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Abstract
We study the diffusive motion of a test particle in a two-dimensional comb
structure consisting of a main backbone channel with continuously distributed
side branches, in the presence of stochastic Markovian resetting to the initial
position of the particle. We assume that the motion along the infinitely long
branches is biased by a confining potential. The crossover to the steady state
is quantified in terms of a large deviation function, which is derived for the
first time for comb structures in the present paper. We show that the relaxation
region is demarcated by a nonlinear ‘light-cone’ beyond which the system is
evolving in time. We also investigate the first-passage times along the backbone
and calculate the mean first-passage time and optimal resetting rate.
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1. Introduction

Anomalous is more of a rule rather than an exception for diffusively spreading tracer sub-
stances. Indeed, the generality of the statement ‘anomalous is normal’ [1] is found to hold true
time and again whenever we look at transport in complex and heterogeneous systems. While
most fundamental texts [2, 3] introduce us to normal-diffusive transport in which the fluctua-
tions grow linearly in time, 〈x2(t)〉 � t, as indeed fulfiled for the diffusion of tracer particles
in simple liquids or fragrance molecules in still air, reality teaches us in a very wide variety
of cases [4–8] that this linearity is just a special case of the more general situation of anoma-
lous transport, in which the mean squared displacement (MSD) takes on the power-law form
〈x2(t)〉 � tα. Here the anomalous diffusion exponent α defines different diffusive regimes [4,
9]: for 0 < α < 1 we talk about subdiffusion [5, 10], α = 1 corresponds to normal diffusion
[11], and the case α > 1 is referred to as superdiffusion [12–15]. Sometimes for α > 2 the
term hyperdiffusion is used [16–18]. We note that the case α = 1 in heterogeneous media
does not necessarily imply that the process has a Gaussian probability density function (PDF),
instead, for instance, exponential or stretched Gaussian forms may be observed [19, 20]. We
also note that the MSD may also grow exponentially, for a multiplicative noise such as geo-
metric Brownian motion or heterogeneous diffusion processes [21–24], or logarithmically in
strongly disordered environments [25, 26].

A by-now classical model for heterogeneous systems, popularised by Mandelbrot, are frac-
tals, such as the Sierpiński gasket [27–29]. However, such ideal mathematical fractals are
often insufficient to adequately describe real fractals such as networks of rivers, blood vessels,
or nerve fibres, for which random fractals such as percolation clusters are more appropriate
[27–29]. In many cases such structures have a characteristic backbone from which various
branches emerge [28, 29]. A highly effective model addressing transport on such random
loopless structures is a comb, in which infinite branches branch off the central backbone, see
figure 1. The comb model was introduced to understand anomalous transport in percolation
clusters [30–34]. Now, comb-like models are widely employed to describe various experimen-
tal applications. Comb-like structures are particularly important from a biophysical point of
view as they provide a way to address transport along spiny dendrites [35–37], in which the
transport properties crucially depend on the underlying geometry [38]. Similar approaches are
being used in the modelling of river basins with their often very ramified geometry [39, 40]. In
fact, long time retention data of tracers in water catchments reveal scaling exponents consistent
with comb dynamics [41, 42].

Depending on the specific setting the geometry of comb structures effects both subdiffusion
[43–45], including ultraslow diffusion [46], and superdiffusion [17, 47, 48]. The nontrivial
nature of transport along a comb is discernible from the fact that motion along the branches
results in a long-range memory for motion along the backbone which is generically responsible
for the anomalous behaviour of transport [49]. In fact, the comb model can be regarded as the
discrete version of a continuous time random walk, in which the return time distribution from
a side branch to the main backbone effects power-law waiting times with diverging mean [33],
and thus weak ergodicity breaking and ageing effects [50, 51]. Given the wide relevance and
interesting properties of comb-like, loopless structures, these represent very powerful mathe-
matical constructs to address motion in heterogeneous media. We here combine the analysis
of diffusion on a comb with the idea of stochastic resetting.

The concept of stochastic resetting has attracted considerable attention in non-equilibrium
statistical physics [52]. In stochastic resetting a moving particle is reset, i.e. returned to its initial
location at regular or stochastic intervals. This results in a non-equilibrium steady-state even
in cases in which the system under consideration does not relax to a steady-state in absence of
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Figure 1. Two dimensional comb structure. The diffusion along the x direction occurs
only at y = 0 (the backbone). The fingers of the comb (in y direction) play the role of
traps with respect to the motion along the backbone direction, in which the particle can
freely diffuse.

any resets, see, e.g. free Brownian motion in d dimensions [53, 54]. The effect of resetting is
particularly relevant for the first-passage properties of the motion of interest [55–57]. Indeed,
even in generic cases in finite domains the probability density of first-passage times is remark-
ably broad, and the typical first-passage time often orders of magnitude smaller than the mean
first-passage time, the latter being sampled by relatively extreme events [58, 59]. In nature, on
the scale of molecular regulation in biological cells this defocusing is prevented by designed
short distances between interacting genes [60, 61] or by cutting off long first-passage times
via inactivation of the respective regulatory molecules [62]. Another example comes from the
search of larger animals for food, in which resetting to locations of previous search success
is a typical element of the search process, see [63] and references therein. Indeed, stochastic
resetting is a powerful way to reduce the first-passage times [52, 64]. In this sense stochastic
resetting can ‘tame the violent’ fluctuations in first-passage times thereby reducing the mean
time to reach a threshold in a nontrivial manner [65]. Notably stochastic resetting leads to
universal fluctuations of first-passage times [66].

Stochastic resetting can be phrased as a renewal [67, 68] or a non-renewal [69] pro-
cess. Moreover, stochastic resetting dynamics was studied for motion in bounded domains
[70, 71], as well as in monotonic [23, 72, 73] and non-monotonic potentials with constant
[74, 75] and position-dependent diffusion [76], and under time-dependent resetting [77]. Effi-
cient escape under resetting was investigated [78], and it was shown that interesting phase
transitions occur in the parameter space for the optimal resetting rate [63, 70, 79–81]. A
dynamical phase transition was revealed in relaxation to the non-equilibrium steady-state [82].
Recently the concept of resetting by random amplitudes has been put forward [83]. Further
aspects revealed in stochastic resetting are collected in a recent review [84].

The dynamics effected by combining the comb model for the description of diffusion in
loopless heterogeneous structures with stochastic resetting was studied recently [85], unveiling
various transport properties. The 3D comb considered in [85] was based on branches of infinite
length. However, in any real system the branches are expected to have a finite size, and the
mean time 〈t〉 a particle spends in a branch is finite. Of course, when the resetting rate r in a
combined process is high, such that 〈t〉 � 1/r, the finite size of the branches can be neglected.
Here we study the case of a general resetting rate in infinite branches, in which a potential
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directed towards the backbone ensures finite mean residence times in the branches. We set
up the general equation of motion for a two-dimensional comb with a backbone along the x-
axis and branches extending orthogonally in y-direction in section 2 and study the crossover
to the non-equilibrium steady state in section 3. The process is characterised in terms of the
particle PDF and the MSD. Concretely, we find that the transport along the backbone crosses
over from short-term anomalous diffusion along the backbone, due to the residence of the
particle in the branches, to normal diffusion at time scales beyond the mean residence time
in the branches. We show that resetting further tames the spread along the backbone, and the
system is found to eventually relax to a steady-state governed by the geometry and resetting
rates. We also address the relaxation to the steady-state by analysing the associated dynamical
phase transition. In section 4 we then consider the first-passage dynamics in terms of the first-
passage time density (FPTD), the mean first-passage time and the statistic of zero-crossings
which depend on higher order correlations [86]. This provides a mean to study the effects
of confinement along the branches and see how resetting affects the underlying escapes. We
draw our conclusions in section 5. In appendix A we develop an alternative viewpoint in terms
of a coupled Langevin equation approach with subordination, while in appendix B we give
additional explanation of the confinement along the branches of the comb.

2. Resetting dynamics in a potential

We consider a comb structure, whose backbone is described by the x-axis and whose branches
extend along the y-axis. For a test particle performing Brownian motion in this two-dimensional
comb structure with a potential V = V(y) along the branches, the Fokker–Planck equation
describing the dynamics of the PDF pr(x, y, t) under a constant resetting rate r reads (see
references [85, 87] for the case without potential)

∂

∂t
pr(x, y, t) = Dxδ(y)

∂2

∂x2
pr(x, y, t) +

(
∂

∂y
V ′(y) + Dy

∂2

∂y2

)
pr(x, y, t)

− rpr(x, y, t) + rδ(x − x0)δ(y), (1)

where pr(x, y, t = 0) = δ(x − x0)δ(y), and we choose the potential function to be piecewise
linear,

V(y) =

{−U0y, for y � 0,

U0y, for y � 0.
(2)

We note that this effective Fokker-Planck description assumes a continuous distribution of
comb branches. The advantage of using a confining potential of the form (2) is in the exact treat-
ment of the considered problem. One may, of course, consider a potential of the generalized
power law form U(x) = U0|x|a, where a > 0. For a = 1 we then have the case we consider,
while the case a = 2 corresponds to a harmonic potential. If there exists a confinement along
the branches, no matter how weak, we are certain that the particle will be effectively moving
along x-axis. The mean return time to the backbone, however, will depend on the degree of
confinement, that is, the value of the parameter a, but it will be finite, in contrast to the case
a = 0 for which it will diverge. Furthermore, different values for the parameter a will modify
the exact quantitative behaviour, like going from a Laplace distribution for steady-state profile
along the branches for a = 1 to a Gaussian for a = 2, etc. The effect of the degree of con-
finement governed by the parameter a is an interesting study in its own right, but as far as the
present problem is concerned, choosing a value of a > 0 other than unity will not change the
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essential physics of the considered effective motion along the backbone. As we can study the
system by exact analytical calculations we consider the specific case a = 1.

Here we assume that the particle is reset to its initial position (x0, 0) at a constant reset-
ting rate r. Each resetting event to the initial position x0 renews the process at a rate r, i.e.
between two consecutive renewal events the particle undergoes diffusion on the comb in the
non-monotonic potential (2) along the branches. The last two terms on the right-hand side of
equation (1) represent the loss of probability from the position (x, y) due to the reset to the
initial position (x0, 0), and the probability gain at (x0, 0) due to resetting from all other posi-
tions, respectively. The term δ(y) implies that the diffusion along the x-direction is allowed
only at y = 0 (the backbone). In this sense the branches have the role of traps, as explained in
the original paper by Weiss and Havlin [33].

Applying a Laplace transform, L { f (t)} =
∫∞

0 f (t)e−st dt = f̃ (s) with respect to time t to
the dynamic equation (1) we obtain

sp̃r(x, y, s) − δ(x − x0)δ(y) = Dxδ(y)
∂2

∂x2
p̃r(x, y, s) +

(
U0 sign(y)

∂

∂y
+ 2U0δ(y) + Dy

∂2

∂y2

)

× p̃r(x, y, s) − rp̃r(x, y, s) +
r
s
δ(x − x0)δ(y), (3)

with pr(x, y, t = 0) = δ(x − x0)δ(y). Reflecting the symmetry of the system, equation (3) is
symmetric with respect to y-inversion, y →−y. Thus, after substitution z = |y| we find the
following system of equations

(s + r) p̃r(x, z, s) = U0
∂

∂z
p̃r(x, z, s) + Dy

∂2

∂z2
p̃r(x, z, s), (4)

−s−1(s + r)δ(x − x0) =

(
Dx

∂2

∂x2
+ 2U0 + 2Dy

∂

∂z

)
p̃r(x, z, s)|z=0. (5)

From equations (4) and (5) we find the solution in the form

p̃r(x, y, s) = g̃r(x, s) × exp

(
− U0

2Dy

[
1 +Δs+r

]
z

)
, (6)

where Δs+r =
√

1 + 4Dy(s + r)/U2
0. Therefore, for the marginal PDF along the backbone we

have

p̃r,1(x, s) =
∫ ∞

−∞
p̃r(x, y, s)dy = 2

∫ ∞

0
p̃r(x, z, s)dz =

4Dy

U0

g̃r(x, s)
1 +Δs+r

. (7)

From equations (5)–(7) we then obtain

sp̃r,1(x, s) − δ(x − x0) =
Dx

4Dy
U0s × 1 +Δs+r

s + r
∂2

∂x2
p̃r,1(x, s), (8)

and by the inverse Laplace transform we obtain the generalised diffusion equation [88]

∂

∂t
pr,1(x, t) =

Dx

2
√

Dy

∂

∂t

∫ t

0
η(t − t′)

∂2

∂x2
pr,1(x, t′)dt′ (9)
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with the memory kernel η(t), which is determined by the inverse Laplace transform6

η̃(s) =
1

s + r

[
U0

2
√

Dy
+

(
s + r +

U2
0

4
Dy

)1/2
]
. (10)

In time domain this memory kernel reads

η(t) =
U0

2
√

Dy
e−rt + e−rt

⎛
⎝exp

(
− U2

0
4Dy

t
)

√
πt

+
U0

2
√

Dy
erf

(
U0

2
√

Dy

√
t

)⎞⎠ , (11)

where erf(z) = 2√
π

∫ z
0 e−y2

dy is the error function. Fourier–Laplace transforming equation (9)
we find

p̃r,1(k, s) =
1

sη(s)
1

η(s) +
Dx

2
√

Dy
k2

, (12)

which by inverse Fourier transform yields

p̃r,1(x, s) =
1
2s

√
2
√

Dy

Dx η̃(s)
× exp

⎛
⎝−

√
2
√

Dy

Dx η̃(s)
|x − x0|

⎞
⎠ . (13)

More explicitly, after substituting for the memory kernel,

p̃r,1(x, s) =
1
2

√
2
√

Dy

Dx

s−1(s + r)1/2√(
s + r +

U2
0

4Dy

)1/2
+ U0

2
√

Dy

× exp

⎛
⎜⎜⎝−

√
2
√

Dy

Dx

(s + r)1/2|x − x0|√(
s + r +

U2
0

4Dy

)1/2
+ U0

2
√

Dy

⎞
⎟⎟⎠ . (14)

According to the final value theorem of the Laplace transformation, in the long time limit
(s → 0) the stationary distribution reads

pr,1,st(x) = lim
t→∞

pr,1(x, t) = lim
s→0

sp̃r,1(x, s)

=

r1/2

2

√
2
√

Dy

Dx√(
r +

U2
0

4Dy

)1/2
+ U0

2
√

Dy

× exp

⎛
⎜⎜⎝−

√
2
√

Dy

Dx

r1/2 |x − x0|√(
r +

U2
0

4Dy

)1/2
+ U0

2
√

Dy

⎞
⎟⎟⎠ . (15)

6 An alternative consideration based on a subordination approach is presented in appendix A.
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For the unconfined case U0 = 0, we recover from equation (14) the result for the PDF along
the backbone in the case of diffusion in a comb with stochastic resetting in absence of the
potential [85, 87],

p̃r,1(x, s) =
s−1(s + r)1/4

2

√
2
√

Dy

Dx
× exp

⎛
⎝−

√
2
√

Dy

Dx
(s + r)1/4|x − x0|

⎞
⎠ , (16)

and the corresponding stationary distribution

pr,1,st(x) =
1
2

√
2
√

Dy

Dx
r1/4 × exp

⎛
⎝−

√
2
√

Dy

Dx
r1/4|x − x0|

⎞
⎠ . (17)

Note that in absence of resetting, the system does not reach stationarity, as can be seen from
equation (14) by setting r = 0. In that case we have

p̃0,1(x, s) =
1
2

√
2
√

Dy

Dx

s−1/2√(
s +

U2
0

4Dy

)1/2
+ U0

2
√

Dy

exp

⎛
⎜⎜⎝−

√
2
√

Dy

Dx

s1/2|x − x0|√(
s +

U2
0

4Dy

)1/2
+ U0

2
√

Dy

⎞
⎟⎟⎠

�
s→0

1
2

√
2Dy

DxU0
s−1/2 × exp

(
−
√

2Dy

DxU0
s1/2 |x − x0|

)
, (18)

from where, by inverse Laplace transform we obtain the Gaussian PDF [9]

p0,1(x, t) =
1√

4πD1t
× exp

(
− (x − x0)2

4D1t

)
, (19)

where D1 = DxU0
2Dy

is the diffusion coefficient. It will be shown later that the MSD in the long
time limit corresponds to normal diffusion in absence of resetting. A graphical representation
of the PDF and the transition to the steady state is shown in figure 2. From figure 2(a) we
observe the cusp at the initial point (and the point to which the particle is reset) x0 = 0, since
the resetting mechanism introduces a source of probability at x0 = 0. At this point the first
derivative is discontinuous. In figure 2(b) we see that at t = 1

r = 10 the stationary distribution
(15) is almost reached.

From equation (12) we derive the MSD via the relation 〈x2(t)〉= L−1{
−∂2 p̃r,1(k, s)/∂k2

}∣∣
k=0

[88], to find

〈x2(t)〉 = 2

(
Dx

2
√

Dy

)
L−1 {s−1η̃(s)

}
=

Dx

2Dy
U0

1 − e−rt

r
− Dx

2Dy
U0

e−rt

r
erf

(
U0

2
√

Dy

√
t

)

+
Dx

2Dy
U0

Δr

r
erf

(
U0

2
√

Dy
Δr

√
t

)
, (20)

where Δr =
√

1 + 4Dyr/U2
0.

Let us consider two relevant limiting cases. In absence of confinement, U0 = 0, the
MSD reads

〈x2(t)〉 = Dx√
Dy

erf
(√

rt
)

√
r

, (21)
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Figure 2. PDF (14) as function of x for (a) time t = 1 and resetting rates r = 0.1 (blue
solid line), r = 1 (red dashed line), r = 5 (black dot-dashed line); (b) r = 0.1 and t = 0.1
(blue solid line), t = 1 (red dashed line), t = 5 (black dot-dashed line), t = 10 (violet
dot-dot-dashed line), which approaches the stationary distribution (15) (solid thin grey
line). We set Dx = 1, Dy = 1 and U0 = 1.

as it should be for diffusion in a comb with stochastic resetting in absence of a potential
[85, 87]. Conversely, in the absence of resetting (r = 0) the MSD (20) turns to

〈x2(t)〉 = Dx

2Dy
U0

[
t +

2
√

Dy

U0

t1/2

Γ(1/2)
exp

(
− U2

0

4Dy
t

)
+

(
t +

2Dy

U2
0

)
erf

(
U0

2
√

Dy

√
t

)]
,

(22)

where Γ(z) =
∫∞

0 yz−1 e−y dy is the gamma function. In the long time limit the MSD behaves
as 〈x2(t)〉 �t, also confirmed by the Gaussian PDF (19). This means that due to the confining
potential along the branches the particle returns back to the backbone more frequently, resulting
in effective normal diffusion along the x-axis. In this sense the confining potential is an integral
part of the resetting mechanism. It is known that the stochastic resetting of a particle from the
branch to the backbone also leads to normal diffusion along the x-axis [85]. An additional
explanation of the confinement along the branches and resulting normal diffusion along the
backbone is given in appendix B.

From the final result (20) for the MSD we observe a saturation in the long time limit,

〈x2(t)〉 � Dx

2Dy
U0

1 +Δr

r
, (23)

which occurs due to the resetting of the particle, while in the short time limit, we observe the
subdiffusive behaviour

〈x2(t)〉 ∼ 2
Dx√

Dy

t1/2

Γ(1/2)
, (24)

typical for free diffusion in a comb, since both resetting and potential do not affect the parti-
cle dynamics at short times. A graphical representation of the MSD is shown in figure 3. In
figure 3(a) we observe the crossover from subdiffusion,�t1/2, to the saturation plateau effected
by resetting, for different values of the potential energy U0. Figure 3(b) shows the behaviour
of the MSD for fixed potential strength, U0 = 1, and different values of the resetting rate r. For
r = 0 normal diffusion is observed in the long time limit (blue solid line), which occurs due to
the confining potential in the fingers.
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Figure 3. MSD (20) as function of time t for (a) resetting rate r = 1 and potential
strength U0 = 0 (blue solid line), U0 = 1 (red dashed line), U0 = 5 (black dot-dashed
line), U0 = 10 (violet dot-dot-dashed line); (b) for U0 = 1 and r = 0 (blue solid line),
r = 0.1 (red dashed line), r = 0.5 (black dot-dashed line), r = 1 (violet dot-dot-dashed
line). We set Dx = 1 and Dy = 1.

We finally write down the Fokker–Planck equation for the marginal PDF along the branches,
pr,2(y, t) =

∫∞
−∞pr(x, y, t) dx, in the form

∂

∂t
pr,2(y, t) =

(
∂

∂y
V ′(y) + Dy

∂2

∂y2

)
pr,2(y, t) − r pr,2(y, t) + rδ(y), (25)

which is the diffusion equation with resetting in presence of the confining potential. This
equation was investigated in reference [75] in detail, where it was shown that the particle along
branches in the long time limit reaches the stationary PDF

pr,2,st(y) =
r

U0 (Δr − 1)
exp

(
− U0

2Dy
[1 +Δr] |y|

)
, (26)

and the MSD saturates to 〈y2(t)〉 = 8Dy

U2
0

1
(1+Δr)2 .

3. Crossover to the steady state

We now analyse the crossover dynamics to the steady state. We rewrite the PDF (14) as follows

p̃r,1(x, s) =
1
2

√
2
√

Dy

Dx

s−1(s + r)
(

s + r +
U2

0
4Dy

− U2
0

4Dy

)−1/2

√(
s + r +

U2
0

4Dy

)1/2
+ U0

2
√

Dy

× exp

⎛
⎝−

√
2
√

Dy

Dx

[(
s + r +

U2
0

4Dy

)1/2

− U0

2
√

Dy

]1/2

|x − x0|

⎞
⎠

≡ p̃0,1(x, s + r + U2
0/[4Dy]) + s−1rp̃0,1(x, s + r + U2

0/[4Dy]), (27)

9
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where we split the fraction s−1(s + r). Here we note that r is just a parameter appearing on the
rhs of equation (27). Performing the inverse Laplace transform, we obtain

pr,1(x, t) = exp

(
−
[

r +
U2

0

4Dy

]
t

)
p0,1(x, t) +

∫ t

0
r exp

(
−
[

r +
U2

0

4Dy

]
t′
)

p0,1(x, t′)dt′, (28)

from where it is clear that r is a parameter modifying the Laplace variable s. Here, p0,1(x, t) is
given by

p0,1(x, t) =
1
2

√
2
√

Dy

Dx
L−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

(
−
√

2
√

Dy

Dx

(
s1/2 − U0

2
√

Dy

)1/2

|x − x0|
)

(
s − U2

0
4Dy

)1/2
(

s1/2 + U0
2
√

Dy

)1/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (29)

This Laplace inversion of p0,1(x, t) for arbitrary U0 = 0 is not straightforward. However when
U0 = 0, this procedure is feasible. Therefore, for the clarity of the analysis we first consider
this simplified case in absence of confinement in the branches. Then considering the simplified
asymptotic form of the PDF p0,1(x, t) we will be able to compare with the difference in the
presence of confinement, U0 = 0.

3.1. The case confinement-free branches (U0 = 0)

In absence of the potential (U0 = 0), the result of the Laplace inversion in equation (29) is
exact and expressed in the form

p0,1(x, t) =
1
2

√
2
√

Dy

Dx
L−1

⎧⎨
⎩s−3/4 exp

⎛
⎝−

√
2
√

Dy

Dx
s1/4|x − x0|

⎞
⎠
⎫⎬
⎭

=
1
2

√
2
√

Dy

Dx
t−1/4H1,0

1,1

⎡
⎣
√

2
√

Dy

Dx

|x − x0|
t1/4

∣∣∣∣∣∣ (3/4, 1/4)

(0, 1)

⎤
⎦ , (30)

where Hm,n
p,q (z) is the Fox H-function [89]. Here we used the identity

e−z = H1,0
0,1

[
z

∣∣∣∣ −
(0, 1)

]
(31)

and the inverse Laplace transform

L−1

{
s−ρHm,n

p,q

[
a sσ
∣∣∣∣(ap, Ap)
(bq, Bq)

]}
= tρ−1Hm,n

p+1,q

[
a
tσ

∣∣∣∣(ap, Ap), (ρ, σ)
(bq, Bq)

]
. (32)

This density form can be employed to evaluate the distribution pr,1(x, t) in the presence of
resetting,

pr,1(x, t) = e−rt p0,1(x, t) +
∫ t

0
dt′r e−rt′ p0,1(x, t′), (33)

where the first term is given by equation (30) multiplied by e−rt.

10
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For further analysis it is convenient to use the asymptotic form for large argument of the
Fox H-function in equation (30). We find the non-Gaussian form [90]

p0,1(x, t) ∼ exp

(
− 3

28/3

[
a|x − x0|

t1/4

]4/3
)
. (34)

Substituting this expression into the integral in the renewal equation (33) and focussing on the
long time limit we have

∫ t

0
e−rt′ p0,1(x, t′)dt′ ≈

∫ 1

0
dτ exp

(
−tΦ(τ , |x − x0|/t)

)
, (35)

where

Φ(τ , |x − x0|/t) = rτ +
3a4/3

28/3

(
|x − x0|

t

)4/3

τ−1/3 a =

√
2
√

Dy

Dx
. (36)

We evaluate the integral in the Laplace approximation [91], which requires evaluation of the
minimum of Φ, defined as 0 = d

dτΦ|τ=τ0 , such that τ0 = 1
4r3/4

a|x−x0|
t . Physically, this corre-

sponds to the relaxation behaviour of pr,1(x; t) with the saddle point τ 0 determining the spatial
region in which relaxation has been achieved, at time t. Outside the region the system is still
in a transient state, and corresponds to the saddle point lying outside the unit interval. Thus, in
the transient space–time region, the maximal contribution to the integral comes from the end
point at τ = 1. Therefore, within this Laplace approximation, the large deviation form for the
PDF pr,1(x, t) can be written as follows

pr,1(x, t) ∼ exp

(
−t Ir

(
|x − x0|

t

))
, (37)

where the large deviation function is

Ir

(
|x − x0|

t

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ar1/4 |x − x0|
t

, for |x − x0| <
4r3/4

a
t,

r +
3a4/3

28/3

(
|x − x0|

t

)4/3

, for |x − x0| >
4r3/4

a
t.

(38)

From the form of the large deviation function (38) it is evident that there occurs a qualitative
change in the density profile pr,1(x, t) at a space–time point defined by τ 0 < 1. This demarcates
a ‘light-cone’ region within which relaxation has been achieved and outside it the system is
still relaxing. This relaxation behaviour is, however, slower than the case of a Brownian motion
relaxing to its nonequilibrium steady state under resetting [82]. The reason for this difference
is that unlike Brownian motion on a line, a random walk on a two dimensional comb is subdif-
fusive (U0 = 0). And hence, even though resetting is the common mechanism responsible for
bringing about relaxation in both cases, the rate of relaxation, which is governed primarily by
systemic details, is significantly different. Here we note that even though the stationary distri-
bution in case of a diffusion in combs with resetting has been analysed before [85], this is the
first time to explicitly find the corresponding large deviation function.

11
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Figure 4. Logarithm of the PDF scaled by time, (1/t)log pr,1(x, t), vs x/t for (a) r = 1/4,
(b) r = 1/2, (c) r = 1, and (d) r = 2. The data are obtained by numerical inverse Laplace
transform of the PDF (27) in Mathematica for U0 = 0. The inset in the figures shows
a blow-up for small values of argument |x|/t. The black dotted line and the black solid
lines indicate the two forms for the large deviation function Ir , see equation (38).

In order to verify our analytical estimates of the large deviation approximation of pr(x, t), we
numerically invert the Laplace transform p̃r(x, s) for different values of the resetting rate r as
presented in figure 4. It is evident from the graphs that the numerical estimates very nicely
corroborate our analytical results.

3.2. Presence of confinement in the branches (U0 > 0)

In the presence of the confining potential, U0 > 0, one cannot perform an analytical Laplace
inversion of the PDF (27). We therefore resort to numerical Laplace inversion of expression
(27), as shown in figure 5.

In order to understand the result in figure 5 let us compare equations (28) and (33), which
respectively are renewal equations for motion under resetting on a comb with and without
confining branches. A careful inspection of the two equations makes it immediately evident
that the confinement U0 tends to modify the resetting rate r, except for the common prefactor
of the integrals in (28) and (33). This is because both resetting and confinement have the effect
of bringing the particle towards the backbone with one minor difference. Whereas resetting is
instantaneous and takes the particle from anywhere on the comb to its initial location, the effect
of confinement is non-instantaneous. The Brownian particle spends some time in its excursion
along the branches before returning to the backbone. Furthermore, the location of return along
the backbone due to confinement is not necessarily its initial location. Notwithstanding these
slight differences, we see in figure 5 that the scaling function rendering the collapse of pr,1(x, t)
at different times exhibits a behaviour similar to case of nonconfining branches.
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Figure 5. Logarithm of the PDF scaled by time, (1/t) log pr,1(x, t), vs x/t, for r = 1
and U0 = 1. The black solid line and the black dotted line are drawn following a scaling
form similar to the large deviation function in (38). It is to be noted, however, that these
are numerically obtained results via analogy from the case U0 = 0, see text.

4. First-passage times along the backbone

We now turn to consider the first-time passage statistic along the backbone, by placing an
absorbing boundary at x = L > 0, i.e. p1(L, t) = 0. Without loss of generality we choose
x0 < L. The equation of motion for the density function p1(x, t) in Laplace space along the
backbone in absence of resetting follows from equation (8),

sp̃1(x, s) − δ(x − x0) =
U0Dx

4Dy
(1 +Δs)

∂2 p̃1

∂x2
, (39)

to be augmented with the boundary condition p1(L, t) = 0. We rephrase this expression as

∂2 p̃1

∂x2
− Asp̃1 = −Aδ(x − x0), (40)

where A = 4Dy/[U0Dx(1 +Δs)]. Now, the auxiliary equation for the case x = x0 for the above
differential equation is 0 = m2 − As, implying m = ±

√
As. We thus obtain

p̃1(x, s) =

⎧⎪⎨
⎪⎩

b+ exp
(√

Asx
)
+ b− exp

(
−
√

Asx
)

, for x < x0,

c+ exp
(√

Asx
)
+ c− exp

(
−
√

Asx
)

, for x > x0.
(41)

Since −∞ < x � L the requirement for physically meaningful solutions in the region x < x0

is b− = 0. Continuity of the solution at x = x0 and discontinuity of the derivative owing to the
probability source at x = x0 provide us with two relations between the parameters b+ and c±,

c+ exp
(√

Asx0

)
+ c− exp

(
−
√

Asx0

)
− b+ exp

(√
Asx0

)
= 0,

c+ exp
(√

Asx0

)
− c− exp

(
−
√

Asx0

)
− b+ exp

(√
Asx0

)
= −

√
A/s. (42)
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In order to determine the value of these constants in terms of the system parameters we need one
more relation, provided by the absorbing boundary condition at x = L > x0, i.e. p̃1(L, s) = 0.
Along with the previous two relations, this constraint fixes the parameters uniquely, and we
obtain the density

p̃1(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

√
A
s

sinh
[√

As(L − x0)
]

exp
(√

As(x − L)
)

, for x < x0,√
A
s

sinh
[√

As(L − x)
]

exp
(√

As(x0 − L)
)

, for x > x0.

(43)

Note that in the presence of the absorbing boundary the quantity p1(x, t) is no longer a PDF, as
the cumulative (survival) probability becomes a decaying function of time. We then are in the
position to derive the FPTD

℘1(t) = − d
dt

∫ L

−∞
p1(x, t)dx, (44)

where the integral on the right-hand side represents the survival probability. In Laplace domain,

℘̃1(s) = −
∫ L

−∞
[sp̃1(x, s) − δ(x − x0)] dx = − 1

A
∂ p̃1

∂x

∣∣∣∣
x=L

= exp

(
(x0 − L)

√
4Dys

U0Dx(1 +Δs)

)
, (45)

where Δs =
√

1 +
4sDy

U2
0

. After Laplace inversion, the first-passage time reads

℘1(t) = L−1

{
exp

(
−
√

4Dys(Δs − 1)

U0Dx(Δ2
s − 1)

(L − x0)

)}

= L−1

{
exp

(
−
√

U0(Δs − 1)
Dx

(L − x0)

)}

= L−1

⎧⎨
⎩exp

⎛
⎝−

√
2
√

Dy

Dx

[(
s +

U2
0

4Dy

)1/2

− U0

2
√

Dy

]1/2

(L − x0)

⎞
⎠
⎫⎬
⎭ . (46)

For the long time limit, we find

℘1(t) ∼
t→∞

L−1

{
exp

(
−
√

2Dy

DxU0
(L − x0)s1/2

)}∣∣∣∣∣
s→0

∼ L−1

{
1 −
√

2Dy

DxU0
(L − x0)s1/2

}
. (47)

Therefore,

s−1℘̃1(s) ∼
s→0

s−1 −
√

2Dy

DxU0
(L − x0)s−1/2, (48)
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Figure 6. FPTD (46) as function of time t for Dx = 1, Dy = 1, U0 = 1, L = 10 and
x0 = −1 (blue solid line), x0 = 0 (red dashed line), x0 = 1 (black dot-dashed line) and
x0 = 2 (violet dot-dot-dashed line) (a) linear–linear plot, (b) log–log plot.

from where, by inverse Laplace transform, it follows that∫ t

0
℘1(t′)dt′ ∼ 1 −

√
2Dy

DxU0
(L − x0)

t−1/2

Γ(1/2)
→ ℘1(t) ∼

t→∞

√
Dy

2DxU0
(L − x0)

t−3/2

Γ(1/2)
. (49)

A graphical representation of the FPTD is given in figure 6. It is evident that in the long time
limit the FPTD indeed behaves as ℘1(t) � t−3/2.

The mean first-passage time for normal diffusion on a semi-infinite line is infinite [55]. The
same divergence will therefore occur in our comb structure for the motion along the semi-
infinite domain on the backbone in absence of resetting. In that case we either have a crossover
from subdiffusion to normal diffusion when the diffusion in the branches is confined (U0 > 0),
or continuing subdiffusion when there is no confinement, see also [52, 92]. Once we switch
on the resetting dynamics, however, we expect the mean first-passage time to be finite. Using
the results of [66] we find that expression (46) for the FPTD in absence of resetting helps us
evaluate the mean first-passage time when resetting occurs,

〈Tr(x0)〉 = 1
r

[
exp

(
(L − x0)

√
U0

Dx
(Δr − 1)

)
− 1

]
, (50)

where Δr =
√

1 +
4rDy

U2
0

. The divergence of the mean first-passage time in absence of resetting

from this expression is obvious when we take the limit r → 0 (Δr → 1). We also note the
rapid growth of the mean first-passage time when the particle is rapidly reset (r →∞, i.e.
Δr →∞) to its initial location. In such a case the particle has an increasingly smaller chance
to ever reach the absorbing boundary before the next reset. According to expression (50) the
divergence of 〈Tr(x0)〉 corresponds to a pole of the form 1/r whereas the divergence for large
r is exponential. This means that there exists an optimal resetting rate at which the mean first-
passage time is minimal. The non-monotonic behaviour of the mean first-passage time with
the resetting rate is shown in figure 7 where we plot 〈Tr(x0)〉 as function of Δr for different
(normalised) resetting locations z = x0/L. The present result is expected on physical grounds
but the explicit expression allows a concrete interpretation in terms of the involved system
parameters. The presence of confined branches results in an effective diffusive motion along
the backbone. In particular, the mean first-passage time under stochastic resetting for diffusive
motion, which was explored in reference [52], also shows non-monotonic behaviour with the
resetting rate.
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Figure 7. (a) Non-monotonic dependence of the mean first-passage time (51) on the
resetting rate r and (b) zero-crossings of f (z, x) = 0, equation (52). The vertical dashed
line in panel (b) indicates Δr = 1, signifying the fact that as the (normalised) reset-
ting location z = x0/L approaches large negative values the optimal resetting rate r0
approaches zero. We set τ0 = 2Dy/U2

0 = 1 and μ = U0L/(Dx/L) = 1.

Apart from these immediate conclusions it is interesting to look at the behaviour of the mean
first-passage time 〈Tr(x0)〉 as a function of the resetting rate r in more detail. To this end
we introduce two dimensionless quantities, τ0 = 2Dy/U2

0 and μ = U0L/(Dx/L) representing,
respectively, a dimensionless time-scale and the ratio of the energy barrier to diffusion strength.
Now, without any loss of generality we can choose the dimensionless time-scale as unity, i.e.
τ 0 = 1. In addition, as the orientations of the confining potential and the backbone are orthog-
onal to each other, we are at liberty to independently choose the values of U0 and Dx . For
simplicity we therefore choose μ = 1, without limiting generality. Then the mean first-passage
time simplifies to

〈Tr(z)〉 = 2

Δ2
r − 1

[
exp
(

(1 − z)
√
Δr − 1

)
− 1
]

, (51)

where now Δr =
√

1 + 2r. It is evident from this expression that the mean first-passage time
to the absorbing wall in the presence of resetting exists for every z � 1 with 〈Tr(1)〉 = 0. The
latter result is obvious, as the initial position coincides with the absorbing boundary. From
expression (51) we can calculate the optimal resetting rate r0, at which the mean first-passage
time is minimal, d

dr 〈Tr(x0)〉|r=r0 = 0, resulting in the transcendental equation

f (z) ≡ 4Δr0

(Δr0 + 1)
√
Δr0 − 1

[
1 − exp

(
−(1 − z)

√
Δr0 − 1

)]
− (1 − z) = 0, (52)

which uniquely fixes Δr0 for a given value of z. Numerical analysis of this relation between the
optimal Δr0 and function f (z) for the corresponding resetting position z as shown in figure 7
demonstrates that the optimal resetting rate r0 approaches zero as the reset location z takes
large negative values. In other words, the optimal resetting rate exhibits a vanishing transition
given that the mean first-passage time in absence of resetting is infinite.

A few words concerning the effect of μ = U0L
Dx/L on the mean first-passage time are in order.

U0 is the strength of confinement along the branches and controls the mean return time towards
the origin in absence of resetting. In addition, U0 also controls the rate of relaxation of the
marginal PDF along the branches to the steady state (26), see reference [75]. Specifically, we
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note that a higher value of U0, leads to a quicker relaxation to the steady state along branches.
If the particle relaxes to a steady profile along the orthogonal branches quickly, it will take
longer to move along the main branch. Hence, a higher value of U0 results in a longer mean
time to reach an absorbing wall along the backbone.

5. Conclusions

Stochastic resetting is a phenomenon with almost ubiquitous relevance in a large range of
systems, from diffusion controlled regulation in molecular biological processes to the search of
higher animals for food. We here combined stochastic resetting with the well established comb
structure, a widely used model for loopless heterogeneous structures, with applications ranging
from biologically relevant cases such as nerve fibres or blood vessels to aquifer backbones in
groundwater dispersion. In our two-dimensional comb model we applied a confining potential
of strength U0, mimicking a finite length of the comb’s branches such that the mean residence
time in these branches is kept finite. On top of the diffusivities Dx and Dy along the comb’s
backbone and the branches, respectively, our system is therefore described by two additional
relevant parameters, the confinement strength U0 and the resetting rate r.

While an initially subdiffusive motion crosses over to diffusion along the backbone in the
absence of resetting, in presence of resetting it approaches a nonequilibrium steady state in
the long time limit. We characterize this crossover in terms of the plateau which emerges for
MSD along the backbone. The interested reader can also refer to appendix B for an alternative
viewpoint on normal diffusion along the backbone (in absence of resetting), following from the
finite length of excursion along the branches. Depending on the choice of parameters, an inter-
mediate effective normal diffusion regime may be observed. The PDF in the non-equilibrium
steady state was shown to be of stretched exponential shape. We analysed the crossover dynam-
ics to the steady state based on the large deviation function (38) using the asymptotic Laplace
approximation method. This result also shows that the space–time region is now demarcated
by a light-cone within which the system has relaxed to its nonequilibrium steady state, similar
to the case of Brownian motion on a line. Outside this light-cone region, however, the rate of
relaxation is slower in comparison to that of Brownian motion under resetting. This is because
in the present geometry the particle tends to spend a finite amount of time along the branches
rendering the relaxation, which is governed by the systemic details, to be achieved at a slower
pace.

We also investigated the first-passage dynamics along the backbone. In particular we inves-
tigated the first-passage behaviour as function of the resetting rate and the amplitude of the
confining potential. We calculated the mean first-passage time and the optimal resetting rate at
which the mean first-passage time is minimal.
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Appendix A. Coupled Langevin equation approach and subordination

From equation (12) we find that the backbone’s marginal PDF satisfies

p̃1(k, s) =
1

sη̃(s)
1

η̃(s) +Dk2
, (A.1)

where D = Dx
2
√

Dy
. Alternatively, in integral form,

p̃1(k, s) =
1

sη̃(s)

∫ ∞

0
exp
(
−u(1/η̃(s) +Dk2)

)
du

=

∫ ∞

0
e−uDk2

h̃(u, s)du, (A.2)

where

h̃(u, s) =
1

sη̃(s)
e−u/η̃(s). (A.3)

From inverse Fourier–Laplace transform we find [88]

p1(x, t) =
∫ ∞

0

exp(−x2/[4Du])√
4πDu

h(u, t) du. (A.4)

The function h(u, t) is called the subordinator7 which re-expresses the random process governed
by the generalised diffusion equation (9) in physical time t to the Wiener process with Gaussian
PDF f (x, u) = (4πDu)−1/2 exp

(
−x2/[4Du]

)
, in terms of the operational time u.

This result can in fact be obtained from CTRW theory by considering the stochastic
equations [93]

⎧⎪⎨
⎪⎩

d
du

x(u) = ξ(u),

d
du

T(u) = ζ(u),
(A.5)

where ξ(u) is a white Gaussian noise with zero mean and autocorrelation 〈ξ(u)ξ(u′)〉 = 2δ(u −
u′) while ζ(u) is a completely one-sided Lévy stable noise. This means that the random walk
x(t) is parametrised in terms of the ‘number of steps’ u. The inverse process S(t) of the Lévy
process T(u) with characteristic function 〈exp(−sT(u))〉 = exp(−Ψ(s)u) represents a collec-
tion of first-passage times, S(t) = inf{u > 0 : T(u) > t} [93]. Then the CTRW can be defined

7 Note that h(u, t) is normalised since

∫ ∞

0
h(u, t)du = L −1

{∫ ∞

0
h̃(u, s)du

}
= L −1

{∫ ∞

0

e−u/η̃(s)

sη̃(s)
du

}
= L −1

{
1
s

}
= 1.
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by the subordinated process X(t) = x(S(t)). The PDF h(u, t) of the inverse process S(t) can be
found from the relation [93]

h(u, t) = − ∂

∂u
〈Θ(t − T(u))〉, (A.6)

where Θ(z) is the Heaviside step function. Laplace transform then yields

h̃(u, s) = − ∂

∂u
1
s

〈∫ ∞

0
δ(t − T(u))e−st dt

〉

= − ∂

∂u
1
s
〈e−sT(u)〉 = − ∂

∂u
1
s

e−Ψ(s)u =
Ψ(s)

s
e−Ψ(s)u. (A.7)

Therefore,

p1(x, t) = 〈δ(x − X(t))〉 = 〈δ (x − X(S(t))〉 =
∫ ∞

0
f (x, u)h(u, t)dt, (A.8)

from where one can easily arrive at the generalised diffusion equation (9), when Ψ̃(s) = 1/η̃(s),
where η̃(s) is given by equation (10). The corresponding CTRW model represents a random
process with Gaussian jump length PDF and waiting time PDF in the Laplace domain of the
form ψ̃(s) = (1 + 1/η̃(s))−1 ∼ 1 − 1/η̃(s).

Appendix B. Confinement along the branches

As a result of confinement along the branches, the particle tends to exhibit a normal diffu-
sive transport along the backbone at longer times. Furthermore the potential along the y-axis
branches results in a steady-state

p0,2,st(y) � exp

(
−U0

Dy
|y|
)
. (B.1)

If we look at distribution of the maxima of excursions along the y-branch, then

P(Mn � y) = P(Y1 � y, . . . , Yn � y) = [P(Y � y)]n ∼ exp

(
−
[

nU0

D

]
y

)
, (B.2)

which implies that the maximal excursions along the confining branches are exponentially
distributed. In other words, the confinement effectively confined diffusion in branch regions of
finite length [31].
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