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Abstract
Anomalous diffusion with a power-law time dependence 〈|R|2(t)〉 � tαi of the
mean squared displacement occurs quite ubiquitously in numerous complex
systems. Often, this anomalous diffusion is characterised by crossovers between
regimes with different anomalous diffusion exponentsαi. Here we consider the
case when such a crossover occurs from a first regime with α1 to a second
regime with α2 such that α2 > α1, i.e., accelerating anomalous diffusion. A
widely used framework to describe such crossovers in a one-dimensional setting
is the bi-fractional diffusion equation of the so-called modified type, involv-
ing two time-fractional derivatives defined in the Riemann–Liouville sense.
We here generalise this bi-fractional diffusion equation to higher dimensions
and derive its multidimensional propagator (Green’s function) for the general
case when also a space fractional derivative is present, taking into considera-
tion long-ranged jumps (Lévy flights). We derive the asymptotic behaviours for
this propagator in both the short- and long-time as well the short- and long-
distance regimes. Finally, we also calculate the mean squared displacement,
skewness and kurtosis in all dimensions, demonstrating that in the general case
the non-Gaussian shape of the probability density function changes.
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1. Introduction

Robert Brown’s lucid account on the jittery motion of microscopic particles almost two cen-
turies ago [1] paved the way for one of the most outstanding scientific developments, the
history of diffusion. Following the seminal theoretical works by Albert Einstein [2], Mar-
ian Smoluchowski [3], William Sutherland [4], and Paul Langevin [5], Brownian motion is
described as the thermally driven, effectively random motion of a passive tracer particle. On
a more general level, stochastic processes have been ever more widely applied in the sci-
ences [6–8] and have also become a focus field in mathematics [9–11]. The chief charac-
teristics of ‘Brownian motion’, ‘normal diffusion’, or ‘Gaussian diffusion’ are the linear time
dependence 〈|R|2(t)〉 ∝ t of the mean squared displacement (MSD) and the Gaussian shape
W(R, t) = (4πDt)−d/2 exp(−|R|2/[4Dt]) of the probability density function (PDF, also called
propagator or Green’s function) for a point-like initial condition [7, 12]. We note that the occur-
rence of a linear time dependence of the MSD is not sufficient to define Brownian motion,
as underlined by the growing number of systems exhibiting a linear MSD but pronouncedly
non-Gaussian displacement distributions [13–18].

Based on his study of the random spreading of two pilot balloons relative to each other,
Lewis Fry Richardson reported the cubic scaling 〈|R|2(t)〉 ∝ t3 of the MSD [19]. This was
likely the first report of what we nowadays refer to as ‘anomalous diffusion’, a phenomenon
typically connected with the power-law form [20, 21]

〈|R|2(t)〉 ∝ tα (1)

of the MSD, in whichα �= 1. For α > 1, as in Richardson’s work, we call the process superdif-
fusive, while for 0 < α < 1 we speak of subdiffusion. A classical example for the latter is
diffusion on geometric fractals, in which the anomalous diffusion exponent was conjectured
to be α = 2/(2 + δ) with δ > 0 by Shlomo Alexander and Ray Orbach [22]. By now a vast
number of studies have reported anomalous diffusion of the form (1), ranging from stochastic
motion in biological cells [23, 24] to geophysical contexts [25, 26].

Often, systems exhibit crossover behaviours at some characteristic time scales. We are here
interested in crossovers of the form

〈|R|2(t)〉 �
{

tα1 , t → 0+

tα2 , t →∞
(2)

showing two distinct power-law regimes with scaling exponents α1 and α2. In reality, the
system of interest may show additional regimes at times shorter than some microscopic time
scale, or longer than some macroscopic correlation time reflecting, e.g., the finite system size.
In the mathematical framework we have in mind here, we treat systems with an observed
crossover between two power-laws as indicated in equation (2). In what follows we consider
the accelerating case when α2 > α1, the opposite, retarding case was recently considered by
us [67].

A prototypical example is the motion of lipid molecules in bilayer membranes studied by
supercomputing approaches [27] or by neutron spin echo methods [28]. Depending on the exact
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composition or physical phase of the bilayer, crossovers may occur from a subdiffusive regime
with 0 < α1 < 1 to a normal diffusive regime with α2 = 1 or another yet faster subdiffusive
regime with 0 < α1 < α2 < 1 [27, 28]. One of these crossovers occurs at time scales of some
10 ns, typically associated with the loss of correlations of a single lipid molecule [29, 30].
Similar accelerating crossovers are seen in the diffusion dynamics of proteins [31] or surface
water [32, 33] along membrane surfaces, or for surface water of proteins [34]. In non-inert
obstacle environments crossovers from slower to faster passive diffusion occurs for specific
parameter combinations [35]. Crossover behaviours are also observed in simulations of the
lateral motion of drug molecules in a silica slab [36]. Moreover, in active matter crossovers
from a short-time passive viscoelastic-like subdiffusive behaviour to a superdiffusive regime
at longer times are observed for the motion of microscopic vesicles in amoeba cells [37–39].
The choice of specific models for the description of the observed crossover dynamics depends
on the exact physical situation.

Different scenarios for crossover behaviours occur when α2 = 0 indicates the occurrence
of a plateau, typically due to confinement, see, e.g., [40, 41]. Another scenario is observed
for caging-like effects, when an initial power-law with scaling exponent α1 is interrupted by a
slow-down, extended crossover regime, that finally crosses over to a second power-law regime
with exponent α2, see, e.g., [41–44]. We note that crossovers analogous to those discussed
here may also be observed in the power spectra, see, e.g., the discussion in [39, 45]. Finally,
we also note that apparent acceleration may also be caused by positional noise [46].

One way to generalise the standard diffusion equation encoding the linear growth (1) of
the MSD with α = 1 for situations with non-linear growth (i.e., α �= 1) is to introduce a
position and time dependent diffusion coefficient, k(R, t), obtaining the generalised diffusion
equation [47, 48]

∂Ω(n)(R, t)
∂t

= ∇R ·
[
k(R, t)∇RΩ

(n)(R, t)
]

, (3)

where Ω(n)(R, t) is the multidimensional PDF or propagator, R = (X1, X2, . . . , Xn) ∈ Rn the
position vector, t denotes time, and ∇R· is the divergence operator. With the specific choice
k(R, t) = C0DR4/3 (R = |R|), where D is the diffusivity constant and C0 is a constant to keep
dimensions in order, Richardson [19] obtained the cubic scaling of the MSD withα = 3. Batch-
elor obtained the same MSD scaling with a t2-dependent form of the generalised diffusion
coefficient [49]. Another alternative kinetic approach to obtain the Richardson’s cubic scaling
is to replace (3) with

∂3Ω(n)(R, t)
∂t3

= C1DΔRΩ
(n)(R, t), (4)

where C1 is a dimensional constant and ΔR the Laplace operator [47, 48]. Such equations with
a time derivative of order different from unity were generalised in terms of different fractional
derivatives [21]. Notably Schneider and Wyss introduced a fractional diffusion-wave equation
for the description of anomalous diffusion characterised by the MSD (1) with 0 < α < 2 and
presented the solution in terms of Fox H-functions [57]. Today, both time and space fractional
diffusion equations are used in various forms, see, e.g., [21, 50–56].

Crossover behaviours between different diffusion regimes have also been addressed in terms
of fractional dynamic equations. Thus a crossover from superdiffusion to subdiffusion was
found to be captured through a generalised Cattaneo (telegrapher’s) equation [58]. Retarding
and accelerating crossovers (2) were found to be mathematically described via replacing the
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fractional derivative of fixed order in the fractional diffusion equation with another of dis-
tributed order [59–65]. Recently, it was shown that the generalised Jeffreys equation, with
flux-driven description, captures a crossover caging-like effect [66].

Here we further pursue the concept of distributed order fractional equations to determine
the detailed properties in higher dimensions. In [67] we previously considered the bi-fractional
diffusion equation of the natural type in n dimensions and derived the propagator and the
asymptotic dynamic behaviours. In this work we continue our study and consider the accelerat-
ing case. The paper is organised as follows: in section 2 we consider the bi-fractional diffusion
equation of the modified type with additional space-fractional operator in n dimensions and
derive the multidimensional propagator. We prove the non-negativity of this propagator in
higher dimensions in section 3. In section 4 we derive the asymptotic behaviours for these
accelerating processes in the short-time and long-time regimes. Moreover we determine the
moments as function of time in section 5 and show explicit solutions for the skewness and the
kurtosis in all dimensions. Finally we draw our conclusion in section 6.

2. Fractional kinetic equations and solutions

2.1. Bi-fractional diffusion equation

The fractional diffusion equation of the modified type, in dimensionless form, in n-dimensional
Euclidean space Rn reads [21, 57, 67]

∂W (n) (r, t)
∂t

= RL
0 D1−α

t ΔW (n) (r, t) , (5)

where 0 < α < 1, W (n)(r, t) is the n-dimensional propagator (n = 1, 2, and 3), r =
(x1, . . . , xn) ∈ Rn is the dimensionless position vector, t the dimensionless time, Δ the frac-
tional Laplace operator, and RL

0 Dα
t is the Riemann–Liouville fractional derivative of order

α ∈ (0, 1], defined for any generic function f (t) as [68]

RL
0 Dα

t f (t) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(1 − α)
d
dt

∫ t

0

f (ζ)
(t − ζ)α

dζ, 0 < α < 1

d f (t)
dt

, α = 1.
(6)

When α = 1, equation (5) reduces to the normal diffusion equation in n-dimensional space
with the Gaussian propagator

W (n)(r, t) = G(n)(r, t) =
1

(4πt)n/2
exp

(
−|r|2

4t

)
. (7)

We note that the fractional diffusion equation (5) can be derived from the continuous-time
random walk model with a scale-free waiting time PDF of asymptotic power-law form �t−1−α

with 0 < α < 1 [21, 69–74].
Let us now consider a generalisation of equation (5) with distributed-order fractional

derivative [61–65], in n-dimensional space,

∂W (n)(r, t)
∂t

= −
∫ 1

0
p(ν) RL

0 D1−ν
t (−Δ)μ/2W (n)(r, t)dν, (8)

where p (ν) is a PDF in the sense that p(ν) � 0 and
∫ 1

0 p(ν)dν = 1. Here we also accommodated
the space-fractional derivative −(−Δ)μ/2 instead of the ordinary Laplacian Δ, in order to be
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able to include long-tailed jump lengths in our formalism [21]. The space-fractional derivative
is defined for a generic function f (n) : Rn → R as a pseudo-differential operator characterised
by its Fourier transform via [75–78]

Fn

{
(−Δ)μ/2 f (n)(r)

}
(q) =

∫
Rn

(−Δ)μ/2 f (n)(r) exp(ıq · r)dnr

= |q|μFn

{
f (n)(r)

}
(q), (9)

where 1 < μ < 2.3 In the limit μ = 2 we return to the standard Laplacian. This fractional order
in space specifically turns out to be useful in handling the divergent two-dimensional solution,
as shown in [67]. In the particular case

p(ν) = p1δ(ν − α1) + p2δ(ν − α2), (10)

where p1 and p2 are positive constants satisfying p1 + p2 = 1 and 0 < α1 < α2 � 1,
equation (8) reduces to

∂W (n)(r, t)
∂t

= −
(

p1
RL

0 D1−α1
t + p2

RL
0 D1−α2

t

)
(−Δ)μ/2W (n)(r, t). (11)

Equation (11) is called the bi-fractional diffusion equation (in time) of modified type with an
additional space-fractional operator. It was shown that the MSD governed by equation (11),
with μ = 2, in the one-dimensional setting exhibits an accelerating subdiffusive crossover (2)
with 0 < α1 < α2 � 1, i.e., the smaller exponent dominates the short-time regime while the
larger exponent controls the long-time regime. In what follows we consider the solution of the
initial value problem consisting of equation (11) subject to the point-like initial condition

W (n)(r, 0+) = δ(r), (12)

where δ(·) is the multidimensional Dirac delta function.

2.2. Multidimensional propagator

We proceed to derive a closed-form expression for the multidimensional propagator for the
generalised diffusion equation (11) subject to the initial condition (12). Let us first write the
propagator W (n)(r, t) in Fourier–Laplace space [79] as

̂̃W (n)
(
|q| , s

)
=

sα1−1

sα1 + p1|q|μ
(

1 +
p2sα1−α2 |q|μ

sα1 + p1|q|μ
)−1

, (13)

where the tilde refers to the Laplace transform f̃ (r, s) = L { f (r, t); t} (r, s) =∫∞
0 f (r, t) exp(−st)dt, the hat refers to the Fourier transform f̂ (q, t) = Fn

{
f (n)(r, t)

}
(q, t) =∫

Rn f (n)(r, t) exp(ıq · r)dnr, s ∈ C is the Laplace variable, and q = (q1, . . . , qn) ∈ Rn is the wave
vector, |q|2 = q2

1 + · · ·+ q2
n and n = 1, 2 or 3. Equation (13) can be written in the form [80]

̂̃W (n)(|q|, s) =
∞∑

k=0

(−p2|q|μ)k s(α1−α2)k+α1−1(
sα1 + p1|q|μ

)k+1 . (14)

The condition |x| < 1 to apply the negative binomial series (1 + x)−1 =
∑∞

k=0(−x)k in this
transformation is fulfiled when the condition |q| � s(α2−α1)/μ holds. This corresponds to

3 We do not consider the case 0 < μ � 1 in this work.
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the known correct diffusion limit that taking |q| → 0 precedes the limit s → 0 [81]. From a
numerical point of view, for finite values of the variables care should be taken that the frac-
tion p2sα1−α2 |q|μ/

(
sα1 + p1|q|μ

)
does not exceed unity. Inverting the Laplace transform in

equation (14), utilising relation (A17), we obtain

Ŵ (n)(|q|, t) =
∞∑

k=0

(−p2tα2 |q|μ)kEk+1
α1,α2k+1(−p1tα1 |q|μ), (15)

where Eγ
α,β(·) is the generalised Mittag–Leffler function with three parameters, see

appendix A. Next, we invert the Fourier transform to obtain

W (n) (r, t) =

(
1

2π

)n ∞∑
k=0

(−p2tα2 )k

×
∫
Rn

exp (−ıq · r) |q|μkEk+1
α1,α2k+1

(
−p1tα1 |q|μ

)
dnq. (16)

Due to the symmetry Ŵ (n) (q, t) = Ŵ (n)
(
|q| , t

)
= Ŵ (n) (q, t), where q = |q|, we can write

W (n) (r, t) =

(
1

2π

)n∫
Rn

exp (−ıq · r) Ŵ
(
|q| , t

)
dnq

=
r1− n

2

(2π)
n
2

∫ ∞

0
J n−2

2
(qr) q

n
2 Ŵ (q, t) dq, (17)

where Jν denotes the Bessel function of the first kind of order ν. Therefore, we arrive at

W (n) (r, t) =
r1− n

2

(2π)
n
2

∞∑
k=0

(−p2tα2 )k

×
∫ ∞

0
q

n
2+μkJ n−2

2
(qr) Ek+1

α1,α2k+1 (−p1tα1qμ) dq. (18)

The integral in the sum of equation (18) is the Hankel transform of the generalised Mit-
tag–Leffler function given by (A18), see [67, 82]. Thus, we have a closed-form solution of
the multidimensional propagator of the bi-fractional diffusion equation of modified type with
space fractality (11) subject to (12), in the form

W (n) (r, t) =

(
1

2μπ
μ
2 p1tα1

) n
μ

∞∑
k=0

(−1)k

k!

(
p2

p1
tα2−α1

)k

× H2,1
2,3

⎡⎢⎢⎣ rμ

2μp1tα1

∣∣∣∣∣∣∣∣
(

1 − k − n
μ

, 1

)
;

(
1 − nα1

μ
+ (α2 − α1) k,α1

)
(

0,
μ

2

)
,

(
1 − n

μ
, 1

)
;
(

1 − n
2

,
μ

2

)
⎤⎥⎥⎦ ,

(19)

with the condition p1 > p2 to ensure convergence of the solution for long times. Here, Hm,n
p,q (·)

is the Fox H-function, see appendix A. As it should, when μ = 2 and n = 1, we get exactly
the one-dimensional solution of the bi-fractional diffusion equation of the modified type with-
out space fractality, as obtained in [79]. Note that to obtain numerical results we utilise the
expansion (A5) of the H-function.
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3. Non-negativity in higher dimensions

In this section we show that the one-, two-, and three-dimensional solutions of the bi-fractional
diffusion equation of the modified type without space fractality, i.e., equation (11) with μ = 2,
are non-negative. To achieve this objective, we follow two different methods: the first depends
on writing these solutions in Laplace space and examining whether these solutions are com-
pletely monotone functions if confined to the positive real line or not, while the second
approach is to test whether the multidimensional propagator W (n)(r, t) is subordinated to the
Wiener process or not.

Introducing the parameter λ = R{s}, which represents the positive real part of the Laplace
variable, and rewriting the one-, two-, and three-dimensional solutions in equation (11) with
μ = 2 in terms of λ, in Laplace domain we find [83]

W̃ (1)(x,λ) =
1

2λ
√

p1λ−α1 + p2λ−α2
exp

(
− |x|√

p1λ−α1 + p2λ−α2

)
, (20)

W̃ (2) (r,λ) =
1

2πλ (p1λ−α1 + p2λ−α2 )
K0

(
r√

p1λ−α1 + p2λ−α2

)
, (21)

W̃ (3) (r,λ) =
1

4πrλ (p1λ−α1 + p2λ−α2 )
exp

(
− r√

p1λ−α1 + p2λ−α2

)
, (22)

where Kν (·) is the modified Bessel function of the second kind of order ν.
Based on the fact that the function f (t) is non-negative if its Laplace transform defined on

the positive real line, i.e., f̃ (λ), is a completely monotone function (CMF) [84, 85], we can
prove the non-negativity of the solutions W (n) (·, t), n = 1, 2, 3, by showing that their Laplace
transform (20)–(22) defined on the positive real line are CMFs.

We know that the functionλ−α, whereλ > 0 andα ∈ (0, 1), is a Stieltjes function (SF) [11],
then the functionsλ−α1 andλ−α2 are also SFs forλ > 0 and 0 < α1 < α2 < 1. Since any linear
combination of SFs is also a SF, therefore the combination

(
p1λ

−α1 + p2λ
−α2

)
is a SF. Also,

since for any SF, f̃ (λ) ∈ SF, its square root is a SF, i.e.,
√

f̃ (λ) ∈ SF, then
√

p1λ−α1 + p2λ−α2

is a SF. Furthermore, since the function 1/ f̃ (λ) is a complete Bernstein function (CBF), which
is a subset of the Bernstein functions (BFs) [11], if and only if f̃ (λ) is a SF, one therefore
deduces that

1
p1λ−α1 + p2λ−α2

,
1√

p1λ−α1 + p2λ−α2
∈ CBF. (23)

Using the property that ϕ̃ (λ) /λ is CMF if ϕ̃ (λ) is BF, then we can write

1
λ(p1λ−α1 + p2λ−α2 )

,
1

λ
√

p1λ−α1 + p2λ−α2
∈ CMF. (24)

Conversely, we know that the functions exp(−aλ) and K0(aλ) are CMF [83], and any CMF

of the BF is also a CMF, i.e., if ψ̃1(λ) ∈ CMF and ψ̃2(λ) ∈ BF, then ψ̃1

(
ψ̃2(λ)

)
∈ CMF.

Therefore, one has

exp

(
− r√

p1λ−α1 + p2λ−α2

)
, K0

(
r√

p1λ−α1 + p2λ−α2

)
∈ CMF. (25)
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In view of relations (24) and (25), the functions W̃ (n)(·,λ) in equations (20)–(22) are CMFs,
as products of two CMFs. This shows that the solutions W (n)(·, t), are non-negative functions
for 0 < α1 < α2 < 1, p1, p2 > 0, and r � 0.

The second approach usually used to show the non-negativity of the solutions is based on
the concept of subordination [84] according to which the solution of the governing equation is
written as a transformation of the Gaussian distribution, namely,

W (n)(r, t) =
∫ ∞

0
N(u, t)G(n)(r, u)du, (26)

where G(n)(r, t) is the Gaussian distribution in the n-dimensional Euclidean space defined
through equation (7). Showing that N(u, t) is a non-negative function for t > 0 and u > 0,
one can thus infer that W (n)(r, t) is non-negative. This approach was successfully employed
to demonstrate the non-negativity in the one-dimensional setting [61, 86]. Here, we show its
validity in higher dimensions. Let us write the propagator (11) of the bi-fractional diffusion
equation (11) in Laplace–Fourier space as

̂̃W (n)
(
|q| , s

)
=

a2 (s) /s

a2 (s) + |q|2
, a2 (s) =

1
p1s−α1 + p2s−α2

. (27)

Using the relation ζ−1 =
∫∞

0 exp(−uζ)du [87], equation (27) can be written as

̂̃W (n)
(
|q| , s

)
=

∫ ∞

0

(
a2 (s)

s
exp

(
−a2 (s) u

))
exp

(
−|q|2u

)
du. (28)

Inverting the Fourier transform, we have that G(n)(r, u) = F−1
n

{
exp

(
−|q|2u

)}
, and therefore

W̃ (n) (r, s) =
∫ ∞

0
Ñ (u, s) G(n) (r, u) du, (29)

where

Ñ (u, s) =
1

s (p1s−α1 + p2s−α2 )
exp

(
− u

p1s−α1 + p2s−α2

)
. (30)

From the discussion of relations (24) and (25), one can show that Ñ (u,λ) is a CMF as a product
of two CMFs. This proves the non-negativity of N(u, t) for u > 0 and t > 0, which in turn
proves the non-negativity of W (n)(r, t).

4. Asymptotic behaviours

We now derive the main results of this work, the asymptotic behaviours for the propagator
(19) in the long-time domain and/or near the origin, r2 � 4p1tα1 , and in the short-time domain
and/or far from the origin, r2 � p1tα1 .

4.1. Behaviour at long times and/or near the origin

We use the general asymptotic behaviour (A6) of the H-function for small argument and its
expansion (A3) to derive asymptotic expressions for the H-function (A5) in the n-dimensional
case, see equations (A8)–(A10). We utilise these relations here to obtain explicit expressions
for the propagator (19) in the limit r2 � p1tα1 .
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Figure 1. Evolution of the asymptotic behaviour (33) (dashed black line) and the one-
dimensional propagator (31) (coloured solid curves) along the time-scale and at different
values of the position variable, x = 0, 0.1, and 0.5. The dotted blue line shows the
long-time behaviour (34) near the origin. The model parameters are chosen as p1 = 0.9,
p2 = 0.1, α1 = 0.3, α2 = 0.7, and μ = 1.8 (fractional Laplacian operator).

4.1.1. 1D case. The 1D solution of the dynamic equation (11), given by the choice n = 1 in
result (19), reads

W (1)(x, t) =
1
2

√
π(p1tα1 )1/μ

∞∑
k=0

(−1)k

k!

(
p2

p1
tα2−α1

)k

× H2,1
2,3

⎡⎢⎢⎣ |x|μ

2μp1tα1

∣∣∣∣∣∣∣∣
(

1 − k − 1
μ

, 1

)
;

(
1 − α1

μ
+ (α2 − α1) k,α1

)
(

0,
μ

2

)
,

(
1 − 1

μ
, 1

)
;

(
1
2

,
μ

2

)
⎤⎥⎥⎦ .

(31)

For sufficiently long times t and small values of the distance x, i.e., |x|μ � 2μp1tα1 , the asymp-
totic behaviour of the H-function in equation (31) is given by (A8), yielding the asymptotic
scaling

W (1) (x, t) ∼
Γ
(

1 − 1
μ

)
μπ(p1tα1 )

1
μ

∞∑
k=0

Γ
(

k + 1
μ

)
Γ
(

1 − α1
μ
+ (α2 − α1) k

)
(
− p2

p1
tα2−α1

)k

k!
,

|x|μ � 2μp1tα1 . (32)

Using the relation Γ
(

k + 1
μ

)
=
(

1
μ

)
k
Γ
(

1
μ

)
, where

(
1
μ

)
k

is the ascending Pochhammer sym-

bol defined in appendix A, and the definition of the generalised Mittag–Leffler function (A14),
the asymptotic behaviour (32) of the 1D solution can be rewritten in the form

9
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W (1) (x, t) ∼ 1

μ(p1tα1 )
1
μ sin

(
π
μ

)E
1
μ

α2−α1,1− α1
μ

(
− p2

p1
tα2−α1

)
,

|x|μ � 2μp1tα1 , (33)

where 1 < μ � 2 and Euler’s reflection formula for theΓ-function has been used. Moreover, at
sufficiently long times, the leading asymptotic behaviour can be approximated by using (A15)
to obtain the explicit formula

W (1)(x, t) ∼ 1

μp1/μ
2 sin(π/μ)

t−α2/μ

Γ(1 − α2/μ)
, t →∞, |x| → 0. (34)

In figure 1, we compare between the asymptotic behaviour (33) represented by the Mit-
tag–Leffler function and the one-dimensional propagator (31) at different positions. Notably,
one sees that the asymptotic behaviour (33) coincides well with the one-dimensional propaga-
tor at x = 0, along the whole time-domain. As the spatial variable increases, x = 0.1, 0.5, the
asymptotic behaviour works only in the long-time domain. The long-time behaviour (34) near
the origin is also shown.

4.1.2. 2D case. The 2D solution of the bi-fractional diffusion equation (11), n = 2 in result
(19), is

W (2)(r, t) =
1

4π(p1tα1 )2/μ

∞∑
k=0

(−1)k

k!

(
p2

p1
tα2−α1

)k

× H2,1
2,3

⎡⎢⎢⎣ rμ

2μp1tα1

∣∣∣∣∣∣∣∣
(

1 − k − 2
μ

, 1

)
;

(
1 − 2α1

μ
+ (α2 − α1) k,α1

)
(

0,
μ

2

)
,

(
1 − 2

μ
, 1

)
;
(

0,
μ

2

)
⎤⎥⎥⎦ .

(35)

With the asymptotic behaviour (A9) of the H-function we can approximate the 2D solution
(35) for rμ � 2μp1tα1 , yielding

W (2)(r, t) ∼ 1
4π(p1tα1 )2/μ

⎧⎪⎨⎪⎩ 2
μ
Γ

(
1 − 2

μ

)
Γ

(
2
μ

)

×
∞∑

k=0

(
2
μ

)
k

Γ
(

1 − 2α1
μ

+ (α2 − α1) k
)
(
− p2

p1
tα2−α1

)k

k!

+
Γ
(
1 − μ

2

)
Γ
(
μ
2

) (
rμ

2μp1tα1

)1− 2
μ

∞∑
k=0

(
− p2

p1
tα2−α1

)k

Γ (1 − α1 + (α2 − α1) k)

⎫⎪⎬⎪⎭ ,

rμ � 2μp1tα1 . (36)

Using relations (A14) and (A19) we can again invoke the generalised Mittag–Leffler function
and rewrite this asymptotic form as

10
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Figure 2. Two-dimensional propagator (35) (coloured solid curves) and asymptotic
behaviour (37) (dashed black curves): (a) spatial evolution at time t = 1000 and different
values of the space-fractional parameter, μ = 1.6, 1.8, and μ � 2. (b) Temporal evolu-
tion at different distances, r = 0.1, 0.2, and 0.3. In panel (b), the long-time behaviour
(38) (dotted blue line) is drawn at r = 0.1. The model parameters are chosen as p1 = 0.9,
p2 = 0.1, α1 = 0.3, α2 = 0.7 and we show the curves of panel (b) at μ = 1.8.

W (2)(r, t) ∼ 1
4π(p1tα1 )2/μ

{
2
μ
Γ

(
1 − 2

μ

)
Γ

(
2
μ

)
E2/μ
α2−α1,1−2α1/μ

×
(
− p2

p1
tα2−α1

)
+

Γ
(
1 − μ

2

)
Γ
(
μ
2

) (
rμ

2μp1tα1

)1−2/μ

× Eα2−α1,1−α1

(
− p2

p1
tα2−α1

)}
, rμ � 2μp1tα1 , (37)

where 1 < μ < 2. Utilising the asymptotic behaviour of the generalised Mittag–Leffler func-
tion (A15), we obtain

W (2)(r, t) ∼ 1

2μp2/μ
2 sin(2π/μ)

t−2α2/μ

Γ(1 − 2α2/μ)

+
Γ(1 − μ/2)rμ−2

2μπp2Γ(μ/2)
t−α2

Γ(1 − α2)
, t →∞, r → 0, (38)

for 1 < μ < 2.
Figure 2 shows a comparison of the asymptotic behaviour given in terms of the generalised

Mittag–Leffler functions (37) with two and three parameters, and the two-dimensional prop-
agator (35). We first compare them as functions of the spatial variable at different values of
the space-fractional parameter μ, from which it is clear that the two-dimensional propagator
(35) is well approximated by the long-time behaviour (37) near the origin, see figure 2(a). We
also compare the full two-dimensional propagator (35) with the asymptote (37) as function of
time in figure 2(b). When r = 0.1, for instance, we observe full agreement over the entire time
domain shown in the plot. As r increases such that the condition rμ � 2μp1tα1 breaks down,
the asymptotic law (37) fails to approximate the two-dimensional propagator. The long-time
behaviour near the origin is represented by the dotted blue curve for the position r = 0.1 in
figure 2(b).
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Figure 3. Asymptotic behaviour (41) (dashed black curves) along with the three-
dimensional propagator (39) (coloured solid curves) (a) as functions of the space vari-
able (multiplied by 4πr2) at time t = 1000 and different values of the space fractional
parameter, μ = 1.6, 1.8, and 2; and (b) as functions of time for different values of the
radial distance r, r = 0.05, 0.1, and 0.3. The long-time behaviour (42) near the ori-
gin at r = 0.05 is shown as the dotted blue line in panel (b). The model parameters
are p1 = 0.9, p2 = 0.1, α1 = 0.3, α2 = 0.7, and we draw the curves of panel (b) for
μ = 1.8.

4.1.3. 3D case. The 3D solution for the bi-fractional diffusion equation (11) reads

W (3)(r, t) =
1

8π3/2(p1tα1 )3/μ

∞∑
k=0

(−1)k

k!

(
p2

p1
tα2−α1

)k

× H2,1
2,3

⎡⎢⎢⎣ rμ

2μp1tα1

∣∣∣∣∣∣∣∣
(

1 − k − 3
μ

, 1

)
;

(
1 − 3α1

μ
+ (α2 − α1) k,α1

)
(

0,
μ

2

)
,

(
1 − 3

μ
, 1

)
;

(
−1

2
,
μ

2

)
⎤⎥⎥⎦ . (39)

With the asymptotic expression (A10) for the H-function we obtain the asymptotic form

W (3)(r, t) ∼ Γ(3/2 − μ/2)rμ−3

2μπ3/2 p1Γ(μ/2)tα1

∞∑
k=0

(
− p2

p1
tα2−α1

)k

Γ (1 − α1 + (α2 − α1) k)
. (40)

As before, we can rewrite this result in terms of the Mittag–Leffler function (A19) as

W (3)(r, t) ∼ Γ(3/2 − μ/2)rμ−3

2μπ3/2 p1Γ(μ/2)tα1
Eα2−α1,1−α1

(
− p2

p1
tα2−α1

)
,

rμ � 2μp1tα1 , (41)

where 1 < μ � 2. For very long times, from relation (A15) we obtain the leading order
behaviour

W (3)(r, t) ∼ Γ(3/2 − μ/2)rμ−3

2μπ3/2 p2Γ(μ/2)
t−α2

Γ(1 − α2)
, t →∞, r → 0, (42)

and 1 < μ � 2. Again, good agreement between the asymptotic behaviours (41)–(42) and
the full three-dimensional propagator (39) is observed, particularly near the origin, as

12
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demonstrated in figure 3. It is notable that we confined the upper limit of the time scale to
103, and we chose p1 = 0.9 and p2 = 0.1. We also note that to get the asymptotic behaviours
we could have used the Fourier–Laplace transform (13) and applied Tauberian theorems, thus
shortening some of the calculations. However, we prefer the detailed separate derivation of the
2D and 3D cases, as this way we obtained a number of interesting closed-form results.

4.2. Behaviour at short times and/or far from the origin

We now derive explicit closed-form formulas for the short-time behaviours of the propaga-
tor (19) and/or for long distances from the origin, i.e., r2 � p1tα1 . To this end, we use the
corresponding limiting behaviour in Laplace space, R {s}→∞. Then the expressions for the
propagator in n dimensions and in the limit μ = 2 are given by

W̃ (1)(x, s) =
1

2s
√

p1s−α1 + p2s−α2
exp

(
− |x|√

p1s−α1 + p2s−α2

)
, (43)

W̃ (2)(r, s) =
1

2πs(p1s−α1 + p2s−α2 )
K0

(
r√

p1s−α1 + p2s−α2

)
, (44)

W̃ (3)(r, s) =
1

4πrs(p1s−α1 + p2s−α2 )
exp

(
− r√

p1s−α1 + p2s−α2

)
. (45)

For sufficiently small values of time, corresponding to sufficiently large values of the
Laplace variable s, i.e., R {s}→∞ [84], we see that p1s−α1 � p2s−α2 , thus, the solutions
(43)–(45) in this limit behave as

W̃ (1)(x, s) ∼ 1
2
√

p1
sα1/2−1 exp

(
− |x|
√

p1
sα1/2

)
, R {s} →∞, (46)

W̃ (2)(r, s) ∼ 1

2p3/4
1

√
2πr

s3α1/4−1 exp

(
− r
√

p1
sα1/2

)
, R {s} →∞, (47)

W̃ (3)(r, s) ∼ 1
4πp1r

sα1−1 exp

(
− r
√

p1
sα1/2

)
, R {s} →∞, (48)

where we employed the asymptotic relation K0(z) ∼
√
π/2 exp(−z)/

√
z as z →∞ [88]. By

help of relation (A13), equations (46)–(48) can be Laplace-inverted, yielding

W (1)(x, t) ∼ 1
2
√

p1tα1
H1,0

1,1

[
|x|√
p1tα1

∣∣∣∣∣
(

1 − α1

2
,
α1

2

)
(0, 1)

]
, t → 0, (49)

W (2)(r, t) ∼ 1
√

8πr(p1tα1 )
3
4

H1,0
1,1

⎡⎣ r√
p1tα1

∣∣∣∣∣∣
(

1 − 3α1

4
,
α1

2

)
(0, 1)

⎤⎦ , t → 0, (50)

W (3)(r, t) ∼ 1
4πp1rtα1

H1,0
1,1

[
r√

p1tα1

∣∣∣∣∣
(

1 − α1,
α1

2

)
(0, 1)

]
, t → 0. (51)

We note that the short-time asymptotic behaviours (49)–(51), for general n = 1, 2, 3, can be
expressed as

13
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Figure 4. Spatial dependence of the n-dimensional propagator (19) (coloured solid
curves) along with the stretched Gaussian shape (55) (dashed black curves). (a) Log-
arithm of the one-dimensional case, n = 1, compared with expression (55) at two time
instants, t = 0.1 and 0.001. (b) Two-dimensional case, n = 2, compared with (55) at
t = 0.1, 0.01, and 0.001. Both are multiplied by 2πr. (c) Three-dimensional propaga-
tor, n = 3, compared with (55) at t = 0.1, 0.01, and 0.001. Both are multiplied by 4πr2.
The model parameters are chosen as p1 = 0.9, p2 = 0.1, α1 = 0.3, and α2 = 0.7. In the
cases n = 1, 3, we set μ = 2, while in the case n = 2, μ � 2 (=1.999 95).

W (n)(r, t) ∼ 1

(4p1tα1 )
n+1

4 (πr)
n−1

2
H1,0

1,1

⎡⎣ r√
p1tα1

∣∣∣∣∣∣
(

1 − (n + 1)α1

4
,
α1

2

)
(0, 1)

⎤⎦ , t → 0. (52)

Finally, we derive a stretched Gaussian behaviour for equation (52). Using equations (A11)
and (A12) we find the asymptotic behaviour

H1,0
1,1

⎡⎣ r√
p1tα1

∣∣∣∣∣∣
(

1 − (n + 1)α1

4
,
α1

2

)
(0, 1)

⎤⎦ ∼ 1√
π (2 − α1)

(
α1r

2
√

p1tα1

) (n+1)α1−2

2(2−α1)

× Exp f

(
r√

p1tα1

)
, (53)

valid for r2 � p1tα1 , where we abbreviate

14
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Figure 5. A comparison between the stretched Gaussian behaviour (55) (dashed black
curves) and the full n-dimensional propagator (19) (coloured solid curves) as function
of time at fixed position r = 4, on the log–log scale. For the one-dimensional case,
n = 1, and the three-dimensional case, n = 3, we set μ = 2 in (19), while for the two-
dimensional case, n = 2, we set μ = 1.999 95, i.e., μ � 2. The other model parameters
are chosen as p1 = 0.9, p2 = 0.1, α1 = 0.3, and α2 = 0.7.

Exp f

(
r√

p1tα1

)
= exp

(
−
(

1 − α1

2

)(α1

2

)α1/(2−α1)
(

r√
p1tα1

)2/(2−α1)
)
.

(54)

In view of relations (53) and (54), we arrive at the short-time behaviour (and/or far from the
origin)

W (n)(r, t) ∼ π−n/2

√
2 − α1

α

(n+1)α1−2

2(2−α1)
1 (4p1tα1 )

− n
2(2−α1) r

− n(1−α1)
2−α1 Exp f

(
r√

p1tα1

)
,

(55)

where r2 � p1tα1 .
In figure 4 we present the spatial evolution of both the full n-dimensional propagator (19)

and the stretched Gaussian behaviour (55) for different n. The propagator (19) can be accu-
rately described by the stretched Gaussian shape in the short-time regime and/or far from the
origin. Furthermore, figure 5 compares the asymptotic behaviour (55) with the n-dimensional
propagator (19) at the fixed position r = 4, showing the agreement with the stretched Gaussian
behaviour.

5. Statistical properties

We now proceed to derive the moments and explore in detail the MSD, skewness and kurtosis of
the PDF W (n)(r, t) in n dimensions. First, we note that the PDF is normalised. The 0th moment
can be calculated by help of equation (13) as
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∫
Rn

W (n)(r, t)dnr = Fn

{
W (n)(r, t)

}
(q = 0, t) = 1, (56)

where Fn

{
f (n)(r, t)

}
(q, t) =

∫
Rn f (n)(r, t) exp(ıq · r)dnr. Therefore, the nonzero even

moments are given through the function [57, 89]

M(2m1, . . . , 2mn) =
∫
Rn

x2m1
1 . . . x2mn

n W (n)(r, t)dnr (57)

=

∫
Rn

e2m1
1 . . . e2mn

n W (n)(r, t)r2mdnr (58)

=

∫
Rn

e2m1
1 . . . e2mn

n W (n)(r, t)r2mrn−1 dr dn−1e, (59)

where mi is a positive integer for all i = 1, 2, . . . , n, m =
∑n

i=1mi, dn−1e is the angular integral
element, e = (e1, . . . , en) is the radial unit vector, and ei = xi/r, i = 1, 2 . . . , n. Then, we can
express the moments in terms of the Mellin transform of the propagator [21],

M(2m1, . . . , 2mn) =

(∫
Rn−1

e2m1
1 . . . e2mn

n dn−1e
)

×
(∫ ∞

0
r2m+n−1W (n)(r, t)dr

)
= Ωn(m1, . . . , mn, n)

(
MW (n)(r, t)

)
(2m + n, t), (60)

where

Ωn(m1, . . . , mn, n) =
∫
Rn−1

e2m1
1 . . . e2mn

n dn−1e

=
2

Γ(m + n/2)

n∏
i=1

Γ

(
mi +

1
2

)
, (61)

and the Mellin transform for any generic function is defined as M{ f (x)}(z) = f̆ (z) =∫∞
0 xz−1 f (x)dx. Returning to the propagator (19) with μ = 2, the Mellin transform of W (n)(r, t)

with respect to r is given as

(
MW (n) (r, t)

)
(z, t) =

1

2π
n
2

(
1

4p1tα1

) n−z
2

∞∑
k=0

(−1)k

k!

(
p2

p1
tα2−α1

)k

× Γ
(

z
2

)
Γ
(
1 − n

2 + z
2

)
Γ
(
k + n

2 − z
2

)
Γ
(

n
2 − z

2

)
Γ
(

1 − nα1
μ

+ (α2 − α1) k + α1z
2

) . (62)

Thus, (
MW (n)(r, t)

)
(2m + n, t) =

1

2π
n
2
Γ
(

m +
n
2

)
Γ (1 + m) (4p1tα1 )m

×
∞∑

k=0

(−m)k

Γ (1 + mα1 + (α2 − α1) k)

(
− p2

p1
tα2−α1

)k

k!
,

(63)
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where (−m)k = Γ(k − m)/Γ(−m). Again, from definition (A14) of the generalised
Mittag–Leffler function, the Mellin transform (63) can be written in the form(

MW (n) (r, t)
)

(2m + n, t) = 22m−1π− n
2 Γ
(

m +
n
2

)
Γ (1 + m) pm

1 tα1m

× E−m
α2−α1,mα1+1

(
− p2

p1
tα2−α1

)
. (64)

By help of this expression we re-express the moment function (60) as

M(2m1, . . . , 2mn) = Cm,n pm
1 tα1mE−m

α2−α1,mα1+1

(
− p2

p1
tα2−α1

)
, (65)

where

Cm,n = 22mπ−n/2Γ(1 + m)
n∏

i=1

Γ

(
mi +

1
2

)
. (66)

The short-time and long-time behaviours of the moment function (65) can then be deduced
from the asymptotic behaviour (A15) of the generalised Mittag–Leffler function (A15),

M(2m1, . . . , 2mn) ∼ Cm,n

⎧⎪⎪⎨⎪⎪⎩
(p1tα1 )m

Γ(1 + mα1)
, t → 0+

(p2tα2 )m

Γ(1 + mα2)
, t →∞

, (67)

namely, an accelerating crossover behaviour, as it should be. If m = 1, the moment function
M(·) provides an accelerating subdiffusive crossover.

We note that while the radial functions W (2)(r, t) and W (3)(r, t) diverge near r = 0, the proper
expressions including the volume elements 2πr and 4πr2 guarantee normalisation, see also
[73, 90]. Note that the non-negativity was demonstrated in section 3.

We first evaluate the qth order moments. The MSD, the skewness and the kurtosis of
any PDF, significant statistical properties of a random variable, are respectively defined for
a generic random variable X as

MSDX (t) =
〈
X2
〉
− 〈X〉2, (68a)

SkewX (t) =

〈(
X − 〈X〉

)3
〉

〈(
X − 〈X〉

)2
〉3/2 , (68b)

KurtX (t) =

〈(
X − 〈X〉

)4
〉

〈(
X − 〈X〉

)2
〉2 . (68c)

In the one-dimensional force-free case, we have that 〈x〉 =
〈

x3
〉
= · · · = 0, thus the MSD

is itself the second moment (B3), i.e.,

MSD1(t) = 2

[
p1tα1

Γ(1 + α1)
+

p2tα2

Γ(1 + α2)

]
, (69)

with the asymptotic behaviours
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MSD1(t) �

⎧⎪⎪⎨⎪⎪⎩
2p1tα1

Γ(1 + α1)
, t → 0+

2p2tα2

Γ(1 + α2)
, t →∞

, (70)

namely, the accelerating subdiffusion crossover built into our model. Moreover, the skewness
of the one-dimensional PDF is zero and the curve is totally symmetric about its mean value
〈x〉 = 0. Finally the kurtosis in the one-dimensional case is given by

Kurt1(t) =

〈
x4
〉

〈x2〉2 =
6
[

p2
1t2α1

Γ(1+2α1) +
2p1 p2tα1+α2

Γ(1+α1+α2) +
p2

2t2α2

Γ(1+2α2)

]
[

p1tα1

Γ(1+α1) +
p2tα2

Γ(1+α2)

]2 . (71)

In the case α1 = α2 = 1, (11) with μ = 2 reduces to the normal diffusion equation and (71)
reduces to the expected result Kurt1 = 3, the kurtosis of the normal ‘Gaussian’ distribution in
one-dimension.

In view of the higher-dimension cases, we understand that the first moment of these distri-
butions is non-zero, thus, there should be a non-zero skewness, refer to figure 4. The MSD, the
skewness and the kurtosis in higher dimensions are given by

MSD (t) =
〈
r2
〉
− r2

0, (72a)

Skew (t) =

〈
r3
〉
− 3r0

〈
r2
〉
+ 2r3

0[
〈r2〉 − r2

0

]3/2 , (72b)

Kurt (t) =

〈
r4
〉
− 4r0

〈
r3
〉
+ 6r2

0

〈
r2
〉
− 3r4

0

〈r2〉2 − 2r2
0 〈r2〉+ r4

0

, (72c)

where r0 = 〈r〉. The MSD of the two-dimensional PDF W (2)(q, t) has the asymptotic
behaviours, see equations (B8) and (B11),

MSD2 (t) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4p1tα1

[
1

Γ(1 + α1)
−

[
Γ
(

3
2

)]4[
Γ
(
1 + α1

2

)]2

]
, t → 0+,

4p2tα2

[
1

Γ(1 + α2)
−

[
Γ
(

3
2

)]4[
Γ
(
1 + α2

2

)]2

]
, t →∞,

(73)

where 0 < 1/Γ(1 + α) −
[
Γ
(

3
2

)]4
/
[
Γ
(
1 + α

2

)]2
< 0.41 for 0 < α < 1. Analogously, the

MSD of the three-dimensional PDF W (3)(q, t) has the asymptotic behaviours, see
equations (B13) and (B16),

MSD3 (t) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2p1tα1

[
3

Γ(1 + α1)
− 2[

Γ
(
1 + α1

2

)]2

]
, t → 0+,

2p2tα2

[
3

Γ(1 + α2)
− 2[

Γ
(
1 + α2

2

)]2

]
, t →∞,

(74)

where 0 < 3/Γ(1 + α) − 2/
[
Γ
(
1 + α

2

)]2
< 1.058 for 0 < α < 1. It is obvious from the

asymptotic behaviours (73) and (74) that the PDFs W (2)(q, t) and W (3)(q, t) preserve an
accelerating subdiffusion crossover like its counterpart in the one-dimensional case, see
equation (70).
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Figure 6. Statistical properties of the PDFs W (n)(q, t), n = 1, 2, 3; (a) MSD (69) and
(72a) on the log–log scale with their asymptotic behaviours (70), (73) and (74);
(b) skewness (72b) for the two- and three-dimensional PDFs with their asymptotic val-
ues and (c) kurtosis for the one-dimension (71) and two- and three-dimension (72c)
with their asymptotic values, all are computed for the fractional parameters α1 = 0.3
and α2 = 0.7. The other model parameters are p1 = 0.5, p2 = 0.5, and μ = 2 for all
panels.

In figure 6 we show the exact forms for the MSD, the skewness, and the kurtosis. To see the
exact crossover behaviours for the MSD, we use log–log scales while single-log scales are used
for the skewness and kurtosis. The asymptotes according to equations (70), (73), and (74) are
also shown for the MSD. It is found that both skewness and kurtosis in general have different
asymptotic values in the short- and long-time regimes. This can be easily demonstrated by
direct substitution from the asymptotic behaviours of the qth order moments in appendix B
into the exact forms (72). Since the skewness of the one-dimensional case is zero, we do not
show it in figure 6(b). As figures 4(b) and (c) showed right-skewed curves, the skewness of the
two- and three-dimensional PDFs are positive. The kurtosis exceeds 3 (Kurtn > 3) in the one-,
two-, and three-dimensional cases.

6. Conclusions

We investigated the propagator governed by the bi-factional diffusion equation of the modified
type, with and without space-fractality, in the n-dimensional case, describing accelerating dif-
fusion crossover. This complements our recent study of the corresponding natural type equation
exhibiting a retarding diffusive crossover [67]. We derived the multidimensional propagator
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as an infinite series of the Fox H-function, which also generalises its counterpart in the
one-dimensional setting [79]. The method of solution was employed in [82] for an aver-
aged generalised fractional elastic model, and developed in [67] for the multidimensional
bi-fractional diffusion equation of the natural type as a generalisation of the Schneider–Wyss
solution [57] and the subordination approach. The space fractality was included here in anal-
ogy to [67], to avoid divergence of the series expansion of the H-function in (19) when n = 2
and μ = 2. The two-dimensional solution of the bi-fractional diffusion equation without space
fractality was obtained through the limit μ→ 2. We proved the non-negativity of the prop-
agator (19) in higher dimensions, an indispensable property to guarantee the probabilistic
interpretation of the process, by invoking two different techniques. Moreover, we derived the
asymptotic behaviours for the propagator (19) in terms of generalised Mittag–Leffler functions
when rμ � 2μp1tα1 , and in terms of a simpler form of the H-function when t → 0. In partic-
ular, we provided a stretched Gaussian shape for the short-time regime r2 � p1tα1 , similar to
the results in [21, 57, 73].

The relevance of the bi-fractional diffusion equation of the modified type stems from the
accelerating crossover behaviour displayed by the associated MSD. We showed that this accel-
erating subdiffusion known from the one-dimensional formulation in [65] is also preserved in
the higher dimensions, and we quantified the dynamic behaviours in terms of the MSD, the
skewness and the kurtosis.

The approach based on the bi-fractional diffusion equations of natural and modified types
can be derived from the CTRW picture in the one-dimensional case [86]. In this formulation
the crossover behaviour is included through the specific choice of the waiting time PDF [86].
An explicit derivation for our higher-dimensional case is part of our ongoing work. We note
that there exist alternative descriptions of crossover dynamics. In particular we mention expo-
nential and power-law tempering of long-range correlations in the driving noise in fractional
Brownian motion and the fractional Langevin equation [96]. Alternative tempering of frac-
tional Brownian motion instead lead to confinement effects [96, 97]. In a CTRW formulation
a crossover from subdiffusion to normal diffusion is realised in subdiffusive CTRWs to which
diffusive noise is superimposed [98], similar to tempering a scale-free waiting time PDF [99].
We finally note the discussion of crossovers in a CTRW model with Prabhakar generalised
Mittag–Leffler waiting times [100, 101].
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Appendix A. Special functions

We here summarise some special functions which are used throughout the paper. The Fox
H-function is defined in terms of the Mellin–Barnes integral [91]

Hm,n
p,q

[
x

∣∣∣∣(a1, A1) , . . . , (ap, Ap)
(b1, B1) , . . . , (bq, Bq)

]
=

1
2πı

∫
Ω

Θ (s) xs ds, (A1)
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where m, n, p, and q are integers satisfying 0 � n � p, 1 � m � q, ai, b j ∈ C, Ai, B j ∈ R+,
i = 1, . . . , p, j = 1, . . . , q, and the function Θ (s) is given by

Θ (s) =

∏m
j=1 Γ(b j − B js)

∏n
j=1 Γ(1 − a j + A js)∏q

j=m+1 Γ(1 − b j + B js)
∏p

j=n+1 Γ(a j − A js)
, (A2)

where Γ(·) is the gamma function. The contour Ω on the right-hand side of equation (A1)
separates the poles ofΓ(bj + B js), j = 1, . . . , m from the poles ofΓ(1 − ai − Ais), i = 1, . . . , n.
If the poles of

∏m
j=1 Γ(b j − B js) are simple, the following series expansion holds true

Hm,n
p,q

[
x

∣∣∣∣(ap, Ap

)(
bq, Bq

)]

=
m∑

h=1

∞∑
ν=0

(−1)νx
bh+ν

Bh

ν!Bh

×
∏m

j=1, j�=h Γ
(

b j − B j
bh+ν

Bh

)∏n
j=1 Γ

(
1 − a j + A j

bh+ν
Bh

)
∏q

j=m+1 Γ
(

1 − b j + B j
bh+ν

Bh

)∏p
j=n+1 Γ

(
a j − A j

bh+ν
Bh

) . (A3)

The Mellin transform of the H-function is defined by∫ ∞

0
xz−1Hm,n

p,q

[
ax

∣∣∣∣(ap, Ap

)(
bq, Bq

)] dx = a−zΘ (−z) , (A4)

where Θ (z) is given by (A2).
Using expansion (A3) one can obtain the special case

H2,1
2,3

⎡⎢⎢⎣z

∣∣∣∣∣∣∣∣
(

1 − k − n
μ

, 1

)
; (a, b)(

0,
μ

2

)
,

(
1 − n

μ
, 1

)
;
(

1 − n
2

,
μ

2

)
⎤⎥⎥⎦

=
2
μ

∞∑
ν=0

⎡⎣ (−1)ν

ν!
z

2ν
μ

Γ
(

1 − n
μ − 2ν

μ

)
Γ
(

k + n
μ + 2ν

μ

)
Γ
(

n
2 + ν

)
Γ
(

a − 2bν
μ

)
⎤⎦

+

∞∑
ν=0

⎡⎣ (−1)ν

ν!
z1− n

μ+ν Γ
(

n
2 − μ

2 (1 + ν)
)
Γ (1 + k + ν)

Γ
(
μ
2 (1 + ν)

)
Γ
(

a − b
(

1 − n
μ
+ ν

))
⎤⎦ .

(A5)

The asymptotic behaviour of the H-function near zero is given to leading order by [91, 92]

Hm,n
p,q

[
z

∣∣∣∣(ap, Ap

)(
bq, Bq

)] � |z|c, |z| → 0, (A6)

where c = min1� j�m{R(b j)/B j}, and provided that ρ > 0, |arg z| < 1
2πρ, and ρ is given by

ρ =

n∑
j=1

A j −
p∑

j=n+1

A j +

m∑
j=1

B j −
q∑

j=m+1

B j. (A7)
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Using the asymptotic behaviour (A6) and the series expansion (A3) of the H-function, we
obtain

H2,1
2,3

⎡⎢⎢⎣z

∣∣∣∣∣∣∣∣
(

1 − k − 1
μ

, 1

)
; (a, b)(

0,
μ

2

)
,

(
1 − 1

μ
, 1

)
;

(
1
2

,
μ

2

)
⎤⎥⎥⎦ ∼ 2

μ

Γ
(

1 − 1
μ

)
Γ
(

k + 1
μ

)
Γ
(

1
2

)
Γ (a)

, |z| → 0,

(A8)

H2,1
2,3

⎡⎢⎢⎣z

∣∣∣∣∣∣∣∣
(

1 − k − 2
μ

, 1

)
; (a, b)(

0,
μ

2

)
,

(
1 − 2

μ
, 1

)
;
(

0,
μ

2

)
⎤⎥⎥⎦

∼ 2
μ

Γ
(

1 − 2
μ

)
Γ
(

k + 2
μ

)
Γ (a)

+
Γ
(
1 − μ

2

)
Γ (1 + k)

Γ
(
μ
2

)
Γ
(

a − b
(

1 − 2
μ

)) z1− 2
μ , |z| → 0,

(A9)

H2,1
2,3

⎡⎢⎢⎣z

∣∣∣∣∣∣∣∣
(

1 − k − 3
μ

, 1

)
; (a, b)(

0,
μ

2

)
,

(
1 − 3

μ
, 1

)
;

(
−1

2
,
μ

2

)
⎤⎥⎥⎦ ∼ Γ

(
3
2 − μ

2

)
Γ (1 + k)

Γ
(
μ
2

)
Γ
(

a − b
(

1 − 3
μ

))z1− 3
μ , |z| → 0.

(A10)

The asymptotic behaviour of the H-function with n = 0 for large values reads [92]

Hm,0
p,q

[
z

∣∣∣∣(ap, Ap

)(
bq, Bq

)] ∼ κzγ/δ exp
[
−δ(εz)1/δ

]
, |z| →∞, (A11)

where

δ =

q∑
j=1

B j −
p∑

j=1

A j, γ =

q∑
j=1

b j −
p∑

j=1

a j +
p− q + 1

2
, ε =

p∏
j=1

A
A j
j

q∏
j=1

B
−B j
j ,

κ = (2π)
q−p−1

2 εγ/δ δ−1/2
p∏

j=1

A
1
2−a j
j

q∏
j=1

B
b j− 1

2
j . (A12)

The following inverse Laplace transform relation is used throughout the paper

L−1 {s−ρ exp (−asσ)
}
= tρ−1H1,0

1,1

[
a
tσ

∣∣∣∣(ρ, σ)
(0, 1)

]
, a, σ > 0. (A13)

The Prabhakar generalisation of Mittag–Leffler function (PML) in series form reads
[93–95]

Eγ
α,β (z) =

∞∑
n=0

(γ)n

Γ(αn + β)
zn

n!
, α, β, γ, z ∈ C, R {α} > 0, (A14)
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where (γ)n is the ascending Pochhammer symbol defined by (γ)0 = 1, (γ)n = γ(γ +
1) . . . (γ + n − 1) = Γ(γ + n)/Γ(γ). The PML function Eγ

α,β (−λtα) is a CMF for t � 0,
where λ is positive constant, 0 < α, β � 1, and 0 < γ � β/α, and it has the asymptotic
representation

Eγ
α,β (−λtα) ∼

⎧⎪⎪⎨⎪⎪⎩
1

Γ (β)
− λγtα

Γ (α+ β)
, t → 0+;

(λtα)−γ

Γ (β − αγ)
, t →∞,

(A15)

where the short-time behaviour is deduced from the series representation (A14) and the long-
time behaviour can be obtained from the series

Eγ
α,β (−z) =

z−γ

Γ(γ)

∞∑
n=0

Γ(n + γ)
Γ [β − α (n + γ)]

(−z)−n

n!
, |z| →∞. (A16)

The Laplace transform of the PML function is given by

L
{

tβ−1Eγ
α,β (−λtα) ; s

}
=

sαγ−β

(sα + λ)γ
. (A17)

The Hankel transform of the PML function is given by∫ ∞

0
xρ−1Jν (ax) Eγ

α,β (−bxσ) dx =
2ρ−1

aρΓ (γ)

× H2,1
2,3

⎡⎣1
b

(a
2

)σ

∣∣∣∣∣∣
(1, 1) ; (β,α)(

ρ+ ν

2
,
σ

2

)
, (γ, 1) ;

(
ρ− ν

2
,
σ

2

)⎤⎦ ,

(A18)

which can be readily derived from the relation between the generalised Mittag–Leffler function
and the Fox H-function, and the Hankel transform of the Fox H-function [91].

When γ = 1 in (A14), the PML function reduces to the generalised Mittag–Leffler function
with two parameters

E1
α,β (z) = Eα,β (z) =

∞∑
n=0

zn

Γ(αn + β)
, α, β, z ∈ C, R {α} > 0. (A19)

Similar relations for the generalised Mittag–Leffler function (A19) can be deduced by set-
ting γ = 1 in equations (A15)–(A18). Lastly, when β = 1 in (A19), we recover the classical
Mittag–Leffler function Eα,1 (z) = Eα (z).

Appendix B. qth order moments

Here we provide the qth order moments for the three PDFs in the one-dimensional, two-
dimensional and three-dimensional cases, respectively.
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B1. 1D PDF

The qth order moments of the PDF W (1)(x, t), in the one-dimensional setting, are determined
through

〈|x|q〉 (t) =
∫ ∞

−∞
|x|qW (1)(|x|, t)dx, (B1)

thereby all odd moments vanish in this case, namely, 〈x〉 =
〈

x3
〉
= · · · = 0. The qth order

moment is given in Laplace space as

〈xq〉 (s) =
1

s
√

p1s−α1 + p2s−α2
M

{
exp

(
− x√

p1s−α1 + p2s−α2

)}
(q + 1),

(B2)

where M{·} is the Mellin transform defined for any generic function f (x), x � 0, by
the integral M{ f (x)}(z) =

∫∞
0 xz−1 f (x)dx. We have that M {exp (−ax)} (z) = a−zΓ(z), for

a > 0, x > 0, [102], therefore

〈xq〉 (s) =
Γ(q + 1)

s

(
p1s−α1 + p2s−α2

)q/2
, q = 2, 4, . . . ,

which implies the second moment (q = 2)

〈
x2
〉

(t) = 2

[
p1tα1

Γ(1 + α1)
+

p2tα2

Γ(1 + α2)

]
, (B3)

and the fourth-order moment (q = 4)

〈
x4
〉

(t) = 24

[
p2

1t2α1

Γ(1 + 2α1)
+

2p1 p2tα1+α2

Γ(1 + α1 + α2)
+

p2
2t2α2

Γ(1 + 2α2)

]
. (B4)

B2. 2D PDF

In the two-dimensional case, the qth order moments are given by

〈rq〉 (t) = 2π
∫ ∞

0
rq+1W (2)(r, t)dr. (B5)

The qth order moment (B5) can be written in the Laplace domain by the aid of equation (44)
as

〈rq〉 (s) =
1

s (p1s−α1 + p2s−α2)
M

{
K0

(
r√

p1s−α1 + p2s−α2

)}
(q + 2). (B6)

We have that, for a, r > 0, M {K0 (ar)} (z) = 2z−2a−z
[
Γ
(

z
2

)]2
, [102], then

〈rq〉 (s) =
2q
[
Γ
( q

2 + 1
)]2

s

(
p1s−α1 + p2s−α2

)q/2
, q = 1, 2, . . . . (B7)

Therefore, for even values of q we have
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〈
r2
〉

(t) = 4

[
p1tα1

Γ(1 + α1)
+

p2tα2

Γ(1 + α2)

]
, (B8)

and the fourth-order moment (q = 4)

〈
r4
〉

(t) = 64

[
p2

1t2α1

Γ(1 + 2α1)
+

2p1 p2tα1+α2

Γ(1 + α1 + α2)
+

p2
2t2α2

Γ(1 + 2α2)

]
, (B9)

while for the odd values of q, we get the form

〈rq〉 (t) = 2q
[
Γ
(q

2
+ 1

)]2
(p1tα1 )q/2E−q/2

α2−α1,α1q/2+1

×
(
− p2

p1
tα2−α1

)
, q = 1, 3, . . . , (B10)

where the relation (A17) has been used. The odd qth order moments, (B10), have the asymptotic
behaviours, refer to (A15),

〈rq〉 (t) � 2q
[
Γ
(q

2
+ 1

)]2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(p1tα1 )

q
2

Γ
(
1 + α1q

2

) , t → 0+;

(p2tα2 )
q
2

Γ
(
1 + α2q

2

) , t →∞.

(B11)

The fact that the 〈r〉 (t) �= 0 in the radial case is sometimes referred to as ‘geometric spurious
drift’ [103] or ‘centrifugal drift’ [104].

B3. 3D PDF

In the three-dimensional case, the qth order moments are given in the Laplace domain by

〈rq〉 (s) =
Γ (q + 2)

s

(
p1s−α1 + p2s−α2

)q/2
, q = 1, 2, . . . . (B12)

When q = 2, we obtain the second moment

〈
r2
〉

(t) = 6

[
p1tα1

Γ(1 + α1)
+

p2tα2

Γ(1 + α2)

]
, (B13)

and when q = 4, we get the fourth-order moment

〈
r4
〉

(t) = 120

[
p2

1t2α1

Γ(1 + 2α1)
+

2p1 p2tα1+α2

Γ(1 + α1 + α2)
+

p2
2t2α2

Γ(1 + 2α2)

]
. (B14)

If q is odd, we have the qth order moment

〈rq〉 (t) = Γ (q + 2) (p1tα1 )q/2E−q/2
α2−α1,α1q/2+1

(
− p2

p1
tα2−α1

)
, q = 1, 3, . . . .

(B15)
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The odd qth order moments 〈rq〉 have the asymptotic behaviours:

〈rq〉 (t) � Γ (q + 2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(p1tα1 )

q
2

Γ
(
1 + α1q

2

) , t → 0+;

(p2tα2 )
q
2

Γ
(
1 + α2q

2

) , t →∞.

(B16)
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