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Abstract: Classical option pricing schemes assume that the value of a financial asset follows a
geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM
trajectory is not an adequate representation for asset dynamics, due to irregularities found when
comparing its properties with empirical distributions. As a solution, we investigate a generalisation of
GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic
process. We find the general expressions for the moments, log-moments, and the expectation of
the periodic log returns, and then obtain the corresponding probability density functions using the
subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix
of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order
to examine the empirical performance of a selected group of kernels in the pricing of European call
options. Our results indicate that the performance of a kernel ultimately depends on the maturity of
the option and its moneyness.

Keywords: geometric Brownian motion; Fokker–Planck equation; Black–Scholes model;
option pricing

1. Introduction

Geometric Brownian motion (GBM) frequently features in mathematical modelling.
The advantage of modelling through this process lies in its universality, as it represents an attractor
of more complex models that exhibit non-ergodic dynamics [1–3]. As such, GBM has been used to
underlie the dynamics of a diverse set of natural phenomena, including the distribution of incomes,
body weights, rainfall, fragment sizes in rock crushing processes, etc. [4,5]. Nevertheless, perhaps the
best-known application of GBM is in finance, and, in particular, in terms of the Black–Scholes (BS)
model (or Black–Scholes–Merton model) [6–8] for the pricing of European options.

By construction, GBM is a simple continuous-time stochastic process in which the logarithm of
the randomly varying quantity of interest follows a Brownian motion with drift. Its non-ergodicity is
manifested in the difference between the growth rate that was observed in an individual trajectory and
the ensemble average growth [9]. The time-averaged growth rate is dependent on both the drift and
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randomness in the system, whereas the ensemble growth rate is solely dependent on the drift. If only
a single system is to be modelled, in the long run only the time-averaged growth rate is observed. This
is naturally the case in financial market dynamics, for which only single time series exist, and where
individual realisations would be expected to be distinctly disparate [10].

Moreover, GBM is closely related to the problem of heterogeneous diffusion and turbulent
diffusion, which are represented by the inhomogeneous advection–diffusion equation with
position-dependent diffusion coefficient D(x) and velocity field v(x). It is well known that, at a
turbulent diffusion, the contaminant spreads very fast. For the case of Richardson diffusion,
the position-dependent diffusion coefficient behaves as D(x) ∼ x4/3 and the relative mean squared
displacement (MSD) scales as 〈x2(t)〉 ∼ t3 [11]. However, the fast spread of contaminants can
be essentially increased due to multiplicative noise, such that the MSD grows exponentially with
time [12,13].

Notably, in a variety of cases, GBM has failed to reproduce the properties of real asset prices. For
instance, by definition, GBM is not able to adequately reproduce fat-tailed distributions of various
characteristics observed in reality [14]. As a solution, several alternating theories have been proposed,
among which are: stochastic volatility [15–17]; local volatility [18,19]; time-varying volatility [20,21],
models utilising stochastic processes in which the noise follows a fat-tailed distribution [22–27]; and,
generalisations of GBM based on subdiffusion [28–30]. In the first approach, the volatility is a stochastic
process itself. In local volatility models, asset prices follow a stochastic differential equation whose
diffusion coefficient is a function of the price. The time-varying volatility models assume that the
latent volatility is predictable with respect to the information set. In contrast to stochastic volatility,
in these models the conditional variance is a deterministic function of the model parameters and
past data. Utilising stochastic processes in which the noise follows a fat-tailed distribution intuitively
leads to the desired result. However, it has been acknowledged that several models that are described
as a fat-tailed process can, in truth, be derived from stochastic and local volatility models [31–34].
The last, i.e., the subdiffusive approach, differently from the other views, assumes anomalous price
dynamics. Concretely, the observation that the distribution of log returns is fat-tailed can be attributed
to prolonged periods, in which the price of the asset exhibits approximately constant extreme values.
These constant periods can be considered to be trapping of particles, as is done in physical systems that
manifest anomalous diffusion (subdiffusion) [35,36]. While the resulting subdiffusive GBM (sGBM) is
able to easily reproduce real-life properties, the literature lacks an extensive study in which the exact
empirical characteristics of the subdiffusive model are presented.

The purpose of this paper is to propose a unifying framework for the application of subdiffusive
GBM models in option pricing. We do this by providing a thorough investigation on the properties of
the so-called generalised GBM (gGBM) [37]. gGBM is a stochastic process whose behaviour is critically
determined by a memory kernel. By choosing the appropriate kernel, we recover the standard GBM
and the typically used subdiffusive GBM models [28–30]. In order to understand the behaviour of
gGBM under various kernels, we perform a detailed analysis of the moments, log-moments, and the
expectation of the periodic log returns, and obtain the corresponding probability density functions by
using the subordination approach. We show that the dynamics of the model can be easily adjusted in
order to mimic periods of constant prices and/or fat-tailed observations of returns, thus corresponding
to realistic scenarios. More importantly, it is known that gGBM leads to risk-neutral asset price
dynamics, and, thus, it is adequate for their modelling [37]. We utilise this property of the model to
investigate its capability to predict empirical option values. We find that the performance of a kernel
ultimately depends on the parameters of the option, such as its maturity and moneyness. The first
property describes the time that is left for the option to be exercised, whereas the second characteristic
depicts the relative position of the current price with respect to the strike price of the option. At first
sight, this conclusion appears intuitive—obviously the known information for the properties of the
asset greatly impacts its price. However, the observation that a slight change in the known information
may drastically change the dynamics suggests that there is a need in the option pricing literature for
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models that easily allow for such structural changes. We believe that the resolution to this issue lies in
applying the concepts of time-averaging and ergodicity breaking to modelling financial time-series,
and the gGBM framework offers a computationally inexpensive and efficiently tractable solution.

The paper is organised as follows. In Section 2, we provide an overview of GBM in the BS
model and its use in option pricing. We also give detailed results for the so-called sGBM in terms of
the fractional Fokker–Planck equation and its corresponding continuous time random walk (CTRW)
model. In Section 3, we present gGBM and describe its properties using the subordination approach. In
particular, we derive the corresponding Fokker–Planck equation with a memory kernel and obtain the
respective moments and log-moments. The general function that is used in the Lévy exponent occurs
as a memory kernel in the Fokker–Planck equation, which allows for us to recover the previously
known results for GBM and sGBM. We consider generalisations of GBM and sGBM by introducing
tempered sGBM, a mix of GBM and sGBM, as well as a mix of sGBMs. A numerical investigation of
the properties of the model is given in Section 4 and an empirical example of application of the gGBM
in option pricing is presented in Section 5. Section 6 summarises our findings. In the Appendices,
we give detailed calculations as well as derivation of the Fokker–Planck equation for the gGBM within
the CTRW theory.

2. Background

2.1. Standard GBM

GBM has been applied in a variety of scientific fields [1,3,9,38–40]. Mathematically, it is
represented by the Langevin equation

dx(t) = x(t) [µ dt + σ dB(t)] , x0 = x(0), (1)

where x(t) is the particle position, µ is the drift, σ > 0 is the volatility, and B(t) represents a standard
Brownian motion. The solution to Equation (1), in the Itô sense, is

x(t) = x0 e(µ−
σ2
2 )t+σB(t), x0 = x(0) > 0. (2)

When the dynamics of the asset price follows a GBM, then a risk-neutral distribution (probability
distribution that takes into account the risk of future price fluctuations) can be easily found by solving
the corresponding Fokker–Planck equation to Equation (1),

∂

∂t
f (x, t) = −µ

∂

∂x
x f (x, t) +

σ2

2
∂2

∂x2 x2 f (x, t), (3)

with initial condition f (x, t = 0) = δ(x − x0). The solution of Equation (3) is the famed
log-normal distribution

f (x, t) =
1

x
√

2πσ2t
× exp

(
− [log x− log x0 − µ̄ t]2

2σ2t

)
. (4)

where µ̄ = µ− σ2/2. We point out that this representation corresponds to the Itô interpretation of the
multiplicative noise. There are also Stratonovich and Klimontovich–Hänggi interpretations, for which
the corresponding Fokker–Planck equations are slightly different, see Refs. [12,41]. In finance math
literature, the Itô convention is the standard interpretation.

From the solution, it follows that the mean value and mean squared displacement (MSD) have
exponential dependence on time,

〈x(t)〉 = x0 eµ t, (5)
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and

〈x2(t)〉 = x2
0 e(σ

2+2 µ)t, (6)

respectively. Thus, the variance becomes

〈x2(t)〉 − 〈x(t)〉2 = x2
0 e2µt

(
eσ2t − 1

)
. (7)

The exact derivation of the GBM distribution and its moments is given in Appendix A. In the same
way, one calculates the third and fourth moments, which are given by

〈x3(t)〉 = x3
0 e(3σ2+3µ)t, (8)

〈x4(t)〉 = x4
0 e(6σ2+4µ)t, (9)

respectively. The third and fourth moments are used to estimate the skewness g, and, respectively,
excess kurtosis κ of the probability distribution of a random variable y,

g =
〈(y− 〈y〉)3〉

(〈y2〉 − 〈y〉2)3/2
, (10)

κ =
〈(y− 〈y〉)4〉
(〈y2〉 − 〈y〉2)2

− 3. (11)

The skewness is a measure of the asymmetry of the probability distribution of a real-valued random
variable around its first moment, whereas the excess kurtosis evaluates the “tailedness” of the
probability distribution. From these relations for the random variable x, one finds the skewness
and excess kurtosis in the form

g =
√

eσ2t − 1
(

eσ2t + 2
)

, (12)

κ = e4σ2t + 2e3σ2t + 3e2σ2t − 6. (13)

Evidently, in GBM, the diffusion coefficient scales proportionally with the square of the position of
the particle, i.e., D(x) = σ2x2/2, and, thus, the MSD has an exponential dependence on time. A more
convenient measure instead of the MSD for geometric processes is the behaviour of the expectation
of the logarithm of x(t), which, in asset pricing terms, represents the continuously compounded
return of the asset. In the case of GBM, the expectation of the logarithm of the particle position has
a linear dependence on time. This can be shown by calculation of the log-moments 〈logn x(t)〉 =∫ ∞

0 logn x P(x, t) dx, see Appendix A, Equation (A7). The mean value of the logarithm of x(t) becomes

〈log x(t)〉 = 〈log x0〉+ µ̄ t, (14)

from where for the expectation of the periodic log return with period ∆t, one finds

1
∆t
〈log (x(t + ∆t)/x(t))〉 ∼

∆t→0
µ̄ =

d
dt
〈log x(t)〉. (15)
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The second log-moment is given by

〈log2 x(t)〉 = 〈log2 x0〉+
{

2µ̄〈log x0〉+ σ2
}

t + µ̄2t2, (16)

which for the log-variance yields

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2t. (17)

From Equations (A7), (14), and (16), we find the third and fourth log-moments,

〈log3 x(t)〉 = 〈log3 x0〉+ 3
{

µ̄〈log2 x0〉+ σ2〈log x0〉
}

t + 3µ̄
{

µ̄〈log x0〉+ σ2
}

t2 + µ̄3t3, (18)

〈log4 x(t)〉 = 〈log4 x0〉+ 2
{

2µ̄〈log3 x0〉+ 3σ2〈log2 x0〉
}

t

+ 3
{

2µ̄
(

µ̄〈log2 x0〉+ 2σ2〈log x0〉
)
+ σ4

}
t2 + 4µ̄2

{
µ̄〈log x0〉+ 3σ2/2

}
t3 + µ̄4t4, (19)

respectively. The logarithm of the process in GBM has both skewness and excess kurtosis of 0, which
can be shown by using y→ log x in Equations (10) and (11), and the previous results for the first four
log-moments. This implies that there is no asymmetry and excess “tailedness” in GBM. However, real
world return distributions are known to exhibit both positive asymmetry (g > 0) and fat-tailedness,
i.e., positive excess kurtosis (κ > 0).

2.2. Black–Scholes Formula

As previously said, perhaps the best-known application of GBM is in finance and, in particular,
the BS model for pricing of European options. Formally, a European option is a contract that gives
the buyer (the owner or holder of the option) the right, but not the obligation, to buy, or sell an
underlying asset or instrument x(T) at a specified strike price K on a specified date T. The seller has
the corresponding obligation to fulfil the transaction—to sell or buy—if the buyer (owner) “exercises”
the option. An option that conveys to the owner the right to buy at a specific price is referred to as
a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put.
Here, we are going to consider the valuation of call options, denoted as C(x, t), with the note that the
derived results easily extend to put options.

In the modelling of financial assets, a standard assumption is that there is a risk-neutral
distribution f (x, t) for the price of the asset. This measure is simply a probability distribution that
takes into account the risk of future price fluctuations. Once a risk-neutral distribution is assigned,
the value of the option is obtained by discounting the expectation of its value at the maturity T with
respect to that distribution [6,42], i.e.,

C(x, t) = e−r(T−t)
∫ ∞

K
(x(T)− K) f (x, T, |x0, 0)dx, (20)

where r is the risk-free rate of return and x0 is the asset price at the beginning (t = 0). Notice that the
integral is only calculated for the region of prices where the option has positive value, since, for asset
price less than K, the option would not be exercised (i.e. its value is 0).

Assuming that the asset price follows GBM dynamics, Equations (20) and (4) can be combined in
order to derive an analytical formula for the value of the call option in the BS model. In particular, the
European option CBS(x, t) (20) is a solution of the Black–Scholes equation, see, for example, [43],(

∂

∂t
+

σ2x2

2
∂2

∂x2 − r + r x
∂

∂x

)
CBS(x, t) = 0, (21)



Entropy 2020, 22, 1432 6 of 34

with initial condition CBS(x, T) = max{x− K, 0}, x ≥ 0, and boundary conditions CBS(x = 0, t) = 0,
t ≥ T, and CBS(x → ∞, t)→ x. By using t = 0 and T → t, one finds the equation

∂

∂t
CBS(x, t) =

(
σ2x2

2
∂2

∂x2 − r + r x
∂

∂x

)
CBS(x, t). (22)

with initial condition CBS(x, t = 0) = max{x− K, 0}, x ≥ 0, and boundary conditions CBS(x = 0, t) =
0, t ≥ 0, and C(x → ∞, t)→ x.

The solution is

CBS(x0, T, K, t) = N(d1)x(t)− N(d2)Ke−(µ−
σ2
2 )(T−t) (23)

d1 =
1

σ
√

T − t

[
log

x(t)
K

+ µ(T − t)
]

(24)

d2 = d1 − σ
√

T − t, (25)

where N(x) = 1√
2π

∫ x
−∞ e−u2/2 du is the cumulative distribution function of the Gaussian distribution

with zero mean and unit variance. Put simply, the two terms in the BS formula describe the current
price of the asset weighted by the probability that the investor will exercise its option at time t and the
discounted price of the strike price weighted by its exercise probability. The terms d1,2 can be seen as
measures of the moneyness of the option and N(d1,2) as probabilities that the option will expire, while
its value is in the money. The neat BS formulation has allowed for the model to be widely applied
in both theoretical investigations and empirical implementations. However, the BS model has failed
to adequately reproduce a plethora of real world properties. In particular, theoretically predicted
option prices with fixed values for drift µ and volatility σ via the BS model are known to significantly
deviate from their respective market values in a plethora of cases. In order to deal with this problem,
extensions of the BS model have emerged, which include a combination of the GBM with jumps [8,44]
or with stochastic volatility [15,16].

2.3. Subdiffusive GBM

One of the reasons why the standard GBM is not able to explain empirical data is because it
fails to reproduce periods of constant prices that appear on markets with low number of transactions.
The price in these constant periods can be described as a trapped particle, which, in physical systems,
manifests anomalous diffusion (subdiffusion) [35,36]. To deal with this problem, the so-called
subdiffusive GBM (sGBM) has been developed by Magdziarz [28], by using the subordination
approach. The corresponding equation for the sGBM becomes the following fractional Fokker–Planck
equation [28] (see also [29])

∂

∂t
fα(x, t) = RLD1−α

t

[
−µ

∂

∂x
x fα(x, t) +

σ2

2
∂2

∂x2 x2 fα(x, t)
]

, (26)

where

RLDν
t f (t) =

1
Γ(1− ν)

d
dt

∫ t

0
(t− t′)−ν f (t′) dt′ (27)

is the Riemann–Liouville fractional derivative of order 0 < ν < 1 [45]. The Laplace transform
of the Riemann–Liouville fractional derivative of a given function reads L {RLDν

t f (t)} (s) =

sνL { f (t)} (s)− RL I1−ν
t f (0+), where RL Iν

t f (t) = 1
Γ(ν)

∫ t
0 (t− t′)ν−1 f (t′) dt′ is the Riemann–Liouville
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fractional integral. In order to avoid the somewhat unusual fractional initial condition, alternatively,
we could alternatively use the integral version of the equation [46]

fα(x, t)− fα(x, 0) = RLD−α
t

[
−µ

∂

∂x
x fα(x, t) +

σ2

2
∂2

∂x2 x2 fα(x, t)
]

, (28)

where L
{

RLD−α
t f (t)

}
(s) = s−αL { f (t)}(s). In Ref. [29], the time fractional Fokker–Planck

Equation (26) for sGBM is derived within the CTRW theory for a particle on a geometric lattice
in the presence of a logarithmic potential.

Here we note that the fractional Fokker–Planck Equation (26) can be obtained using the Langevin
equation approach [47], i.e., by considering a CTRW model that was described by a coupled Langevin
equations [48],

d
du

x(u) = µ x(u) + σ x(u) ξ(u), (29)

d
du
T (u) = ζ(u). (30)

Therefore, x(t) is parametrised in terms of the number of steps u, and the connection to the physical
time t is given by T (u) =

∫ u
0 τ(u′) du, where τ(u) is a total of individual waiting times τ for each

step. In mathematical terms, this is called subordination [49–51]. The noise ξ(u) is a white noise
with zero mean and correlation 〈ξ(u)ξ(u′)〉 = 2δ(u− u′), while ζ(u) is one-sided α-stable Lévy noise
with the stable index 0 < α < 1. The inverse process S(t) of the one-sided α-stable Levy process
T (u) with a characteristic function 〈e−sT (u)〉 = e−sαu is given by S(t) = inf {u > 0 : T (u) > t}, i.e., it
represents a collection of first passage times [47]. The CTRW is defined by the subordinated process
X (t) = x(S(t)).

The PDF h(u, t) of the inverse process S(t) can be found from the relation [47]

h(u, t) = − ∂

∂u
Θ (t− T (u)) , (31)

where Θ(z) is the Heaviside theta function. The Laplace transform then yields

ĥ(u, s) = − ∂

∂u
1
s

〈∫ ∞

0
δ (t− T (u)) e−st dt

〉
= − ∂

∂u
1
s
〈e−sT (u)〉 = − ∂

∂u
1
s

e−sαu = sα−1e−sαu. (32)

Hence, fα(x, t) = 〈δ(x−X (t))〉 = 〈δ(x− X(S(t))〉 =
∫ ∞

0 f (x, u) h(u, t) dt, from where one can easily
arrive to the fractional Fokker–Planck Equation (26).

The mean value for sGBM is given by [29,48]

〈x(t)〉 = x0 Eα (µtα) , (33)

where Eα(z) is the one parameter Mittag–Leffler (ML) function [35,45]

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, (34)

with (z ∈ C;<(α) > 0), and Γ(·) is the Gamma function. The ML function is a generalisation of the
exponential function, since E1(z) = ez. The Laplace transform of the one parameter ML function reads
L {Eα(atα)} (s) = sα−1

sα−a . The asymptotic behaviour of the mean is given by

〈x(t)〉 ∼ x0

{
1 + µtα/Γ(1 + α) ∼ eµtα/Γ(1+α), t� 1,

α−1eµ1/αt, t� 1.
(35)
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For the short time limit, we use the first two terms from the series expansion of the ML function (34),
while, for the long time limit, we apply its asymptotic expansion formula Eα(z) ∼ 1

α ez1/α
, z � 1

[45,52]. Here, we note that the asymptotic behaviour of the ML function with negative argument has a
power-law form, i.e., Eα(−zα) ∼ z−α

Γ(1−α)
for z� 1 and 0 < α < 2 [45,52].

The MSD also is given through the one parameter ML function [29,48]

〈x2(t)〉 = x2
0 Eα

(
(σ2 + 2µ)tα

)
∼ 〈x2(0)〉

{
1 + (σ2 + 2µ)tα/Γ(1 + α) ∼ e(σ

2+2µ)tα/Γ(1+α), t� 1,

α−1e(σ
2+2µ)1/αt, t� 1.

(36)

From here, one concludes that sGBM is an exponentially fast process. Moreover, the third and fourth
moments, respectively, become

〈x3(t)〉 = x3
0 Eα

(
(3σ2 + 3µ)tα

)
, (37)

〈x4(t)〉 = x4
0 Eα

(
(6σ2 + 4µ)tα

)
. (38)

The first log-moment has the form [29]

〈log x(t)〉 = 〈log x0〉+ µ̄
∫ t

0

t′α−1

Γ(α)
dt′ = 〈log x0〉+ µ̄

tα

Γ(1 + α)
, (39)

which gives a power-law dependence with respect to time of the expectation of the log return with
period ∆t, i.e., [29]

1
∆t
〈log (x(t + ∆t)/x(t))〉 ∼

∆t→0
µ̄

tα−1

Γ(α)
. (40)

Such models have been used, for example, to explain the dynamics of an asset before a market
crash [53]. The second log-moment becomes [29]

〈log2 x(t)〉 = 〈log2 x0〉+
[
2µ̄〈log x0〉+ σ2

] tα

Γ(1 + α)
+ 2µ̄2 t2α

Γ(1 + 2α)
. (41)

from where, for the log-variance, one finds [29]

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2 tα

Γ(1 + α)
+ µ̄2

[
2

Γ(1 + 2α)
− 1

Γ2(1 + α)

]
t2α, (42)

which, in the long time, scales as t2α (0 < α < 1), contrary to the linear scaling t for regular GBM
(α = 1). For the third and fourth log-moments, we obtain

〈log3 x(t)〉 = 〈log3 x0〉+ 3
{

µ̄〈log2 x0〉+ σ2〈log x0〉
} tα

Γ(α + 1)

+ 6µ̄
{

µ̄〈log x0〉+ σ2
} t2α

Γ(2α + 1)
+ 6µ̄3 t3α

Γ(3α + 1)
, (43)



Entropy 2020, 22, 1432 9 of 34

〈log4 x(t)〉 = 〈log4 x0〉+ 2
{

2µ̄〈log3 x0〉+ 3σ2〈log2 x0〉
} tα

Γ(α + 1)

+ 6
{

2µ̄
(

µ̄〈log2 x0〉+ 2σ2〈log x0〉
)
+ σ4

} t2α

Γ(2α + 1)

+ 24µ̄2
{

µ̄〈log x0〉+ 3σ2/2
} t3α

Γ(3α + 1)
+ 24µ̄4 t4α

Γ(4α + 1)
. (44)

3. Generalised GBM

In this section, we consider a generalisation of GBM, under which the standard and subdiffusive
GBM arise as special cases, by using the subordination approach. Here, we present analytical
expressions for the first four moments and log-moments of the process for a variety of special cases.
They are thoroughly analysed in the numerical experiments section.

The continuous time random walk approach to the corresponding Fokker–Planck equation is
given in Appendix B in detail. The same Fokker–Planck equation can be obtained using the coupled
Langevin equations approach [47], as given in Equations (29) and (30), where the waiting times are
given by 〈e−sT (u)〉 = e−uΨ̂(s), with Ψ̂(s) = 1/η̂(s).

3.1. Subordination Approach

The generalisation of GBM that we consider is the model introduced by Magdziarz and Gajda [37]
in the form of a stochastic process

X (t) = x (S(t)) , (45)

where X (t) is the generalised GBM (gGBM), S(t) = inf {u > 0 : T (u) > t} is the operational time, and
T (u) is an infinite divisible process, i.e., a strictly increasing Lévy motion with [37]

〈e−sT (u)〉 = e−uΨ̂(s),

and Ψ̂(s) is the Lévy exponent [28,37,39]. Here we consider Ψ̂(s) = 1/η̂(s). The current process should
not be confused with the generalised grey Brownian motion, see Ref. [54–56].

Next we find the PDF of gGBM which subordinates the processes from the time scale t (physical
time) to the GBM on a time scale u (operational time). Specifically, the PDF P(x, t) of a given random
process X (t) can be represented as [28,46,57–59]

P(x, t) =
∫ ∞

0
f (x, u)h(u, t) du, (46)

where f (x, u) satisfies the Fokker–Planck Equation (3) for the standard GBM. The function h(u, t)
is the PDF subordinating the random process X (t) to the standard GBM. In Laplace space,
Equation (46) reads

P̂(x, s) = L {P(x, t)} =
∫ ∞

0
e−stP(x, t) dt =

∫ ∞

0
f (x, u)ĥ(u, s) du, (47)

where ĥ(u, s) = L {h(u, t)}. By considering

ĥ(u, s) =
Ψ̂(s)

s
e−uΨ̂(s) =

1
sη̂(s)

e−
u

η̂(s) , (48)
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we then have

P̂(x, s) =
1

sη̂(s)

∫ ∞

0
f (x, u)e−

u
η̂(s) du =

1
sη̂(s)

f̂
(

x,
1

η̂(s)

)
. (49)

By Laplace transform of the Fokker–Planck Equation (3) for the GBM, and using relation (49), one
finds that the PDF P(x, s) satisfies

sP̂(x, s)− P(x, 0) = s η̂(s)
[
−µ

∂

∂x
xP̂(x, s) +

σ2

2
∂2

∂x2 x2P̂(x, s)
]

. (50)

After applying an inverse Laplace transform, we arrive at the generalised Fokker–Planck equation (see
Refs. [37,48], where one-sided α-stable waiting times are considered in detail)

∂

∂t
P(x, t) =

∂

∂t

∫ t

0
η(t− t′)

[
−µ

∂

∂x
xP(x, t′) +

σ2

2
∂2

∂x2 x2P(x, t′)
]

dt′, (51)

where η(t) is a so-called memory kernel. One observes that, for η(t) = 1, we arrive at the
Fokker–Planck Equation (3) for the GBM, and for η(t) = tα−1

Γ(α) at the time fractional Fokker–Planck
Equation (26) for the sGBM. From Equations (47) and (48), we find for the PDF in the Laplace domain,
see also Ref. [48],

P̂(x, s) =
∫ ∞

0

1

x
√

2πσ2u
× exp

(
−
[

log x− log x0 − µ̄u
]2

2σ2u

)
1

sη̂(s)
e−

u
η̂(s) du

=
1/[sη̂(s)]

x
√

µ̄2 + 2σ2/η̂(s)


exp

(
− log x−log x0

σ2

[√
µ̄2 + 2σ2/η̂(s)− µ̄

])
, x > x0,

1, x = x0,

exp
(

log x−log x0
σ2

[√
µ̄2 + 2σ2/η̂(s) + µ̄

])
, x < x0,

(52)

Remark 1. Here, we note that there are restrictions on the choice of the memory kernel η(t) since the PDF (46)
should be non-negative. From the subordination integral it follows that the subordination function h(u, t) should
be non-negative, which, according to the Bernstein theorem, means that its Laplace transform (48) should be a
completely monotone function [60]. Therefore, the PDF (46) will be non-negative if 1/[sη̂(s)] is a completely
monotone function, and 1/η̂(s) is a Bernstein function, see Refs. [61,62].

Remark 2. We note that Equation (50) can be written in an equivalent form as

∫ t

0
γ(t− t′)

∂

∂t′
P(x, t′) dt′ = −µ

∂

∂x
xP(x, t) +

σ2

2
∂2

∂x2 x2P(x, t), (53)

where the memory kernel γ(t) is connected to η(t) in Laplace space as γ(s) = 1/[sη(s)], see Ref. [61].
From this relation, we find that for GBM (η(t) = 1, i.e., η̂(s) = 1/s) the memory kernel γ(t) is given by
γ(t) = L −1 {s−1η̂−1(s)

}
= L −1 {1} = δ(t). For sGBM (η(t) = tα−1/Γ(α), i.e., η̂(s) = s−α) the

memory kernel becomes γ(t) = L −1 {sα−1} = t−α/Γ(1− α), and, thus, Equation (53) reads

CDα
t P(x, t) = −µ

∂

∂x
xP(x, t) +

σ2

2
∂2

∂x2 x2P(x, t), (54)

where

CDν
t f (t) =

1
Γ(1− ν)

∫ t

0
(t− t′)−ν d

dt′
f (t′) dt′ (55)
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is the Caputo fractional derivative of order 0 < ν < 1 [45]. The Laplace transform of the Caputo derivative of a
given function reads L {CDν

t f (t)} (s) = sνL { f (t)} (s)− sν−1 f (0+). We note that, with the appropriate
restrictions for η(t) and γ(t), both formulations are equivalent.

Remark 3. For η(t) = tα−1

Γ(α) , 0 < α < 1, gGBM corresponds to sGBM. Using the subordination approach one
finds [28]

ĥ(u, s) = sα−1e−usα
= sα−1H1,0

0,1

[
u sα

∣∣∣∣∣ −(0, 1)

]
, (56)

where Hm,n
p,q (z) is the Fox H-function, see Appendix D. By inverse Laplace transform (A42), one obtains [28]

h(u, t) = L −1
{

ĥ(u, s)
}
= t−α H1,0

1,1

[
u
tα

∣∣∣∣∣ (1− α, α)

(0, 1)

]
=

1
u

H1,0
1,1

[
u
tα

∣∣∣∣∣ (1, α)

(1, 1)

]
, (57)

where we applied property (A43). The solution in Laplace space then becomes

P̂(x, s) =
∫ ∞

0

1

x
√

2πσ2u
× exp

(
−
[

log x− log x0 − µ̄u
]2

2σ2u

)
sα−1e−usα

du

=
sα−1

x
√

µ̄2 + 2σ2sα
×


exp

(
− log x−log x0

σ2

[√
µ̄2 + 2σ2sα − µ̄

])
, x > x0,

1, x = x0,

exp
(

log x−log x0
σ2

[√
µ̄2 + 2σ2sα + µ̄

])
, x < x0,

(58)

which is obtained in Ref. [48] in a similar way. From here, we can plot the PDF using numerical inverse Laplace
transform techniques.

3.2. Generalised BS Formula

If we consider that the asset price follows a gGBM, then the generalised BS (gBS) formula for the
option price is [37]

CgBS(x, t) = 〈e−r(S(T)−t)(x(S(T))− K)〉x =
∫ ∞

0
CBS(x, u) h(u, T) du, (59)

where CBS(x, t) is taken from the BS Formula (25), and h(x, T) is the subordination function defined by
Equation (48) in the Laplace domain. By Laplace transform one finds

ĈgBS(x, s) =
1

sη̂(s)
ĈBS(x, 1/η̂(s)). (60)

Therefore, from Equation (22), the corresponding equation for the option price becomes [48]

∂

∂t
CgBS(x, t) =

∂

∂t

∫ t

0
η(t− t′)

(
σ2x2

2
∂2

∂x2 − r + r x
∂

∂x

)
CgBS(x, t′) dt. (61)

3.3. Calculation of Moments

The nth moment 〈X n(t)〉 =
∫ ∞

0 xn P(x, t) dx can be calculated by multiplying both sides of
Equation (51) by xn and integration over x, see Appendix C. In the Laplace domain, this results in

〈X̂ n(s)〉 = xn
0

s−1

1− η̂(s)
[

σ2

2 n(n− 1) + µ n
] . (62)
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From this result, we reproduce the normalisation condition 〈x0(t)〉 = 〈x0
0〉 = 1. The general results for

the first four moments in terms of the memory kernel become

〈X̂ (s)〉 = x0
s−1

1− µη̂(s)
, (63)

〈X̂ 2(s)〉 = x2
0

s−1

1− (σ2 + 2µ)η̂(s)
, (64)

〈X̂ 3(s)〉 = x3
0

s−1

1− 3η̂(s) [σ2 + µ]
, (65)

〈X̂ 4(s)〉 = x4
0

s−1

1− 4η̂(s)
[

3σ2

2 + µ
] . (66)

The log-moments 〈logn x(t)〉 =
∫ ∞

0 logn x P(x, t) dx, can also be calculated exactly through the
memory kernel, see Appendix C. The normalisation condition is satisfied, i.e., 〈log0 x(t)〉 = 1, while
the log-mean reads

〈log x(t)〉 = 〈log x0〉+ µ̄
∫ t

0
η(t′) dt′. (67)

From here, we find, for the expectation of the periodic log return with period ∆t

1
∆t
〈log (x(t + ∆t)/x(t))〉 = µ̄

1
∆t

∫ t+∆t

t
η(t′) dt′ = µ̄

I(t + ∆t)− I(t)
∆t

∼
∆t→0

µ̄ η(t), (68)

where I(t) =
∫

η(t) dt, i.e., I′(t) = η(t). Therefore, the expectation of the periodic log returns behaves
as the rate of the first log-moment,

1
∆t
〈log (x(t + ∆t)/x(t))〉 ∼

∆t→0

d
dt
〈log x(t)〉, (69)

which is proportional to the memory kernel η(t). Moreover, for the second log-moment, we find

〈log2 x(t)〉 = 〈log2 x0〉+
∫ t

0
η(t− t′)

{
2µ̄

[
〈log x0〉+ µ̄

∫ t′

0
η(t′′) dt′′

]
+ σ2

}
dt′, (70)

from where the log-variance becomes

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2
∫ t

0
η(t′) dt′

+ µ̄2

[
2
∫ t

0
η(t− t′)

(∫ t′

0
η(t′′) dt′′

)
dt′ −

(∫ t

0
η(t′) dt′

)2
]

. (71)

The general results for third and fourth moments are given in Appendix C.
From all of these general formulas, one can easily recover the previous results for the standard

GBM (η(t) = 1, i.e., η̂(s) = 1/s) and sGBM (η(t) = tα−1/Γ(α), i.e., η̂(s) = s−α, 0 < α < 1).
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3.4. Exponentially Truncated Subdiffusive GBM

As an example for another memory kernel in gGBM, we consider a power-law memory kernel
with exponential truncation,

η(t) =
tα−1

Γ(α)
e−

t
τ , (72)

where τ is a characteristic crossover time scale, 0 < α < 1. Such forms are important in many
real-world applications, in which the scale-free nature of the waiting time dynamics is broken at
macroscopic times t� τ [61]. Therefore,

η̂(s) = (s + τ−1)−α, (73)

where we use the shift rule of the Laplace transform, L
{

e−at f (t)
}
= F̂(s + a), for F̂(s) = L { f (t)}.

The mean value reads,

〈x(t)〉 = x0 L −1
{

s−1

1− µ(s + τ−1)−α

}
(t) = x0 L −1

{
s + τ−1

s
(s + τ−1)α−1

(s + τ−1)α − µ

}
(t)

= x0

[
e−t/τEα (µtα) + τ−1

∫ t

0
e−t′/τEα

(
µt′α

)
dt′
]

, (74)

and the MSD is

〈x2(t)〉 = x2
0 L −1

{
s−1

1− (σ2 + 2µ)(s + τ−1)−α

}
(t) = x2

0 L −1

{
s + τ−1

s
(s + τ−1)α−1

(s + τ−1)α − (σ2 + 2µ)

}
(t)

= x2
0

[
e−t/τ Eα

(
(σ2 + 2µ)tα

)
+ τ−1

∫ t

0
e−t′/τ Eα

(
(σ2 + 2µ)t′α

)
dt′
]

. (75)

The third and fourth moments become

〈x3(t)〉 = x3
0 L −1

{
s−1

1− 3(s + τ−1)−α (σ2 + µ)

}
(t) = x3

0 L −1
{

s + τ−1

s
(s + τ−1)α−1

(s + τ−1)α − 3 (σ2 + µ)

}
(t)

= x3
0

[
e−t/τ Eα

(
(3σ2 + 3µ)tα

)
+ τ−1

∫ t

0
e−t′/τ Eα

(
(3σ2 + 3µ)t′α

)
dt′
]

, (76)

〈x4(t)〉 = x4
0 L −1

{
s−1

1− (s + τ−1)−α (6σ2 + 4µ)

}
(t) = x4

0 L −1
{

s + τ−1

s
(s + τ−1)α−1

(s + τ−1)α − (6σ2 + 4µ)

}
(t)

= x4
0

[
e−t/τ Eα

(
(6σ2 + 4µ)tα

)
+ τ−1

∫ t

0
e−t′/τ Eα

(
(6σ2 + 4µ)t′α

)
dt′
]

, (77)

respectively.
From the general result for the log-mean, we find that

〈log x(t)〉 = 〈log x0〉+ µ̄ τα γ(α, t/τ)

Γ(α)
= 〈log x0〉+ µ̄ e−t/τ tαE1,α+1(t/τ), (78)

where (z, β ∈ C; <(α) > 0). Here, γ(a, z) =
∫ z

0 ta−1e−t dt = Γ(a)e−z zaE1,a+1(z) is the incomplete
gamma function, and

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
. (79)

is the two parameter ML function [45]. Note that, the Laplace transform of the two parameter ML
function reads L

{
tβ−1Eα,β(atα)

}
(s) = sα−β

sα−a . The asymptotic expansion formula for the two parameter
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ML function is Eα,β(z) ∼ 1
α ez1/α

z(1−β)/α, z � 1 [45,52], while the asymptotic behaviour for negative

arguments is given by power-law decay, Eα,β (−zα) ∼ z−α

Γ(β−α)
, z� 1 [45,52].

For the expectation of the periodic log return with period ∆t, we find

1
∆t
〈log (x(t + ∆t)/x(t))〉 ∼

∆t→0
µ̄

tα−1

Γ(α)
e−t/τ =

d
dt
〈log x(t)〉. (80)

This leads to a long run log return of 0, whereas on the short time scale the same observable behaves
in the same way as sGBM. As such, the model can be used in order to model early herd behaviour,
where the price of an asset grows simply as a consequence of investors following trends (short run
behaviour), which last until the trade of the asset becomes congested (long run behaviour). The second
log-moment is

〈log2 x(t)〉 = 〈log2 x0〉+
{

2µ̄〈log x0〉+ σ2
}

τα γ(α, t/τ)

Γ(α)
+ 2µ̄2τ2α γ(2α, t/τ)

Γ(2α)
, (81)

from where the log-variance becomes

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2τα γ(α, t/τ)

Γ(α)
+ µ̄2τ2α

[
2

γ(2α, t/τ)

Γ(2α)
− γ2(α, t/τ)

Γ2(α)

]
. (82)

Here, we note that, for t/τ � 1, the obtained results correspond to those that were obtained for sGBM,
as it should be since the exponential truncation has no influence on the process. We observe that on
the long run the log-variance becomes constant, i.e., it is equal to σ2τα + µ̄ τ2α. In a similar way, for the
third and fourth log-moments, we find

〈log3 x(t)〉 = 〈log3 x0〉+ 3
{

µ̄〈log2 x0〉+ σ2〈log x0〉
}

τα γ(α, t/τ)

Γ(α)

+ 6µ̄
{

µ̄〈log x0〉+ σ2
}

τ2α γ(2α, t/τ)

Γ(2α)
+ 6µ̄3τ3α γ(3α, t/τ)

Γ(3α)
, (83)

〈log4 x(t)〉 = 〈log4 x0〉+ 2
{

2µ̄〈log3 x0〉+ 3σ2〈log2 x0〉
}

τα γ(α, t/τ)

Γ(α)

+ 6
{

2µ̄
(

µ̄〈log2 x0〉+ 2σ2〈log x0〉
)
+ σ4

}
τ2α γ(2α, t/τ)

Γ(2α)

+ 24µ̄2
{

µ̄〈log x0〉+ 3σ2/2
}

τ3α γ(3α, t/τ)

Γ(3α)
+ 24µ̄4τ4α γ(4α, t/τ)

Γ(4α)
. (84)

The subordination function, in this case, is given by

ĥ(u, s) =
(s + τ−1)α

s
e−u(s+τ−1)α

=
[
1 + (sτ)−1

]
(s + τ−1)α−1e−u(s+τ−1)α

,

h(u, t) = e−t/τ H1,0
1,1

[
u
tα

∣∣∣∣∣ (1, α)

(1, 1)

]
+ τ−1

∫ t

0
e−t′/τ H1,0

1,1

[
u
t′α

∣∣∣∣∣ (1, α)

(1, 1)

]
dt′, (85)

from where one can analyse the PDF P(x, t).
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3.5. Combined Standard and Subdiffusive GBM

As another application, let us consider the combination of GBM and sGBM, represented by the
memory kernel

η(t) = w1
tα−1

Γ(α)
+ w2, (86)

where 0 < α < 1, w1 + w2 = 1, and

η̂(s) = w1s−α + w2s−1. (87)

This case combines both motions governed by Equations (3) and (26). In this case, in a jump picture,
normal GBM steps occur with weight w2, while power-law waiting time steps are realised with
weight w1.

The mean value for this case is given by

〈x(t)〉 = x0 L −1
{

s−1

1− µ (w1s−α + w2s−1)

}
(t) = x0

∞

∑
n=0

wn
1 µntαnEn+1

1,αn+1 (w2µt)

= x0

∞

∑
n=0

wn
1 µntαn

Γ(αn + 1) 1F1 (n + 1; αn + 1; w2µt) , (88)

where 1F1 (a; b; z) = ∑∞
k=0

(a)k
(b)k

zk

k! is the Kummer confluent hypergeometric function,

Eγ
α,β(z) =

∞

∑
n=0

(γ)n

Γ(αn + β)

zn

n!
, (89)

is the three parameter ML function [63], and (γ)n = Γ(γ + n)/Γ(γ) is the Pochhammer symbol. The
Laplace transform of the three parameter ML function reads L

{
tβ−1Eγ

α,β(atα)
}
(s) = sαγ−β

(sα−a)γ . From
here, we see that, for w1 = 0 and w2 = 1, only the term for n = 0 in Equation (88) survives, which
yields the result for standard GBM as it should be. The opposite case, with w1 = 1 and w2 = 0, yields

〈x(t)〉 = x0

∞

∑
n=0

µntαn

Γ(αn + 1)
= Eα (µtα) , (90)

as it should be for the sGBM. For the second, third, and fourth moments, we find

〈x2(t)〉 = x2
0

∞

∑
n=0

wn
1 (σ

2 + 2µ)ntαnEn+1
1,αn+1

(
w2(σ

2 + 2µ)t
)

, (91)

〈x3(t)〉 = x3
0

∞

∑
n=0

wn
1 (3σ2 + 3µ)ntαnEn+1

1,αn+1

(
w2(3σ2 + 3µ)t

)
, (92)

〈x4(t)〉 = x4
0

∞

∑
n=0

wn
1 (6σ2 + 4µ)ntαnEn+1

1,αn+1

(
w2(6σ2 + 4µ)t

)
. (93)

Following the same procedure as previously, for the log-mean we find

〈log x(t)〉 = 〈log x0〉+ µ̄

[
w1

tα

Γ(α + 1)
+ w2 t

]
. (94)
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and for the expectation of the periodic log return with period ∆t,

1
∆t
〈log (x(t + ∆t)/x(t))〉 ∼

∆t→0
µ̄

[
w1

tα−1

Γ(α)
+ w2

]
=

d
dt
〈log x(t)〉. (95)

This model introduces subdiffusive and trapping asset dynamics on short time scales (i.e., then the
part multiplied with w1 is much bigger), whereas, on the long run, we recover the standard GBM
dynamics. The second log-moment yields

〈log2 x(t)〉 = 〈log2 x0〉+
{

2µ̄〈log x0〉+ σ2
} [

w1
tα

Γ(α + 1)
+ w2 t

]
+ 2µ̄2

[
w2

1t2α

Γ(2α + 1)
+

2w1w2tα+1

Γ(α + 2)
+

w2
2t2

2

]
, (96)

from where the log-variance becomes

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2
[

w1
tα

Γ(α + 1)
+ w2 t

]
+ µ̄2w2

1t2α

[
2

Γ(2α + 1)
− 1

Γ2(α + 1)

]
+ 2µ̄2w1w2tα+1

[
2

Γ(α + 2)
− 1

Γ(α + 1)

]
. (97)

Similarly to the behaviour of the first log moment, in the log variance, for short time scales, the sGBM
dynamics dominates. However, we observe that, on the long run, the dynamics is a combination of the
two kernels, since the dominant term is w1w2tα+1. Moreover, the third and fourth log-moments read

〈log3 x(t)〉 = 〈log3 x0〉+ 3
{

µ̄〈log2 x0〉+ σ2〈log x0〉
}(

w1
tα

Γ(α + 1)
+ w2t

)
+ 6µ̄

{
µ̄〈log x0〉+ σ2

} [ w2
1t2α

Γ(2α + 1)
+

2w1w2tα+1

Γ(α + 2)
+

w2
2t2

2

]

+ 6µ̄3

[
w3

1t3α

Γ(3α + 1)
+

3w2
1w2t2α+1

Γ(2α + 2)
+

3w1w2
2tα+2

Γ(α + 3)
+

w3
2t3

6

]
, (98)

〈log4 x(t)〉 = 〈log4 x0〉+ 2
{

2µ̄〈log3 x0〉+ 3σ2〈log2 x0〉
} [ w1tα

Γ(α + 1)
+ w2t

]
+ 6

{
2µ̄
(

µ̄〈log2 x0〉+ 2σ2〈log x0〉
)
+ σ4

} [ w2
1t2α

Γ(2α + 1)
+

2w1w2tα+1

Γ(α + 2)
+

w2
2t2

2

]

+ 24µ̄2
{

µ̄〈log x0〉+ 3σ2/2
} [ w3

1t3α

Γ(3α + 1)
+

3w2
1w2t2α+1

Γ(2α + 2)
+

3w1w2
2tα+2

Γ(α + 3)
+

w3
2t3

6

]

+ 24µ̄4

[
w4

1t4α

Γ(4α + 1)
+

4w3
1w2t3α+1

Γ(3α + 2)
+

6w2
1w2

2t2α+2

Γ(2α + 2)
+

4w1w3
2tα+3

Γ(α + 4)
+

w4
2t4

24

]
. (99)

The subordination function for this case is given by

ĥ(u, s) =
1

w1 + w2s1−α
e
− u

w1s−1+w2s−α , (100)

where the Lévy exponent is Ψ̂(s) =
[
w1s−1 + w2s−α

]−1.
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3.6. Mix of Subdiffusive GBMs

We may further analyse the case of a mix of two sGBM with different power-law
memory functions,

η(t) = w1
tα1−1

Γ(α1)
+ w2

tα2−1

Γ(α2)
, (101)

where 0 < α1 < α2 < 1, w1 + w2 = 1, and

η̂(s) = w1s−α1 + w2s−α2 . (102)

This situation corresponds to the case of two different groups of periods of constant prices. For physical
systems, this situation means that the process is a sum of two random processes with different waiting
times [64], as represented by the memory kernel (101).

Therefore, for the mean, we find

〈x(t)〉 = x0 L −1
{

s−1

1− µ (w1s−α1 + w2s−α2)

}
(t) = x0

∞

∑
n=0

wn
1 µntα1nEn+1

α2,α1n+1 (w2µtα2) , (103)

while, for the second, third, and fourth moments, respectively, we obtain

〈x2(t)〉 = x2
0

∞

∑
n=0

wn
1 (σ

2 + 2µ)ntα1nEn+1
α2,α1n+1

(
w2(σ

2 + 2µ)tα2
)

, (104)

〈x3(t)〉 = x3
0

∞

∑
n=0

wn
1 (3σ2 + 3µ)ntα1nEn+1

α2,α1n+1

(
w2(3σ2 + 3µ)tα2

)
, (105)

〈x4(t)〉 = x4
0

∞

∑
n=0

wn
1 (6σ2 + 4µ)ntα1nEn+1

α2,α1n+1

(
w2(6σ2 + 4µ)tα2

)
. (106)

Similarly, the log-mean yields

〈log x(t)〉 = 〈log x0〉+ µ̄

[
w1

tα1

Γ(α1 + 1)
+ w2

tα2

Γ(α2 + 1)

]
. (107)

The expectation of the log return with period ∆t, then becomes

1
∆t
〈log (x(t + ∆t)/x(t))〉 ∼

∆t→0
µ̄

[
w1

tα1−1

Γ(α1)
+ w2

tα2−1

Γ(α2)

]
=

d
dt
〈log x(t)〉. (108)

Because 0 < α1 < α2 < 1, on short times, the part of first sGBM dominates, whereas, on long times, it is
the characteristic of the second sGBM that determines the dynamics. The second log-moment becomes

〈log2 x(t)〉 = 〈log2 x0〉+
{

2µ̄〈log x0〉+ σ2
} [

w1
tα1

Γ(α1 + 1)
+ w2

tα2

Γ(α2 + 1)

]
+ 2µ̄2

[
w2

1t2α1

Γ(2α1 + 1)
+

2w1w2tα1+α2

Γ(α1 + α2 + 1)
+

w2
2t2α2

Γ(2α2 + 1)

]
, (109)
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and for the log-variance we find

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2
[

w1
tα1

Γ(α1 + 1)
+ w2

tα2

Γ(α2 + 1)

]
+ 2µ̄2w1w2tα1+α2

[
2

Γ(α1 + α2 + 1)
− 1

Γ(α1 + 1)Γ(α2 + 1)

]
+ µ̄2w2

1t2α1

[
2

Γ(2α1 + 1)
− 1

Γ2(α1 + 1)

]
+ µ̄2w2

2t2α2

[
2

Γ(2α2 + 1)
− 1

Γ2(α2 + 1)

]
. (110)

In this case, for short times, the kernel with the smaller exponent dominates the variance. Interestingly,
for long times, this observable is determined by the magnitude of the larger exponent, which is
opposite from the previous kernel examples. Moreover, the third and fourth log-moments read

〈log3 x(t)〉 = 〈log3 x0〉+ 3
{

µ̄〈log2 x0〉+ σ2〈log x0〉
}(

w1
tα1

Γ(α1 + 1)
+ w2

tα2

Γ(α2 + 1)

)
+ 6µ̄

{
µ̄〈log x0〉+ σ2

}(
w2

1
t2α1

Γ(2α1 + 1)
+ 2w1w2

tα1+α2

Γ(α1 + α2 + 1)
+ w2

2
t2α2

Γ(2α2 + 1)

)
+ 6µ̄3

[
w3

1t3α1

Γ(3α1 + 1)
+

3w2
1w2t2α1+α2

Γ(2α1 + α2 + 1)
+

3w1w2
2tα1+2α2

Γ(α1 + 2α2 + 1)
+

w3
2t3α2

Γ(3α2 + 1)

]
, (111)

〈log4 x(t)〉 = 〈log4 x0〉+ 2
{

2µ̄〈log3 x0〉+ 3σ2〈log2 x0〉
}( w1tα1

Γ(α1 + 1)
+

w2tα2

Γ(α2 + 1)

)
+ 6

{
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(
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]

+ 24µ̄4
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+

4w3
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+
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+
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]
. (112)

For the mix of subdiffusive GBMs, the subordination function becomes

ĥ(u, s) =
1

w1s1−α1 + w2s1−α2
e
− u

w1s−α1+w2s−α2 , (113)

where the Lévy exponent is Ψ̂(s) = [w1s−α1 + w2s−α2 ]
−1, see Refs. [64,65].

4. Numerical Experiments

Figure 1a provides an intuitive illustration of the gGBM dynamics under various choices for
the kernel. As argued, for standard GBM we observe smooth dynamics without periods of constant
prices, whereas there is more turbulence in the asset price dynamics in the gGBM case. The periods
of constant prices that are reproduced by gGBM depend, in general, on the time scale and, hence,
the measuring units of the drift and volatility, with longer time scales also corresponding to longer
periods of constant prices. In Figure 1b,c we plot, respectively, the numerical approximations for the
first moment and the MSD for GBM, sGBM, a mix of GBM and sGBM, and a mix of sGBMs. One can
easily notice the nonlinear behaviour in the generalisations of GBM. For long times, all gGBMs give an
exponential dependence of the first moment and the MSD on time but with smaller slope than the one
of GBM. Finally, Figure 1d shows the empirical PDF for the logarithmic return at t = 1 year. For each
of the studied generalisations of GBM, the PDF is characterised with fatter tails (which should increase
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as the α parameters decrease), which means that it is more prone to producing values that fall far from
the average.

Figure 1. Generalised geometric Brownian motion (gGBM) properties. (a) An example for simulated
individual trajectories of gGBM for different memory kernels: standard GBM (blue solid line),
subdiffusive GBM (sGBM) (red dashed line), a mix of standard GBM and sGBM (yellow dotted
line), and a mix of sGBM (violet dot-dashed line). (b) Numerical estimation for the first moment in
GBM, sGBM, a mix of standard GBM and sGBM and a mix of sGBM as a function of time. (c) Same as
(b), only for the second moment. (d) Empirical PDF for the logarithmic return at t = 1 year estimated
from 1000 realisations of gGBM. (a–d) In the simulations, µ = 0.03 and σ2 = 0.02. Moreover, for the
sGBM case we set α = 0.8, for the mix GBM-sGBM case, we set α = 0.8 and w1 = w2 = 0.5, and for the
mix of sGBM case α1 = 0.8, α2 = 0.6, and w1 = w2 = 0.5.

The fat-tailed property can be observed in greater detail in Figure 2, where we plot the skewness
g and excess kurtosis κ in gGBM as a function of α (for sGBM and the mix of GBM-sGBM) or α1

(for the mix of sGBM) for the logarithmic return at t = 1 year. As is the case with general fat-tailed
distributions, all of the generalisations exhibit positive skewness and excess kurtosis. This is exactly
what makes the gGBM framework useful in understanding the statistical behaviour of the asset price
dynamics. Moreover, the figure indicates that there is an inverse relationship between these two
statistics and α (α1), i.e., as α (α1) increases, g and κ decrease. For small α (α1), sGBM is the model with
the largest skewness and excess kurtosis, followed by the mix of sGBM and the mix of GBM-sGBM.
For large α (α1), the mix of GBM-sGBM remains the model with the lowest g and κ, but, now, the
mix of sGBM becomes the model with the largest values of the two statistics. The rationale for this
observation is that the GBM-sGBM model already includes a GBM term, which greatly induces the fat
tails, whereas the operational time in the mix of sGBM becomes dominated by the value of the second
sGBM, which has a fixed value for α2, thereby resulting in larger skewness and excess kurtosis.
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Figure 2. gGBM skewness and excess kurtosis. (a) Skewness for the distribution of logarithmic return
for sGBM, a mix of standard GBM and sGBM and a mix of sGBM at t = 1 year as a function of α (for
sGBM and the mix of GBM-sGBM) or α1 (for the mix of sGBMs). (b) Same as (a), only for the excess
kurtosis. (a,b) The PDF for the logarithmic return at t = 1 year is estimated from 1000 realisations of
gGBM. In the simulations, µ = 0.03 and σ2 = 0.02. Moreover, for the mix GBM-sGBM case, we set
w1 = w2 = 0.5, and for the mix of sGBM case α2 = 0.8 and w1 = w2 = 0.5.

Finally, we investigate the dependence of two standard quantities that are relevant in an option
pricing scheme: i) at-the-money (ATM) implied volatility and ii) ATM volatility skew with respect
to the gGBM parameters. Both of the quantities are a part of the moneyness property of the option.
Moneyness describes the relative position of the current price of the asset (x0) with respect to the strike
price of the option (K). An option whose strike price is equal to the current price of the asset is said to
be at-the-money; if the strike price is larger than the current price, the option is “out of the money”;
and, if the strike price is smaller than the current price, the option is described to be “in the money”.

Moneyness is usually examined by plotting the implied volatility of an option for an underlying
asset as a function of its strike price. This plot is formally known as the volatility smile. Its name is
derived from the usual pattern, which suggests that the implied volatility is the lowest for options that
are ATM, i.e., the plot looks like a parabola (smile). The ATM volatility skew is the first derivative of
the volatility smile at the ATM point [66]. A larger volatility skew implies that the implied volatility
increases faster for options that are near the money (options whose strike price is near the current asset
price), and vice versa.

Figure 3 displays the functional relationship between the two studied quantities and the parameter
α (for sGBM and the mix of GBM-sGBM) or α1 (for the mix of sGBMs). For each gGBM model, we get
that lower ATM implied volatilities can be attributed to lower diffusion rates, thereby suggesting that
the gGBM framework can be used to describe the empirical at-the-money observations. Identically,
there is a direct relationship between ATM volatility skews and α (α1). In other words, in the gGBM
framework, the slope of the volatility smile for at-the-money options behaves in the same manner as
the magnitude of the implied volatility. This leads to lower near-the-money implied volatilities.
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Figure 3. gGBM at-the-money (ATM) implied volatility and volatility skew. (a) ATM implied volatility
for sGBM, a mix of standard GBM and sGBM and a mix of sGBM for an option with K = x0 = 1,
T = 0.083 years (one month) as a function of α (for sGBM and the mix of GBM-sGBM) or α1 (for the
mix of sGBMs). (b) Same as (a), only for the ATM volatility skew. (a,b) We assume that r = 0.02.
Moreover, for the mix GBM-sGBM case, we set w1 = w2 = 0.5, and for the mix of sGBM case α2 = 0.8
and w1 = w2 = 0.5.

5. Empirical Example

In order to illustrate the power of the gGBM framework in the evaluation of options, we utilise
empirical data of American options for two companies: Tesla (TSLA) and Apple (AAPL). By definition,
the dynamics of American options differ from European, as they allow for exercising of the option at
any time before the option expires. Nevertheless, as given in Ref. [67], one can rely on the fact that
American options on non-dividend-paying stocks have the same value as their European counterpart.
This relation has allowed for the empirical examination of a pricing scheme of European options to be
widely done via data for American ones.

For our analysis, we use freely available data from the Nasdaq’s Options Trading Centre. This
dataset offers daily data for options of all companies quoted on the NASDAQ stock market. However,
the options for most companies have small sample size. Therefore, we restricted the empirical analysis
to Tesla and Apple, whose options are more frequently traded. In our estimations, the risk-free rate
of return r is taken simply as the three-Month Treasury Bill Secondary Market Rate at the date of
observation. The volatility parameter σ, on the other hand, was inferred from the values of the options
on the market as the value that produces the minimum root mean squared pricing error (RMSE) in
their fit.

For both assets, we evaluate the predictive performance of the same sGBM, a mix of GBM-sGBM,
and a mix of sGBM models that were used in the numerical analysis of the previous section.
The predicted option prices by the model were inferred via a Monte Carlo estimation of (59)
(see Refs [28,48]).

Moneyness in TSLA: Let us now turn our attention to Figure 4, where we use TSLA data gathered
on 1st March 2018 on options which expire on 16th March 2018 to examine the dependence of the
sGBM, the mix of GBM-sGBM and the mix of sGBM models on α in predicting the option price. We
discover that, in general, the TSLA asset price dynamics are best described as a sGBM, and the minimal
error occurs around α = 0.2. For large α, the mix of sGBM becomes the best performer, because it
inherently includes a process with a lower subdiffusion and, thus, it has a close resemblance to the
sGBM process with low α than the other models. For every α, the mix of GBM-sGBM has the worst
performance since it includes a term with a normal diffusion.
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Figure 4. Moneyness in Tesla (TSLA). Root mean squared error (RMSE) of the predicted option price
as a function of α (α1) for sGBM, a mix of GBM-sGBM and a mix of sGBM. The inset plot gives the
difference between the predicted TSLA option price Cg and its real value C as a function of the strike
price of the option for various choices of α. The data is taken on 1st March 2020 and describe the value
of TSLA options that expire on 16th March 2020. For the mix GBM-sGBM case we set w1 = w2 = 0.5,
and for the mix of sGBM case α2 = 0.8 and w1 = w2 = 0.5.

In the inset plot of Figure 4, we provide a more detailed information on the predictive properties
of sGBM by examining its relation with the moneyness of the option. In it, we vary the diffusion
parameter α, and plot the absolute difference in the estimated option price Cg and the observed option
price as a function of the strike price. We find that, for in-the-money-options, the best prediction is
with α = 1, which corresponds to the BS model. However, as the strike price of the option nears the
TSLA price, a transition occurs and α = 1 becomes the worst predictor of the option price, whereas
the lower the subdiffusion parameter, the better prediction we obtain. For options that are out of the
money, it appears that the performance of the prediction for the option price does not depend on α.
These findings are in agreement with the discussion presented in the previous section regarding the
ATM implied volatility and ATM volatility skew.

Maturity in Apple (AAPL): Next, we use AAPL data that were gathered for at-the-money options
on 28th February 2018 and examine how the maturity T affects the performance of the same models
in predicting the option price. We focus solely on data for at-the-money options in order to remove
the potential bias in the prediction error that arises from the potential moneyness effect, which as we
saw in the above paragraph might arise (i.e., we discovered that the error rate with respect to α (α1)
depends on the moneyness of the option).

For this purpose, in Table 1, we show the minimum RMSE and the corresponding optimal α (α1)
of the AAPL option price prediction for seven different maturity periods. We observe that for the
shortest-term maturity (T = 0.006 years, or two days), a subdiffusive model (in particular sGBM or
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a mix of GBM-sGBM) is the model that best describes the option price. As the maturity increases,
the optimal α (α1) also increases, reaching a maximal value of 1 for options maturing at T = 0.101
years (one month) and T = 0.14 years (35 working days). However, for the options with the longest
maturity, again a model with a very low subdiffusion rate is an optimal fit. Hence, the RMSE of the
prediction depends on both the maturity of the options and choice of α (α1).

Table 1. Minimum prediction error and optimal α (α1) for ATM AAPL options. For the mix GBM-sGBM
case we set w1 = w2 = 0.5, and for the mix of sGBM case α2 = 0.8 and w1 = w2 = 0.5.

Maturity sGBM GBM-sGBM mix of sGBM
(in Years) min α RMSE min α RMSE min α1 RMSE

0.006 0.89 0.28 0.84 0.28 0.88 0.31
0.025 0.96 0.39 0.93 0.39 0.93 0.48
0.044 0.97 0.46 0.93 0.46 0.97 0.6
0.063 0.99 0.52 0.98 0.52 0.98 0.71
0.101 1.00 0.72 0.99 0.72 0.99 1.00
0.140 1.00 0.61 0.99 0.60 0.99 0.91
0.888 0.33 4.52 0.35 6.38 0.38 5.47

To provide a better depiction on the role of α (α1), in the predictive performance of sGBM, a mix
of GBM-sGBM and a mix of sGBM, in Figure 5 we depict the RMSE of the option price prediction as
a function of the parameter α (α1). We observe that, in general, only for the options with the longest
maturity, one can observe a clear extremum, whereas, for every other maturity, it appears that every α

(α1) represents an adequate fit. Increasing this parameter will only lead to marginal and insignificant
improvements in the error rate. As a consequence, one might even argue that different gGBM kernels
can lead to similar outcomes in the pricing of options, an interesting finding as such.

Figure 5. Maturity in at-the-money AAPL options. Root mean squared error (RMSE) of the prediction
of the AAPL at-the-money option price with data taken on 28th February 2018 as a function of α for
various maturity periods T (measured in years). (a) The gGBM model is sGBM. (b) The gGBM model
is a mix of GBM-sGBM. (c) The gGBM model is a mix of sGBM. For the mix GBM-sGBM case we set
w1 = w2 = 0.5, and for the mix of sGBM case α2 = 0.8 and w1 = w2 = 0.5.
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Evidently, the performance of a kernel ultimately depends on the physical properties of the
option. On the first sight, this conclusion appears intuitive—obviously the known information for
the properties of the asset greatly impacts its price, the observation that a slight change in the known
information may drastically change the dynamics suggests that there is a need in the option pricing
literature for models that easily allow for such structural changes. In this aspect, we believe that the
generalised GBM approach offers a computationally inexpensive and efficiently tractable solution to
this issue. Consequently, we stress that a significant improvement of the description of the data in the
gGBM framework can be achieved with comparatively few additional parameters.

6. Conclusions

We investigated the potential of GBM extensions that are based on subdiffusion to model and
predict the price of options. By assuming that the price of the asset underlying the option undergoes a
subdiffusive process, we introduced the gGBM framework as a potential model for its value.

Similar to previous works on subdiffusive GBM models, the dynamics of a particular gGBM
instance is critically determined by a memory kernel. The advantage of gGBM comes in the flavour of
allowing various forms for the functional form of the kernel. Depending on its choice, we may end up
with asset price dynamics whose behaviour significantly varies on the short time in comparison to its
long run characteristics. This, in turn, may induce observations of the properties of the asset price that
more closely mimic realistic behaviour than standard GBM.

We explored the ability of gGBM to fit and predict real option values. Our empirical analysis
confirmed the characteristics of gGBM, as we discovered that the performance of a certain choice
of memory kernel is uniquely determined by the parameters of the option, such as its maturity
and its moneyness. Because each kernel produces, in general, different long run and short run
dynamics, this suggests that time-averages play an important role in efficient pricing of options.
Formally, time-averaging is essential in the analysis of a single time-series (or a set of few), which
is characterised with non-ergodic dynamics. The non-ergodicity creates non-equilibrium dynamics
which, consequently, makes studies of the ensemble behaviour irrelevant. This leads to the introduction
of novel strategies for analysing financial data [9,68].

In line with our conclusions, we believe that the next step in uncovering the properties of gGBM is
demonstrating the ergodicity breaking of the process. Because multiplicative processes are frequently
present in nature, this will not only extend the framework of gGBM in analysing financial data, but will
also provide an avenue for applying the model in other scientific domains. Another fruitful research
direction would be to incorporate the properties of gGBM in a wider framework for financial modelling,
which includes the concept of “rough volatility”, where the instantaneous volatility is driven by a
(rough) fractional Brownian motion [69]. Building an explanatory model for the volatility in terms of
gGBM would bring novel insights regarding the theoretical and empirical characteristics of the asset
prices. We also leave for future analysis the problem of gGBM with stochastic volatility, which can be
treated in the framework of the Fokker–Planck equation for gGBM with time varying volatility σ(t), in
analogy of the diffusing-diffusivity models for heterogeneous media [56,70–73].
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Abbreviations

The following abbreviations are used in this manuscript:

GBM Geometric Brownian motion
sGBM Subdiffusive geometric Brownian motion
gGBM Generalised geometric Brownian motion
BS Black-Scholes
CTRW Continuous time random walk
MSD Mean squared displacement
ML Mittag-Leffler
ATM at-the-money
RMSE Root mean squared error
TSLA Tesla
AAPL Apple

Appendix A. Solution of the Fokker-Planck Equation for Standard GBM

The solution of Equation (3) can be found by using the Laplace-Mellin transform method [74].
The Laplace transform is defined by

F̂(s) = L { f (t)} (s) =
∫ ∞

0
f (t) e−st dt,

while the Mellin transform as [75]

F̃(q) = M { f (x)} (q) =
∫ ∞

0
xq−1 f (x) dx.

The inverse Mellin transform then reads

f (x) = M−1 {F̃(q)
}
(x) =

1
2πı

∫ c+ı∞

c−ı∞
x−q F̃(q) dq.

Therefore, by performing Laplace transform in respect to t and Mellin transform in respect to x in
Equation (3), we have

˜̂F(q, s) = xq−1
0 × 1

s−
[

σ2

2 (q− 1)(q− 2) + µ(q− 1)
] , (A1)

where we use M {δ(x− x0)} (q) = xq−1
0 . Then the inverse Laplace transform yields

F̃(q, t) = xq−1
0 × exp

σ2

2

[
q +

1
2

(
2µ

σ2 − 3
)]2

t−

(
µ− σ2

2

)2

2σ2 t

 , (A2)

where we use L −1
{

1
s−a

}
(t) = eat. Applying the inverse Mellin transform and looking for the

solution in the form of the convolution integral of two functions [75], M {h(x)} (q) = H̃(q) and
M {g(x)} (q) = G̃(q),

M−1 {H̃(q) G̃(q)
}
(x) =

∫ ∞

0
h(r) g(x/r)

dr
r

,
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we obtain the solution of the Fokker-Planck equation for GBM

f (x, t) =
∫ ∞

0
δ(r− x0)×

exp

(
−
[
log x

r −
(

µ− σ2
2

)
t
]2

2σ2t

)
(x/r)

√
2πσ2t

dr
r

=
1

x
√

2πσ2t
× exp

−
[
log x

x0
−
(

µ− σ2

2

)
t
]2

2σ2t

 . (A3)

Here we used that
h(x) = M−1

{
xq−1

0

}
(x) = δ(x− x0)

and

g(x) = M−1

exp

σ2

2

[
q +

1
2

(
2µ

σ2 − 3
)]2

t−

(
µ− σ2

2

)2

2σ2 t


 (x)

=
1

x
√

2πσ2t
× exp

−
[
log x−

(
µ− σ2

2

)
t
]2

2σ2t

 .

We used the properties of the inverse Mellin transform [75], M−1 { f (q + a)} (x) = xaM−1 { f (q)} and

M−1
{

exp
(

αq2
)}

(x) =
1√
4πα

e−
x2
4α .

Therefore, from the solution (A3) we conclude that the solution of the Fokker-Planck equation is a
log-normal distribution.

The nth moment 〈xn(t)〉 =
∫ ∞

0 xnP(x, t) dx of the solution of Equation (3) can be obtained by
multiplying the both sides of the equation with xn and integration over x. Thus, one has

∂

∂t
〈xn(t)〉 =

[
σ2

2
n(n− 1) + µ n

]
〈xn(t)〉, (A4)

from where the nth moment becomes

〈xn(t)〉 = 〈xn(0)〉 e(σ2n(n−1)/2+µ n)t. (A5)

For n = 0 one observes that the solution of the Fokker-Planck equation for GBM is normalised,
i.e., 〈x0(t)〉 = 1. The mean value (n = 1) and the MSD have exponential dependence on time,
〈x(t)〉 = 〈x(0)〉 eµ t and 〈x2(t)〉 = 〈x2(0)〉 e(σ

2+2 µ)t, respectively, and thus, the variance becomes

〈x2(t)〉 − 〈x(t)〉2 = 〈x2(0)〉 e2µt
(

eσ2t − 1
)

. (A6)

The log-moments 〈logn x〉 =
∫ ∞

0 logn xP(x, t) dx can be obtained by multiplying the both sides
of Equation (3) with logn x and integration over x. Therefore, one finds the following equation (see
Ref. [45] for details)

∂

∂t
〈logn x(t)〉 =

(
µ− σ2

2

)
n 〈logn−1 x(t)〉+ σ2

2
n(n− 1)〈logn−2 x(t)〉. (A7)
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From here it follows that ∂
∂t 〈log0 x(t)〉 = 0, i.e., 〈log0 x(t)〉 = 〈log0 x(0)〉 = 1. The case n = 1 yields

the mean value of the logarithm of x(t),

∂

∂t
〈log x(t)〉 =

(
µ− σ2

2

)
〈log0 x(t)〉︸ ︷︷ ︸

=1

(A8)

i.e.,

〈log x(t)〉 = 〈log x(0)〉+
(

µ− σ2

2

)
t. (A9)

For n = 2 we obtain the second log-moment

∂

∂t
〈log2 x(t)〉 = 2

(
µ− σ2

2

)
〈log x(t)〉+ σ2〈log0 x(t)〉 (A10)

which is given by

〈log2 x(t)〉 = 〈log2 x(0)〉+
(

µ− σ2

2

)2

t2 + 2
(

µ− σ2

2

)
〈log x(0)〉t + σ2t. (A11)

Therefore, for the log-variance one finds linear dependence on time

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2t. (A12)

Appendix B. Derivation of the Fokker-Planck Equation for gGBM from CTRW Theory

We use the approach given in Refs. [58,76,77]. Let us consider a CTRW for a particle at position
xi which can move right to the position xi+1 = h xi or to left at position xi−1 = 1

h xi, h > 0. For the
CTRW on a geometric lattice we use h = 1 + u, and at the end we will find the diffusion limit u→ 0.
The probability density function (PDF) for the particle to jump to right is pr(x, t), and for jump to left
pl(x, t). The total probability is pr(x, t) + pl(x, t) = 1.

We consider a multiplicative jump length PDF on a geometric lattice [58],

λ(xi, t, xj) = pr(xj, t) δ(xi − [1 + u] xj) + pl(xj, t) δ(xi − xj/[1 + u]),

and a waiting time PDF ψ(t), related to the survival probability by

φ(t) = 1−
∫ t

0
ψ(t′) dt′, i.e., φ̂(s) =

1− ψ̂(s)
s

.

By substitution in the master equation [58]

∂

∂t
ρ(xi, t) = ∑

j
λ(xi, t, xj)

∫ t

0
K(t− t′) ρ(xj, t′) dt′ −

∫ t

0
K(t− t′) ρ(xi, t′) dt′, (A13)

where K(t) = L −1 [ψ̂(s)/φ̂(s)
]
, one finds

∂

∂t
ρ(xi, t) = pr

(
xi

1 + u
, t
) ∫ t

0
K(t− t′) ρ

(
xi

1 + u
, t′
)

dt′

+ pl ([1 + u]xi, t)
∫ t

0
K(t− t′) ρ

(
[1 + u]xi, t′

)
dt′ −

∫ t

0
K(t− t′) ρ(xi, t′) dt′. (A14)
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We consider generalised waiting time PDF, which in the Laplace space has the form [61,78]

ψ̂(s) =
1

1 + τη/η̂(s)
,

where τη is a time parameter, which depends on η(t). Therefore,

φ̂(s) =
τη/η̂(s)

s
(
1 + τη/η̂(s)

) ,

and
K̂(s) =

1
τη

s× η̂(s),

from where we find that
∫ t

0 K(t− t′) f (t′) dt′ → 1
τη

d
dt

∫ t
0 η(t− t′) f (t′) dt′. From Equation (A14) then

we obtain

∂

∂t
ρ(xi, t) =

1
τη

pr

(
xi

1 + u
, t′
)

∂

∂t

∫ t

0
η(t− t′) ρ

(
xi

1 + u
, t′
)

dt′

+
1
τη

pl
(
[1 + u]xi, t′

) ∂

∂t

∫ t

0
η(t− t′) ρ

(
[1 + u]xi, t′

)
dt′ − 1

τη

∂

∂t

∫ t

0
η(t− t′) ρ(xi, t′) dt′. (A15)

Let us now consider the diffusion limit (u→ 0 and τη → 0) of Equation (A15). From the normalisation
condition of the PDF ρ(x, t) given by ∑i ρ(xi, t) = 1 and by using position-dependent lattice spacing
∆xi = u xi, one finds ∑i

ρu(xi ,t)
u xi

∆xi = 1, such that lim∆xi→0 ∑i

(
ρu(xi ,t)

u xi

)
∆xi = 1 [58]. By defining

the function Pu(x, t) = ρu(x, t)/[u x], one concludes that P(x, t) = limu→0 Pu(x, t) is normalised, i.e.,∫ ∞
0 P(x, t) dx = 1. By introducing Bu(xi, t) = pr(xi, t)− pl(xi, t) and b0(x, t) = limu→0

∂
∂u Bu(x, t), in

the diffusion limit u → 0 and τη → 0, where we assume that B0(x, t) = limu→0 Bu(x, t) = 0 [58], we
arrive to the following Fokker-Planck equation

∂

∂t
P(x, t) = D ∂

∂t

∫ t

0
η(t− t′)

∂

∂x

(
x2 ∂

∂x
− 1

kBT
x2 F(x)

)
P(x, t′) dt′, (A16)

where D = limu,τη→0 u2/[2 τη ], F(x) = −V′(x) = kBT [2 b0(x)− 1]/x, and P(x, t) ∝ exp
(
−V(x)

kBT

)
is

obtained from the long time steady state Boltzmann distribution [58]. For a logarithmic potential
V(x) = v kBT log x, the force becomes F(x) = −kBT v/x. By using D = σ2/2 and v = 2− µ/D the
Fokker-Planck equation becomes

∂

∂t
P(x, t) =

∂

∂t

∫ t

0
η(t− t′)

∂

∂x

(
σ2x2

2
∂

∂x
+ [σ2 − µ]x

)
P(x, t′) dt′, (A17)

which can be rewritten in the form of Equation (51).

Appendix C. General Results for nth Moment

If we multiply both sides of Equation (51) by xn, and integrate over x we find the nth moment
〈xn(t)〉 =

∫ ∞
0 xnP(x, t) dx,

∂

∂t
〈xn(t)〉 =

[
σ2

2
n(n− 1) + µ n

]
µ

d
dt

∫ t

0
η(t− t′)〈xn(t′)〉 dt′, (A18)

from where in the Laplace space it reads

〈x̂n(s)〉 = s−1

1− η̂(s)
[

σ2

2 n(n− 1) + µ n
] 〈xn(0)〉. (A19)
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From this result we obtain the normalisation condition, ∂
∂t 〈x

0(t)〉 = 0, i.e., 〈x0(t)〉 = 〈x0(0)〉 = 1.
For n = 1, we find the equation for the mean value

∂

∂t
〈x(t)〉 = µ

d
dt

∫ t

0
η(t− t′)

〈
x(t′)

〉
dt′, (A20)

and its Laplace pair

〈x̂(s)〉 = s−1

1− µη̂(s)
〈x(0)〉 . (A21)

In terms of the memory kernel γ(t), Equation (A21) reads

〈x̂(s)〉 = γ̂(s)
sγ̂(s)− µ

〈x(0)〉 . (A22)

We note that for the standard case with η(t) = 1 (η̂(s) = 1/s) we recover the previously obtained
results for the GBM. For n = 2 we obtain the equation for the second moment, or the MSD,

∂

∂t
〈x2(t)〉 = (σ2 + 2µ)

d
dt

∫ t

0
η(t− t′)〈x2(t′)〉 dt′, (A23)

and its Laplace pair

〈x̂2(s)〉 = s−1

1− (σ2 + 2µ)η̂(s)
〈x2(0)〉, (A24)

or

〈x̂2(s)〉 = γ̂(s)
sγ̂(s)− (σ2 + 2µ)

〈x2(0)〉. (A25)

We also calculate the log-moments 〈logn x(t)〉 =
∫ ∞

0 logn x P(x, t) dx, which satisfy the following
integral equation

∂

∂t
〈logn x(t)〉 = ∂

∂t

∫ t

0
η(t− t′)

[(
µ− σ2

2

)
n 〈logn−1 x(t′)〉+ σ2

2
n(n− 1) 〈logn−2 x(t′)〉

]
dt′. (A26)

Thus, we find ∂
∂t 〈log0 x(t)〉 = 0, i.e., 〈log0 x(t)〉 = 〈log0 x(0)〉 = 1. The mean value (n = 1) becomes

∂

∂t
〈log x(t)〉 =

(
µ− σ2

2

)
∂

∂t

∫ t

0
η(t− t′) 〈log0 x(t′)〉︸ ︷︷ ︸

=1

dt′ (A27)

from where it follows

〈log x(t)〉 = 〈log x(0)〉+
(

µ− σ2

2

) ∫ t

0
η(t′) dt′. (A28)

For the expectation of the periodic log return with period ∆t, we find

1
∆t
〈log (x(t + ∆t)/x(t))〉 =

(
µ− σ2

2

)
1

∆t

∫ t+∆t

t
η(t′) dt′

=

(
µ− σ2

2

)
I(t + ∆t)− I(t)

∆t
∼

∆t→0

(
µ− σ2

2

)
η(t), (A29)
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where I(t) =
∫

η(t) dt, i.e., I′(t) = η(t). Therefore, the expectation of the periodic log returns behaves
as the rate of the first log-moment,

1
∆t
〈log (x(t + ∆t)/x(t))〉 ∼

∆t→0

d
dt
〈log x(t)〉. (A30)

For n = 2 we obtain the second log-moment

∂

∂t
〈log2 x(t)〉 = ∂

∂t

∫ t

0
η(t− t′)

[
2
(

µ− σ2

2

)
〈log x(t′)〉+ σ2 〈log0 x(t′)〉

]
dt′ (A31)

i.e.,

〈log2 x(t)〉 = 〈log2 x(0)〉+
{

2
(

µ− σ2

2

)
〈log x(0)〉+ σ2

} ∫ t

0
η(t′) dt′

+ 2
(

µ− σ2

2

)2 ∫ t

0
η(t− t′)

[∫ t′

0
η(t′′) dt′′

]
dt′, (A32)

and the log-variance becomes

〈log2 x(t)〉 − 〈log x(t)〉2 = σ2
∫ t

0
η(t′) dt′

+

(
µ− σ2

2

)2 [
2
∫ t

0
η(t− t′)

(∫ t′

0
η(t′′) dt′′

)
dt′ −

(∫ t

0
η(t′) dt′

)2
]

. (A33)

Following the same procedure, we find the third (n = 3) and fourth (n = 4) log-moments,

〈log3 x(t)〉 = 〈log3 x(0)〉+ 3
{(

µ− σ2

2

)
〈log2 x(0)〉+ σ2〈log x(0)〉

}
I1(t)

+ 6
(

µ− σ2

2

){(
µ− σ2

2

)
〈log x(0)〉+ σ2

}
I2(t) + 6

(
µ− σ2

2

)3

I3, (A34)

〈log4 x(t)〉 = 〈log4 x(0)〉+ 2
{

2
(

µ− σ2

2

)
〈log3 x(0)〉+ 3σ2〈log2 x(0)〉

}
I1(t)

+ 6
{

2
(

µ− σ2

2

) [(
µ− σ2

2

)
〈log2 x(0)〉+ 2σ2〈log x(0)〉

]
+ σ4

}
I2(t)

+ 24
(

µ− σ2

2

)2 {(
µ− σ2

2

)
〈log x(0)〉+ 3σ2/2

}
I3(t) + 24

(
µ− σ2

2

)4

I4(t), (A35)

where

I1(t) =
∫ t

0
η(t1) dt1, (A36)

I2(t) =
∫ t

0
η(t− t1)

[∫ t1

0
η(t2) dt2

]
dt1, (A37)

I3(t) =
∫ t

0
η(t− t1)

{∫ t1

0
η(t1 − t2)

[∫ t2

0
η(t3) dt3

]
dt2

}
dt1, (A38)

I4(t) =
∫ t

0

(
η(t− t1)

∫ t1

0
η(t1 − t2)

{∫ t2

0
η(t2 − t3)

[∫ t3

0
η(t4) dt4

]
dt3

}
dt2

)
dt1. (A39)
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Appendix D. Fox H-Function

The Fox H-function is defined by [79]

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

]
= Hm,n

p,q

[
z

∣∣∣∣∣ (ap, Ap)

(bq, Bq)

]
=

1
2πı

∫
Ω

θ(s)zs ds,

(A40)

where θ(s) is given by θ(s) =
∏m

j=1 Γ(bj−Bjs)∏n
j=1 Γ(1−aj+Ajs)

∏
q
j=m+1 Γ(1−bj+Bjs)∏

p
j=n+1 Γ(aj−Ajs)

, 0 ≤ n ≤ p, 1 ≤ m ≤ q, ai, bj ∈ C,

Ai, Bj ∈ R+, i = 1, ..., p, j = 1, ..., q. The contour Ω starting at c− ı∞ and ending at c + ı∞ separates
the poles of the function Γ(bj + Bjs), j = 1, ..., m from those of the function Γ(1− ai − Ais), i = 1, ..., n.

A special case of the Fox H-function is the exponential function [79],

e−z = H1,0
0,1

[
z

∣∣∣∣∣ −(0, 1)

]
. (A41)

The inverse Laplace transform of the Fox H-function reads [79]

L −1

[
s−ρ Hm,n

p,q

[
a sσ

∣∣∣∣∣ (ap, Ap)

(bq, Bq)

]]
(t) = tρ−1 Hm,n

p+1,q

[
a
tσ

∣∣∣∣∣ (ap, Ap), (ρ, σ)

(bq, Bq)

]
. (A42)

The Fox H-functions have the following property [79]

zk Hm,n
p,q

[
z

∣∣∣∣∣ (ap, Ap)

(bq, Bq)

]
= Hm,n

p,q

[
z

∣∣∣∣∣ (ap + kAp, Ap)

(bq + kBq, Bq)

]
. (A43)
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