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l s I pYanswnt superdiffusion of polydisperse vacuoles in highly motile amoeboid cells

Pumlsm%nmdrajit Thapa,! Nils Lukat,? Christine Selhuber-Unkel,2[| Andrey G. Cherstvy,! and Ralf Metzler":[f]

! Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
2 Institute of Materials Science, Christian-Albrechts-Universitit zu Kiel, 24143 Kiel, Germany
(Dated: March 12, 2019)

We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles
(vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vac-
uole traces recorded in the center-of-area frame of moving amoebae, we e ine the statistics of
the time-averaged mean-squared displacements of vacuoles, their generali diffusion coefficients
and anomalous scaling exponents, the ergodicity breaking parameter, aussian features

of displacement distributions of vacuoles, the displacement autocorrel 1on
distributions of speeds and positions of vacuoles inside the amoeba ce
insights into the internal dynamics of cellular structures in these in

as well as the
ﬁndlngs deliver novel

tlou athogens.

PACS numbers: 87.16.Uv, 87.16.-b, 02.50.-r, 05.40.-a, 87.10.Mn

I. INTRODUCTION

Free-living protozoa Acanthamoeba castellanii (abbre-
viated AC below) form a family of pathogens causing
life-threatening infections in humans (including blinding
keratitis, fatal encephalitis, and meningoencephalitis
These amoeboid parasites are abundant in water-, air-,
and soil-containing environments, including lakes, swi
ming pools, beaches, tap and bottled water™, A
also use air-conditioning and dental-treatment, unit
their habitats. They are a threat at hospita
fecting the eyes of users of contact lenses,
lung tissues®. AC trophozoite cells range
in diameter adapting ellipsoidal shape
bae feature ~ pum-long spiky flat acant
on their surfaces™. AC cells feed on micr
phagocytosis (invagination by men

FIG. 1: Experimental image of vacuoles inside an AC cell on
a solid substrate. Several vacuole trajectories after tracking
for 1290 sec are shown.

Th cﬂplas f AC cells is a supercrowded viscoelas-
tlc environme with crowders varying in nature and
ing from large blopolymers over granules to vac-

mponents and organelles in the AC cytoplasm is
ial to unravel the functional principles and virulent

wué\p.roperties of these amoeboid pathogens.

Internal vacuoles are highly abundant in the AC cyto-
plasm and they range from submicrons to several ym in
radius, Fig. [[] The vacuoles play crucial roles in the AC
life-cycle and metabolism®. Some vacuoles are employed
to internalize and incapacitate potentially threatening
foreign particles and as reservoirs for materials, while
others are used for food storage and digestion. Water-
expulsion vesicle (or contractile vacuolé”) regulates the
osmotic conditions inside these protozoan cell?1%, We
refer here to the studies™5 for further details on the life
cycle as well as on feeding, survival, reproduction, and
host-infection pathways of AC cells.

Similarly to other self-propelled, crawling amoebae
(such as Dictyostelium discoideum™™2) the locomo-
tion of AC cells is due to formation of actin-based
protrusionsI3 18 on their leading edge. The motion of
amoeboid cells can be studied by a number of single-
particle tracking (SPT) techniques’?. Physically, crawl-
ing cells often employ actin treadmilling in the front and
myosin-induced contraction on the back of the cell to
maintain propulsion®®. The protrusions are often es-
tablished by actin treadmilling, supporting the growth
of a lamellipodium forming the leading edge in the
direction of motion. Certain values of cell-substrate
adhesion™ 820 and traction strengthd #1521 a5 well as
of the interfacial membrane tensions are required for this
locomotion. A minimal model of cell motility based on a
droplet of active actomyosin fluid was developed, e.g., in
Ref 18,

The diffusive properties of endogenous intracellular
particles of varying sizes in the cytoplasm of AC cells was
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‘ s |le1.Pine 1 recently®, see also Ref2Z. The cytoskeletal ele-  ter (Sec. [V D)), the distribution of vacuole displacements

lents (1nicrotubuli and actin) can serve as tracks for in-
y processive motor proteins !kinesin /dynein and
myosin, respectively), see Refs. . These motors
actively carry intracellular particles as cargos and en-
sure precise transport and swift exchange of material in-
side cells of multiple types. Therefore, potentially active
transport of AC vacuoles can lead to superdiffusion, as
detected (at least transiently)®22. In AC cells, the mi-
crotubuli often radiate from their one-end focus located
near the Golgi complex, see, e.g., Refs50,

The superdiffusive motion of vacuoles may involve mo-
tor proteins attached to them. For instance, dynein and
kinesin proteins walk on microtubuli towards the cell cen-
ter and its periphery2231H33 (performing, respectively,
minus-end- and plus-end-directed motions along micro-
tubuli). This ensures a quick and directional transport of
cargos—various organelles, membrane-bound vesicles?3,
and other reactants (protein complexes, mRNA, etc.)—
through the cytoplasm.  Nevertheless, after treat-
ment of AC cells with nocodazole and latrunculin A—
specific drugs inhibiting the polymerization process of
actin and microtubuli, respectively, and thereby
hampering AC propulsion—the vacuoles can still mo
superdiffusively®.

In contrast, when the activity“of ]
myosin-II motors is inhibited by blebbistatin, the vac-

M’oacopy the dome-like shape of mammalian cells, such

uoles are almost stalled for a prolonged period of
* In addition, amoeba locomotion per se may gontrib
to superdiffusion of its internal vacuoles (in t
of-area frame of each cell)®.

sion of intracellular organelles a

ificial tracers inside
moving AC cells are still not fullysundersteod. Therefore,
the statistical quantificationfof vacugle motion—as well

these amoebae—is the miain
The information found diere for théxdetailed transport be-
havior will be an im aNdient for establishing a
more complete physical and biocthemical picture of AC
ing mechanisms.

ata-adquisition protocol in Sec. [[T} In
Sec. [T wd define a

text. \The results of the data analysis are
presented«in Specifically, we consider the distri-
butions of vaguole sizes and trajectory lengths in Sec.
d of their time-averaged mean-squared
(TAMSDs) in Sec. the correlation
of diffusien, coefficients and scaling exponents for each
trajedtory (Sec. , the ergodicity breaking parame-

*Note that myosin-IC motors are abundant in the actin-rich edge of
the cell, while myosin-II motors are present in the entire cytoplasm.

(Sec. [IVE|). The displacement autocorrelation function
is described in Sec. [V and the distribution of instan-
taneous speeds and positions of vacuoles is presented in
Sec. [V.Gl In Sec. Al we summarize the main results.
Finally, in Sec. [VC| we overview some related systems
and discuss possible mathematical models of spreading
applicable to the examined data. In Sec. [V.C] we finish
with mentioning futuresresearch directions. Additional
figures are presented X App. [A]

II. EXPERIM DL CONDITIONS AND DATA

A&K’];ION STRATEGY
AC cell We%cultur at room temperature following

RefS, For imaging purposes amoeboid
ntration were seeded on a glass well
, 35-mm high, glass bottom). The imag-
ing.proc as conducted using a Hamamatsu ORCA
ilif camera on an Olympus IX 71 microscope using
60% maghification (Olympus UPLANSAPO 60x/1.35
oilkimmersion objective) in the phase-contrast mode.

C cells adhere to the substrates, but their 3D

is different from that of mammalian adhesive

Whereas in differential interference contrast mi-

as fibroblasts, is clearly visible (see, e.g., Ref.'ﬂl)7 Acan-
thamoeba trophozoites often have an ellipsoidal shape
and do not strongly flatten in height towards the edges33.
In the surface-adhered state our AC cells are rather
”Lebkuchen”-like in shape.

The images were recorded with the Image Acquisition
Toolbox in Matlab (Mathworks, Inc.) with recording
frequency ~8.95 fps (step time dt ~ 0.11 sec). Ev-
ery two seconds the images were segmented using an
edge-detection algorithm (Matlab) and the centers-of-
area of AC cells were evaluated. To ensure long-time
SPT recordings, the center of the image was adjusted to
the center-of-area of a given cell via automatically moving
along a scanning stage (Marzhduser, SCAN IM 112x74).
While post-processing the acquired videos, the center-
of-area of each amoeba was evaluated and static-motion
videos were produced. Static-motion videos were used
for the edge-detection algorithm and the Hough trans-
formation to define the geometric circles of vacuoles and
respective positions of their centers. The location of in-
tracellular vacuoles at each step was enumerated in the
center-of-area frame of the cell using the new in-house
segmentation algorithm (Matlab).

The video files reveal bright circles surrounding the
vacuoles. First, the edge-detection algorithm was used
to find the edges of frames of the static-motion videos.
To detect the positions of vacuole ”circles”, in the binary-
image file a Hough transformation was implemented. To
refine the obtained position, a region of pixels around a
possible center position was set. To compute the radius
of the bright circle (vacuole), the mean intensity of pixels
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‘ s Iiph radial distance from each pixel in the preselected .

.afea was calculated, see the detailed scheme in Fig.

PUb“'SHilsn;g( cedure was repeated for all possible radii, from
a minimal to a maximal one. The refined position of the
vacuole center was then chosen as the pixel in the image
which yields the highest intensity value. The respective
radius was set as the vacuole radius; at each time step the
center positions and radii of all the vacuoles were stored
in the data set, see Fig. Manual confirmation of the
detected vacuoles was obtained by saving the data into
a xml-file which is readable in Matlab with the help of
MaMut and ImagelJ plug-ins.

Experimental SPT tracks of vacuoles were ana-
lyzed using the @msdanalyzer procedure (Matlab), see
Refs 228637 vacuole trajectories shorter than Ty, ~60
frames were discarded from the analysis and the maximal
trace length was Tiax &27700 frames. Automatically-
determined trajectories were controlled manually for con-
sistency and continuity. Adjusting the center positions
of vacuoles we define their time-local radii (at a point of
highest intensity). T

The video files of tracked vacuoles—speed up 100x as
well as in real time—can be found in the Supplemen-
tary Material (each video has a counter in the corn
(h:min:sec)). They show the formation of protrusions
the leading edge of the AC cells. For amoebae cells #1, 2,
3, 4 we record Ny =144, N, = 18, N3 =14, and Ny
vacuole trajectories. The center of the view-field and t
center-of-area of amoebae superimpose in the i %ﬂd
in video files. .

The uncertainty in determining the amo Ni(; ac-
uole positions is a couple of pixels of t icroscopy im-
age, with 1 pixel ~ 0.106 ym. The trMC cells
are often ellipsoids but display large shape vari
moving AC cells the vacuoles axe observed in the SPT
experiments in almost one hori ta?&lfle. Therefore,
the SPT experiments of vagiiole motioneffectively take
place in two dimensions®, € Thefcenter of a vacuole is
assigned to the center “9/ a pi an}{ vacuole motion is
recorded in multiples ofit ixel width. We observe that
some (especially sm ‘E&\di‘sappear from the view-
field in the focal pl 163-2"151., because of vacuole overlap).
The diffusive properties of vacuoles are examined in the
center-of-area ame/of réspective AC cells. *

i~ 4

t sctullmaller vacuoles were technically harder to

ction algorithm is based on edge detection
ough transformation, commonly used to detect
dure requires a threshold value for the minimal
for the sensitivity to be preset. So, if the radius
small, many ”circles” that are not vacuoles would be

from their center-of-area coordinate requires an assumption of a
uniform cell height. This has certain approximations. Fast-running
AC cells appear to have a ”fried-egg” geometr with a varying
cell height from the surface. The videos indicate that the cells
have thin leading edge in front and rather thick ”sack of material”

PHYSICAL OBSERVABLES

For standard Brownian motion the ensemble-averaged
mean-squared displacement (MSD) of diffusing particles
grows linearly with time, also called Fickian diffusion.
For stochastic processes featuring anomalous diffusion
the MSD grows nonlinearly with time. Namely, in two
dimensions (relevant for the current SPT scenario) one
hagd38H /

13‘515)— )?) = 4K t* ~t*. (1)

lous scaling exponent, K, is the

ed contexts (both subA0H2EAEA 5y q
) and artificially crowded media.
d SPT observable is the TAMSD, defined

\ 1 T-A )

IRy R (CENSER)
i+ A) — @ fd (2)

The analogue of Eq. for time series at discrete times

is straightforward. The mean over N independent tra-
jectories each with length T; is computed as

(@) =N i 52(B), (3)

where 0 < A < T; is the lag time involved in averaging
of the recorded time series {z;(t),y;(t)}. For SPT tra-
jectories of different lengths, at different lag times the
respective number N(A) in Eq. changes as well. At
short lag times we fit the individual TAMSDs by two-
parameter power-laws,

52(A) ~ 4 x (Kp); x AP (4)

Here, (Kp); is the trajectory-specific generalized diffu-

sion coefficient for the TAMSD 6%(A). A fairly small
number of experimental SPT frames is used for this fit:
ngy is from 5 to 25 points along the trajectories (indepen-
dent of the total length of a given trajectory). One point
is equivalent to one frame in the SPT experiment. Sta-
tistically, the TAMSD delivers the most reliable results
for short lag times, when A/T < 18743, We refer here
to Refs 5859 for the analysis of some effects of nge and

on the rear end, where large vacuoles are often located, see the
supplementary video files.
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‘ s Ispcer ;ainties of the particle-localization procedure on
(K3)i (see also Refs 1257,

‘thie values of 5; and
Pu bl'slhr'cl"& wtify the spread of §2(A) for an ensemble of vac-

uoles, after a given lag time A we compute the ergodicity
breaking parameter as the ensemble averag

EB(A) = <<52(A))2> /<62(A)>2 1.

For Brownian motion, the EB parameter scales in the

region A/T < 1 agi3li0G3

(5)

EBpu(A) ~ 4A/(3T), (6)
while other functional forms of EB(A) are known, es-
pecially finite EB values even at long measurement
time

We also compute the displacement autocorrelation
function Cps:(t) from the two-dimensional radius-vector
of vacuoles, r;(t), as

Cot(t) = (3t) 72 x ([rs(t + 6t) — 15(t)] - [ r:(0) — r;(0)]).
(7)
This function quantifies displacement correlations alon
the trajectories after a finite time shift d¢, s
Refs BIIHA6E  Tnstantaneous speeds of vacuoles
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FIG. 2: Distributi
cytoplasm.
~13% sma,
uoles.

ii of vacuoles diffusing in the AC
he'subpopulations were chosen to quantify the
st % medium-sized, and ~17% largest vac-

)

of individual TAMSDs of vacuoles. Dif-
s denote different subpopulations of vacuoles (see
ig. [2). e mean TAMSDs for each subpopulation are
esented by the thick solid lines. For longer lag times the
statistics becomes poorer, as expected.

of r

their radial distribution in the course of intracellular dif-
fusion are also evaluated.
v \c'losely. However, the analysis using the mean vacuole

IV. MAIN RESULTS \ .

S

ther broadly dis-
in Fig. The

A. Distribution of vacuole sizes
lengths

The radii of the tracked vacuol

analyzed (for most of the
and fitting analysis is ];?Jorm

Mathematica. Certaindvaeuoles are quite dynamic enti-
ties, capable of changi ~M/isible and real) dimen-
sions on time-scalé§ from several seconds to dozens of
minutes'’, For ent data set, the largest vacuole
is often obserwv size and then abruptly shrink

(see the video cycle repeats as the amoeba
ution in Fig. [S3h, indicating

dium-sized vacuoles, the radius varia-
data files are considerably smaller, Fig.
i ver, as the vacuoles move across the focal
pl },,vnei\reﬁective radii can change along the recorded
time'series. This is particularly pronounced for small vac-
uoles, for which insignificant displacements perpendicu-
lar to the focal plane can give rise to large relative vari-
ations of their visible size. Therefore, in Fig. [2] we com-
pute and analyze the mazimal radii along the recorded
time series, that reflects the physical vacuole sizes quite

radius illustrated in Fig. [S3p—for instance, to study
the distribution of vacuoles in cells as quantified in Fig.
[ST}—can also be a legitimate procedure.

B. TAMSD: magnitudes, spread of trajectories,
and anomalous scaling exponents

The distribution of trajectory lengths of small,
medium, and large vacuoles is shown in Fig. [S4 We find
that the subpopulation of the smallest vacuoles in the set
features the shortest trajectories, medium-sized particles
have intermediate-to-long traces, while the largest vac-
uoles yield longest time series. This observation is con-
sistent with the physical mechanism that smaller vacuoles
are quicker to leave the focal plane of the microscope via
diffusion. ¥ As mentioned in Ref®, the centers-of-area of
AC cells perform nearly ballistic motion, with the scaling

8This hampers the detection of small vacuoles for longer times. Dur-
ing amoebae diffusion, larger particles stay in a confident-detection
plane for longer times introducing certain bias in the data (see the
discussion in Refs’ . Specifically, the focus depth still al-
lowing a confident tracking is a couple of ym. Larger vacuoles are,
thus, allowed to move larger distances in the vertical direction and
still yield a detectable position. In contrast, for smaller vacuoles the
same displacement may lead to its disappearance from the view-
field and to trajectory termination. Thus, a slower subpopulation
of smaller vacuoles gets over-represented in the data set.
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FiG. ime-local anomalous diffusion exponent of the mean

Pu bll’SthKﬂSg >f vacuoles (computed for vacuoles of all sizes in Fig.
, plotted versus the lag time for varying number of points
(nse) in the fit of Bq. ().

exponent

(Bac ) = 1.86 +0.02 (8)

of the mean TAMSD <(52(A)>7 see Fig. From these

data, the average "speed” of AC cells for the current
conditions (temperature, surface adhesion, etc.) can be
estimated as (vac ) ~0.49 pm/sec.

Dividing up the vacuoles by their sizes, as color-coded
in Fig. 2] Figure [3] presents the individual TAMSDs of
the tracked particles for the respective subpopulations.
We find that small, medium, and large vacuoles yield
mean TAMSDs of similar magnitude and functional de-
pendence, see the thick solid curves in Fig. [3] We remind
the reader here that the largest vacuoles feature long time
series, see the distribution in Fig.

We find that the TAMSDs are slightly subdiffusive
very short lag times®?, progressively turning superdiffu-
sive at intermediate A, and, finally, exhibiting subdi
sion again at even longer times. Different AC cell

FIG. 5: Correlations of anomalous scaling exponents and gen-
eralized diffusion coefficients as obtained from the fit of indi-
vidual TAMSDs for vacuole motion. The initial lag time
value is Agtart = 0.1 sec. The dashed lines are the best linear
fits to the data (in log-linear scale, see Eq. ) The slope
values in the legend here and below are linked to Eq. as
c1 =slopex log, 10.

done over larger interé s of the TAMSDs. For the effects
of ngy on the value.of shorttime diffusivity, including a
al % valuesawve refer to Refs 5856572

Wio s and p (K3) distribution

r;ﬁs positive correlations between the
ralized diffusion coefficient and the
anomalQus scaling exponent of the TAMSDs computed
fermdividual facuoles at short lag times. Figure [f]shows
%(Eg tesults for the minimal lag-time value, A = 0.1 sec.

e fit ii‘ie correlations with an exponential function,

o
(11)

re c1,2 are fit coefficients. The correlations are some-

Kﬁ (ﬁvac) ~ exp[clﬁvac + 62]7

a close match of the MSD and mean TAMSD evoluti hat stronger for smallest numbers of fitting points in

in the region of short-to-intermediate times, s
From the data of Fig. [3| for lag times up to 2
average diffusion coeflicient of vacuoles i
pum? /sec. For comparison, the Stokes-Einstéi
ity of a spherical particle with radius i
~ 0.1 ym?/sec. As an alternative to the“ayer
sivity, Dyac, the frame-based™ and time-loca
coeflicients can also be used in the analysis.
The time-local anomalousgscaling exponent for the
mean TAMSD of vacuoles i deié}le s a3

(B(A)) alog (7)) Woroer. ()
Its variation with elsag time is illustrated in Fig.

[ The transition“from/short-lag-time subdiffusion to
intermediate-ti
sion is particu
(ng¢) used in thefit an?!fysis of Egs. and (9). The
most supetdiffusive avior with

'e(;, he.

-~ Byac) &= 1.2...1.4 (10)
is obseérved atag times A =~ 1...5 sec, see Fig. [4] and
the amalysis of Ref22. Large variations in (8(A)) at
.. 10 sec are caused by insufficient statistics in
the ayéraging procedure (2). Note that for varying ngs
values the (Bvac(A)) curves are plotted in Fig. [4] starting
from the lag time §A xngt /2 (the middle of the respective
fitting interval). As physically expected, as the number
of fitting points increases, the variations of the resulting
scaling exponent with lag time decreases because the fit is

Eq. @, see Fig. This trend is similar to that ob-
served for free Brownian motion as well as for confined
diffusion obeying the Ornstein-Uhlenbeck process, as we
checked by computer simulations, see Fig. These
positive correlations at short lag times indicate that the
motion of vacuoles in AC cells with larger exponents fea-
tures larger diffusion coefficients.

The same analysis performed at later parts of the vac-
uole trajectories—starting, for instance, at Agpay = 1
sec as shown in Fig. [S7Th—reveals almost no remaining
Kpg—f correlations in the data. We refer here also to the
analysis of negative Kz—f correlations for another amoe-
boid system™ as well as to the recent study of spreading
of nanoparticles and quantum dots in live mammalian
cells. For the latter system, various nontrivial Kg—3 de-
pendencies were observed®, For even longer lag times—
at Agtart = 10 sec as in Fig. [S7pb—the correlations turn
pronouncedly negative, with ¢; < 0 in Eq. . Physi-
cally, in this case, a larger diffusivity for a given vacuole
trajectory Kg, give rise to statistically favorable smaller
values of the anomalous exponent (; attributable to it,
and visa versa. This transition from positive to negative
K versus [ correlations is—at least partly—due to a
more confined motion of vacuoles at later lag times (see
also Sec. [V A).

We also quantify the distribution p (Kj3) of the ob-
served generalized diffusion coefficients, see Fig. [S9 We
find that p (Kg) is a fast decaying distribution, for vary-
ing numbers ng; used in the scaling analysis. We mention
here that the distribution p (K3) was examined for some
recent experimental STP-datal as well as for certain
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AIF Jrgodicity breaklng parameter (5)) computed for all

PUbI|‘th1Ln(gi rajectories of Fig. [3| (with no separation in subpop-
ulations }J. The inset shows the dependence of EB computed
at A = 0.1 sec versus the trajectory length T for partial time
series. The Brownian asymptote @ is the dashed line.

anomalous diffusion processes (see the analysis of in silico
trajectories performed in Refs ™),

D. Ergodicity breaking parameter

The evolution of the EB parameter computed via ()
for the data on vacuole diffusion is presented in Fig. (6]
We find that almost in the entire range of lag times the
EB values are considerably larger than those for Brow-
nian motion, Eq. . For longer lag times—similarly
to the behavior of the TAMSDs in Fig. [B}—the ergodic-
ity breaking parameter reveals large fluctuations due to
worsening statistics (outside of the range used in Fig. |§[)
Note also that in Fig. [6] we show the EB variation in the
same domain of lag times as in Fig. T

10°

At=1 step

10°F

Counts
=
S

10°F

-0.3 . . 0.0

Ar, [um]
10° / T L

10° At =10 steps

- AR

Ar, [pm]
(b)es

Histograms of displacement distributions for all vac-

In the inset of Fig. [l we show the behavior of the NC;
parameter at short lag times versus the trajectory lengt ‘0 the data set, computed after 1 and 10 time steps At

T. The decay appears to be slower than the inver
portionality 1/T, which is characteristic for a numb
normal and anomalous diffusion processes> 243, larg
magnitude of the standard error bars in Fig, i
however, that the current sample is likely\t Il to
make a solid statement regarding the
the standard deviation o for a set of

as o(x \/N 1 ZZ (= (x))?, decrease
sample—sme N, smaller error barsf@ 1ore confident EB
evaluation is expected when miere SPTNtrajectories are
available for the analysis (indépendent and taken at iden-
tical conditions). y.

ﬁ%nts distribution

the displacement distribution
function P(drt) oft vactteles moving inside AC cells is
Thegadial displacement of vacuoles

E. Vacuole

is computef as* dx? + dy?. We find that, partic-
ularly at short tim@shifts, dt = 1, the function P(dr dt)

tremely pronounced peaks. They stem

1TNotm tnb,idiscrepancy of the EB parameter from the Brownian
behavigr may seem inconsistent with a close match of the MSD and
mean MSD, as seen in Fig. @ Theoretically, however, similar
discrepancies in the behaviors of the ensemble- and time-averaged
displacements versus the EB parameter were found and rationalized
previously, see Ref @, This is the case, for instance, for diffusive
systems where the relaxation time exceeds the measurement time
(the length of time series).

for panels (a) and (b)7 respectively. The bin width in the
main plots is set the same; in the inset of panel (b) a larger
bin width is used.

FIG. 8: Displacement autocorrelation function after aver-
aging over all vacuole trajectories. The employed time shifts
are listed in the legend.

from discrete increments of vacuole positions in the data
set which are often multiples of the pixel size, namely
{dxz,dy} = n x 0.106 pm. Inherently, the observed be-
havior on the initial stages of vacuole diffusion is therefore
far from a Gaussian, see Fig. [fh. For longer time shifts,
the distributions P(dr, dt) also exhibit dramatic discrete-
ness effects. For instance, again noting®?, after ten steps
multiple peaks are clearly visible at doz =~ n x 0.1 ym in
Fig. .lo (which can be smoothen if wider thicker bins are
used, as in the inset of Fig. [Tp).

F. Autocorrelation function of displacements

The results for the displacement autocorrelation func-
tion computed for vacuole diffusion are shown in Fig. [§
Averaging is performed here over all particles, without
division into subpopulations. We find that for short time
shifts—for instance, at 0t = 1 in Eq. @—the autocor-
relation function drops below zero. Its negative values
are consistent with subdiffusive motion observed for the
TAMSDs at very short lag times, see Fig. [ Remember-
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FIG. 9: Instantaneous speeds of vacuoles in terms of per-
centages of particles with a given |v| value. We emphasize a
pronounced peak at |v| = 0 corresponding to the displacement
distribution peak at P(dz = 0,dt = 1).

ing possible limitations of the experimental setup®?, th

antipersistence of vacuole motion at short times may &90\

stem from the viscoelasticity of the amoeba cytoplasm.
We also note pronounced zigzag-like variations of
with the period of one time step, visible at §t/At =
in Fig. [8| This, once again, relates to the di

short time-increments §t was detected previ
system® without amoeba locomoi ote that at short
times the negative peak in thefyelocityyautocorrelation
function may also emerge dug to patticle;localization er-
rors and external confinem ﬂm/

At intermediate and léng e s?fts d0t—when aver-
aging in Eq. @ is pesformed largely over a superdiffu-
sive portion of vacu raje ies—Cj;(t) attains posi-
tive values. Physi H%is is an expected behavior for
a superdiffusive tic process 283 Namely, the
displacements at consecutive time steps are
that a faster-than-Brownian mo-
f averaging over many individual
ese larger dt values the autocorrelation func-

s a s§a11 deep at the respective time values
ig. For the regime of substantial
time shifts ot ?ﬁd very long times ¢ the displacement au-
tdcorrelation flinction slowly approaches a small positive

o]

valye .1...0.2. This is qualitatively consistent with
a weak'superdiffusion of vacuoles with v =~ 1.2...1.3 ob-
served iu this regime, see Fig. El

IThe TAMSD exponent varies substantially along the vacuole tra-

Mentary time step dt/At = 1.

Fraction

e @antaneous vacuole speeds—defined as elemen-
- vheuole displacements divided over the elementary

incrément of time in the time series—are distributed as
own in Fig. [0} The speeds are computed as the mod-
ulus of elementary vacuole increments divided by the el-
In Fig. El the speed
distributions are shown in terms of fractions of vacuoles
in each subpopulation with a given |v| value. The distri-
butions are overall similar for small, medium, and large
vacuoles. They all reveal a distinct peak at |vyac| = 0, ad-
ditional peaks at |vyac,1| &~ 1 pum/sec, and small peaks at
|yac] & 0.5, 1, and 2 pm/sec. These peaks complement
the peaks in the displacement distribution function after
one time step, Fig. [fh. Namely, zero-speed entries in Fig.
[9] correspond to the central peak of P(dr,dt) in Fig. [Th,
while |vyac,1| ~ (?.Tlsel% (from one elementary displacement
per unit time step At). The mean speed—computed
via averaging over all increments and all vacuoles—is
(|vvac]) = 0.5 pm/sec, for all subpopulations of vacuoles.
** As mentioned in the Introduction, different motor pro-
teins are abundant on the leading edge of AC cells and in
their cytoplasm. Myosin, dynein, and kinesin control the
properties of microtubule-based motility of various cell
organelles (mitochondria, small particles, granules, lyso-

jectories in the range of time-shifts probed for the autocorrelation
function in Fig. In virtue of a limited length of trajectories,
the mean TAMSD does not reveal any exztended region of anoma-
lous diffusion with a roughly constant scaling exponent. Therefore,
one cannot expect a universal curve for Cy;(t) to emerge when a
rescaling of time ¢/dt is employed, see also the discussion in Ref52,

**This value, however, has a large standard deviation, again due
to the fact that instantaneous speeds of vacuoles take rather dis-
cretized values in the current data set. Note here that small vac-
uoles which are slow can be over-represented in the current data set
(generally, smaller tracers are more problematic to track for longer
times; Fig. conﬁrms this statement).
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‘ s EQ, \ esmles etc.) over a length-scale of several mi-

crons. For mltochondrla for instance, speeds in a range
4 pm/sec were recorded. The resolution lim-
1ts tor the tracer’s displacements and speeds recorded in
flattened, pancake-like AC cells in Ref were ~ 0.5 pm
and ~ 0.5 pm/sec, correspondingly. As demonstrated in
the in wvitro motility assay, internal AC organelles (mi-
tochondria, small particles, etc.) move at ~ 0.4 pm/sec
towards the plus end and at ~ 1.1 pum/sec towards the
minus end of the microtubule filaments. For the kinesin-
and dynein-based modes of transport of (membranous)
organelles®? inside AC cells the averaged speeds of ~ 3.3
and =~ 2...3 um/sec were reported in Ref .,

The mode of organelle motility in AC cells based on
abundant myosin-I motors?2hound to and ”running”
along F-actin filaments—can make an additional, sizable
contribution®®. The speed for this mode of transport
was reported to be slower, on average ~0.24 pm/sec??
(see also Ref.). The reported transport speeds clearly
depend on the detailed experimental conditions and cell-
preparation protocols. Therefore, the average instan-
taneous speeds of (rather large) vacuoles in the range
~0.5 pm/sec we report here are of the same order as the
microtubuli-directed traffic speeds for smaller cargos b
ing pulled by different motors, as reported previousl

We also examine in Fig. the histogram of vacuo
radial distances with respect to the center-of-area
respective AC cell. Specifically, we compute the distri

relative positions of vacuoles {x,y}. We fin
vacuoles prefer to move closer to the outsi
of the cells, as compared to medium a: % 1
The latter have the peaks of their positi 1Steibution
function shifted towards the cell center by ~ Syum. Note
that in Fig. the positions offvac centers are ex-
amined and plotted. This me 1;'?%or particles get
also effectively ”displaced” fgdbm the'euter cell membrane
purely by excluded—VOI? terdctionss 1t

V. DISCUS IOle\N3\CONCLUSIONS

A. Overvi and

ussion of our main results

In the cyrrent st 4(3 quantified the motion of vac-
uoles insidi motllesi cells, see Fig. examining the
data sets.obtained from SPT experiments using a number

statistical quantifiers. Let us sum-

TWe hasg here, however, that if the mean vacuole radii—rather
than the, maximum radii—are used for the analysis, the vacuole
distributions appear quite different, see Fig. In this inter-
pretation, for instance, the smallest vacuoles tend to occupy the
central regions of the amoebae. The physical interpretation for the
mean vacuole radius seems, however, less clear to us than for the
maximum radius along a given track.

marize our main findings and their interpretation point-
by-point below.

(i) We computed and characterized the magnitude and
spread of individual TAMSD trajectories for the sub-
populations of small, medium, and large vacuoles, see
Fig. We revealed that the behavior of the anoma-
lous scaling exponent of the mean TAMSD turns from
slightly subdiffusive at (very) short lag times to superdif-
fusive at intermediate lag times. For the later region,
a prolonged regime ‘géfl anomalous diffusion exponent
(Byac) = 1.1...1.3 tected, Figs. and El This
motion of vacuol i upe osed onto a nearly bal-
listic propulsion “of ebae as such, with MSD expo-
nent (Bac ) = 86:|: 02 and average speed |vac | ~0.49
pum/sec, seeFig. e that varying the number of
fitting poiits o the MSD tracks as well as the size of
the data s dﬂﬁ\experlmental conditions will quan-
he values of (Bac ) and (Byac). The re-

of §2(A) trajectories is also going to be
for the discussion.

here  that apparent  weak
observed at very short lag

imes ican be induced by the localization error of
vacugles in these SPT experiments, see also notéf?, A
subdiffusive behavior—instead of Brownian diffusion for
) displacements—would then emerge at short lag
tlmes solely due to particle-localization uncertainties, as
predicted and quantified theoretically in Ref7, Spemﬁ—

cally, the ”flattening” of the TAMSDs is pronounced at
short times, with the predicted TAMSD expression being

(for normal basal diffusion) <52(A)> ~ 202 + 2DA,

see RefsB28T Here, 0 ~ 1...2 pixels is the static
localization error of the particle in SPT experiments, see
also Sec. [} Indeed, the vacuole displacements at short
> ~ (0.1 pm)?
Fig. [B}-are comparable to the resolution of the current
SPT setup. Additionally, a finite camera-exposure
time gives rise to motion blurring of the tracers and
associated dynamic localization error, see the discussion
in Refs B82ATIE2

Similar features of the short-time behavior of §2(A) re-
ported in Ref® can have similar locahzatlon—error related
origin. Note, however, that in Ref® the experimental set-
tings and the analysis algorithm were different (with re-
gard to center-of-area tracking, methods of vacuole track-
ing, etc.).

(ii) We observed that at the start of the vacuole trajec-
tories the values of the trace-specific diffusion coefficient
and scaling exponent are positively correlated, see Fig. [5
This reflects the physical picture of vacuoles with small
(large) exponents featuring small (large) diffusion coef-
ficients at the initial stage of diffusion. At later stages,
these correlations virtually disappear and, finally, turn
negative. Below we discuss some physical reasons for this
surprising behavior of K3—f correlations.

First, large variability of cell sizes, dynamic changes of
shapes of cells and vacuoles, as well as polydispersity of

lag times—mnamely, <63ac as seen from
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le dimensions, together with heterogeneous crowd-
of the cytoplasm, make the current system quite com-

All

PUbI|}§1 hmeg{ to study, both in terms of the SPT experiments

and the statistical analysis. Mutual correlations of dif-
fusivities and exponents as well as peculiar features of
the distribution of diffusivities, p(Kg), may stem from
multiple complicated mechanisms controlling the vacuole
motion. Their deeper understanding will deliver new in-
sights regarding underlying stochastic processes as well
as physical effects of the medium onto vacuole diffu-
sion (confinement/caging, binding-unbinding dynamics,
medium viscoelasticity, etc.). Note also that certain is-
sues of heterogeneous crowding and anomalous space-
dependent diffusion can also be at play here, as investi-
gated recently for cell-mimicking bounded domains, both
theoretically and by computer simulation

Recently, for more size-restricted and controlled dif-
fusion of calibrated nanoparticles in the cytoplasm of
live mammalian cells pronounced variations and different
inter-relations between Kg and  were reported®®. Vari-
able nanoparticle sizes (from 25 to 75 nm) and their non-
specific interactions® with the medium were examined®®.
These and other experimental features were shown to

affect®® the observed K g~ correlations, often turni in
out to be positive, similarly to our Fig.
The vacuoles inside amoebae are highly confined ue%\

the cell envelope. To mimic this, we simulated h
ically confined passive particles, the so-called
Uhlenbeck processt386. For this process we un
ilar Kg — 3 correlations: pronouncedly positive
times, turning strongly negative at later ti
The confined motion is realized at times muc
than the internal correlation time of thig diffusion pro-
cess, 1/X83. Thus, a confined motion is conSigtent with a
transition from positive to negatiye correlationstobserved
at later stages of vacuole motio ls, see Fig. [S7
(i) From the behavior TAMSDs of vac-
uoles we observe that thei

Brownian®243 The er?‘im

was computed after av, ng rfvacuoles of all sizes
in the data set, Fig. [0 T&%o:ltl n of EB(A) demon-
strates that vacuole )1 is nomergodic. Despite rather
high and non-vanishing EB values at short lag times, the
e MSD%and mean TAMSDs for the vac-

ce Fig. [S6l Note that similar
infthe simulations of Ref ™. More-

uole trajectori

over, the decay of B parameter at short lag times
with the length of trajectories was shown to be slower
than EB(F) see the inset of Fig. @ H

ned previously®363, the requirements on
data set for computing the higher-order

As we men
the size th

=~

HNote that similar sublinear EB behaviors with 1/7" were reported
recently for the models of diffusion in heterogeneous mediad®Z and in
computer simulations of lipid diffusion in membranes with dynamic
interactions’L. Both these systems involve the concept of ” diffusing
diffusivity”, see Refs! for an overview.

moments of particle displacements, such as the EB pa-
rameter, are much stricter compared to those for the sec-
ond moments, such as §2. Many more SPT trajectories—
recorded (at best) at identical experimental conditions
and minimal polydispersity of cell and vacuole sizes—
are needed to make a confident conclusion regarding the
EB scaling behavior for vacuole inter-cellular motion as
a function of lag time A and trajectory length 7' (work

in progress). /\
3

itional issues—varying sample size,
minimal trajectory lengbh, uniform versus non-uniform
1gths used in the analysis, vary-
zé5 anud amoeba speeds—can all affect the
1e analysis, see Refs 8508595 for the dis-
g the effects of the diffusion environ-
observed properties of the TAMSD and
eter of vacuole motion and how much is
to sanple—acquisition limitations, experimental re-
"trictig;st, and sample-set properties is to be examined
uture??.

(iv) We computed the distributions of vacuole dis-
placements with respect to the center-of-area of respec-
tive amoebae, at varying time shifts from the start of
the measurement, see Fig. [Th. We observed a strongly
non-Gaussian pixel-size-dependent vacuole displacement-
distributions, for individual Cartesian z — y coordinates

as well as the radial displacements, p (r = /22 +y2).

For instance, after a single step of diffusion (dt = 1) we
detected a peak of vacuole displacements at dx = dy = 0
supplemented by two smaller peaks at the increments of
dx = dy = +1 pixel size. These discreteness effects per-
sist also at later stages of vacuole diffusion, see Fig. [7p
and note?,

(v) We computed the displacement autocorrelation
function Cpy:(¢) along individual trajectories of vacuoles,
Eq. (7). The results we presented in Fig. [§ indicate
the presence of pixel-size effects, particulary at minimal
time shift 6t = 1, as expected. Also, as the data set was
rather limited, we observed pronounced fluctuations in
the behavior of Cs;—1(¢) at later times ¢. For longer time
shifts dt, the pixel-size effects were smoothen and the re-
ported Cs:(t) function revealed a monotonic decay from
unity towards a small positive value. This is consistent
with a slightly superdiffusive nature of vacuole motion in
this time domain. The pixel-size effects manifest them-
selves also in the distribution of instantaneous speeds of
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‘ s I\/Plec as seen from Fig. EI 58 99

)Velty of the current study from the experimen-
of view is in successful recording of much longer
trajectories via constructing an automated tracking sys-
tem on the microscope. Previously®, the AC cells leav-
ing the image resulted in terminated SPT-tracks, that
also caused certain bias in the data. Namely, longer
vacuole trajectories remained in the set mainly stemmed
from slower amoebae staying in the image longer. From
the data-analysis viewpoint—as compared to RefS—the
novel elements are, in particular, the study of cross-
correlations Kg — 3 and the distribution of generalized
diffusion coefficients p(Kpg), the behavior of the EB pa-
rameter, and spatial distribution of vacuoles inside AC
cells. Some of these examinations as well as the TAMSD
calculations were performed separately for subpopula-
tions of small, medium, and large vacuoles. Thus, the
current analysis delivers new insight into the mechanisms
of diffusion of polydisperse vacuoles inside motile amoe-
bae. Our results may help to unveil certain features of
the amoeba functions and its pathogenetic activity con-
nected with vacuole motion, as outlined in Sec. [I}

B. Possible models and mechanisms of vacuol
diffusion

Some recent studies employed similar “tatistica
quantifiers aiming at predicting the most- %
model of diffusion using the time series€from ve
SPT-experiments as input signal imBﬂ,lﬂl]liilsﬂ!le‘ﬂ‘iahlﬂﬂ
The ”best” model of diffusion h ACCOMIMO-
date various features of tracer mot%&en ob-

served in SPT-experiments, such._as anomalQus, non-

88To cure these ”artificial” discré
ments, speeds, and displacemént a

can think of smearing out acuole
SPT experiments, prior te their tistical analysis. One can use
a Gaussian-like smoothéningifunction,with width equal to several
image (not shown; see the inset of Fig.

ms) This would thén make the peaks in the speed distribution of
Fig. [9 originating fromy the ‘di

uld ghen also be adjusted correspondingly
e elementary time step, as in Fig. EI)
ysmally;only those tracer displacements exceeding
ion uncertaint should be used in the
ervables. The effects of varying localization
experiments on the behavior of the fundamental
the TAMSD, the EB parameter, the autocorre-
tc. would be interesting to study in the futurd?
1-controlled data are acquired for this motile system.
e long-distance correlations in direction and motion speed of
diffusingyvacuoles—as a function of their separation inside a given
amoeba—is an interesting subject to study. They could quantify
the ”reach” of hydrodynamic and other correlation-inducing in-
teractions being transmitted through the cell cytoplasm. In the
current data, however, the mutual distances between vacuoles were
not recorded and this question cannot be addressed in principle.

(instead of
see Ref-

ergodic, non-Gaussian, and (possibly) ageing features
of diffusion.  Physically, such a model should re-
flect the underlying transport features and particle-
trapping mechanisms by the medium. The mod-
els of continuous-time random walks, fractional Brow-
nian motion, generalized Langevin equation motion,
multi-state diffusion, and diffusing-diffusivity models
have been proposed (among others) as—sometimes

conflicting—candidates 4 for rationalizing experimental
SPT observationdl 28941435505 TI5A65TTI000598-101 1y,

addition to ensemblé-av
trajectory-based
for confident sel

aged properties, some single-

fiers 'were also proposed recently
1mvalidat10n and discrimination of
usion models (see Ref0 for the

irated tha T trajectories of tracer particles in poly-
muein gels may be well mimicked by Brownian or
"a‘ctioEal Brownian type of motion. The spread of in-
ual 07(A) trajectories observed for an ensemble of
tracers should then be accounted for in the analysis via
a itional inter-relations between certain diffusive char-
_ . acteristics. These can be, e.g., the distribution of and the
correlatlons between the values of the diffusion coefficient
and scaling exponent, such as those observed in Figs. [S9|
and[5] These dependencies reflect the impact of physical
interactions and processes at play for a given system.

Generally, mathematical models of different degree of
complexity may be proposed to describe experimental
SPT observations. Ideally, the principles of Bayesian
statistics and Occam’s razor should be employed
to rank plausible theoretical models. Specifically, mod-
els with excessive numbers of parameters or parameter-
distribution embeddings should be penalized (despite
better data fits they might produce). As another ex-
treme, choosing a physically simplistic model often re-
sults in neglecting important biological details of the sys-
tem, so that vital dependencies on tunable experimental
parameters cannot be captured, for instance.

Statistical diffusion models of hierarchical nature—
such as superstatistics? 9305006 can also be proposed,
in which the dynamics of model parameters on multi-
ple scales in space and time gets superposed or con-
voluted with the original propagator of a given model
of diffusion. The mathematically powerful concepts of
superstatistics—although offering fits to the observed be-
haviors of, e.g., P(z,t) and the TAMSDs—may, however,
still lack a clear physical rationale for the observed be-
havior, see the examples in Ref™02, Similar caution is
required when providing physical interpretations of SPT
observations using the concepts of ensemble-distributed,
time-local, and time-random or diffusing model param-
eters, such as diffusing diffusivit Het-
erogeneous diffusio as a superposi-
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f simple ergodic diffusion with distributed model
arameters—can be also of relevance for the current data.
N hng hierarchical embedding of distributions of pa-
rameters into a standard diffusion model can give rise,

e.g., to a multitude of non-Gaussian density-distribution
functiond?0O3II02

The vacuoles—during a finite diffusion time in our
experiments—do not manage to sample the entire cell
uniformly. Due to size variations, certain processes of ac-
tive and passive nature can differ from vacuole to vacuole.
Additionally, the vacuoles experience different intercellu-
lar conditions during highly motile AC motion and due
to heterogeneity of its cytoplasm. Therefore, some dis-
tributions of model parameters can be involved into the
models—in the superstatistical sense—on multiple levels.
These may mimic, e.g., an ensemble of non-identical par-
ticles or varying environments for vacuole subpopulations
(see ReflS3),

A motor-driven component of vacuole transport can be
present in the current data. It is, however, currently not
clear to what extent the network of ”cytoskeletal-based
highways” stays intact in the course of AC locomotiont

the transducers of amoebae motion in terms of creatin;
cytoplasmic flows and streams??, see also the supp
tary video files in real time. At the moment, it is not clear
whether the vacuoles are evolving with the cell
which is rolling-over upon amoeba motion (the ”
wheel” analogy). Also, how strongly the v. les

ferent sizes are involved in microtubuli andaﬁ\

transport is currently not clear.

This affects how viable the cytoskeletal elements arﬁ\
t1

Yet, a two-state active and passive diffusien model
may be realistic for vacuole The passive dif-
fusivity of vacuoles can depe a., on gheir radial dis-
d4cell-locomotion
speed in a model with ab gnttio ssiah displacements,
Dpas = Dpas(r, Ruac, | i »Z‘se7 for the active
(motor-driven) mode of vatuole motion one sets Dyey =
Dact (7, Ryac, |vac |) ly, the distributions of
iffusi i pend in each of these modes

**  To unveil the proper-
inding kinetics and active-to-
om )ﬁdividual time series, more del-
ceded, see, e.g., Refs T2 Djf.
for multi-state diffusion processes™ 2 ag
aration of particles into subpopulations
Moreover,

should be par

***Such a system with two diffusivities (see RefT and also later
studie; ) is reminiscent of ”hopping-and-sliding” diffusion
of DNA-binding proteins searching for targets on DNALTSHIIS]

C. Discussion of directions of future research

Clearly, a number of additional quantifiers—both for
the ensemble-averaged and single-trajectory-based prop-
erties of recorded time series—can be employ ed in a more
extended analysis, see, e.g., Refs 12226500116 For iy)-
stance, one addltlonal property we unveiled for one of
four AC cells is positive correlations in the directions of
motion of vacuoles an: moebae hosting them, Fig. [SI0}
We find that the discpéteness of vacuole dlsplacement (as
seen in Fig. ﬂ se aMOtém ) also gets reflected
in certain preferréd retizéd directions of vacuole az-
imuthal motion, asiexamined from the increments after
one time step, A 1. Although some amoebae do
ions i motion with their internalized vac-

ig. JJ510] Yarger sample sizes are crucial to

i i depth. Such directional correlations

dew.of lag timés in Fig. B—plausible also without active
léilanisms of cytoplasmic transport. The mechanism
perdiffusive transport of vacuoles is thus—at least
artly4 due to persistence of motion of AC cells them-
selves (a model of diffusion with a constant drift).
Ins addition to a possible ”wheel effect”, locomo-
amoebae can create internal membrane-originating™
lows involving cytoplasmic components, including vac-
uoles. These flows are known to be pronounced for other
locomotive cells (see also the video files in the Supple-
mentary Material). For instance, the flow velocities of
up to 40% of the cell velocity in the direction of the
leading-edge were detected for rapidly moving fish ep-
ithelial keratocyte cells in Ref™3. The flows of cyto-
plasmatic fluid were quantified™® for the probes of var-
ious sizes diffusing in thin lamellipodia of these highly-
persistent keratocytesl® (average speed of ~0.3 um/sec).
Surprisingly, however, only slightly subdiffusive spread-
ing of small quantum dots was detected in the lamel-
lipodia in the reference frame of the cel™. Namely, the
exponent was found to be a ~ 0.89, with the tracer dy-
namics featuring large variations (in terms of trajectory-
specific diffusivities)m. Interestingly, the flow-induced
concentration of larger probes near the leading edge in
these cells was larger than of small probes (30-nm quan-
tum dots)13. Blebbistatin-treated cells did not change
severely the behavior of the leading edge, but rather
affected the intercellular fluid flows and hydrostatic-
pressure gradients from the front to the rear end of the
cell.

Anomalous, heterogeneous, and non-Gaussian
diffusion—with a certain degree of cell-to-cell variability
and cell-size-dependent particle diffusivity—was recently
reported for the spreading dynamics of intrinsically-
polymerising H-NS proteins in live Escherichia coli, see
Ref™. Projecting to our data set, a differentiation of
AC cells based on their size can shed light on certain
diffusive properties of internal vacuoles. A much larger
sample of trajectories from different and well controlled
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s, however, required to draw statistically meaning-
ul conclusions here. For instance, one can ask whether
h;kﬁlg( lIs host, on average, faster vacuoles (Fig. .
Note that different degrees of compression of amoebae
towards the surface can also affect the magnitude and ex-
ponent of the TAMSD trajectories of vacuoles. In these
lines, for instance, a dramatic reduction of the TAMSD
(at a constant exponent) was recently reported for
diffusion of DNA chromosomal loci in compressed Es-
cherichia coli cells. Additional dynamic fluctuations of
shapes and sizes of vacuoles also impact their diffusive

properties (see also the discussion in Ref™).

Finally, and quite naturally, the physical mechanisms
of two-dimensional motion of AC cells on adhesive sup-
ports may differ™ 17 from those for many natural three-
dimensional media. The tracking process in three di-
mensions may, however, be very challenging, see Ref 118
for the recent SPT advances. More sophisticated track-
ing methodd7104IIE 1)y help to unveil new details of
functioning of this pathogenic system. Such methods
should have a better localization precision of vacuoles,
higher recording frequencies, smaller effects of cell-to-
cell variability, advanced vacuole-size control, as well as

These questions point the directions for future research®

better control over possible noise sources (vibrations -
the setup table, fluctuations of the light intensity, e.)\

~
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APPENDIX A: SUPPLEMENTARY FIGURES

Below we present additional figures supporting the
claims in the main text of the paper.
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