such transport anomalies were found on large field exper-
iments, up to kilometre scales [13,14]. In such systems, the
mobile–immobile transport model is replaced by models in
which generalized transport terms are incorporated [15,16].
This type of model, in contrast to equation (1.1), is character-
ized by non-Gaussian distributions [12].

Motivated by concrete biological examples, we here
study a seemingly simple version of the mobile–immobile
transport model, in which particles switch between a freely
diffusive phase and an immobile, stagnant phase. Even
for the Poissonian switching dynamics considered here
between the mobile and immobile phases and for biologically
relevant parameters, we demonstrate the existence of a sig-
nificant, transient anomalous–diffusive regime with
a distinct non-Gaussian displacement distribution.

In fact, various components of biological cells, including
tau proteins, synaptic vesicles in hippocampal neurons,
glucocorticord receptors, calcium-sensing proteins and tran-
scription factors at the junction of the endoplasmic reticulum
and the plasma membrane, undergo diffusion with transient
immobilization [17–24]. Another example is given by the dif-
fusion and target search of DNA-binding proteins along
DNA molecules. For instance, the core domain of the
tumour suppressor p53, the damage detection complex
Rad4-Rad23 and the architectural DNA-binding protein Fis
repeatedly attach to and detach from the DNA during the
target search [25–29]. We here focus on tau proteins,
which transiently bind to microtubules in axons of neuronal
cells and are immobilized in the bound state, as schematically
depicted in figure 1. Tau proteins stabilize microtubules that
give structure to cells [30]. Alzheimer’s disease is associated
with tau proteins losing the ability to bind to microtubules
[30,31]. This effectively destabilizes the microtubules and
leads to neurodegeneration [30,31]. Owing to the extremely
elongated shape of the axon, the motion of tau proteins can
be effectively described in one dimension [17]. If the immobil-
ization time follows an exponential distribution with mean tim
and tracers immobilize with rate t�1

m , i.e. a Poissonian
dynamics, as assumed in [17], the motion can be described
by the mobile–immobile model

@

@t
nmðx; tÞ¼� 1

tm
nmðx; tÞþ 1

tim
nimðx; tÞþD

@2

@x2
nmðx; tÞ

and
@

@t
nimðx; tÞ¼� 1

tim
nimðx; tÞþ 1

tm
nmðx; tÞ:

9>>=
>>;

ð1:2Þ

Here, nm(x, t) and nim(x, t) denote the line densities of
mobile and bound tau proteins, respectively, with physical
dimension [1/length]. The diffusion coefficient of the mobile
tracers isD. Sincewe are dealingwith a system of non-interact-
ing particles, we use a probabilistic formulation according to
which the total concentration ntot(x, t) = nm(x, t) + nim(x, t) is
normalized to unity,

Ð1
�1 ntotðx, tÞdx ¼ 1. The line densities

nm(x, t) and nim(x, t) are then the respective fractions.
Equations (1.2) were analysed in three dimensions for an equi-
librium fraction of initially mobile tracers, finding Fickian yet
non-Gaussian diffusion [32]. Accordingly, the mean squared
displacement (MSD) of the total concentration ntot grows line-
arly at all times, and under certain conditions a non-Gaussian
distribution emerges [32].

Such Fickian yet non-Gaussian diffusion has been shown
to occur for the motion of colloidal beads on phospholipid
bilayer tubes, molecules at surfaces and colloids in a dense
matrix of micropillars, where the colloids can get trapped
in pockets [33–35]. Fickian yet non-Gaussian diffusion with
a finite correlation time beyond which the displacement prob-
ability density function (PDF) crosses over to a Gaussian with
an effective diffusivity arises in diffusing–diffusivity models,
in which the diffusivity of individual tracers varies stochasti-
cally over time [36–41]. Direct examples for such randomly
evolving diffusion coefficients (mobilities) are indeed
known from lipids in protein-crowded bilayer membranes
[42], shape-shifting protein molecules [43] or (de)polymeriz-
ing oligomer chains [44,45]. In other systems, an
intermittent plateau emerges in the MSD; for instance, for
two-dimensional fluids confined in a random matrix of
obstacles or a porous cavity, in which trapping in finite pock-
ets plays a key role [46–48]. We also mention plateaus in the
MSD of both two- and three-dimensional isotropic Lennard-
Jones binary liquids [49]. In most of the systems mentioned
here, the PDF crosses over from an exponential (Laplace)
PDF to a Gaussian. In the following, we explicitly show
how a Laplace distribution with fixed scale parameters
arises at intermediate time scales in our mobile–immobile
model, paired with transient anomalous diffusion.

In what follows, we consider three initial conditions: an
equilibrium fraction of mobile tracers and a scenario in
which initially all tracers are mobile or immobile. These exper-
imentally feasible situations significantly change the diffusion
at short and intermediate time scales, at which apparent
anomalous diffusion arises with slow-down and plateau-like
behaviour, or ballistic diffusion, respectively. Together with
the transient non-Gaussian displacement PDF, this behaviour
is remarkably rich, given the simplicity of the governing
equation (1.2). We individually analyse the motion of the
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mobile and immobile population of tracers, made possible by
the formulation of separate densities for mobile and immobile
particles in this modelling approach. One physical incentive to
do so is that the function of the tau proteins depends on their
binding state [30]. Only bound tau proteins stabilize microtu-
bules, or transcription factors modulate gene expression
when bound to the DNA [21,30]. In some situations, only the
mobile or immobile tracers can be measured. An example is
given by combining total internal reflection fluorescence
microscopy with fluorescently labelled single-stranded DNA,
which binds to the microscope coverslip [50].

We present general results for the mobile and immobile
concentrations and the MSD for arbitrary fractions of initially
mobile tracers in §2. Sections 3–5 present concrete results and
detailed discussions for different fractions of initial mobile
particle concentrations; respectively, we start with the cases
when all tracers are initially mobile and immobile and com-
mence with an equilibrium fraction of mobile tracers. We
conclude in §6.
9:20220233
2. Model and general solutions
We consider the mobile–immobile model equations (1.2) for
the initial conditions nm(x, 0) = fmδ(x) and nim(x, 0) = fimδ(x),
where fm and fim denote the fractions of initially mobile and
immobile tracers, respectively, with the normalization fm +
fim = 1. This formulation is suitable for typical single-particle
tracking experiments used in biological and soft matter sys-
tems. They are also relevant for geophysical experiments, in
which point-like injection of tracers is used. In this section,
we keep the fractions fm and fim arbitrary and choose specific
values in the following three sections.

In what follows, we use the concrete parameters D= 13.9
(μm)2 s−1, tm ¼ 0:16 s and tim ¼ 7:7 s from [17] in all figures
and neglect the vanishingly small advection velocity v=
0.002 μm s−1.1 The values were obtained from experiments
using the fluorescent decay after the photoactivation technique
[17]. Let us briefly address the experimental origin of the
time-scale separation between tm and tim. From single-
particle tracking experiments of single-stranded DNA or tau
proteins, immobilization times during the particle motion
can be extracted [18,50]. The experiments for the tau proteins
in [18] provided two-dimensional information and revealed
relatively short residence times of the tau proteins on
the microtubules, when compared with mobile times [18]. By
contrast, the fluorescence decay after photoactivation (FDAP)
experiment in one dimension along the axon direction, here
denoted as the x variable, revealed long residence times and
short mobile periods: tim≈ 48tm [17]. This seeming contradic-
tion can be resolved when examining more closely the two-
dimensional trajectories in the electronic supplementary
material of [18]. Namely, the microtubules inside the axon are
aligned in parallel with the axon axis, as also shown in
figure 1. While a single binding event is short, an unbound par-
ticle quickly rebinds to a parallel, nearby microtubule after a
short distance covered by diffusion perpendicular to the axon
axis. This perpendicular motion does not contribute to the
one-dimensional motion in the x-direction and thus, while indi-
vidual binding times are relatively short, effective binding times
appear much longer in the projection to one dimension. Since
we are only interested in the one-dimensional motion, we use
the parameters of [17] and hence long immobilization times.
2.1. Mobile and immobile concentration profiles
We consider the Fourier–Laplace transform of the concen-
trations and solve for nm(k, s), nim(k, s) and ntot(k, s) in
expressions (A 1) and (A 2), in which the Fourier wavenumber
k corresponds to the distance x in real space and the Laplace
variable s is conjugated to time t; see appendix A for details.
Wedenote functions in Fourieror Laplace space solely by repla-
cing the explicit dependencies on the respective arguments. The
relations in the Fourier–Laplace domain can be Fourier-
inverted, andwe obtain the expressions in the Laplace domain,

nmðx, sÞ ¼ fm þ fim
1

1þ stim

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4fðsÞDp e�
ffiffiffiffiffiffiffiffiffiffiffi
fðsÞ=D

p
jxj, ð2:1Þ

nimðx, sÞ ¼ fm þ fim
1

1þ stim

� �

� tim=tm
1þ stim

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fðsÞDp e�

ffiffiffiffiffiffiffiffiffiffiffi
fðsÞ=D

p
jxj

þ fim
tim

1þ stim
dðxÞ ð2:2Þ

and ntotðx, sÞ ¼
fm þ fim

1
1þ stim
s

fðsÞ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fðsÞDp e�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4fðsÞ=D

p
jxj

þ fim
tim

1þ stim
dðxÞ, ð2:3Þ

as functions of x and s with fðsÞ ¼ s½1þ timt
�1
m =ð1þ stimÞ�.

These expressions are valid for all s and hence for all times t.
A numerical Laplace inversion then provides the densities for
any specified time. Remarkably, it turns out that the density
ofmobile tracers,whichwere initially immobile, is proportional
to the density of immobile tracers, which were initially mobile.
This can be seen by setting fm = 0 or fim = 0 in (2.1) and (2.2),
respectively. This proportionality holds for all s and hence at
all times.We obtain the long-timeGaussian limit of the full con-
centration in B.3,

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDefft

p exp � x2

4Defft

� �
, t � tm, tim, ð2:4Þ

with Deff =D/(1 + tim/tm). Note that, for asymptotic
equalities, we use the ∼ symbol. In fact, independent of the
ratio fm and fim we asymptotically obtain a Gaussian distri-
bution in which the diffusivity is reduced to the effective
diffusivity Deff. The mobile and immobile concentrations are
asymptotically equivalent to (2.4) up to a scalar feqj defined
below [16].
2.2. Moments
In general, the fractions nm and nim of mobile and immobile
tracers, initially fixed as fm and fim, change over time. To
obtain the respective numbers, we integrate the tracer den-
sities over space. This corresponds to setting k = 0 in the
Fourier–Laplace transforms nm(k, s) and nim(k, s) of the
densities. After Laplace inversion, we find

nmðtÞ ¼ tm
tm þ tim

þ fmtim � fimtm
tm þ tim

exp (� ½t�1
m þ t�1

im �t) ð2:5Þ

and

nimðtÞ ¼ tim
tm þ tim

� fmtim � fimtm
tm þ tim

exp (� ½t�1
m þ t�1

im �t), ð2:6Þ
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Figure 2. Concentration profiles for mobile initial conditions. The solid black line shows ntot(x, t) and the grey striped area nm(x, t), obtained via Laplace inversion of
relations (2.1) and (2.3). Colours indicate the number of immobilization events of particles from a Brownian dynamics simulation with 5 × 106 trajectories in a
stacked histogram. The striped area denotes mobile particles and the white dotted line denotes initially mobile tracers that have not yet been immobilized up to the
indicated time t (3.2); this result almost coincides with the full concentration in the top left panel. For t = 0.5 s to 2 s, the white dashed line shows the Laplacian
(3.5); for t = 50 s and 200 s, it shows the long-time Gaussian (2.4).
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with nmðtÞ þ nimðtÞ ¼ 1. In the long-time limit t≫ tm, tim, the
fractions of mobile and immobile tracers reach the stationary
values feqm ¼ t m=ðtm þ timÞ and feqim ¼ tim=ðtm þ timÞ, respect-
ively. Our approach of splitting the total concentration into
mobile and immobile fractions allows us to calculate the
moments of the unbound, bound and total tau protein distri-
butions individually,

hx2ðtÞij ¼
1

njðtÞ
ð1
�1

x2njðx, tÞdx, ð2:7Þ

where j stands for m, im and tot [16]. To shorten the notation,
we use 〈x2(t)〉 = 〈x2(t)〉tot in the remainder of this work. Using
the Laplace inversion of

@2

@k2
ntotðk, sÞ

����
k¼0

¼ hx2ðsÞi, ð2:8Þ

we obtain the expression

hx2ðtÞi ¼ 2Defftþ 2Dtim
fmtim=tm � fim
ð1þ tim=tmÞ2

1� e�ðt�1
m þt�1

im Þt
� �

ð2:9Þ

for thesecondmoment. In thenext section,weconsider the initial
conditions,whenall tracers are initiallymobile. This is chosen for
didactic purposes, as this initial condition shows the plateau in
the MSD and intermittent Laplace distribution most clearly. In
§4, we consider immobile initial conditions and finally consider
equilibrium initial conditions in §5, where the effects discussed
in earlier sections are present at the same time.
3. All tracers initially mobile
We now consider the initial condition when all tracers are
mobile, i.e. nm(x, 0) = δ(x) and nim(x, 0) = 0. This initial con-
dition does not correspond to the experiment carried out by
Igaev et al. [17]. However, this situation could be realized
experimentally, e.g. by using the method of injection of
fluorescently labelled tau proteins [53]. In what follows, we
repeatedly use the time-scale separation tm≪ tim observed
for tau proteins and also relevant to other systems.

3.1. Concentration
We calculate the densities at short, intermediate and long
times. In B.1, we obtain the Gaussian

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
ð3:1Þ

in the short-time limit t≪ tm, tim. The Gaussian (3.1) can be
seen in figure 2 in the top left panel. In this figure nm(x, t),
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ntot(x, t) and a histogram are shown. The densities are
obtained from Laplace inversions of the expressions in
Laplace space (2.3), while the histogram is obtained from
simulations, and colours denote the number of immobiliz-
ation events Nim. Initially, all particles are mobile and
diffuse freely, as denoted by the black colouring.

The concentration of freely diffusing particles that have
not immobilized yet, i.e. have zero immobilization events
Nim = 0, is given by the PDF of free Brownian motion
multiplied by the probability of not having immobilized, i.e.

nmðx, tjNim ¼ 0Þ ¼ expð�t=tmÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
: ð3:2Þ

These mobile tracers immobilize with the position-dependent
rate nm(x, t|Nim = 0)/tm. Integrating from t0 = 0 to t0 = t, we
obtain in the limit t≪ tim (i.e. at short and intermediate
times) that

nimðx, t � timÞ �
ðt
0

expð�t0=tmÞ=tmffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDt0

p exp � x2

4Dt0

� �
dt0

¼ exp �jxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p� 	
ffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p � ffiffiffiffiffiffiffiffiffi

t=t m
p�

2

� expðjxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p þ ffiffiffiffiffiffiffiffiffiffi

t=tm
p�

2
ð3:3Þ

Comparing (3.3) with the Laplace inversion of nim(x, s) (2.3)
in figure 8, we find very good agreement in the relevant
range t≪ tim.

2 For the total density, we obtain by adding
nm(x, t) (3.1) and nim(x, t) (3.3)

ntotðx, tÞ � expð�t=tmÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
þ nimðx, t � timÞ,

t � tim ð3:4Þ

for the full tracer density. For t≪ tm, we recover the Gaussian
(3.1) from (3.4), while for tm≪ t≪ tim the distribution is
distinctly non-Gaussian, as shown in figure 2. Up to around
t = 0.6 s, the motion of the free tracers is dominated by the
Gaussian nm(x, t|Nim = 0) (see (3.2)), which spreads like
free Brownian particles, shown as a white dotted line in
figure 2. At around t = 1.6 s, most of the tracers with Nim = 0
immobilized and the majority of mobile tracers were immobile
exactly once (Nim = 1) and transitioned back to the mobile
zone, as shown by the red area. Because of the immobilization,
these tracers havemoved less than the free particles withNim =
0 and a Laplace distribution emerges in the centre.
For x � t

ffiffiffiffiffiffiffiffiffiffiffiffi
D=tm

p
and t≫ tm, we can use the asymptotic

lim x→∞erf(x) =−limx→ ∞erf(− x) = 1 in nim(x, t≪ tim)
(equation (3.3)), and obtain from ntot(x, t) (3.4) the expression

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p exp � jxjffiffiffiffiffiffiffiffiffiffi
Dtm

p
� �

, ð3:5Þ

in the intermediate-time regime tm≪ t≪ tim. Combining
the conditions t≪ tm and x � t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D=tim

p
leads to

x � tim
ffiffiffiffiffiffiffiffiffiffiffiffi
D=tm

p ¼ 71mm, which is large compared with the
standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffi
2Dtm

p ¼ 2:1mm of the Laplace distri-
bution (3.5). This means that the distribution follows such a
Laplace shape for a large range of positions. The total concen-
tration, in turn, therefore follows a Laplace distribution with
fixed parameters. This is a pronounced deviation from a Gaus-
sian distribution. This result can also be obtained from
calculations in Laplace space, as shown in B.2. By contrast,
for times significantly longer than tim, many immobilizations
take place, as shown by the bright yellow area in figure 2,
where the distribution follows the Gaussian (2.4) with the
effective diffusivity Deff =D/(1 + tim/tm).
3.2. Mean squared displacement
From the general expression for the MSD (2.9) for immobile
initial conditions, we obtain the expression

hx2ðtÞi ¼ 2D
1þ tim=t m

tþ t2im=tm
1þ tim=tm

1� e�ðt�1
m þt�1

im Þt
� �
 �

:

ð3:6Þ
At intermediate times, the MSD (expression (3.6)) exhibits a
plateau-like behaviour with the constant MSD

hx2ðtÞi � 2Dtm, tm � t � tim, ð3:7Þ
corresponding to free Brownian particles that moved for the
duration tm. This requires the condition tm≪ tim, which is
satisfied in the tau protein case [17], with tm = 0.16 s and
tim = 7.7 s. Such plateaus are often found when tracers diffuse
in porous media or for dynamics in crowded membranes or
environments with obstacles, in which the tracer can be tran-
siently confined [38,46,48,54,55]. The MSD (3.6) is shown in
figure 3a as the black solid line.

When calculating the moments of the mobile and
immobile tracers (2.7), the time-dependent normalizations
of the tracer densities (2.6),

nmðtÞ ¼ tm
tm þ tim

1þ tim

tm e�ðt�1
m þt�1

im Þt


 �
ð3:8Þ

and

nimðtÞ ¼ tim
tm þ tim

[1� e�ðt�1
m þt�1

im ÞtÞ], ð3:9Þ

need to be taken into account, yielding the moments of the
mobile and immobile densities (2.7) [16]

hx2ðtÞim ¼ 2D

ð1þ tim=tmÞð1þ tim=tm e�ðt�1
m þt�1

im ÞtÞ

"
t 1þ t2im

t2m
e�ðt�1

m þt�1
im Þt

� �

þ 2t2im=tm
1þ tim=tm

ð1� e�ðt�1
m þt�1

im ÞtÞ
#

ð3:10Þ
and

hx2ðtÞiim ¼ 2D

1� e�ðt�1
m þt�1

im Þt
t

1þ tim=tm
1� tim

tm
e�ðt�1

m þt�1
im Þt

� �


þ t2im=tm � tim

ð1þ tim=tmÞ2
1� e�ðt�1

m þt�1
im Þt

� �#
:

ð3:11Þ
As shown in figure 3, the mobile second moment exhibits a
peak at around t = 0.6 s, followed by a plateau. This peak
arises as the density of mobile tracers initially consists of
mobile tracers that have never immobilized. Once t≫ tm,
the mobile density mainly consists of tracers that were
immobile (at least) once and mobilized, as discussed above.
Since the latter had less time to move, they have spread less
and the MSD temporarily decreases.

The immobile MSD (3.11) has the short-time behaviour
〈x2(t)〉im∼Dt for t≪ tm, tim. The factor 1

2 when compared
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with the mobile tracers arises because immobile tracers effec-
tively average over the history of the mobile tracers. Namely,
for t0 ≪ tm, tim, mobile particles immobilize with the constant
rate p(t0) = 1/tm. A particle that immobilized at time t0 before
moved for the duration t0 and thus contributes 2Dt0 to the
second moment for t > t0; see figure 4a for a schematic draw-
ing. When averaging over different mobile periods t0 and
normalizing with the fraction of immobile tracers

Ð t
0 pðt0Þdt0,

we obtain

hx2ðtÞiim � 2D

Ð t
0 t

0pðt0Þdt0Ð t
0 pðt0Þdt0

¼ 2D
Ð t
0 t

0=tm dt0

t=tm
¼ Dt,

for t � tm, tim: ð3:12Þ
As mentioned above, the long-time limits of the MSDs of all
densities remain equal to 2Defft, regardless of the fractions fm
and fim.
4. All tracers initially immobile
We now discuss the case when all tracers are immobile at
t = 0, nim(x, 0) = δ(x) and nm(x, 0) = 0.
4.1. Concentration
In B.1, we obtain the short-time behaviour

ntotðx, tÞ � 2t=timffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�ðx2=4DtÞ �
jxj 1� erf

jxjffiffiffiffiffiffiffiffi
4Dt

p
� �� �

2Dtim

þ 1� t
tim

� �
dðxÞ, for t � tm, tim ð4:1Þ

by applying approximations for large s in Laplace space.
Expression (4.1) is shown in the left panel of figure 5 as the
black dashed line. In particular, note the distinctively non-
Gaussian shape of the distribution in contrast to the case of
mobile initial conditions. The Gaussian in equation (4.1) has
the normalization ∼2t/tim, while the second term has the
normalization ∼−t/tim, and thus the whole expression (4.1)
is normalized to unity. In B.2, we obtain the total density at
intermediate times tm≪ t≪ tim

ntotðx, tÞ � t=timffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p exp � jxjffiffiffiffiffiffiffiffiffiffi
Dtm

p
� �

þ 1� t
tim

� �
dðxÞ, ð4:2Þ

as shown in figure 5 in the top row (except for the leftmost panel)
as a black–white striped line. Compared with the mobile initial
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condition, the coefficient of the Laplace distribution has the
linear growth t/tim. Most tracers remain immobile at the
origin at t = 1.6 s. In B.4, we find expression (B 11) for ntot(x, t),
which is valid for t≪ tim and contains equations (4.1) and
(4.2) as limits. In figure 5, the lower panels show the transition
from the Laplace distribution to the Gaussian (2.4).

4.2. Mean squared displacement
From the general expression for the MSD (2.9), we obtain the
expression

hx2ðtÞi ¼ 2D
1þ tim=t m

t� tim
1þ tim=tm

1� e�ðt�1
m þt�1

im Þt
� �
 �

:

ð4:3Þ
The MSD (4.3) has the ballistic short-time behaviour

hx2ðtÞi � Dt2

tim
þOðt3Þ, t � tm, tim: ð4:4Þ

The Landau symbol O(·) represents higher order terms. The
ballistic behaviour at short times t≪ tim arises because the frac-
tion exp(−t/tim)∼ 1− t/tim of tracers are immobile at x = 0 and
hence do not contribute to the second moment. For t0 ≪ tm-

≪ tim, immobile particles mobilize with the constant rate
p(t0) = 1/tim. A particle that mobilized at time t0 moved for
the duration t− t0 and thus contributes 2D(t− t0) to the
secondmoment for t > t0; see figure 4a for a schematic drawing.
When integrating over different mobilization times t0, we find

hx2ðtÞi � 2D
ðt
0
ðt� t0Þpðt0Þdt0 ¼ 2D

ðt
0

t� t0

tim
dt0

¼ D
t2

tim
, t � tm � tim: ð4:5Þ

We obtain the number of free and bound tracers from the gen-
eral expression (2.6),

nmðtÞ ¼ tm
tm þ tim

1� e�ðt�1
m þt�1

im ÞtÞ
h i

ð4:6Þ

and

nimðtÞ ¼ tim
tm þ tim

1þ tm

tim e�ðt�1
m þt�1

im Þt


 �
: ð4:7Þ

This produces the normalization of the immobile moment, and
we find

hx2ðtÞiim ¼ 2Dt
1þ tm=t im

1þ e�ðt�1
m þt�1

im Þt

t im=tm þ e�ðt�1
m þt�1

im Þt

� 4Dt2im=tm

ð1þ tim=tmÞ2
1� e�ðt�1

m þt�1
im Þt

t im=tm þ e�ðt�1
m þt�1

im Þt : ð4:8Þ
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This MSD has the short-time behaviour 〈x2(t)〉im∼Dt3/
(3timtm) for t≪ tm, tim. The cubic scaling emerges as the
only immobile tracers, which are not located at the origin,
have previously mobilized and then immobilized again. The
mobile concentration grows ∼t/tim at short times t≪ tim. Inte-
grating over the time t0 spent in the mobile phase yields the
cubic scaling

hx2ðtÞiim � 2D
ðt
0

1
tm

nmðt� t0Þt0 dt0

¼ 2D
tmtim

ðt
0
ðt� t0Þt0 dt0 ¼ D

t3

3tmtim
, ð4:9Þ

where, in the first step, we took the limit t≪ tm. Since the
mobile concentration with immobile initial conditions is pro-
portional to the immobile concentration with mobile initial
conditions, 〈x2(t)〉m is equal to 〈x2(t)〉im in (3.11) with mobile
initial conditions. This can be seen in figure 3a,b. As for the
mobile initial condition considered in §3, the MSDs of all
densities grow ∼2Defft asymptotically.
 9:20220233
5. Equilibrium initial fractions of initial mobile
tracers

In this section, we use the equilibrium values nmðx, 0Þ ¼
feqm dðxÞ and nimðx, 0Þ ¼ feqimdðxÞ as initial conditions.

5.1. Concentration profiles
From the general expressions (2.1) and (2.3) for the densities
nm(x, s) and ntot(x, s), we find that the mobile concentration of
the equilibrium case discussed here is proportional to the
total concentration for the mobile initial condition in §3 at
all times. To understand why this is true, we note that both
concentrations at all times contain mobile tracers that were
initially mobile. Moreover, from equations (2.1) and (2.3),
we see that the mobile concentration of the equilibrium
case contains initially immobile tracers, while the total con-
centration contains immobile tracers that were initially
mobile. In equations (2.1) and (2.3), the respective terms
that appear in addition to the initially mobile fractions that
are still mobile are proportional to each other at all times,
as described in §2.1. An analogous relation holds between
the immobile concentration with equilibrium initial con-
ditions and the total concentration with immobile initial
conditions, as can be seen in equations (2.1) and (2.3).

We consider the short-time approximation t≪ tm, tim for
which initially immobile tracers have not yet mobilized and
initially mobile tracers have not yet been trapped. Therefore,
we can neglect the terms with the rates t�1

m and t�1
im in (1.2)

and solve nm(x, t) and nim(x, t) separately, yielding

ntotðx, tÞ � feqmffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x2

4Dt

� �
þ feqimdðxÞ,

t � tm, tim, ð5:1Þ
with a Gaussian distribution describing free diffusion in
addition to a Dirac-δ distribution of initially immobile tracers
that have not yet moved. This behaviour can be seen in the
top left panel of figure 6. The same result as (5.1) can be
obtained by combining the short-time expressions for the
mobile (3.1) and immobile (4.1) initial conditions for t≪ tm,
tim, as done in equation (B 5). At short times, the total density
(5.1) behaves like the case of mobile initial conditions with
an additional delta peak. At intermediate times tm≪ t≪ tim,
we obtain

ntotðx, tÞ � t=timffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt m

p exp � jxjffiffiffiffiffiffiffiffiffiffi
Dtm

p
� �

þ 1� t
tim

� �
dðxÞ ð5:2Þ

by combining the mobile (3.5) and immobile expression (4.2),
respectively.3 In fact equation (5.2) is the same as expression
(4.2) for the case of immobile initial conditions, in the intermedi-
ate-time regime. This result is shown in figure 6, where this
approximation is compared with the full concentration from
t = 0.5 to t = 2. This result is the one-dimensional equivalent to
the findings in [32]. The lower right panels of figure 6 show
the Gaussian long-time limit (2.4) as a black–white striped line.

5.2. Mean squared displacement
The number of mobile and immobile tracers remains constant
for equilibrium initial conditions. At all times, the second
moment of all tracers (2.9) thus simplifies to

hx2ðtÞi ¼ 2D
1þ tim=tm

t: ð5:3Þ

The second moment is similar to that of a free Brownian par-
ticle, with the effective diffusion coefficient Deff =D/(1 + tim/
tm), as shown in figure 3. This is a known result from models
for Fickian yet non-Gaussian diffusion [32]. The mobile and
immobile moments, 〈x2(t)〉m and 〈x2(t)〉im, are equivalent to
themoments of the full densitywithmobile (3.6) and immobile
(4.3) initial conditions, as can be seen in figure 3. This relation
holds because the respective densities are proportional, as dis-
cussed above. The mobile and immobile moments show clear
anomalous diffusion for t≪ tim, with a quite long crossover
dynamics, as depicted in figure 3c. The mobile moment has a
plateau in the intermediate regime tm≪ t≪ tim and the
immobile moment behaves ballistically at short times t≪ tm.

In the long-time limit, all mobile and immobile second
moments grow like the moments of the total concentration,
i.e. 〈x2(t)〉m∼ 〈x2(t)〉im∼ 2Defft for t≫ tim, tm.
6. Discussion and conclusion
We considered a quite simple mobile–immobile model accord-
ing towhich tracer particles switch between a mobile diffusing
state and an immobilized state. On average, the tracers remain
mobile for the duration tm and immobile for tim. We con-
sidered the particular case, motivated by experiments on tau
proteins binding to and unbinding from microtubules in
axons of dendritic cells [17], when the two time scales are sep-
arated, tm≪ tim. We analysed three different initial conditions
with varying fractions of mobile to immobile tracers at the
origin, which can, in principle, all be realized in experiments.
The initial condition of mobile tracers can be realized by inject-
ing fluorescently labelled proteins [53]. Initially, immobile
tracers could in principle be obtained in single-particle tracking
experiments, by focusing on the tracks of immobile tracers.
Equilibrium fractions of mobile tracers naturally occur when
the tau proteins were in proximity to the microtubules for
t≫ tm, tim before the start of the data acquisition.

First, we studied the case when all tracers are initially
mobile, as described in the experiment in [53]. Second,
we assumed all tracers to be initially immobile. Third, we
considered an equilibrium fraction, corresponding to the exper-
iment in [17]. For non-equilibrium fractions of initially mobile
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tracers, we find anomalous diffusion at short and intermediate
time scales, at which initially mobile tracers display a plateau
in the MSD at intermediate times and initially immobile tracers
spread ballistically at short times. At t≪ tm and an initial equi-
librium fraction, the tracer density consists of a Gaussian and a
delta peak. Initially, mobile tracers follow a Gaussian distri-
bution at short times. When all tracers are initially immobile,
the short-time distribution consists of a delta peak and a non-
Gaussian distribution. At intermediate times tm≪ t≪ tim, the
distribution ismadeup of a Laplace distribution and adelta dis-
tribution of initially immobile tracers that have not moved yet.
The coefficients of the two distributions depend on the specific
initial conditions. We additionally obtain expressions for the
densities that are valid for the whole range t≪ tim. We stress
that the distribution is non-Gaussian at intermediate times,
regardless of the initial conditions. By contrast, the distribution
asymptotically at long times matches a Gaussian for all initial
conditions. The densities of mobile and immobile tracers with
equilibrium initial conditions match the total tracer densities
of mobile and immobile initial conditions, respectively, at all
times.Moreover, the immobile tracer density frommobile initial
conditions is proportional to the mobile tracer density from
immobile initial conditions at all times. As a special case for
equilibrium initial conditions, our model corresponds to the
one-dimensional version of the model used in [32] to describe
Fickian yet non-Gaussian diffusion. We find the same linear
MSD for all times and obtain a closed expression for the Laplace
distribution at intermediate time scales.

The model developed here is, of course, much more general.
We provided the framework for any ratio of the characteristic
time scales tmand tim, such that themodelwill beuseful for scen-
arios ranging from geophysical experiments with Poissonian
(im)mobilization statistics to molecular systems such as protein
(un)binding to DNA in nanochannel set-ups. To the best of our
knowledge, the transient Laplace distribution of tau proteins
has not been observed yet. We now discuss possible experi-
ments that could reveal the anomalous diffusion regime and
the Laplace distribution, which depend on the time scales tm
and tim. For the present analysis, we used the parameters
tm ¼ 0:16 s and tim ¼ 7:7 s for tau proteins, which were obtai-
ned from an FDAP experiment [17]. FDAP experiments do not
directly allow the observation of single-particle displacement
densities and the moments thereof. However, a single-molecule
tracking (SMT) study of tau proteins [18] with two-dimensional
trajectories of 2:2 s length was conducted, where we expect the
transient Laplace distribution to be visible in the marginal distri-
bution, given that the sample size is large enough. From SMT
experiments, the moments can be obtained, although, in [18],
the moments of the distribution were not evaluated. Another
example for a system with tim > tm is given by synaptic vesicles
[19]. In [19], fluorescence correlation spectroscopy reveals
tim ¼ ð4:2+ 0:4Þ s and tm ¼ ð2:0+ 0:4Þ s. In addition,
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glucocorticoid receptors show long immobilization events with
tim ¼ 13ms compared with tm ¼ 2ms, as revealed by fluor-
escent recovery after a photobleaching experiment [20]. The
Laplace distribution cannot be observed in this experiment,
owing to the missing information on single tracers. SMT exper-
iments of the transcription factor p53 [22] show a switched
separation of time scales with tim ¼ 1:80 s and tm ¼ 8:4 s.
Here,SMTallowsustomeasure theexponentialbinding timedis-
tribution corresponding to a single binding rate, as in ourmodel.
The secondmoment ismeasured for up to 0.6 s,where longer tra-
jectories would allow for a comprehensive comparison with the
moments calculated in thiswork. For tm> tim, the Laplace distri-
butiondoesnot arise.Wenow lookat another SMTexperiment in
more detail. In [29], the architectural DNA-binding protein Fis
was observed tohave a linearMSDandanon-Gaussiandisplace-
ment distribution, as depicted in figure 7. The authors of [29]
fitted twoGaussiansto thedistributionanddeduced thepresence
of two slidingmodes of Fis on theDNA. Since themotion during
the slow slidingmode is within experimental accuracy, it is plau-
sable to assume that the non-Gaussian distribution emerges as a
result of immobilization. In figure 7, we show fits with a Laplace
distribution and aGaussian distribution in a logarithmic presen-
tation. The Laplace distribution matches the general shape with
fewexceptions around�0:4mm,while theGaussian distribution
does not capture the peak in the centre. We note that the Laplace
distribution requires a single fitting parameter, compared
with the two Gaussians with advection used in [29] requiring
five parameters. The apparent Laplace distribution and linear
MSD translate to equilibrium initial conditions in our model.

We note that (non-)exponential (im)mobilization has been
studied using a Langevin equationwith switching diffusivities
[56,57] and the continuous time random walk framework,
where the waiting time probability distribution function con-
sists of a combination of two exponentials with different
time scales [58]. It will be a topic of future research to study
the effect of a drift velocity on the pre-asymptotic behaviour
for different initial conditions, as well as what happens when
non-exponential (im)mobilization is considered in a mobile–
immobile model in connection with chemical reactions.
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Endnotes
1The slow directed motion only plays a role when very long times are
considered [17,51,52].
2Equations (3.2) and (3.3) can also be obtained by taking the limit
tim→∞ in (1.2) and solving the equations directly.
3An approximation for the whole range of t≪ tim can be obtained for
any fractions of initially mobile tracers fm by combining equations
(3.4) and (B 11) from the mobile and immobile initial conditions,
respectively. This yields equation (B 12) and is shown in figure 10.
Appendix A. General equations
Startingwith equation (1.2), we apply the Fourier–Laplace trans-
form fðk, sÞ ¼ Ð1�1

Ð1
0 e�stþikxf ðx, tÞdtdx to the rate to obtain

nmðk, sÞ ¼ fmþfimð1=ð1þstimÞÞ
fðsÞþk2D

and nimðk, sÞ ¼ tim
1þstim

fim þ t�1
m

fmþfimð1=ð1þstimÞÞ
fðsÞþk2D

� �
9=
; ðA 1Þ

as well as

ntotðk, sÞ ¼ nmðk, sÞ þ nimðk, sÞ

¼ f m þ fimð1=ð1þ stimÞÞ
s

fðsÞ
fðsÞ þ k2D

þ fim
tim

1þ stim
ðA 2Þ

with fðsÞ ¼ s½1þ timt
�1
m =ð1þ stimÞ�.
Appendix B. Asymptotics calculated in Laplace
space
We go from a short-time limit to a long-time limit.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220233

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

ul
y 

20
22

 

B.1. Short-time limit
For t≪ tm, tim, we obtain stim≫ 1 and stim≫ 1. This yields
ϕ(s)∼ s in this limit. With (A 1) for fm = 1 and fim = 0, we
obtain the expression

nmðk, sÞ � ntotðk, sÞ � 1
sþ k2D

; ðB 1Þ

which produces the Gaussian (3.1). We now consider fim = 1
and fm = 0 and obtain the expression

ntotðk, sÞ � 1
stim

1
sþ k2D

þ 1
s
� 1
s2tim

� �
ðB 2Þ

from (A 2) in the limit stm≫ 1 and stim≫ 1. Fourier–Laplace
inversion yields the expression

ntotðx, tÞ � 1
tim

ðt
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDt0

p e�ðx2=4Dt0Þ dt0 þ ð1� t=timÞdðxÞ

for t � tm � tim: ðB 3Þ
Solving the integral in (B 3) gives the expression

ntotðx, tÞ � 2t=timffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�ðx2=4DtÞ � jxjð1� erf jxj= ffiffiffiffiffiffiffiffi
4Dt

p� 	Þ
2Dtim

þ 1� t
tim

� �
dðxÞ, for t � tm � tim,

ðB 4Þ

where normalization is conserved. By combining expression
(B 4) for immobile initial conditions and (3.1) for mobile
initial conditions, we obtain the expression

ntotðx, tÞ � fm þ 2fimt
tim

� �
1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�ðx2=4DtÞ

� fim
jxj 1� erf

jxjffiffiffiffiffiffiffiffi
4Dt

p
� �� �

2Dtim
þ fim 1� t

tim

� �
dðxÞ,

ðB 5Þ

for t≪ tm≪ tim for arbitrary fractions of initially mobile tracers.

B.2. Density at intermediate time scales
We now investigate the intermediate time tm≪ t≪ tim, corre-
sponding to stm≪ 1 and stim≫ 1. In this regime, we have
fðsÞ � t�1
m , yielding the expression

ntotðx, sÞ �
fm þ fim

1
stim

s
1ffiffiffiffiffiffiffiffiffiffiffiffi

4Dtm
p e�ðjxj= ffiffiffiffiffiffiffiDtm

p Þ

þ fim
1
s
� 1
s2tim

� �
dðxÞ ðB 6Þ

from (2.3) for the total concentration. The inverse Laplace
transform of (B 6) yields the expression

ntotðx, sÞ � fm þ fimt
tim

� �
1ffiffiffiffiffiffiffiffiffiffiffiffi

4Dtm
p e�ðjxj= ffiffiffiffiffiffiffiDtm

p Þ

þ fim
1� t
tim

� �
dðxÞ ðB 7Þ

for tm≪ t≪ tim.
B.3. Density in the long-time limit
We obtain the long-time limit t≫ tm, tim from ntot(k, s) (A 2)
using s≪ 1/tim, 1/tm and ϕ(s)∼ s(1 + tim/tim). This yields the
expression

ntotðx, tÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDefft

p e�ðx2=4DefftÞ, for t � tm, tim, ðB 8Þ

with Deff =D/(1 + tim/tm).
B.4. Density at short to intermediate time scales
Here, we analyse the regime t≪ tim. The case fm = 1 and fim =
0 is considered in §3. We consider the case fim = 1 and fm = 0
here. From n(x, s) (2.3), we obtain, with stim≫ 1 and ϕ(s)∼ s +
1/tm,

ntotðx, sÞ � stm þ 1
s2timtm

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dðsþ 1=tmÞ

p e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ1=tmÞ=D

p
jxj

þ 1
s
� 1
s2tim

� �
, for stim � 1:

ðB 9Þ

In the time domain in the limit t≪ tim, this corresponds to the
expression
ntotðx, tÞ �
ðt
0

tþ tm � t0

timtm
exp

�t0

tm

� � exp � x2

4Dt0

� �
ffiffiffiffiffiffiffiffiffi
4Dt0

p dt0 þ ð1� t=timÞdðxÞ

¼ e�ðx2=4DtÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�t=tm t
tim

þ ð1� t=timÞdðxÞ

þ expð�jxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p t=tim � jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p � ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2
ðB 10Þ
� expðjxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p t=tim þ jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p þ ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2
: ðB 11Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

Normalization is preserved, as can be seen by integrating (B 10)
over x. The first summand in (B 10) then resolves to t/tim. In the
limit t≪ tm, tim, we recover the short-time behaviour for ntot(x,
t) (B 4), as shown in figure 9. For tm≪ t≪ tim and
jxj � 4Dt2im=tm, we recover the Laplacian intermediate
regime in (B 7) with fim = 1 and fm= 0. In figure 9, we showa ver-
ification of (B 11). For arbitrary fractions of initially mobile
tracers, we combine equation (B 11) for immobile initial
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Figure 9. All tracers initially immobile. Comparison of the exact Laplace inversion of (2.3), the short-time approximation (B 4), the intermediate-time approximation
(B 7) and the short- to intermediate-time approximation (B 11).
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Figure 10. Total concentration ntot(x, t) for fim = 3/10 and fm = 7/10. Expression (B 12) is shown as the blue line and the Laplace inversion of ntot(x, s) (2.3) is
shown as the black line with markers. Both overlap over five decades in amplitude, for all times shown. The red marker with the grey edge at x = 0 denotes the
initially immobile tracers that have not yet moved. At short times, the distribution consists of the particles at x = 0 and a Gaussian. At t = 1 s, the distribution
follows a Laplace distribution (linear tails in the log-linear plot), on top of the particles at x = 0.
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conditions with equation (3.4) for mobile initial conditions,
as follows:

ntotðx, tÞ � e�ðx2=4DtÞffiffiffiffiffiffiffiffiffiffiffi
4pDt

p e�t=tm fm þ fim
t
tim

� �
þ fimð1� t=timÞdðxÞ

þ fm þ fim t=tim � jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !" #

� expð�jxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p � ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2

� fm þ fim t=tim þ jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tm

4Dt2im

r
þ tm=2tim

 !" #

� expðjxj= ffiffiffiffiffiffiffiffiffiffi
Dtm

p Þffiffiffiffiffiffiffiffiffiffiffiffi
4Dtm

p
1� erf jxj= ffiffiffiffiffiffiffiffi

4Dt
p þ ffiffiffiffiffiffiffiffiffiffi

t=tm
p� �

2
:

ðB 12Þ
In figure 10, expression (B 12) is compared with the Laplace
inversion of the exact expression of ntot(x, s) (2.3).
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