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Abstract
We study Brownian motion in a confining potential under a constant-rate reset-
ting to a reset position x0. The relaxation of this system to the steady-state
exhibits a dynamic phase transition, and is achieved in a light cone region which
grows linearly with time. When an absorbing boundary is introduced, effecting
a symmetry breaking of the system, we find that resetting aids the barrier escape
only when the particle starts on the same side as the barrier with respect to the
origin. We find that the optimal resetting rate exhibits a continuous phase transi-
tion with critical exponent of unity. Exact expressions are derived for the mean
escape time, the second moment, and the coefficient of variation (CV).

Keywords: diffusion, resetting, barrier escape, first-passage

(Some figures may appear in colour only in the online journal)

1. Introduction

The first-passage time measures the time of first-crossing of a preset value x0 for a process x(t)
[1]. For continuous processes this time is equivalent to the time of first-arrival or first-hitting [2].
The concept of first-passage time plays a central role in the description of molecular reaction
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[1, 3–5], specifically in gene regulation [6–9], as well as in animal search and random target
search processes [10–12] and disease spreading [13, 14], to name but a few applications. A
particular form of the first-passage time concept is the scenario of barrier crossing, in which
a particle starts in a potential well, and the escape time up to a given point x0 away from
the starting position is sought [15, 16]. Barrier crossing is an intrinsic process in chemical
reactions, during which typically an activation energy barrier needs to be crossed [17]. In this
scenario the approach to the target, typically represented by an absorbing boundary condition
or a δ-sink [2], in the crossing dynamics is suppressed by an Arrhenius–Boltzmann factor,
for instance, seen in the Kramers rate r ∝ exp(−βΔV) for barrier crossing, where β/(kBT) is
the Boltzmann factor at temperature T and ΔV is the potential energy difference needed to be
overcome by the test particle [16].

Restart is a natural step in many search processes, and it is one of the go-to steps which
is taken every now and then. For instance, a foraging bumblebee or a hunting group of lions
regularly return to their nest or water hole. Humans searching for an item also often restart their
search. A natural question that arises in this context is whether restarts expedite the completion
of the search process, or rather tend to delay it. This strategy of intermittent search with restart
has decades of history ranging from stochastic algorithms [18–20], chemical reactions [21],
human behaviour [22], foraging [23], polymer translocation [24], catastrophes in population
dynamics [25–27], but also queueing theory [28, 29], etc. Given the ubiquity of random search
processes arising in natural and artificial settings the significance of restarts in completion of
search processes cannot be overemphasised.

Especially in the context of stochastic processes and random searches the term ‘resetting’
or ‘stochastic resetting’ has become a standard term. Resetting has been extensively studied in
the physics literature and continues to date to be one of the most researched topics in nonequi-
librium statistical physics [30]. For example, a one-dimensional Brownian motion continues
to grow in space, in that the width of the Gaussian position distribution grows with time as

√
t.

As a consequence, the system does not relax. However, when resetting is introduced, pulling
the Brownian particle back to its initial position every now and then, the system relaxes to a
nonequilibrium steady state [31]. Resetting not only affects relaxation, it also has significant
effects on the first-passage properties of a Brownian particle. Continuing with the example of
one-dimensional Brownian motion, but now on a semi-infinite line, the mean escape time to
the absorbing boundary is infinity [1]. However, resetting causes the mean time to escape to be
finite [31]. Furthermore, there exists an optimal resetting rate at which the mean escape time
is minimal, and for that value of the resetting rate the relative standard deviation of the first
passage times is unity, a universal feature of optimally restarted processes [32].

The fact that a system evolves via its natural dynamics between two resetting events leads
to a fundamental relation between the completion times in the presence of resetting to that in
the absence of any resetting. This observation has been demonstrated on multiple occasions
when addressing diffusion under stochastic resetting [33–41], specifically including resetting
on comb-like structures [42, 43], scaled Brownian motion with resetting [44], random search
for several targets under resetting [45], and diffusion processes with non-instantaneous reset-
ting [46, 47]. In addition to representing a random walk-mediated search and a nonequilibrium
process, diffusion under resetting also connects to one of the most central topics in equilibrium
statistical physics, namely, critical phenomena [48–53]. This observation has been exemplified
on numerous instances in the resetting literature [54–57].

The significance of the connection between the properties of a stochastic process with and
without reset lies in the fact that resetting expedites the completion of a process only if its
counterpart in the absence of resetting exhibits significant fluctuations in the statistics of first
passage times [58] (compare [59] and below). In other words, resetting is useful if and only if
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the coefficient of variation (CV), the relative standard deviation of the first-passage times, in
the absence of resetting is greater than unity [60]. Notwithstanding the universal laws govern-
ing stochastic dynamics under reset, specific cases addressing Brownian motion in a potential
under reset have been relatively few, for example, diffusive motion under reset in presence
of a drift [61], a logarithmic potential [62], confining potential [63], harmonic potential [64],
etc. One of the most interesting cases of Brownian motion in a potential well is a piecewise
linear potential well [65]. The primary advantage of the piecewise linear potential scenario
lies in its mathematical simplicity, making it fully tractable analytically. Furthermore, the
problem of Brownian motion in a potential well connects to the pioneering work of Kramers’
in the above-mentioned barrier crossing scenario [15], and it addresses rates of chemical reac-
tions [17, 66], which further was extended to problem with anomalous kinetics [67, 68]. And
with resetting being an integral entity in many chemical reaction systems, for example, the
renowned Michaelis–Menten reaction scheme [69, 70], the question of addressing the effects
of resetting on Brownian motion in a potential well becomes very relevant. Motivated by this
observation, we address in this paper the problem of a Brownian motion in a piecewise linear
potential subject to constant rate resetting. One of the main results of this work is that reset-
ting aids in barrier escape if and only if the reset location lies on the same side as the barrier.
Moreover, we demonstrate that the optimal resetting rate shows a continuous phase transition
with critical exponent of unity.

The paper is organised as follows: in section 2 we study the statistics of a Brownian motion
moving in a piecewise linear confining potential, and look at both its transient and steady
state behaviour under resetting. In the following section 3, we look at the transition to the
steady state, i.e., starting with a given location and knowing the steady state of the problem,
how does the system relax to its long-time limit? We find that there is a light cone region in
space time in which the steady state is achieved, and the size of this region grows linearly in
time. Next we move on to the Kramers’ problem under resetting in section 4, where we analyse
the corresponding system in the absence of resetting and assess the domain of parameter space
in which resetting can expedite the barrier crossing. Finally, we summarise our findings in
section 5.

2. Resetting dynamics in a potential

For a Brownian motion in a potential V(x) the Fokker–Planck equation describing the dynam-
ics of the probability density function (PDF) pr(x, t) under a constant resetting rate r reads
[36, 71, 72]

∂

∂t
pr(x, t) =

(
∂

∂x
V ′(x) + D

∂2

∂x2

)
pr(x, t) − rpr(x, t) + rδ(x − x0), (1)

where here we choose the potential function to be the piecewise linear function

V(x) =

{
−U0x, x � 0

U0x, 0 � x
, (2)

in the above equations U0 > 0, and x = x0 > 0 is the location of reset. Here we assume that the
particle is reset to its initial position x0 with a constant rate r (the times between two consecutive
resetting events are taken from an exponential distribution with mean 1/r). Each resetting event
to the initial position x0 renews the process at a rate r, i.e., between two consecutive renewal
events, the particle undergoes diffusion in the non-monotonic potential (2). The third term on
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the right-hand side of equation (1) represents the loss of probability from the position x due
to reset to the initial position x0, while the fourth term is the gain of probability at x0 due to
resetting from all other positions.

2.1. Solution in Laplace domain

The Fokker–Planck equation (1) in Laplace domain reads

sp̃r(x, s) − pr(x, 0) =

(
∂

∂x
V ′(x) + D

∂2

∂x2

)
p̃r(x, s) − rp̃r(x, s)

+
r
s
δ(x − x0), (3)

with pr(x, 0) = δ(x − x0), where p̃r(x, s) = L {pr(x, t)}(s)=
∫∞

0 pr(x, t) exp(−st)dt is the
Laplace transform pair of pr(x, t). The solution to the above equation reads

p̃r(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

a+em+x , x � 0,

b+e−m+x + b−e−m−x , 0 � x � x0,

c+e−m+x , x0 � x,

(4)

where m± = U0
2D (1 ±Δr+s) are the roots of the auxiliary equation 0 = m2 − U0

D m − r+s
D , and

Δr+s =

√
1 +

4D(r + s)
U2

0

. (5)

Now, continuity of the solution at the points x = 0 and x = x0, i.e., limx→0+ p̃r(x, s) =
limx→0− p̃r(x, s) and limx→x+0

p̃r(x, s) = limx→x−0
p̃r(x, s) fixes two relations between the param-

eters,

a+ = b+ + b−, (6a)

c+ = b+ + b− exp([m+ − m−]x0). (6b)

In addition to the continuity of the solution at the resetting point and turning point of the poten-
tial, the derivative of p̃(x, s) exhibits a discontinuity at the two points. Firstly, the discontinuity
at the origin arises due to the singular nature of the potential at the turning point and is obtained
by integrating equation (3), yielding

0 =

(
∂

∂x
p̃r(x, s)

∣∣∣∣
0+

− ∂

∂x
p̃r(x, s)

∣∣∣∣
0−

)

+
1
D

(
V ′(x) p̃r(x, s)|0+ −V ′(x) p̃r(x, s)|0−

)
, (7)

such that

2

(
m+ − U0

D

)
b+ =

(
2U0

D
− (m+ + m−)

)
b−. (8)

The nature of the discontinuity at the initial location x = x0 is, however, different, as it is not
due to the singular nature of the potential at the origin but arises due to the degenerate nature
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of the distribution at t = 0,

0 =

(
∂

∂x
p̃r(x, s)

∣∣∣∣
x+0

− ∂

∂x
p̃r(x, s)

∣∣∣∣
x−0

)
+

1
D

(
V ′(x) p̃r(x, s)|x+0 V ′(x) p̃r(x, s)|x−0 +

r + s
sD

,

⇒ b− =
r + s
sD

em−x0

m+ − m−
. (9)

Inserting the values of the parameters we have the solution for the PDF under resetting in
Laplace domain,

p̃r(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r + s
s

1
U0(Δr+s − 1)

exp

[
U0

2D
{(x + x0) +Δr+s(x − x0)}

]
, x � 0,

r + s
s

1
U0Δr+s(Δr+s − 1)

exp

[
U0

2D
{(1 −Δr+s)x0 − x}

]

×
[
Δr+s exp

(
U0xΔr+s

2D

)
− 2 sinh

(
U0xΔr+s

2D

)]
, 0 � x � x0,

r + s
s

1
U0Δr+s(Δr+s − 1)

exp

[
U0

2D
{x0 − (1 +Δr+s)x}

]

×
[
Δr+s exp

(
U0x0Δr+s

2D

)
− 2 sinh

(
U0x0Δr+s

2D

)]
, x0 � x.

(10)

From the solution it is clear that two cusps are present, one at the origin (x = 0) due to the
singular nature of the potential, and another one at the initial position (which is also the loca-
tion of reset x0), at which the first derivatives are discontinuous. Of course, this does not
come as a surprise as resetting introduces a source of probability at x0, which is reflected
as a cusp in the stationary distribution. We see that when the location of the reset is shifted to
the origin, the intrinsic symmetry of the problem with respect to inversion of axis is restored.
This follows easily by substituting x0 = 0 in result (10),

p̃r(x, s) =
r + s

s
1

U0(Δr+s − 1)
× exp

(
−U0

2D
(1 +Δr+s)|x|

)
, (11)

which in absence of potential reduces to the well-known result p̃r(x, s) =

(2s)−1
√

(r + s)/D exp
(
−
√

(r + s)/D|x|
)

. The Details of the solution for the symmet-

ric case are provided in appendix A, and the asymmetric case follows similarly. Furthermore,
the limiting form of the solutions p̃r(x, s) in the limit s → 0 leads to the steady state
of the system [71]. A graphical representation of solution (10) is shown in figure 1.
From figures 1(a)–(c) one can see the transition dynamics to the steady state for different
values of the resetting parameter r, where the black dotted lines corresponds to the time
moment t = 10. These black dotted lines for t = 10 are exactly the same as the stationary
distribution obtained in [71], as shown in figure 1(d). The two cusps of the PDF at the origin
x = 0 and at the initial/resetting position x0, whose appearance was discussed above, are
clearly observed from the figure.

From solution (10) we calculate the mean squared displacement (MSD)
〈x2(t)〉=

∫∞
−∞ x2 pr(x, t)dx, which in the Laplace domain reads

5
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Figure 1. PDF (10) for D = 0.5, U0 = 1, x0 = 1, t = 0.3 (blue solid line), t = 0.5
(red dashed line), t = 10 (black dotted line), and (a) r = 0.6, (b) r = 1, (c) r = 1.4.
Panel (d) corresponds to the stationary PDF for the case D = 0.5, U0 = 1, x0 = 1, and
r = 0.6 (blue solid line), r = 1 (red dashed line), r = 1.4 (black dotted line) obtained in
[71]—for t = 10, the PDF (10) already approaches these stationary distributions, as it
should be for the long time limit. The PDFs are calculated using the numerical inverse
Laplace transform algorithm in Mathematica [73].

〈x̃2(s)〉 =
∫ 0

−∞
x2 p̃r(x, s)dx +

∫ x0

0
x2 p̃r(x, s)dx +

∫ ∞

x0

x2 p̃r(x, s)dx

=
x2

0

s
+

2(D − U0x0)
s(r + s)

− U2
0

s(r + s)2
exp

(
U0x0(1 −Δr+s)

2D

)

×
[

1 +Δr+s − 2 exp

(
−U0 x0(1 −Δr+s)

2D

)]
. (12)

From these general results we analyse the limiting cases of the MSD. For the symmetric case
(x0 = 0) equation (12) reduces to the expression

〈
x̃2(s)

〉
=

8D2

U2
0

s−1(√
1 + 4D(r+s)

U2
0

+ 1

)2 , (13)

and in absence of the potential to
〈

x̃2(s)
〉
=

x2
0
s + 2D s−1

r+s , i.e.,
〈

x2(t)
〉
= x2

0 +
2D
r

(
1 − e−rt

)
.

The long time limit (t →∞, i.e., s → 0) of (12) yields a saturation of the MSD,
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Figure 2. MSD (12) for (a) r = 0.25 and x0 = 0 (blue solid line), x0 = 1 (red dashed
line), x0 = 1.5 (black dotted line); (b) x0 = 1 and r = 0.6 (blue solid line), r = 1 (red
dashed line), r = 1.4 (black dotted line). We set D = 0.5, U0 = 1.

〈x2(t)〉 ∼ x2
0 +

2(D − U0 x0)
r

− U2
0

r2
exp

(
U0x0(1 −Δr)

2D

)

×
[

1 +Δr − 2 exp

(
−U0x0(1 −Δr)

2D

)]
, (14)

which for x0 = 0 turns into 〈x2(t)〉 ∼ r−2
[
2Dr − U2

0(Δr − 1)
]
, where the symbol ∼

means asymptotic equivalence. Here we apply the final value theorem limt→∞ 〈x2(t)〉 =
lims→0 s〈x̃2(s)〉 to equation (12). A graphical representation of the MSD for different initial
positions x0 and different resetting rates is shown in figure 2, from where one observes the
transition to the plateau in the long time limit.

3. Transition to the steady state

3.1. The symmetric case: x0 = 0

Resetting to a fixed initial location introduces a nonequilibrium steady state in the system
to which it relaxes in the long time limit. However, this relaxation is often far from triv-
ial. The existence of a dynamical transition in the relaxation behaviour under resetting was
addressed in [74]. As shown there the nonequilibrium steady state is established in an inner core
region [−ξ(t), ξ(t)] around the resetting point, which we take to be at the origin x = 0. Outside
this core region the system is still transient. As the authors show the relaxation to the fixed
point, in systems with x →−x symmetry, is conveniently captured by the length scale x ∼ ξ(t),
defined in terms of the large deviation function (LDF) Ir(w),

pr(x, t) ∼ exp

(
−t Ir

(
x

ξ(t)

))
, (15)

while the length scale grows algebraically, ξ(t) ∼ t1/ν , with the dynamical exponent ν. So
the problem of addressing the relaxation to the steady state boils down to calculating the
LDF for the problem. The LDF, also known as the rate function, is defined either in terms
of the probability distribution of the stochastic process (cf equation (15)) or in terms of the
generating function and Legendre transform (see, for example, references [30, 75]). The
generating function formalism is particularly advantageous when looking at the asymptotic
behaviour of additive functionals, such as the area traversed under a Brownian excursion.
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However, in the present problem we are interested in the relaxation behaviour of the system
under stochastic resetting, and hence, we evaluate the LDF following equation (15). To pro-
ceed with this analysis we employ the renewal equation [44, 76] connecting the density pr(x, t)
in the presence of resetting with its counterpart in absence of resetting p0(x, t),

pr(x, t) = e−rt p0(x, t) +
∫ t

0
dt′r e−rt′ p0(x, t′). (16)

Here the first term describes the contribution to pr(x, t) of trajectories that have not been reset
up to time t, while the second term is the contribution of resets to the PDF. Furthermore, the
renewal equation makes it very conspicuous that the dynamical behaviour under resets is con-
trolled by the density in the absence of any resettings. Now, for the problem under consideration

p0(x, t) =
U0

4D
e−U0|x|/2D

(
1 +

|x|/t
U0

)
e−tΦ(1,x/t), (17)

where Φ(1, x/t) = U2
0/4D + x2/4Dt2 is the saddle point approximation to the density profile

(see appendix B for details), and we have made the additional assumption that the Brownian
particle initially starts at the origin, x0 = 0. Hence, the first term of the renewal equation (16)
is already known. In order to assess the second term, we need to evaluate the integral of p0(x, t)
modulated by the density of the reset intervals. It reads (see appendix B),

∫ t

0
dt′r e−rt′ p0(x, t′) = t

∫ 1

0
dτ

(
1 +

w/τ

U0

)
e−tΘ(τ ,w)

≈ t

√
2π(1 + w/U0τ0)
|tΘ′′(τ0,w)|1/2

e−tΘ(τ0,w)

∼ exp

(
−U0

2D
(1 +Δr)|x|

)
, (18)

where w = |x|/t and t′ = tτ , and the final form is obtained by employing the sad-
dle point method [77] and the assumption that the saddle point of the function
Θ = Θ(τ ,w) = τ [r + (w/τ )/(2D/U0) +Φ(1,w/τ )], defined by 0 = [dΘ(τ ,w)/dτ ]|τ=τ0

occurs within the unit interval. The symbol ≈ shows that the integral is approximated (by
using the saddle point method). The physical implication of this result is that successive reset
events prompt the PDF pr(x, t) to relax to a steady profile determined exclusively by the reset-
ting rate r. However, this profile is limited to a ‘light cone’ region demarcated by the saddle
point τ 0, i.e., for |x| < U0Δrt. The linear growth of this region implies that eventually relax-
ation is achieved on the entire stretch of the axis. However, at any intermediate time, the region
outside the light cone region has not yet relaxed. In other words, if the saddle point occurs out-
side the unit interval, then the minimum of Θ(τ ,w) at the end of the interval at τ = 1 makes
the dominant contribution to the integral. These results are succinctly summarised as

pr(x, t) ∼ e−t Ir(x/t), (19)

where the LDF reads

Ir(x/t) =

⎧⎪⎨
⎪⎩

U0

2D
(1 +Δr)|x|/t, |x| < U0Δrt

r +
U2

0

4D
+

x2/t2

4D
+

U0

2D
|x|
t

, |x| > U0Δrt
(20)

8
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Figure 3. Graphs of the logarithm of the distribution function scaled by time,
(1/t) ln pr(x, t), vs x/t for Brownian motion in the potential V(x) = U0|x|, for differ-
ent resetting rates: (a) r = 1/4, (b) r = 1/2, (c) r = 1, (d) r = 2. The other parameters
are U0 = 1 and D = 1. The numerical calculations are performed by solving the equiv-
alent Langevin equation, and the trajectories are recorded from t = 0.1 to t = 5 in units
of Δt = 0.1. The distributions are calculated using the numerical inverse Laplace trans-
form algorithm in Mathematica [73]. The black dotted line indicates the LDF calculated
in equation (20) for different rates r for the case |x| < U0Δrt. The red dashed line is
the base curve to which all the time-dependent forms collapse, following equation (20)
for |x| > U0Δrt. The inset in figure shows a blowup of the solution near the origin,
exhibiting exponentially decaying tails at long times.

This result also fixes the critical exponent, ν = 1, implying that the relaxation (ξ(t) ∼ t)
occurs faster compared to diffusion (ξ(t) ∼

√
t). Numerical calculations of the PDF pr(x, t) via

Laplace inversion corroborate our analytical results. For parameter values D = 1 and U0 = 1
we plot (1/t) ln pr(x, t) as a function of x/t for different values of the resetting rate r in figure 3.
The collapse of the curves pr(x, t) at different times t onto a single master curve implies
that there is a qualitative change in the nature of the distribution, demarcating the regions in
which relaxation has been achieved from those in which the system is still in transient. Alter-
natively, if we look at a fixed location on the real line, there is a change in the nature of the
PDF at that location as a function time. In other words, the system relaxes from its transient
behaviour to its fixed point undergoing a dynamical phase transition. Here we note that for
U0 = 0 the LDF coincides with the one obtained in [74] for a free Brownian motion with
stochastic resetting.

3.2. The asymmetric case: x0 = 0

Let us now relax the condition that the reset location is placed symmetrically between the
two branches of the potential, i.e., x0 is no longer zero. In order to analyse the relaxation

9
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behaviour in the asymmetric case with x0 > 0, we need to know the density profile p̃0(x, s)
in the absence of resetting, which follows from equation (10) in a straightforward manner
using r = 0. Furthermore, the analysis of the asymmetric case is analogous to symmetric case
discussed in the previous subsection, and hence we describe the essential steps addressing the
spatial region x � x0, in which the density profile reads

p̃x�x0
0 (x, s) =

e
U0
2D [x0−(1+Δs)x]

U0Δs(Δs − 1)
[Δse

U0 x0Δs
2D − 2 sinh(U0x0Δs/2D)]

=
U0

4D
e−

U0
2D (x−x0) 1

s

[
(Δs + 1)e−

U0
2D Δs(x−x0)

− Δs + 1
Δs

e−
U0
2D Δs(x−x0) +

Δs + 1
Δs

e−
U0
2D Δs(x+x0)

]

=
U0

4D
e−

U0
2D (x−x0) 1

s

[{
1 − ∂

∂ U0
2D (x − x0)

}
e−

U0
2D Δs(x−x0)

−
{

1 − ∂

∂ U0
2D (x − x0)

}
e−

U0
2D Δs(x−x0)

Δs

+

{
1 − ∂

∂ U0
2D (x + x0)

}
e−

U0
2D Δs(x+x0)

Δs

]
. (21)

From the inverse Laplace transform L−1{exp(−U0Δs(x − x0)/[2D])/Δs} =
U0/(2

√
Dπt) exp(−[U2

0/(4D)]t − (x − x0)2/[4Dt]) (use the shift rule of the Laplace transform,
L{e−at f (t)} = F̃(s + a) with F̃(s) = L{ f (t)} and the formulaL−1 {s−1/2 exp(−as1/2)

}
=

(πt)−1/2 exp(−a2/[4t]) (see p. 258, formula 5.87 from reference [86]), the time domain
representation of the density follows in the form

px�x0
0 (x, t) =

U0

4D
e−

U0
2D (x−x0)

[{
1 − ∂

∂ U0
2D (x − x0)

}∫ t

0
dt′

x − x0

2
√
πt′3

e−
U2

0
4D t′− (x−x0)2

4Dt′

−
{

1 − ∂

∂ U0
2D (x − x0)

}∫ t

0
dt′

U0

2
√
πDt′

e−
U2

0
4D t′− (x−x0)2

4Dt′

+

{
1 − ∂

∂ U0
2D (x + x0)

}∫ t

0
dt′

U0

2
√
πDt′

e−
U2

0
4D t− (x+x0)2

4Dt

]

≈ U0

4D
e−

U0
2D (x−x0)

(
1 +

x + x0

U0t

)
e−tΦ(1,

x+x0
t ), (22)

where we used the saddle point approximation in evaluating the last step, and

Φ[τ , a(x,x0)
t ] =

U2
0

4Dτ + [a(x,x0)/t]2

4Dτ
with a(x, x0) = x ± x0. To summarise, the long time behaviour

10
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of the density profile in absence of resetting p0(x, t) reads

p̃0(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U0

4D

(
1 +

x0 − x
U0t

)
e−t[−U0

2D (
x+x0

t )+Φ(1,
x0−x

t )], x � 0,

U0

4D

(
1 +

x + x0

U0t

)
e−t[−U0

2D (
x0−x

t )+Φ(1,
x+x0

t )], 0 � x � x0,

U0

4D

(
1 +

x + x0

U0t

)
e−t[

U0
2D (

x−x0
t )+Φ(1,

x+x0
t )], x0 � x.

(23)

A casual look at equation (23) might tempt us to say that the long time behaviour of p0(x, t)
is identical in regions x ∈ [0, x0] and x � x0. However, it is to be noted that the argument of
the exponential function behaves differently in the two regions. Furthermore, for x0 = 0 the
present result reduces to the previous density profile.

In order to understand the relaxation behaviour in presence of resetting for the asymmetric
case, we once again invoke the renewal equation (16). As the nature of calculations is almost
identical to the previously discussed symmetric case, we just quote the end results for the LDF
defined in equation (19),

pr,x0 (x, t) ∼ e−t Ir,x0 (x/t), (24)

wherein the subscript x0 is introduced as a reminder of the asymmetry. Furthermore, it is only
the integral term of the renewal equation which contributes to the density profile pr,x0 (x, t) for
reasons discussed in the previous subsection. Employing the saddle point approximation to
evaluate the integral term in the renewal equation, we have:

(a) x � 0

Ir,x0 (x/t) =

⎧⎪⎨
⎪⎩

U0

2D
x0

t
(Δr − 1) − U0

2D
x
t

(Δr + 1), τ0 < 1,

r +
U2

0

4D
+

1
4D

(
x − x0

t

)2

− U0

2D
x + x0

t
, τ0 > 1,

(25)

where τ0U0Δr =
x0−x

t .
(b) 0 � x � x0

Ir,x0 (x/t) =

⎧⎪⎨
⎪⎩

U0

2D
x0

t
(Δr − 1) +

U0

2D
x
t

(Δr + 1), τ0 < 1,

r +
U2

0

4D
+

1
4D

(
x + x0

t

)2

− U0

2D
x0 − x

t
, τ0 > 1,

(26)

where τ0U0Δr =
x0+x

t .
(c) x � x0

Ir,x0 (x/t) =

⎧⎪⎨
⎪⎩

U0

2D
x0

t
(Δr − 1) +

U0

2D
x
t

(Δr + 1), τ0 < 1,

r +
U2

0

4D
+

1
4D

(
x + x0

t

)2

+
U0

2D
x − x0

t
, τ0 > 1,

(27)

where τ0U0Δr =
x0+x

t .

For x0 = 0, the region x ∈ [0, x0] does not contribute and the present result reduces to the
previous case, with the LDF following equation (20).

11
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Figure 4. V-shaped potential centred about x = 0 with an absorbing boundary at x = L.
The initial/resetting position of the particle is at x = x0.

4. First-escape times from a V-shaped potential

In order to study the escape properties of a Brownian motion under resetting in a V-
shaped potential, we introduce an absorbing boundary at a finite location from the origin, at
x = L (figure 4). The backward equation for the survival probability qr(x, t) of a diffusive par-
ticle in a potential at time t, having started at x0 at t = 0 with resetting to the initial position
reads [78]

∂

∂t
qr(x, t) =

(
−V ′(x)

∂

∂x
+ D

∂2

∂x2

)
qr(x, t) − rqr(x, t) + rqr(x0, t), (28)

with the potential V = V(x) given in (2). The initial condition is qr(x, 0) = 1 and the boundary
condition qr(L, t) = 0. One of the important questions that arise when considering resetting
is whether resetting facilitates the escape or delays it. The answer to this question comes
from the CV of the first-passage times in the absence of resetting [60]. Resetting is advanta-
geous when CV > 1. To understand this, we note that when CV, the ratio of standard deviation
to mean, is larger than one, the fluctuations of the associated first-passage times about their
mean are fairly strong, and resetting can help tame some of the fluctuations, aiding in a faster
escape. Before considering resetting, let us briefly look at the case without resetting, i.e., r = 0.

4.1. The case without resetting (r = 0)

In absence of resetting, the backward equation reads

∂

∂t
q(x, t) =

(
−V ′(x)

∂

∂x
+ D

∂2

∂x2

)
q(x, t), (29)

where q(x, t) is the survival probability in absence of resetting. The solution to the above
equation in Laplace domain reads

q̃(x, s) =

⎧⎪⎨
⎪⎩

a−e−m−x +
1
s

, x � 0

b+em+x + b−em−x +
1
s

, 0 � x � L,
(30)

12
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where m± = U0
2D (1 ±Δs) and Δs =

√
1 + 4sD

U2
0

. Continuity of the solution and its derivative at

x = 0 gives us the following equations connecting the parameters,

a− = b+ + b−, (31a)

−m−a− = b+m+ + b−m−. (31b)

Using the absorbing boundary at x = L results in

b− =
1
s

(
2m−em+L

m+ + m−
− em−L

)−1

=
1
s

exp
(
−U0L

2D

)
2 sinh

(
U0LΔs

2D

)
−Δs exp

(
U0LΔs

2D

) , (32a)

b+ = − 2m−
m+ + m−

b− =
Δs − 1

s

exp
(
−U0L

2D

)
2 sinh

(
U0LΔs

2D

)
−Δs exp

(
U0LΔs

2D

) , (32b)

a− = b+ + b− =
Δs

s

exp
(
−U0L

2D

)
2 sinh

(
U0LΔs

2D

)
−Δs exp

(
U0LΔs

2D

) . (32c)

Substituting this into equation (30) leads to the expression for the survival probability q̃(x, s).
Now, if the distribution of the first-passage times is F, in Laplace domain we have

F̃(x, s) = 1 − sq̃(x, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δs exp
(
−U0

2D{L + x(1 −Δs)}
)

Δs exp
(

U0LΔs
2D

)
− 2 sinh

(
U0LΔs

2D

) , x � 0,

e
U0
2D (x−L)

Δs exp
(

U0xΔs
2D

)
− 2 sinh

(
U0xΔs

2D

)
Δs exp

(
U0LΔs

2D

)
− 2 sinh

(
U0LΔs

2D

) , 0 � x � L.

(33)

The piecewise nature of the distribution takes care of the initial location of the particle, and
gives us the probability that it is absorbed at x = L. Choosing the initial location of the particle
on the negative x-axis, we find that the mean escape time to the absorbing boundary is

〈τ (x, L)〉 = − lim
s→0

∂

∂s
F̃(x, s) =

2D
U2

0

[
e

U0L
D − 1 − U0

2D
(x + L)

]
, x < 0. (34)

Furthermore, we obtain

〈τ (x, L)〉 = 2D
U2

0

[
e

U0L
D − e

U0 x
D − U0

2D
(L − x)

]
, 0 < x < L. (35)

The second moment 〈τ 2(x, L)〉 = lims→0
∂2

∂s2 F̃(x, s) becomes

〈τ 2(x, L)〉 = 4D2

U4
0

{(
2 e

2U0L
D − e

U0L
D − 1

)

− U0

2D

[(
6 e

U0L
D − 1

)
L +

(
2 e

U0L
D − 1

)
x
]

+
U2

0

4D2
(x + L)2

}
, x < 0, (36)
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and

〈τ 2(x, L)〉 = 4D2

U4
0

{(
1 + 2 e

U0L
D

)(
e

U0L
D − e

U0 x
D

)

− U0

2D

[(
6 e

U0L
D − 2 e

U0 x
D + 1

)
L −

(
2 e

U0L
D + 2 e

U0 x
D + 1

)
x
]

+
U2

0

4D2
(L − x)2

}
, 0 < x < L. (37)

In order to evaluate the limits we have used the fact that for s approaching 0, Δs approaches
unity.

4.1.1. Coefficient of variation. The coefficient of variation (CV) of a random variable X is
defined as the ratio of its standard deviation to its mean, CV =

√
〈X2〉 − 〈X〉2/〈X〉. In the

context of first-passage times, the CV helps determine whether resetting can facilitate the com-
pletion of a stochastic process or rather slows it down [60]. In other words if the magnitude
of fluctuations is dominant relative to the mean, i.e., CV > 1, then resetting can be employed
to reduce these fluctuations, thereby aiding in the escape to an absorbing boundary. In con-
trast, CV < 1 means that resetting does not have any significant advantage. In order to address
this aspect, let us introduce dimensionless parameters μ = U0L

2D , the ratio of energy barrier to
temperature, and z = x

L , the dimensionless initial position in terms of the distance of the absorb-
ing wall from the origin. Furthermore, the dynamics of a Brownian particle governed by the
parameters D and U0 introduces a natural time-scale 2D/U2

0, in terms of which all relevant
times can be measured. Let us analyse the two cases with initial location on the negative and
positive x-axis, respectively.

(a) x < 0: in terms of the dimensionless parameters μ and z we have

〈τ (x, L)〉
2D/U2

0

= e2μ − 1 − μ(1 + z), (38a)

〈τ 2(x, L)〉
4D2/U4

0

=
(
2 e4μ − e2μ − 1

)
− μ

(
6 e2μ − 1

)
− μz

(
2 e2μ − 1

)
+ μ2(1 + z)2. (38b)

Now,

CV2 =
〈τ 2(x, L)〉
〈τ (x, L)〉2

− 1, (39)

and thus CV2 >=< 1 transforms to 〈τ 2(x, L)〉 − 2〈τ (x, L)〉2 >=< 0. Hence, the quantity of
interest is the difference of the moments, and the resulting equation will help us demarcate the
regions of the parameter space where resetting is useful. It is simpler to look at the equation
0 = 〈τ 2(x, L)〉 − 2〈τ (x, L)〉2, which, substituting the expressions for the two moments, reads

−μ2(1 + z)2 + μz
(
2 e2μ − 3

)
− μ

(
2 e2μ + 3

)
+ 3

(
e2μ − 1

)
= 0. (40)

With the coefficient of z2 having a negative sign, the parabola is concave downwards, and the
roots {z1(μ), z2(μ)} mark the regions of CV >< 1. The concavity of the curve implies that
CV > 1 for z1(μ) < z < z2(μ). However, for the physically interesting case μ > 1, i.e., the
barrier height exceeds thermal energy, none of the two roots exist for z < 0. This also implies
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Figure 5. (a) Demonstration of the solution z0 of equation (42), for the specific cases
μ = 2, 3, 4. The nonmonotonic behaviour of the zero crossing is clearly discernible from
these graphs. (b) Location of the zero of 〈τ 2(x, L)〉 − 2〈τ (x, L)〉2 for different values of
μ.

that fluctuations in the distribution of first passage time are not strong enough to warrant any
advantage when resetting is introduced in the dynamics of the system.

(b) 0 < x < L: For the initial position on the positive x-axis,

〈τ (x, L)〉
2D/U2

0

= e2μ − e2μz − μ(1 − z), (41a)

〈τ 2(x, L)〉
4D2/U4

0

=
(
2 e2μ + 1

) (
e2μ − e2μz

)
− μ

(
6 e2μ − 2 e2μz + 1

)
+ μz

(
2 e2μ + 2 e2μz + 1

)
+ μ2(1 − z)2. (41b)

The condition 0 = 〈τ 2(x, L)〉 − 2〈τ (x, L)〉2 for the case of the initial position in the interval
(0, L) is

− μ2(1 − z)2 + μz
(
6 e2μz − 2 e2μ + 1

)
− μ

(
2 e2μ + 2 e2μz + 1

)
+
(
e2μ − e2μz

) (
2 e2μz + 1

)
= 0. (42)

Now, for physically significant cases, μ > 1, and hence, we study the location of the zero z0

of 〈τ 2(x, L)〉 − 2〈τ (x, L)〉2 for a few representative values of the parameter μ in figure 5(a).
Studying the variation of e−2μz CV2 for different values of μ, it is clear that the location of zero
exhibits a nonmonotonic behaviour as a function of μ. To further corroborate this assertion,
we study in figure 5(b) the variation of z0(μ). It is observed from the figure that z0 varies
nonmonotonically as a function of the parameter μ, with the peak located around μ ≈ 2.83,
and with the corresponding value of the reset location reading z0 ≈ 0.1879. It also becomes
evident from the graphs that for z > z0, CV2 > 1. In other words, for resetting positions in the
interval z ∈ (z0, 1), resetting expedites the barrier escape to the absorbing wall at x = L.

4.2. The case with resetting (r > 0)

In the Laplace domain equation (28) now reads
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sq̃r(x, s) − 1 =

(
−V ′(x)

∂

∂x
+ D

∂2

∂x2

)
q̃r(x, s) − rq̃r(x, s) + rq̃r(x0, s), (43)

and thus

q̃r(x, s) =

⎧⎪⎨
⎪⎩

a−e−m−x +
1 + rq̃(x0, s)

r + s
, x � 0

b+em+x + b−em−x +
1 + rq̃(x0, s)

r + s
, 0 � x � L,

(44)

where m± = U0
D (1 ±Δr+s). Using the continuity of the survival probability and its derivative

at x = 0 along with the boundary condition q̃r(L, t) = 0 we have

a− =
1 + rq̃(x0, s)

r + s

Δr+s exp
(
−U0L

2D

)
2 sinh

(
U0LΔr+s

2D

)
−Δr+s exp

(
U0LΔr+s

2D

) , (45a)

b− =
1 + rq̃(x0, s)

r + s

exp
(
−U0L

2D

)
2 sinh

(
U0LΔr+s

2D

)
−Δr+s exp

(
U0LΔr+s

2D

) , (45b)

b+ =
1 + rq̃(x0, s)

r + s

(Δr+s − 1) exp
(
−U0L

2D

)
2 sinh

(
U0LΔr+s

2D

)
−Δr+s exp

(
U0LΔr+s

2D

) . (45c)

This allows us to write the survival probability q̃r under resetting in equation (44). Further-
more, for the case of resetting to the initial position, the survival probability can be determined
in a self-consistent manner. As we have seen earlier, resetting is not useful for motion starting
in the negative branch of the potential, and hence we do not pursue that case any further.
Conversely, for initial locations in the positive branch, there is a finite subset of the inter-
val [0, L], in which resetting expedites the barrier crossing. Furthermore, the distribution of
first-passage times F(x, t) in the absence of resetting (r = 0) is connected with the survival
probability under reset [32],

q̃r(x, s) =
1 − F̃(x, r + s)

s + rF̃(x, r + s)
, (46)

allowing us to calculate the mean escape time under resetting for the case 0 < x < L,

〈τr(x, L)〉 = 1 − F̃(x, r)

rF̃(x, r)

=
exp

(U0
2D [L − x]

) [
Δr exp

(
U0Δr L

2D

)
− 2 sinh

(
U0Δr L

2D

)]
r Δr exp

(U0
2DΔrx

)
− 2r sinh

(
U0 Δr x

2D

) − 1
r

=
1
r

(
eμ(1−z) fμ(1, r)

fμ(z, r)
− 1

)
, (47)

where we have reverted back to the dimensionless variables μ and z in the last line, with
fμ(z, r) = Δr eμzΔr − 2 sinh(μzΔr). We study the behaviour of the mean first-passage time
〈τ r(x, L)〉 as a function of the resetting rate r in figure 6 for μ = 2, We have also chosen the
natural time-scale of the system as 2D/U2

0 = 1, which fixes Δr =
√

1 + 2r. It is evident from
figure 6 that 〈τ r(x, L)〉 exhibits a nonmonotonic dependence on r only when the reset loca-
tion z = x/L is above a certain threshold z0(μ). Furthermore, in the region of reset locations,
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Figure 6. Mean first-passage time 〈τ r(x, L)〉 as a function of the resetting rate r, for
μ = 2. The nonmonotonic nature of the curve is evident from the figure. The dashed
line shows the mean first-passage time 〈τ (x, L)〉 in the absence of resetting.

i.e., for z ∈ (z0, 1), in which the mean escape time exhibits minima for a specific value of reset
rate r0, resetting indeed expedites the completion of the process, providing a significant advan-
tage over diffusion-driven escape. In order to further our understanding of this behaviour, we
study the behaviour of the extrema of the mean escape times.

To proceed let us look at the derivative of the mean escape time,

d
dr

〈τr(x, L)〉 = 1
Δr

d
dΔr

〈τr(x, L)〉

=
4

(Δ2
r − 1)2

[
1 − eμ(1−z) fμ(1, r)

fμ(z, r)

]

+
2 eμ(1−z)

Δr(Δ
2
r − 1)

gμ(1, r) fμ(z, r) − fμ(1, r)gμ(z, r)
f 2
μ (z, r)

, (48)

where gμ(z, r) = d
dΔr

fμ(z, r) = (μzΔr + 1)eμzΔr − 2 μz cosh(μzΔr). Now, at the location of

the minima, we have 0 = d
dr 〈τr(x, L)〉|r=r0 , implying that

2Δr0

(Δ2
r0
− 1)

[
fμ(1, r0)
fμ(z, r0)

− e−μ(1−z)

]
=

gμ(1, r0) fμ(z, r0) − fμ(1, r0)gμ(z, r0)
f 2
μ (z, r0)

.

(49)

In order to assess the dependence of the optimal resetting rate r0 on the reset position z we
study the zero crossings of the two curves for different values of the parameter μ in figure 7(a).
The nonmonotonic dependence on μ is observed here in the inset. In figure 7(b) we address
the nature of the transition of the optimal resetting rate r0 as function of the reset location z.
The location z0(μ) beyond which r0 > 0 is obtained by extrapolating the r0(z) curve leading to
z0(2) ≈ 0.1757(3), z0(3) ≈ 0.1895(3), and z0(4) ≈ 0.1804(3) (entry in the parenthesis repre-
sents uncertainty in the final digit). The μ-dependent critical point z0(μ) allows us to evaluate
the critical exponent associated with the transition,

r0 ∼ (z − z0(μ))b(μ), (50)
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Figure 7. (a) Variation of the optimal resetting rate r0 as a function of the reset location
z = x/L. The inset shows a blowup of the region near the origin implying a continu-
ous phase transition. (b) Phase transition of the optimal resetting rate r0, with the black
dashed line indicating slope 1.

with b(2) ≈ 0.979(4), b(3) ≈ 1.003(1), and b(4) ≈ 1.012(2). This implies that the optimal
resetting rate r0 exhibits a continuous phase transition with critical exponent b ≈ 1 [63].

5. Summary

We studied the effects of stochastic resetting on the motion and the escape dynamics of a Brow-
nian particle in a V-shaped confining potential. We found that resetting to a location other than
the minima of the potential breaks the symmetry of the problem, in that a new peak is intro-
duced in the PDF at the fixed reset location. Analysing the time dependent PDF we showed
that the system relaxes to a non-equilibrium steady state via a dynamical phase transition,
for which the LDF describing the transition exhibits a qualitative change in its behaviour.
This demarcates the ‘spacetime’ into a ‘light cone’ within which the steady state has been
achieved, and the size of this region grows linearly with time. In other words, relaxation to the
steady state takes place faster than diffusion. Next we addressed the barrier escape problem
when an absorbing barrier is introduced at a finite distance from the origin. We demonstrated
that in the absence of any resetting, the relative fluctuations in the first-passage times are higher
when the initial position is on the same side as the barrier, as compared to the opposite case.
This implies that resetting expedites the completion of the process only when the reset loca-
tion is on the same side as the absorbing wall. At an optimal rate, the mean escape time hits a
minimum, providing a clear advantage over purely diffusion-driven escape. Furthermore, the
optimal resetting rate exhibits a continuous transition as a function of the reset location, with
a critical exponent of unity.

The present work has implications towards our current understanding about resetting mech-
anisms employed to molecular reaction systems. Since in many intracellular processes, running
off at minute chemical concentrations, the first-reaction times are strongly defocused and the
involved characteristic time scales may be orders of magnitude apart [79–81], the use of the
mean reaction time is not justified and the full distribution of first-reaction times should be
found—as we did in the present work. The simple setting considered in our work has provided
us with an advantage to address the problem in an analytically tractable manner. However, we
point out that instantaneous resetting is, of course, an idealisation. In addition, a constant reset-
ting rate is one of the many possible mechanisms which can be employed to restart the motion.
Another possible realistic scenario is to study the motion of a Brownian particle in a symmetric

18



J. Phys. A: Math. Theor. 53 (2020) 505003 R K Singh et al

confining potential, that is switched on and off stochastically, leading to resetting of the parti-
cle to the origin [82]. Finally, we note that the potential benefit of resetting in a potential may
differ when the transport dynamics differs from Brownian motion in various anomalous diffu-
sion scenarios [83]. Another interesting problem could be the investigation of random search
process [84] in a confining potential and in the presence of a stochastic resetting. We plan to
cover these aspects in future works.
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Appendix A. Solution of equation (1) for resetting to the origin

Let us consider the case with x0 = 0. Therefore, equation (1) with an initial condition at the
origin, pr(x, t = 0) = δ(x), and in the presence of the V-shaped potential (2) in the Laplace
domain reads

sp̃r(x, s) − δ(x) = U0
∂

∂x

(
d|x|
dx

p̃r(x, s)

)
+ D

∂2

∂x2
p̃r(x, s)

− rp̃r(x, s) +
r
s
δ(x). (A.1)

Since the problem is symmetric with respect to x →−x, we substitute y = |x| (so y � 0) and
thus ∂

∂x f = [2θ(x) − 1] ∂
∂y f and ∂2

∂x2 f = 2δ(x) ∂
∂y f + ∂2

∂y2 f , to obtain

sp̃r(y, s) − δ(x) = 2U0 δ(x) p̃r(y, s) + U0
∂

∂y
p̃r(y, s) + 2Dδ(x)

∂

∂y
p̃r(y, s)

+ D
∂2

∂y2
p̃r(y, s) − rp̃r(y, s) +

r
s
δ(x). (A.2)

From here we obtain the system of equations

D
∂2

∂y2
p̃r(y, s) + U0

∂

∂y
p̃r(y, s) − (r + s) p̃r(y, s) = 0, (A.3)

(
2D

∂

∂y
p̃r(y, s) + 2U0 p̃r(y, s)

)∣∣∣∣
y=0

+
r
s
= −1. (A.4)

From (A.3) we find the solution in form

p̃r(y, s) = C(s) × exp

(
−U0

2D

[
1 +

√
1 +

4D(r + s)
U2

0

]
y

)
, (A.5)
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while from (A.4) we find the constant C(s),

C(s) =
s−1(r + s)

U0

[√
1 + 4D(r+s)

U2
0

− 1

] . (A.6)

Therefore, the solution becomes

p̃r(x, s) =
s−1(r + s)

U0

[√
1 + 4D(r+s)

U2
0

− 1

] × exp

(
−U0

2D

[
1 +

√
1 +

4D(r + s)
U2

0

]
|x|
)

, (A.7)

from where we find that it is normalised since

〈
x̃0(s)

〉
=

∫ ∞

−∞
p̃r(x, s)dx

=
4D
U2

0

s−1(r + s)[√
1 + 4D(r+s)

U2
0

− 1

][√
1 + 4D(r+s)

U2
0

+ 1

] =
1
s
. (A.8)

From the solution (A.7) in Laplace domain we have

p̃r(x, s) = p0(x, r + s) + s−1rp0(x, r + s), (A.9)

where

p̃0(x, r + s) =
1

U0

[√
1 + 4D(r+s)

U2
0

− 1

] × exp

(
−U0

2D

[
1 +

√
1 +

4D(r + s)
U2

0

]
|x|
)
. (A.10)

Therefore, the solution becomes

pr(x, t) = e−r t p0(x, t) +
∫ t

0
r e−rt′ p0(x, t′) dt′, (A.11)

where

p0(x, t) = L−1 { p̃0(x, s)}

= L−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

U0

[√
1 + 4Ds

U2
0

− 1

] × exp

(
−U0

2D

[
1 +

√
1 +

4Ds
U2

0

]
|x|
)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(A.12)

Multiplying and dividing this expression by (Δs + 1) yields (μ̄ = U0|x|
2D )

p0(x, t) =
U0

4D
e−μ̄L−1

[
s−1 exp

(
−μ̄

√
1 +

4Ds
U2

0

)]
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− U0

4D
e−μ̄ ∂

∂μ̄
L−1

[
s−1 exp

(
−μ̄

√
1 +

4Ds
U2

0

)]

=
U0

4D
e−μ̄

∫ t

0

|x|√
4πDt′3

e−
U2

0
4D t′− x2

4Dt′ dt′

− U0

4D
e−μ̄ ∂

∂μ̄

∫ t

0

|x|√
4πDt′3

e−
U2

0
4D t′− x2

4Dt′ dt′

=
1
2

e−μ̄

∫ t

0

μ̄√
4πDt′3

e
−

U2
0

4D t′− D

U2
0 t′

μ̄2

dt′

− 1
2

e−μ̄ ∂

∂μ̄

∫ t

0

μ̄√
4πDt′3

e
−

U2
0

4D t′− D

U2
0 t′

μ̄2

dt′, (A.13)

which together with equation (A.11) give the final result for the PDF.
In the long time limit (s → 0) one finds

lim
s→0

sp̃r(x, s) ∼ r

U0

[√
1 + 4Dr

U2
0

− 1

] × exp

(
−U0

2D

[
1 +

√
1 +

4Dr
U2

0

]
|x|
)

,

(A.14)

which, from the final value theorem limt→∞pr(x, t) = lims→0 sp̃r(x, s), gives the stationary
distribution

pr,st(x) =
r

U0

[√
1 + 4Dr

U2
0

− 1

] × exp

(
−U0

2D

[
1 +

√
1 +

4Dr
U2

0

]
|x|
)
.

(A.15)

A graphical representation of the PDF (A.7) is provided in figures A1(a) and (b).
From equation (A.7) we find the MSD

〈
x̃2(s)

〉
=

2(r + s)

U0s

[√
1 + 4D(r+s)

U2
0

− 1

]∫ ∞

0
x2 × exp

(
−U0

2D

[
1 +

√
1 +

4D(r + s)
U2

0

]
|x|
)

dx

=
32D3

U4
0

s−1(r + s)[√
1 + 4D(r+s)

U2
0

− 1

][√
1 + 4D(r+s)

U2
0

+ 1

]3

=
8D2

U2
0

s−1(√
1 + 4D(r+s)

U2
0

+ 1

)2 . (A.16)
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Figure A1. PDF (A.7) for (a) t = 1 and r = 0.1 (blue solid line), r = 1 (red dashed
line), r = 5 (black dotted line); (b) for r = 0.1 and t = 0.1 (blue solid line), t = 0.5
(red dashed line), t = 1 (black dotted line), t = 10 (yellow dot-dashed line), which
approaches the stationary distribution (A.15) (solid thin grey line). We note that the
y-axis is represented on a logarithmic scale. We set D = 1 and U0 = 1.

Figure A2. MSD (A.16) for r = 0.1 (blue solid line), r = 1 (red dashed line), r = 5
(black dotted line). We set D = 1 and U0 = 1.

From the final value theorem, the long time limit (t →∞, i.e., s → 0) reveals the saturation to
the plateau value

〈
x2(t)

〉
∼ 8D2

U2
0

1(
1 +

√
1 + 4Dr

U2
0

)2 , (A.17)

while the short time limit (t → 0, i.e., s →∞) shows normal diffusion,

〈
x2(t)

〉
∼ 2DL−1

⎡
⎣ s−1

s + r +
U2

0
4D

⎤
⎦ =

2D

r +
U2

0
4D

⎡
⎢⎢⎣1 − e

−

⎛
⎝r+

U2
0

4D

⎞
⎠t

⎤
⎥⎥⎦ ∼ 2Dt,

(A.18)
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where we applied the Tauberian theorem [85]. A graphical representation of the MSD is shown
in figure A2.

In absence of the potential, U0 = 0, we have

p̃r(x, s) =
1

2
√

D
s−1(r + s)1/2 × exp

(
−
√

r + s
D

|x|
)

, (A.19)

while the MSD becomes

〈
x2(t)

〉
= 2DL−1

[
s−1

s + r

]
=

2D
r

(
1 − e−rt

)
, (A.20)

as it should be for free diffusion with stochastic resetting [31].

Appendix B. Calculation of the LDF

The renewal equation (16) makes it clear that a complete understanding of motion in absence
of any resetting is a prerequisite to fathom the dynamics under reset. The PDF in absence of
any resetting is obtained by substituting r = 0 in equation (11), such that

p̃0(x, s) =
1

U0(Δs − 1)
exp

[
−U0

2D
(1 +Δs)|x|

]

=
U0

4D
exp

(
−U0

2D
|x|
)

1
s

[
1 − ∂

∂( U0
2D |x|)

]
exp

(
−U0

2D
|x|Δs

)
. (B.1)

Laplace inversion of the exponential term yields5

g(x, t) ≡ L−1

{
exp

(
−U0

2D
|x|Δs

)}

= L−1

{
exp

(
− |x|√

D

(
s +

U2
0

4D

)1/2
)}

= e−
U2

0
4D tL−1

{
exp

(
− |x|√

D
s1/2

)}

=
|x|√

4πDt3
exp

(
−U2

0

4D
t − x2

4Dt

)
, (B.2)

where we apply the shift rule of the Laplace transform, L{e−at f (t)} = F̃(s + a), F̃(s) =

L{ f (t)} and L−1
{

e−as1/2
}
= a√

4πt3
e−

a2
4t (see, for example, p. 258, formula 5.85 from

5 Here we note that the distribution of form ℘fa(t) =
|X|√
4πDt3

exp
(
− X2

4Dt

)
represents the Lévy–Smirnov distribution

which occurs in the first arrival time density in one-dimensional Brownian search with δ-sink term at the origin x = 0,

where X is the initial location of the searcher, see, for example [84]. Due to the exponential term e−
U2

0
4D t the distribution

(B.2) can be considered as an exponentially tempered Lévy–Smirnov distribution with tempering parameter
U2

0
4D . The

tempering occurs due to the potential.
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reference [86]). This allows us to write the density in time domain,

p0(x, t) =
U0

4D
exp

(
−U0

2D
|x|
)[

1 − ∂

∂( U0
2D |x|)

]
h(x, t), (B.3)

where

h(x, t) =
∫ t

0
dt′g(x, t′) =

|x|√
4πDt

∫ 1

0
dττ−3/2 e−t Φ(τ ,x/t) =

|x|√
4πDt

h0(x, t),

(B.4)

with t′ = tτ and

Φ(τ , x/t) =
U2

0

4D
τ +

x2/t2

4Dτ
. (B.5)

The integral defining h0 is easily evaluated using the saddle point method [77] 6 for large
t and fixed x/t, and for the case when the saddle point of the integrand defined via
0 = d

dτΦ(τ , x/t)|τ=τ0 occurs within the unit interval, leads to h(x, t) = e−U0|x|/2D, resulting in

p0(x, t) =
U0

2D
e−U0|x|/D, (B.6)

which is nothing but the stationary distribution in the potential V(x) = U0|x|. However, this
density profile is never realised in practice when the particle is constantly reset to its initial
location at the origin, as resetting events prevent the particle to settle down to its characteristic
form (B.6). And hence, it is not the saddle point at τ = τ 0 of the function Φ which makes the
dominant contribution to h, but rather its minimal value at τ = 1, leading to

h(x, t) = e−tΦ(1,x/t). (B.7)

Now, using this result in equation (B.3) we have

p0(x, t) =
U0

4D
e−

U0
2D |x|(1 + |x|/U0t)e−t Φ(1,x/t), (B.8)

finally providing us the distribution pr(x, t) in presence of resetting via the renewal equation,

pr(x, t) = e−rt p0(x, t) +
∫ t

0
dt′r e−rt′ p0(x, t′)

=
U0

4D
e−U0|x|/2D

(
1 +

|x|
U0t

)
e−t[r+Φ(1,x/t)]

6 The integral I =
∫ 1

0 e−t f (z)g(z)dz for large t can be approximated by

I ≈ e−t f (z0)g(z0)

√
2π

t f ′′(z0)
,

where z0 is the saddle point of the function f(z), i.e., f ′(z0) = 0, and if the saddle point is within the integration limits
(z0 < 1). If the saddle point is outside the integration limits (z0 > 1), then the approximation result is calculated at
z0 = 1.
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+
U0r
4D

∫ t

0
dt′

(
1 +

|x|
U0t′

)
e
−t′[r+ |x|/t′

2D/U0
+Φ(1,x/t′)]

=
U0

4D
e−U0|x|/2D

(
1 +

|x|
U0t

)
e−t[r+Φ(1,x/t)]

+
U0rt
4D

∫ 1

0
dτ

(
1 +

w

U0τ

)
e−t′Θ(τ ,w), (B.9)

where w = |x|/t and

Θ(τ ,w) = τ

[
r +

w/τ

2D/U0
+Φ(1,w/τ )

]
=

(
r +

U2
0

4D

)
τ +

w2

4D
1
τ
+

U0w

2D
.

(B.10)

Now, unlike the case of p0(x, t), where only the time dependent form of the density profile
is of interest to us, for pr(x, t) we want to know both the transient as well as the steady state
solutions. First let us look at the steady state behaviour. As can be seen from the second term
defining pr(x, t), the dominant contribution to the integral comes from the saddle point of the
argument of the exponential Θ(τ ,w), defined as: 0 = d

dτΘ(τ ,w)|τ=τ0 ⇒ τ0 = w/U0Δr. As a
result,

t
∫ 1

0
dτ

(
1 +

w

U0τ

)
e−t′ Θ(τ ,w) ≈

√
4πD

|x|U3
0Δ

3
r

(1 +Δr)

× exp

(
−t

[
U0

2D
(1 +Δr)

|x|
t

])
. (B.11)

This implies that the probability density in presence of resetting reads

pr(x, t) =
U0

4D
e−U0|x|/2D

(
1 +

|x|
U0t

)
e−t [r+Φ(1,x/t)]

+

√
4πD

|x|U3
0Δ

3
r

(1 +Δr) exp

(
−t

[
U0

2D
(1 +Δr)

|x|
t

])

∼ exp
(
−tIr

( x
t

))
, (B.12)

where the last line follows from the fact that the first term eventually vanishes in long time
limit. The final expression allows us to write the LDF,

Ir

( x
t

)
=

U0

2D
(1 +Δr)

|x|
t

, τ0 < 1. (B.13)

The implication of this result is that the steady state is achieved within a light cone region
demarcated by the boundary τ 0 < 1. Within this region of spacetime, sufficiently many reset-
ting events have taken place so as to average out the fluctuations arising due to resetting and
thus allowing the system to relax. However, this is only part of the entire region, and outside
of the light cone the system is still transient. In this transient regime, τ 0 > 1, thus making
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the dominant contribution to the integral come from the point at which the argument of the
exponential is minimal, τ = 1, and as a consequence,

pr(x, t) ≈ U0

4D
(1 + rt)e−t Θ(1,x/t) ∼ e−t Ir(x/t), (B.14)

as the long term behaviour is dominated by the exponential term, and the corresponding LDF
becomes

Ir

( x
t

)
= r +

U2
0

4D
+

x2/t2

4D
+

U0

2D
|x|
t

, τ0 > 1. (B.15)

In absence of any potential (U0 = 0) the LDF (B.13) turns to Ir(w) =
√

r
D |w|, and the LDF

(B.15) to Ir(w) = r + w2

4D , where w = x/t [74].
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[64] Masó-Puigdellosas A, Campos D and Méndez V 2019 Phys. Rev. E 99 012141
[65] Samanta A and Ghosh S K 1992 J. Chem. Phys. 97 9321
[66] Hynes J T 1985 Annu. Rev. Phys. Chem. 36 573
[67] Metzler R and Klafter J 2000 Chem. Phys. Lett. 321 238
[68] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[69] Berezhovskii A M, Szabo A, Rotbart T, Urbakh M and Kolomeisky A B 2016 J. Phys. Chem. B 121

3437
[70] Robin T, Reuveni S and Urbakh M 2018 Nat. Commun. 9 779
[71] Pal A 2015 Phys. Rev. E 91 012113
[72] Roldán É and Gupta S 2017 Phys. Rev. E 96 022130
[73] Mallet A 2000 Numerical Inversion of Laplace Transform (Wolfram Library Archive) Item 210–968
[74] Majumdar S N, Sabhapandit S and Schehr G 2015 Phys. Rev. E 91 052131
[75] Touchette H 2009 Phys. Rep. 478 1
[76] Evans M R and Majumdar S N 2018 J. Phys. A: Math. Theor. 51 475003
[77] Arfken G B and Weber H J 2005 Mathematical Methods for Physicists 6th edn (Amsterdam:

Elsevier)

27

https://doi.org/10.1016/j.bpj.2009.11.049
https://doi.org/10.1016/j.bpj.2009.11.049
https://doi.org/10.1016/s0898-1221(00)00234-0
https://doi.org/10.1016/s0898-1221(00)00234-0
https://doi.org/10.1023/a:1023261830362
https://doi.org/10.1023/a:1023261830362
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1103/physrevlett.106.160601
https://doi.org/10.1103/physrevlett.106.160601
https://doi.org/10.1103/physrevlett.116.170601
https://doi.org/10.1103/physrevlett.116.170601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1103/physreve.93.060102
https://doi.org/10.1103/physreve.93.060102
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1103/physreve.99.032123
https://doi.org/10.1103/physreve.99.032123
https://doi.org/10.1088/1751-8121/ab2069
https://doi.org/10.1088/1751-8121/ab2069
https://doi.org/10.1103/physreve.101.022135
https://doi.org/10.1103/physreve.101.022135
https://doi.org/10.1103/physrevresearch.2.033027
https://doi.org/10.1103/physrevresearch.2.033027
https://doi.org/10.1103/physrevresearch.2.033027
https://doi.org/10.1103/physrevresearch.2.033027
https://doi.org/10.1103/physreve.100.012120
https://doi.org/10.1103/physreve.100.012120
https://doi.org/10.1103/physrevlett.121.050601
https://doi.org/10.1103/physrevlett.121.050601
https://doi.org/10.1103/physreve.101.052130
https://doi.org/10.1103/physreve.101.052130
https://doi.org/10.1103/physreve.100.042104
https://doi.org/10.1103/physreve.100.042104
https://doi.org/10.1103/revmodphys.70.653
https://doi.org/10.1103/revmodphys.70.653
https://doi.org/10.1103/revmodphys.49.435
https://doi.org/10.1103/revmodphys.49.435
https://doi.org/10.1088/0305-4470/39/24/r01
https://doi.org/10.1088/0305-4470/39/24/r01
https://doi.org/10.1103/physrevlett.113.220602
https://doi.org/10.1103/physrevlett.113.220602
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1103/physreve.92.052127
https://doi.org/10.1103/physreve.92.052127
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1103/physreve.92.060101
https://doi.org/10.1103/physreve.92.060101
https://doi.org/10.1103/physreve.86.031143
https://doi.org/10.1103/physreve.86.031143
https://doi.org/10.1103/physrevlett.118.030603
https://doi.org/10.1103/physrevlett.118.030603
https://doi.org/10.1088/1751-8121/ab1fcc
https://doi.org/10.1088/1751-8121/ab1fcc
https://doi.org/10.1063/5.0010549
https://doi.org/10.1063/5.0010549
https://doi.org/10.1103/physreve.99.022130
https://doi.org/10.1103/physreve.99.022130
https://doi.org/10.1103/physreve.99.012141
https://doi.org/10.1103/physreve.99.012141
https://doi.org/10.1063/1.463308
https://doi.org/10.1063/1.463308
https://doi.org/10.1146/annurev.pc.36.100185.003041
https://doi.org/10.1146/annurev.pc.36.100185.003041
https://doi.org/10.1016/s0009-2614(00)00374-2
https://doi.org/10.1016/s0009-2614(00)00374-2
https://doi.org/10.1016/s0370-1573(00)00070-3
https://doi.org/10.1016/s0370-1573(00)00070-3
https://doi.org/10.1021/acs.jpcb.6b09055
https://doi.org/10.1021/acs.jpcb.6b09055
https://doi.org/10.1038/s41467-018-02995-6
https://doi.org/10.1038/s41467-018-02995-6
https://doi.org/10.1103/physrevd.91.044042
https://doi.org/10.1103/physrevd.91.044042
https://doi.org/10.1103/physreve.96.022130
https://doi.org/10.1103/physreve.96.022130
https://doi.org/10.1103/physreve.91.052131
https://doi.org/10.1103/physreve.91.052131
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1088/1751-8121/aae74e


J. Phys. A: Math. Theor. 53 (2020) 505003 R K Singh et al

[78] Gardiner C W 1985 Handbook of Stochastic Methods for Physics, Chemistry and the Natural
Sciences (Berlin: Springer)

[79] Grebenkov D S, Metzler R and Oshanin G 2018 Commun. Chem. 1 96
[80] Godec A and Metzler R 2016 Phys. Rev. X 6 041037
[81] Grebenkov D S, Metzler R and Oshanin G 2019 New J. Phys. 21 122001
[82] Mercado-Vásquez G, Boyer D, Majumdar S N and Schehr G 2020 arXiv:2007.15696
[83] Metzler R, Jeon J-H, Cherstvy A G and Barkai E 2014 Phys. Chem. Chem. Phys. 16 24128
[84] Palyulin V V, Chechkin A V and Metzler R 2014 Proc. Natl Acad. Sci. 111 2931

Palyulin V V, Chechkin A V and Metzler R 2014 J. Stat. Mech. P11031
[85] Feller W 1968 An Introduction to Probability Theory and its Applications vol 2 (New York: Wiley)
[86] Oberhettinger F and Badii L 1973 Tables of Laplace Transforms (Berlin: Springer)

28

https://doi.org/10.1038/s42004-018-0096-x
https://doi.org/10.1038/s42004-018-0096-x
https://doi.org/10.1103/physrevx.6.041037
https://doi.org/10.1103/physrevx.6.041037
https://doi.org/10.1088/1367-2630/ab5de4
https://doi.org/10.1088/1367-2630/ab5de4
https://arxiv.org/abs/2007.15696
https://doi.org/10.1039/c4cp03465a
https://doi.org/10.1039/c4cp03465a
https://doi.org/10.1073/pnas.1320424111
https://doi.org/10.1073/pnas.1320424111
https://doi.org/10.1088/1742-5468/2014/11/p11031

	Resetting dynamics in a confining potential
	1.  Introduction
	2.  Resetting dynamics in a potential
	2.1.  Solution in Laplace domain

	3.  Transition to the steady state
	3.1.  The symmetric case: 
	3.2.  The asymmetric case: 

	4.  First-escape times from a V-shaped potential
	4.1.  The case without resetting 
	4.1.1.  Coefficient of variation.

	4.2.  The case with resetting 

	5.  Summary
	Acknowledgments
	Appendix A.  Solution of equation (1) for resetting to the origin
	Appendix B.  Calculation of the LDF
	ORCID iDs
	References


