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We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles
(vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vac-
uole traces recorded in the center-of-area frame of moving amoebae, we examine the statistics of
the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients
and anomalous scaling exponents, the ergodicity breaking parameter, the non-Gaussian features
of displacement distributions of vacuoles, the displacement autocorrelation function, as well as the
distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel
insights into the internal dynamics of cellular structures in these infectious pathogens.

PACS numbers: 87.16.Uv, 87.16.-b, 02.50.-r, 05.40.-a, 87.10.Mn

I. INTRODUCTION

Free-living protozoa Acanthamoeba castellanii (abbre-
viated AC below) form a family of pathogens causing
life-threatening infections in humans (including blinding
keratitis, fatal encephalitis, and meningoencephalitis)1–4.
These amoeboid parasites are abundant in water-, air-,
and soil-containing environments, including lakes, swim-
ming pools, beaches, tap and bottled water1,4. AC cells
also use air-conditioning and dental-treatment units as
their habitats. They are a threat at hospitals, also af-
fecting the eyes of users of contact lenses, also attacking
lung tissues3. AC trophozoite cells range ≈ 12 . . . 30 µm
in diameter adapting ellipsoidal shapes3,5,6. These amoe-
bae feature ∼ µm-long spiky flat acanthopodia structures
on their surfaces5,7. AC cells feed on microorganisms via
phagocytosis (invagination by membrane vesicles).

FIG. 1: Experimental image of vacuoles inside an AC cell on
a solid substrate. Several vacuole trajectories after tracking
for 1290 sec are shown.

The cytoplasm of AC cells is a supercrowded viscoelas-
tic environment8 with crowders varying in nature and
size (varying from large biopolymers over granules to vac-
uoles). This fact poses serious challenges for the motion
and function of cell organelles and active transport in-
side these amoebae. A better understanding of the basic
physico-chemical mechanisms of motion of various cellu-
lar components and organelles in the AC cytoplasm is
crucial to unravel the functional principles and virulent
properties of these amoeboid pathogens.

Internal vacuoles are highly abundant in the AC cyto-
plasm and they range from submicrons to several µm in
radius, Fig. 1. The vacuoles play crucial roles in the AC
life-cycle and metabolism5. Some vacuoles are employed
to internalize and incapacitate potentially threatening
foreign particles and as reservoirs for materials, while
others are used for food storage and digestion. Water-
expulsion vesicle (or contractile vacuole9) regulates the
osmotic conditions inside these protozoan cell7,10. We
refer here to the studies1,3–5 for further details on the life
cycle as well as on feeding, survival, reproduction, and
host-infection pathways of AC cells.

Similarly to other self-propelled, crawling amoebae
(such as Dictyostelium discoideum11,12), the locomo-
tion of AC cells is due to formation of actin-based
protrusions13–16 on their leading edge. The motion of
amoeboid cells can be studied by a number of single-
particle tracking (SPT) techniques17. Physically, crawl-
ing cells often employ actin treadmilling in the front and
myosin-induced contraction on the back of the cell to
maintain propulsion16. The protrusions are often es-
tablished by actin treadmilling, supporting the growth
of a lamellipodium forming the leading edge in the
direction of motion. Certain values of cell–substrate
adhesion16,18–20 and traction strengths14,15,21 as well as
of the interfacial membrane tensions are required for this
locomotion. A minimal model of cell motility based on a
droplet of active actomyosin fluid was developed, e.g., in
Ref.16.

The diffusive properties of endogenous intracellular
particles of varying sizes in the cytoplasm of AC cells was
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examined recently8, see also Ref.22. The cytoskeletal ele-
ments (microtubuli and actin) can serve as tracks for in-
trinsically processive motor proteins (kinesin/dynein and
myosin, respectively), see Refs.6,8,9,23–29. These motors
actively carry intracellular particles as cargos and en-
sure precise transport and swift exchange of material in-
side cells of multiple types. Therefore, potentially active
transport of AC vacuoles can lead to superdiffusion, as
detected (at least transiently)8,22. In AC cells, the mi-
crotubuli often radiate from their one-end focus located
near the Golgi complex, see, e.g., Refs.5,6.

The superdiffusive motion of vacuoles may involve mo-
tor proteins attached to them. For instance, dynein and
kinesin proteins walk on microtubuli towards the cell cen-
ter and its periphery25,31–33 (performing, respectively,
minus-end- and plus-end-directed motions along micro-
tubuli). This ensures a quick and directional transport of
cargos—various organelles, membrane-bound vesicles33,
and other reactants (protein complexes, mRNA, etc.)—
through the cytoplasm. Nevertheless, after treat-
ment of AC cells with nocodazole and latrunculin A—
specific drugs inhibiting the polymerization process of
actin and microtubuli, respectively,16,30 and thereby
hampering AC propulsion—the vacuoles can still move
superdiffusively8. In contrast, when the activity of
myosin-II motors is inhibited by blebbistatin, the vac-
uoles are almost stalled for a prolonged period of time8.
∗ In addition, amoeba locomotion per se may contribute
to superdiffusion of its internal vacuoles (in the center-
of-area frame of each cell)8.

Despite recent scientific progress for a number of other
locomotive cell systems—in particular, from advanced
SPT-measurements and data-analysis tools—the exact
physical mechanisms of both driven and passive diffu-
sion of intracellular organelles and artificial tracers inside
moving AC cells are still not fully understood. Therefore,
the statistical quantification of vacuole motion—as well
as of vacuole granules involved in the pathogenicity of
these amoebae—is the main focus of the current study.
The information found here for the detailed transport be-
havior will be an important ingredient for establishing a
more complete physical and biochemical picture of AC
motility and its underlying mechanisms.

The paper is organized as follows. We start with the
description of the data-acquisition protocol in Sec. II. In
Sec. III we define all observables and diffusion measures
for the main text. The results of the data analysis are
presented in Sec. IV. Specifically, we consider the distri-
butions of vacuole sizes and trajectory lengths in Sec.
IV A, the spread of their time-averaged mean-squared
displacements (TAMSDs) in Sec. IV B, the correlation
of diffusion coefficients and scaling exponents for each
trajectory (Sec. IV C), the ergodicity breaking parame-

∗Note that myosin-IC motors are abundant in the actin-rich edge of
the cell, while myosin-II motors are present in the entire cytoplasm.

ter (Sec. IV D), the distribution of vacuole displacements
(Sec. IV E). The displacement autocorrelation function
is described in Sec. IV F and the distribution of instan-
taneous speeds and positions of vacuoles is presented in
Sec. IV G. In Sec. V A we summarize the main results.
Finally, in Sec. V C we overview some related systems
and discuss possible mathematical models of spreading
applicable to the examined data. In Sec. V C we finish
with mentioning future research directions. Additional
figures are presented in App. A.

II. EXPERIMENTAL CONDITIONS AND DATA
ACQUISITION STRATEGY

AC cells were cultured at room temperature following
the protocol of Ref.8. For imaging purposes amoeboid
cells at low concentration were seeded on a glass well
(ibidi 60 µ-Dish, 35-mm high, glass bottom). The imag-
ing procedure was conducted using a Hamamatsu ORCA
ER 2 camera on an Olympus IX 71 microscope using
60× magnification (Olympus UPLANSAPO 60×/1.35
NA oil-immersion objective) in the phase-contrast mode.
The AC cells adhere to the substrates, but their 3D
shape is different from that of mammalian adhesive
cells. Whereas in differential interference contrast mi-
croscopy the dome-like shape of mammalian cells, such
as fibroblasts, is clearly visible (see, e.g., Ref.34), Acan-
thamoeba trophozoites often have an ellipsoidal shape
and do not strongly flatten in height towards the edges35.
In the surface-adhered state our AC cells are rather
”Lebkuchen”-like in shape.

The images were recorded with the Image Acquisition
Toolbox in Matlab (Mathworks, Inc.) with recording
frequency ≈8.95 fps (step time dt ≈ 0.11 sec). Ev-
ery two seconds the images were segmented using an
edge-detection algorithm (Matlab) and the centers-of-
area of AC cells were evaluated. To ensure long-time
SPT recordings, the center of the image was adjusted to
the center-of-area of a given cell via automatically moving
along a scanning stage (Märzhäuser, SCAN IM 112×74).
While post-processing the acquired videos, the center-
of-area of each amoeba was evaluated and static-motion
videos were produced. Static-motion videos were used
for the edge-detection algorithm and the Hough trans-
formation to define the geometric circles of vacuoles and
respective positions of their centers. The location of in-
tracellular vacuoles at each step was enumerated in the
center-of-area frame of the cell using the new in-house
segmentation algorithm (Matlab).

The video files reveal bright circles surrounding the
vacuoles. First, the edge-detection algorithm was used
to find the edges of frames of the static-motion videos.
To detect the positions of vacuole ”circles”, in the binary-
image file a Hough transformation was implemented. To
refine the obtained position, a region of pixels around a
possible center position was set. To compute the radius
of the bright circle (vacuole), the mean intensity of pixels
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at each radial distance from each pixel in the preselected
area was calculated, see the detailed scheme in Fig. S1.
This procedure was repeated for all possible radii, from
a minimal to a maximal one. The refined position of the
vacuole center was then chosen as the pixel in the image
which yields the highest intensity value. The respective
radius was set as the vacuole radius; at each time step the
center positions and radii of all the vacuoles were stored
in the data set, see Fig. S2. Manual confirmation of the
detected vacuoles was obtained by saving the data into
a xml-file which is readable in Matlab with the help of
MaMut and ImageJ plug-ins.

Experimental SPT tracks of vacuoles were ana-
lyzed using the @msdanalyzer procedure (Matlab), see
Refs.22,36,37. Vacuole trajectories shorter than Tmin ≈60
frames were discarded from the analysis and the maximal
trace length was Tmax ≈27700 frames. Automatically-
determined trajectories were controlled manually for con-
sistency and continuity. Adjusting the center positions
of vacuoles we define their time-local radii (at a point of
highest intensity). †

The video files of tracked vacuoles—speed up 100× as
well as in real time—can be found in the Supplemen-
tary Material (each video has a counter in the corner
(h:min:sec)). They show the formation of protrusions on
the leading edge of the AC cells. For amoebae cells #1, 2,
3, 4 we record N1 =144, N2 = 18, N3 =14, and N4 =205
vacuole trajectories. The center of the view-field and the
center-of-area of amoebae superimpose in the image and
in video files.

The uncertainty in determining the amoeba and vac-
uole positions is a couple of pixels of the microscopy im-
age, with 1 pixel ≈ 0.106 µm. The tracked AC cells
are often ellipsoids but display large shape variations. In
moving AC cells the vacuoles are observed in the SPT
experiments in almost one horizontal plane. Therefore,
the SPT experiments of vacuole motion effectively take
place in two dimensions8. The center of a vacuole is
assigned to the center of a pixel and vacuole motion is
recorded in multiples of the pixel width. We observe that
some (especially small) vacuoles disappear from the view-
field in the focal plane (i.a., because of vacuole overlap).
The diffusive properties of vacuoles are examined in the
center-of-area frame of respective AC cells. ‡

†Note that in this setup smaller vacuoles were technically harder to
track because our detection algorithm is based on edge detection
and subsequent Hough transformation, commonly used to detect
circles. This procedure requires a threshold value for the minimal
circle radius and for the sensitivity to be preset. So, if the radius
is chosen too small, many ”circles” that are not vacuoles would be
undesirably detected.
‡Note that the evaluation of the vacuoles’ center-of-mass position20

from their center-of-area coordinate requires an assumption of a
uniform cell height. This has certain approximations. Fast-running
AC cells appear to have a ”fried-egg” geometry13,16 with a varying
cell height from the surface. The videos indicate that the cells
have thin leading edge in front and rather thick ”sack of material”

III. DIFFUSIVE CHARACTERISTICS AND
PHYSICAL OBSERVABLES

For standard Brownian motion the ensemble-averaged
mean-squared displacement (MSD) of diffusing particles
grows linearly with time, also called Fickian diffusion.
For stochastic processes featuring anomalous diffusion
the MSD grows nonlinearly with time. Namely, in two
dimensions (relevant for the current SPT scenario) one
has38–45〈

[x(t)− x(0)]2 + [y(t)− y(0)]2
〉

= 4Kαt
α ' tα. (1)

Here, α is the anomalous scaling exponent, Kα is the
generalized diffusion coefficient, and the angular brack-
ets denote ensemble averaging. For subdiffusive processes
the exponent is in the range 0 < α < 1, while for su-
perdiffusion one has α > 1. Anomalous diffusion is ubiq-
uitous in cell-related contexts (both sub-40,42,44–54 and
superdiffusion8,12,29,55–57) and artificially crowded media.

The standard SPT observable is the TAMSD, defined
for the ith vacuole (in the continuous representation)
as38,39,43,44

δ2
i (∆) =

1

T −∆

∫ T−∆

0

{
[xi(t+ ∆)− xi(t)]2

+ [yi(t+ ∆)− yi(t)]2
}
dt. (2)

The analogue of Eq. (2) for time series at discrete times
is straightforward. The mean over N independent tra-
jectories each with length Ti is computed as

〈
δ2(∆)

〉
= N−1

N∑
i=1

δ2
i (∆), (3)

where 0 ≤ ∆ ≤ Ti is the lag time involved in averaging
of the recorded time series {xi(t), yi(t)}. For SPT tra-
jectories of different lengths, at different lag times the
respective number N(∆) in Eq. (3) changes as well. At
short lag times we fit the individual TAMSDs by two-
parameter power-laws,

δ2
i (∆) ≈ 4× (Kβ)i ×∆βi . (4)

Here, (Kβ)i is the trajectory-specific generalized diffu-

sion coefficient for the TAMSD δ2
i (∆). A fairly small

number of experimental SPT frames is used for this fit:
nfit is from 5 to 25 points along the trajectories (indepen-
dent of the total length of a given trajectory). One point
is equivalent to one frame in the SPT experiment. Sta-
tistically, the TAMSD delivers the most reliable results
for short lag times, when ∆/T � 137,43. We refer here
to Refs.58,59 for the analysis of some effects of nfit and

on the rear end, where large vacuoles are often located, see the
supplementary video files.
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of uncertainties of the particle-localization procedure on
the values of βi and (Kβ)i (see also Refs.12,37).

To quantify the spread of δ2
i (∆) for an ensemble of vac-

uoles, after a given lag time ∆ we compute the ergodicity
breaking parameter as the ensemble average38–40,43,60

EB(∆) =

〈(
δ2(∆)

)2
〉/〈

δ2(∆)
〉2

− 1 . (5)

For Brownian motion, the EB parameter scales in the
region ∆/T � 1 as43,60–63

EBBM(∆) ≈ 4∆/(3T ), (6)

while other functional forms of EB(∆) are known, es-
pecially finite EB values even at long measurement
times38,43,64.

We also compute the displacement autocorrelation
function Cδt(t) from the two-dimensional radius-vector
of vacuoles, ri(t), as

Cδt(t) = (δt)−2 × 〈[ri(t+ δt)− ri(t)] · [ ri(δt)− ri(0)]〉.
(7)

This function quantifies displacement correlations along
the trajectories after a finite time shift δt, see
Refs.39,43,44,65. Instantaneous speeds of vacuoles and
their radial distribution in the course of intracellular dif-
fusion are also evaluated.

IV. MAIN RESULTS

A. Distribution of vacuole sizes and trajectory
lengths

The radii of the tracked vacuoles are rather broadly dis-
tributed, from ≈1 to ≈4.5 µm, as shown in Fig. 2. The
SPT data for a total of N =357 vacuole trajectories are
analyzed (for most of the results below). The statistical
and fitting analysis is performed in Matlab and Wolfram
Mathematica. Certain vacuoles are quite dynamic enti-
ties, capable of changing their (visible and real) dimen-
sions on time-scales from several seconds to dozens of
minutes10. For the current data set, the largest vacuole
is often observed to grow in size and then abruptly shrink
(see the video files). This cycle repeats as the amoeba
moves, see the radius evolution in Fig. S3a, indicating
that this vacuole is the contractile vacuole expelling wa-
ter for osmotic regulation5,66.

For small and medium-sized vacuoles, the radius varia-
tions in the SPT data files are considerably smaller, Fig.
S3b. Moreover, as the vacuoles move across the focal
plane, their effective radii can change along the recorded
time series. This is particularly pronounced for small vac-
uoles, for which insignificant displacements perpendicu-
lar to the focal plane can give rise to large relative vari-
ations of their visible size. Therefore, in Fig. 2 we com-
pute and analyze the maximal radii along the recorded
time series, that reflects the physical vacuole sizes quite

FIG. 2: Distribution of radii of vacuoles diffusing in the AC
cytoplasm. The subpopulations were chosen to quantify the
≈13% smallest, ≈70% medium-sized, and ≈17% largest vac-
uoles.

FIG. 3: Spread of individual TAMSDs (2) of vacuoles. Dif-
ferent colors denote different subpopulations of vacuoles (see
Fig. 2). The mean TAMSDs (3) for each subpopulation are
represented by the thick solid lines. For longer lag times the
statistics becomes poorer, as expected.

closely. However, the analysis using the mean vacuole
radius illustrated in Fig. S3b—for instance, to study
the distribution of vacuoles in cells as quantified in Fig.
S11—can also be a legitimate procedure.

B. TAMSD: magnitudes, spread of trajectories,
and anomalous scaling exponents

The distribution of trajectory lengths of small,
medium, and large vacuoles is shown in Fig. S4. We find
that the subpopulation of the smallest vacuoles in the set
features the shortest trajectories, medium-sized particles
have intermediate-to-long traces, while the largest vac-
uoles yield longest time series. This observation is con-
sistent with the physical mechanism that smaller vacuoles
are quicker to leave the focal plane of the microscope via
diffusion. § As mentioned in Ref.8, the centers-of-area of
AC cells perform nearly ballistic motion, with the scaling

§This hampers the detection of small vacuoles for longer times. Dur-
ing amoebae diffusion, larger particles stay in a confident-detection
plane for longer times introducing certain bias in the data (see the
discussion in Refs.56,65,67,68). Specifically, the focus depth still al-
lowing a confident tracking is a couple of µm. Larger vacuoles are,
thus, allowed to move larger distances in the vertical direction and
still yield a detectable position. In contrast, for smaller vacuoles the
same displacement may lead to its disappearance from the view-
field and to trajectory termination. Thus, a slower subpopulation
of smaller vacuoles gets over-represented in the data set.
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FIG. 4: Time-local anomalous diffusion exponent of the mean
TAMSD of vacuoles (computed for vacuoles of all sizes in Fig.
2), plotted versus the lag time for varying number of points
(nfit) in the fit of Eq. (4).

exponent

〈βAC 〉 = 1.86± 0.02 (8)

of the mean TAMSD
〈
δ2(∆)

〉
, see Fig. S5. From these

data, the average ”speed” of AC cells for the current
conditions (temperature, surface adhesion, etc.) can be
estimated as 〈vAC 〉 ≈0.49 µm/sec.

Dividing up the vacuoles by their sizes, as color-coded
in Fig. 2, Figure 3 presents the individual TAMSDs of
the tracked particles for the respective subpopulations.
We find that small, medium, and large vacuoles yield
mean TAMSDs of similar magnitude and functional de-
pendence, see the thick solid curves in Fig. 3. We remind
the reader here that the largest vacuoles feature long time
series, see the distribution in Fig. S4.

We find that the TAMSDs are slightly subdiffusive at
very short lag times69, progressively turning superdiffu-
sive at intermediate ∆, and, finally, exhibiting subdiffu-
sion again at even longer times. Different AC cells reveal
a close match of the MSD and mean TAMSD evolution
in the region of short-to-intermediate times, see Fig. S6.
From the data of Fig. 3 for lag times up to 20 sec the
average diffusion coefficient of vacuoles is Dvac ≈ 0.09
µm2/sec. For comparison, the Stokes-Einstein diffusiv-
ity of a spherical particle with radius 3 µm in water is
≈ 0.1 µm2/sec. As an alternative to the average diffu-
sivity, Dvac, the frame-based70 and time-local71 diffusion
coefficients can also be used in the analysis.

The time-local anomalous scaling exponent for the
mean TAMSD of vacuoles is defined as39,41–43

〈β(∆)〉 = ∂ log
(〈
δ2(∆)

〉)
/∂ log ∆. (9)

Its variation with the lag time is illustrated in Fig.
4. The transition from short-lag-time subdiffusion to
intermediate-time superdiffusion, and back to subdiffu-
sion is particularly visible for a smaller number of points
(nfit) used in the fit analysis of Eqs. (4) and (9). The
most superdiffusive behavior with

〈βvac〉 ≈ 1.2 . . . 1.4 (10)

is observed at lag times ∆ ≈ 1 . . . 5 sec, see Fig. 4 and
also the analysis of Ref.22. Large variations in 〈β(∆)〉 at
∆ � 5 . . . 10 sec are caused by insufficient statistics in
the averaging procedure (2). Note that for varying nfit

values the 〈βvac(∆)〉 curves are plotted in Fig. 4 starting
from the lag time δ∆×nfit/2 (the middle of the respective
fitting interval). As physically expected, as the number
of fitting points increases, the variations of the resulting
scaling exponent with lag time decreases because the fit is

FIG. 5: Correlations of anomalous scaling exponents and gen-
eralized diffusion coefficients as obtained from the fit of indi-
vidual TAMSDs (4) for vacuole motion. The initial lag time
value is ∆start = 0.1 sec. The dashed lines are the best linear
fits to the data (in log-linear scale, see Eq. (11)). The slope
values in the legend here and below are linked to Eq. (11) as
c1 =slope× loge 10.

done over larger intervals of the TAMSDs. For the effects
of nfit on the value of short-time diffusivity, including a
choice of an optimal nfit value, we refer to Refs.58,59,65,72.

C. Kβ–β correlations and p (Kβ) distribution

Our analysis reveals positive correlations between the
values of the generalized diffusion coefficient and the
anomalous scaling exponent of the TAMSDs computed
for individual vacuoles at short lag times. Figure 5 shows
these results for the minimal lag-time value, ∆ = 0.1 sec.
We fit these correlations with an exponential function,

Kβ(βvac) ∼ exp[c1βvac + c2], (11)

where c1,2 are fit coefficients. The correlations are some-
what stronger for smallest numbers of fitting points in
Eq. (4), see Fig. 5. This trend is similar to that ob-
served for free Brownian motion as well as for confined
diffusion obeying the Ornstein-Uhlenbeck process, as we
checked by computer simulations, see Fig. S8. These
positive correlations at short lag times indicate that the
motion of vacuoles in AC cells with larger exponents fea-
tures larger diffusion coefficients.

The same analysis performed at later parts of the vac-
uole trajectories—starting, for instance, at ∆start = 1
sec as shown in Fig. S7a—reveals almost no remaining
Kβ–β correlations in the data. We refer here also to the
analysis of negative Kβ–β correlations for another amoe-
boid system12 as well as to the recent study of spreading
of nanoparticles and quantum dots in live mammalian
cells. For the latter system, various nontrivial Kβ–β de-
pendencies were observed56. For even longer lag times—
at ∆start = 10 sec as in Fig. S7b—the correlations turn
pronouncedly negative, with c1 < 0 in Eq. (11). Physi-
cally, in this case, a larger diffusivity for a given vacuole
trajectory Kβ , give rise to statistically favorable smaller
values of the anomalous exponent βi attributable to it,
and visa versa. This transition from positive to negative
Kβ versus β correlations is—at least partly—due to a
more confined motion of vacuoles at later lag times (see
also Sec. V A).

We also quantify the distribution p (Kβ) of the ob-
served generalized diffusion coefficients, see Fig. S9. We
find that p (Kβ) is a fast decaying distribution, for vary-
ing numbers nfit used in the scaling analysis. We mention
here that the distribution p (Kβ) was examined for some
recent experimental STP-data56,73 as well as for certain
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FIG. 6: Ergodicity breaking parameter (5) computed for all
vacuole trajectories of Fig. 3 (with no separation in subpop-
ulations). The inset shows the dependence of EB computed
at ∆ = 0.1 sec versus the trajectory length T for partial time
series. The Brownian asymptote (6) is the dashed line.

anomalous diffusion processes (see the analysis of in silico
trajectories performed in Refs.74,75).

D. Ergodicity breaking parameter

The evolution of the EB parameter computed via (5)
for the data on vacuole diffusion is presented in Fig. 6.
We find that almost in the entire range of lag times the
EB values are considerably larger than those for Brow-
nian motion, Eq. (6). For longer lag times—similarly
to the behavior of the TAMSDs in Fig. 3—the ergodic-
ity breaking parameter reveals large fluctuations due to
worsening statistics (outside of the range used in Fig. 6).
Note also that in Fig. 6 we show the EB variation in the
same domain of lag times as in Fig. 4. ¶

In the inset of Fig. 6 we show the behavior of the EB
parameter at short lag times versus the trajectory length,
T . The decay appears to be slower than the inverse pro-
portionality 1/T , which is characteristic for a number of
normal and anomalous diffusion processes39,43. The large
magnitude of the standard error bars in Fig. 6 indicates,
however, that the current sample is likely too small to
make a solid statement regarding the EB(T ) decay. As
the standard deviation σ for a set of xj values, defined

as σ(x) =
√
N−1

∑N
i=1(x− 〈x〉)2, decreases for a larger

sample-size N , smaller error bars and more confident EB
evaluation is expected when more SPT trajectories are
available for the analysis (independent and taken at iden-
tical conditions).

E. Vacuole displacements distribution

The fine structure of the displacement distribution
function P (dr, dt) of vacuoles moving inside AC cells is
visualized in Fig. 7. The radial displacement of vacuoles

is computed as dr =
√
dx2 + dy2. We find that, partic-

ularly at short time shifts, dt = 1, the function P (dr, dt)
reveals three extremely pronounced peaks. They stem

¶Note that the discrepancy of the EB parameter from the Brownian
behavior may seem inconsistent with a close match of the MSD and
mean TAMSD, as seen in Fig. S6. Theoretically, however, similar
discrepancies in the behaviors of the ensemble- and time-averaged
displacements versus the EB parameter were found and rationalized
previously, see Ref.76. This is the case, for instance, for diffusive
systems where the relaxation time exceeds the measurement time
(the length of time series).

(a)

(b)

FIG. 7: Histograms of displacement distributions for all vac-
uoles in the data set, computed after 1 and 10 time steps ∆t
for panels (a) and (b), respectively. The bin width in the
main plots is set the same; in the inset of panel (b) a larger
bin width is used.

FIG. 8: Displacement autocorrelation function (7) after aver-
aging over all vacuole trajectories. The employed time shifts
are listed in the legend.

from discrete increments of vacuole positions in the data
set which are often multiples of the pixel size, namely
{dx, dy} ≈ n × 0.106 µm. Inherently, the observed be-
havior on the initial stages of vacuole diffusion is therefore
far from a Gaussian, see Fig. 7a. For longer time shifts,
the distributions P (dr, dt) also exhibit dramatic discrete-
ness effects. For instance, again noting69, after ten steps
multiple peaks are clearly visible at dx ≈ n × 0.1 µm in
Fig. 7b (which can be smoothen if wider thicker bins are
used, as in the inset of Fig. 7b).

F. Autocorrelation function of displacements

The results for the displacement autocorrelation func-
tion computed for vacuole diffusion are shown in Fig. 8.
Averaging is performed here over all particles, without
division into subpopulations. We find that for short time
shifts—for instance, at δt = 1 in Eq. (7)—the autocor-
relation function drops below zero. Its negative values
are consistent with subdiffusive motion observed for the
TAMSDs at very short lag times, see Fig. 4. Remember-
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FIG. 9: Instantaneous speeds of vacuoles in terms of per-
centages of particles with a given |v| value. We emphasize a
pronounced peak at |v| = 0 corresponding to the displacement
distribution peak at P (dx = 0, dt = 1).

ing possible limitations of the experimental setup69, this
antipersistence of vacuole motion at short times may also
stem from the viscoelasticity of the amoeba cytoplasm.
We also note pronounced zigzag-like variations of Cδt(t)
with the period of one time step, visible at δt/∆t = 1
in Fig. 8. This, once again, relates to the discreteness
of recorded vacuole increments visible for the behavior
of P (dx, dt) in Fig. 7. At longer times, the function
Cδt=1(t) reveals fluctuations around zero (possibly, sta-
tistically insignificant). A similar behavior of Cδt(t) at
short time-increments δt was detected previously for this
system8 without amoeba locomotion. Note that at short
times the negative peak in the velocity autocorrelation
function may also emerge due to particle-localization er-
rors and external confinement52.

At intermediate and long time shifts δt—when aver-
aging in Eq. (7) is performed largely over a superdiffu-
sive portion of vacuole trajectories—Cδt(t) attains posi-
tive values. Physically, this is an expected behavior for
a superdiffusive stochastic process12,39,43,44. Namely, the
displacements of the tracer at consecutive time steps are
positively correlated so that a faster-than-Brownian mo-
tion emerges as a result of averaging over many individual
steps. For these larger δt values the autocorrelation func-
tion also reveals a small deep at the respective time values
when t = δt, see Fig. 8. For the regime of substantial
time shifts δt and very long times t the displacement au-
tocorrelation function slowly approaches a small positive
value ≈ 0.1 . . . 0.2. This is qualitatively consistent with
a weak superdiffusion of vacuoles with α ≈ 1.2 . . . 1.3 ob-
served in this regime, see Fig. 4. ‖

‖The TAMSD exponent varies substantially along the vacuole tra-

FIG. 10: Radial distribution of vacuoles with respect to the
centers of their hosting amoebae (see Fig. 2 for color coding).
Fractions with respective radial distances are shown for each
subpopulation of vacuoles.

G. Vacuole speeds and locations inside cells

The instantaneous vacuole speeds—defined as elemen-
tary vacuole displacements divided over the elementary
increment of time in the time series—are distributed as
shown in Fig. 9. The speeds are computed as the mod-
ulus of elementary vacuole increments divided by the el-
ementary time step dt/∆t = 1. In Fig. 9 the speed
distributions are shown in terms of fractions of vacuoles
in each subpopulation with a given |v| value. The distri-
butions are overall similar for small, medium, and large
vacuoles. They all reveal a distinct peak at |vvac| ≈ 0, ad-
ditional peaks at |vvac,1| ≈ 1 µm/sec, and small peaks at
|vvac| ≈ 0.5, 1, and 2 µm/sec. These peaks complement
the peaks in the displacement distribution function after
one time step, Fig. 7a. Namely, zero-speed entries in Fig.
9 correspond to the central peak of P (dr, dt) in Fig. 7a,
while |vvac,1| ∼ 0.1µm

0.1sec (from one elementary displacement
per unit time step ∆t). The mean speed—computed
via averaging over all increments and all vacuoles—is
〈|vvac|〉 ≈ 0.5 µm/sec, for all subpopulations of vacuoles.
∗∗ As mentioned in the Introduction, different motor pro-
teins are abundant on the leading edge of AC cells and in
their cytoplasm. Myosin, dynein, and kinesin control the
properties of microtubule-based motility of various cell
organelles (mitochondria, small particles, granules, lyso-

jectories in the range of time-shifts probed for the autocorrelation
function in Fig. 8. In virtue of a limited length of trajectories,
the mean TAMSD does not reveal any extended region of anoma-
lous diffusion with a roughly constant scaling exponent. Therefore,
one cannot expect a universal curve for Cδt(t) to emerge when a
rescaling of time t/δt is employed, see also the discussion in Ref.52.

∗∗This value, however, has a large standard deviation, again due
to the fact that instantaneous speeds of vacuoles take rather dis-
cretized values in the current data set. Note here that small vac-
uoles which are slow can be over-represented in the current data set
(generally, smaller tracers are more problematic to track for longer
times; Fig. S4 confirms this statement).
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somes, vesicles, etc.) over a length-scale of several mi-
crons. For mitochondria, for instance, speeds in a range
≈ 0.5 . . . 4 µm/sec were recorded6. The resolution lim-
its for the tracer’s displacements and speeds recorded in
flattened, pancake-like AC cells in Ref.6 were ∼ 0.5 µm
and ∼ 0.5 µm/sec, correspondingly. As demonstrated in
the in vitro motility assay, internal AC organelles (mi-
tochondria, small particles, etc.) move at ≈ 0.4 µm/sec
towards the plus end and at ≈ 1.1 µm/sec towards the
minus end of the microtubule filaments. For the kinesin-
and dynein-based modes of transport of (membranous)
organelles32 inside AC cells the averaged speeds of ≈ 3.3
and ≈ 2 . . . 3 µm/sec were reported in Ref.6.

The mode of organelle motility in AC cells based on
abundant myosin-I motors9,23—bound to and ”running”
along F-actin filaments—can make an additional, sizable
contribution24. The speed for this mode of transport
was reported to be slower, on average ≈0.24 µm/sec24

(see also Ref.32). The reported transport speeds clearly
depend on the detailed experimental conditions and cell-
preparation protocols. Therefore, the average instan-
taneous speeds of (rather large) vacuoles in the range
≈0.5 µm/sec we report here are of the same order as the
microtubuli-directed traffic speeds for smaller cargos be-
ing pulled by different motors, as reported previously6,24.

We also examine in Fig. 10 the histogram of vacuole
radial distances with respect to the center-of-area of the
respective AC cell. Specifically, we compute the distribu-

tion p
(
r =

√
x2 + y2

)
over the entire time-tracks of all

relative positions of vacuoles {x, y}. We find that smaller
vacuoles prefer to move closer to the outside/periphery
of the cells, as compared to medium and large particles.
The latter have the peaks of their position distribution
function shifted towards the cell center by ∼ 5 µm. Note
that in Fig. 10 the positions of vacuole centers are ex-
amined and plotted. This means that larger particles get
also effectively ”displaced” from the outer cell membrane
purely by excluded-volume interactions. ††

V. DISCUSSION AND CONCLUSIONS

A. Overview and discussion of our main results

In the current study, we quantified the motion of vac-
uoles inside motile AC cells, see Fig. 1, examining the
data sets obtained from SPT experiments using a number
of standard38,39,43–45 statistical quantifiers. Let us sum-

††We emphasize here, however, that if the mean vacuole radii—rather
than the maximum radii—are used for the analysis, the vacuole
distributions appear quite different, see Fig. S11. In this inter-
pretation, for instance, the smallest vacuoles tend to occupy the
central regions of the amoebae. The physical interpretation for the
mean vacuole radius seems, however, less clear to us than for the
maximum radius along a given track.

marize our main findings and their interpretation point-
by-point below.

(i) We computed and characterized the magnitude and
spread of individual TAMSD trajectories for the sub-
populations of small, medium, and large vacuoles, see
Fig. 2. We revealed that the behavior of the anoma-
lous scaling exponent of the mean TAMSD turns from
slightly subdiffusive at (very) short lag times to superdif-
fusive at intermediate lag times. For the later region,
a prolonged regime with anomalous diffusion exponent
〈βvac〉 ≈ 1.1 . . . 1.3 was detected, Figs. 3 and 4. This
motion of vacuoles is superimposed onto a nearly bal-
listic propulsion of amoebae as such, with MSD expo-
nent 〈βAC 〉 = 1.86±0.02 and average speed |vAC | ≈0.49
µm/sec, see Fig. S5. Note that varying the number of
fitting points of the TAMSD tracks as well as the size of
the data set and its experimental conditions will quan-
titatively affect the values of 〈βAC 〉 and 〈βvac〉. The re-

ported spread of δ2
i (∆) trajectories is also going to be

affected, see Refs.12,56,58,59,77 for the discussion.
We emphasize here that apparent weak

subdiffusion52,72,78–81 observed at very short lag
times can be induced by the localization error of
vacuoles in these SPT experiments, see also note69. A
subdiffusive behavior—instead of Brownian diffusion for
δ2
i (∆) displacements—would then emerge at short lag

times solely due to particle-localization uncertainties, as
predicted and quantified theoretically in Ref.78. Specifi-
cally, the ”flattening” of the TAMSDs is pronounced at
short times, with the predicted TAMSD expression being

(for normal basal diffusion)
〈
δ2(∆)

〉
∼ 2σ2 + 2D∆,

see Refs.52,78,79. Here, σ ≈ 1 . . . 2 pixels is the static
localization error of the particle in SPT experiments, see
also Sec. II. Indeed, the vacuole displacements at short

lag times—namely,
〈
δ2
vac

〉
∼ (0.1 µm)2 as seen from

Fig. 3—are comparable to the resolution of the current
SPT setup. Additionally, a finite camera-exposure
time gives rise to motion blurring of the tracers and
associated dynamic localization error, see the discussion
in Refs.58,72,79,82.

Similar features of the short-time behavior of δ2
i (∆) re-

ported in Ref.8 can have similar localization-error-related
origin. Note, however, that in Ref.8 the experimental set-
tings and the analysis algorithm were different (with re-
gard to center-of-area tracking, methods of vacuole track-
ing, etc.).

(ii) We observed that at the start of the vacuole trajec-
tories the values of the trace-specific diffusion coefficient
and scaling exponent are positively correlated, see Fig. 5.
This reflects the physical picture of vacuoles with small
(large) exponents featuring small (large) diffusion coef-
ficients at the initial stage of diffusion. At later stages,
these correlations virtually disappear and, finally, turn
negative. Below we discuss some physical reasons for this
surprising behavior of Kβ–β correlations.

First, large variability of cell sizes, dynamic changes of
shapes of cells and vacuoles, as well as polydispersity of
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vacuole dimensions, together with heterogeneous crowd-
ing of the cytoplasm, make the current system quite com-
plicated to study, both in terms of the SPT experiments
and the statistical analysis. Mutual correlations of dif-
fusivities and exponents as well as peculiar features of
the distribution of diffusivities, p(Kβ), may stem from
multiple complicated mechanisms controlling the vacuole
motion. Their deeper understanding will deliver new in-
sights regarding underlying stochastic processes as well
as physical effects of the medium onto vacuole diffu-
sion (confinement/caging, binding-unbinding dynamics,
medium viscoelasticity, etc.). Note also that certain is-
sues of heterogeneous crowding and anomalous space-
dependent diffusion can also be at play here, as investi-
gated recently for cell-mimicking bounded domains, both
theoretically and by computer simulations74,84,85.

Recently, for more size-restricted and controlled dif-
fusion of calibrated nanoparticles in the cytoplasm of
live mammalian cells pronounced variations and different
inter-relations between Kβ and β were reported56. Vari-
able nanoparticle sizes (from 25 to 75 nm) and their non-
specific interactions83 with the medium were examined56.
These and other experimental features were shown to
affect56 the observed Kβ–β correlations, often turning
out to be positive, similarly to our Fig. 5.

The vacuoles inside amoebae are highly confined due to
the cell envelope. To mimic this, we simulated harmon-
ically confined passive particles, the so-called Ornstein-
Uhlenbeck process63,86. For this process we unveiled sim-
ilar Kβ − β correlations: pronouncedly positive at short
times, turning strongly negative at later times, see Fig.
S8. The confined motion is realized at times much longer
than the internal correlation time of this diffusion pro-
cess, 1/λ63. Thus, a confined motion is consistent with a
transition from positive to negative correlations observed
at later stages of vacuole motion in AC cells, see Fig. S7.

(iii) From the behavior of the TAMSDs of vac-
uoles we observe that their diffusion is strongly non-
Brownian39,43. The ergodicity breaking parameter, EB,
was computed after averaging over vacuoles of all sizes
in the data set, Fig. 6. The evolution of EB(∆) demon-
strates that vacuole motion is nonergodic. Despite rather
high and non-vanishing EB values at short lag times, the
magnitudes of the MSD and mean TAMSDs for the vac-
uole trajectories are close, see Fig. S6. Note that similar
features were observed in the simulations of Ref.71. More-
over, the decay of the EB parameter at short lag times
with the length of trajectories was shown to be slower
than EB(T ) ∝ 1/T , see the inset of Fig. 6. ‡‡

As we mentioned previously43,65, the requirements on
the size of the data set for computing the higher-order

‡‡Note that similar sublinear EB behaviors with 1/T were reported
recently for the models of diffusion in heterogeneous media87 and in
computer simulations of lipid diffusion in membranes with dynamic
interactions71. Both these systems involve the concept of ”diffusing
diffusivity”, see Refs.71,76,76,77,88–94 for an overview.

moments of particle displacements, such as the EB pa-
rameter, are much stricter compared to those for the sec-
ond moments, such as δ2. Many more SPT trajectories—
recorded (at best) at identical experimental conditions
and minimal polydispersity of cell and vacuole sizes—
are needed to make a confident conclusion regarding the
EB scaling behavior for vacuole inter-cellular motion as
a function of lag time ∆ and trajectory length T (work
in progress).

Note also that additional issues—varying sample size,
minimal trajectory length, uniform versus non-uniform
distribution of track lengths used in the analysis, vary-
ing vacuole sizes and amoeba speeds—can all affect the
final results of the analysis, see Refs.65,68,95 for the dis-
cussion. How strong the effects of the diffusion environ-
ment is onto the observed properties of the TAMSD and
the EB parameter of vacuole motion and how much is
due to sample-acquisition limitations, experimental re-
strictions, and sample-set properties is to be examined
in the future96.

(iv) We computed the distributions of vacuole dis-
placements with respect to the center-of-area of respec-
tive amoebae, at varying time shifts from the start of
the measurement, see Fig. 7a. We observed a strongly
non-Gaussian pixel-size-dependent vacuole displacement-
distributions, for individual Cartesian x− y coordinates

as well as the radial displacements, p
(
r =

√
x2 + y2

)
.

For instance, after a single step of diffusion (dt = 1) we
detected a peak of vacuole displacements at dx = dy = 0
supplemented by two smaller peaks at the increments of
dx = dy = ±1 pixel size. These discreteness effects per-
sist also at later stages of vacuole diffusion, see Fig. 7b
and note69.

(v) We computed the displacement autocorrelation
function Cδt(t) along individual trajectories of vacuoles,
Eq. (7). The results we presented in Fig. 8 indicate
the presence of pixel-size effects, particulary at minimal
time shift δt = 1, as expected. Also, as the data set was
rather limited, we observed pronounced fluctuations in
the behavior of Cδt=1(t) at later times t. For longer time
shifts δt, the pixel-size effects were smoothen and the re-
ported Cδt(t) function revealed a monotonic decay from
unity towards a small positive value. This is consistent
with a slightly superdiffusive nature of vacuole motion in
this time domain. The pixel-size effects manifest them-
selves also in the distribution of instantaneous speeds of
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vacuoles, as seen from Fig. 9. §§, ¶¶

The novelty of the current study from the experimen-
tal point of view is in successful recording of much longer
trajectories via constructing an automated tracking sys-
tem on the microscope. Previously8, the AC cells leav-
ing the image resulted in terminated SPT-tracks, that
also caused certain bias in the data. Namely, longer
vacuole trajectories remained in the set mainly stemmed
from slower amoebae staying in the image longer. From
the data-analysis viewpoint—as compared to Ref.8—the
novel elements are, in particular, the study of cross-
correlations Kβ − β and the distribution of generalized
diffusion coefficients p(Kβ), the behavior of the EB pa-
rameter, and spatial distribution of vacuoles inside AC
cells. Some of these examinations as well as the TAMSD
calculations were performed separately for subpopula-
tions of small, medium, and large vacuoles. Thus, the
current analysis delivers new insight into the mechanisms
of diffusion of polydisperse vacuoles inside motile amoe-
bae. Our results may help to unveil certain features of
the amoeba functions and its pathogenetic activity con-
nected with vacuole motion, as outlined in Sec. I.

B. Possible models and mechanisms of vacuole
diffusion

Some recent studies employed similar statistical
quantifiers aiming at predicting the most-probable
model of diffusion using the time series from various
SPT-experiments as input signals12,37,50,51,54,56,65,77,97.
The ”best” model of diffusion has to accommo-
date various features of tracer motion often ob-
served in SPT-experiments, such as anomalous, non-

§§To cure these ”artificial” discreteness-based effects69 in displace-
ments, speeds, and displacement autocorrelations of vacuoles, one
can think of smearing out the vacuole positions recorded in these
SPT experiments, prior to their statistical analysis. One can use
a Gaussian-like smoothening function with width equal to several
pixels of the microscopy image (not shown; see the inset of Fig.
7b). This would then make the peaks in the speed distribution of
Fig. 9 originating from the discreteness effects less pronounced.
The elementary timescale involved in the computation of the av-
erage vacuole speed should then also be adjusted correspondingly
(instead of setting it to one elementary time step, as in Fig. 9),
see Ref.52. Physically, only those tracer displacements exceeding
the position-localization uncertainty52,58,78 should be used in the
analysis of physical observables. The effects of varying localization
error in these SPT experiments on the behavior of the fundamental
quantities such as the TAMSD, the EB parameter, the autocorre-
lation function, etc. would be interesting to study in the future96

once precision-controlled data are acquired for this motile system.
¶¶Possible long-distance correlations in direction and motion speed of

diffusing vacuoles—as a function of their separation inside a given
amoeba—is an interesting subject to study. They could quantify
the ”reach” of hydrodynamic and other correlation-inducing in-
teractions being transmitted through the cell cytoplasm. In the
current data, however, the mutual distances between vacuoles were
not recorded and this question cannot be addressed in principle.

ergodic, non-Gaussian, and (possibly) ageing features
of diffusion. Physically, such a model should re-
flect the underlying transport features and particle-
trapping mechanisms by the medium. The mod-
els of continuous-time random walks, fractional Brow-
nian motion, generalized Langevin equation motion,
multi-state diffusion, and diffusing-diffusivity models
have been proposed (among others) as—sometimes
conflicting—candidates for rationalizing experimental
SPT observations12,39–41,43,45,50,51,54,65,71,90,95,98–101. In
addition to ensemble-averaged properties, some single-
trajectory-based quantifiers were also proposed recently
for confident selection, validation and discrimination of
different anomalous diffusion models (see Ref.101 for the
sample characteristic function, mixing and ergodicity es-
timators). We also emphasize here the recent power-
spectral-density approach of Ref.22 that was successfully
applied to the experimental data of vacuole diffusion in-
side AC cells.

For instance, our recent Bayesian analysis65,77 demon-
strated that SPT trajectories of tracer particles in poly-
meric mucin gels may be well mimicked by Brownian or
fractional Brownian type of motion. The spread of in-

dividual δ2
i (∆) trajectories observed for an ensemble of

tracers should then be accounted for in the analysis via
additional inter-relations between certain diffusive char-
acteristics. These can be, e.g., the distribution of and the
correlations between the values of the diffusion coefficient
and scaling exponent, such as those observed in Figs. S9
and 5. These dependencies reflect the impact of physical
interactions and processes at play for a given system.

Generally, mathematical models of different degree of
complexity may be proposed to describe experimental
SPT observations. Ideally, the principles of Bayesian
statistics and Occam’s razor should be employed77,102–104

to rank plausible theoretical models. Specifically, mod-
els with excessive numbers of parameters or parameter-
distribution embeddings should be penalized (despite
better data fits they might produce). As another ex-
treme, choosing a physically simplistic model often re-
sults in neglecting important biological details of the sys-
tem, so that vital dependencies on tunable experimental
parameters cannot be captured, for instance.

Statistical diffusion models of hierarchical nature—
such as superstatistics90,93,105,106—can also be proposed,
in which the dynamics of model parameters on multi-
ple scales in space and time gets superposed or con-
voluted with the original propagator of a given model
of diffusion. The mathematically powerful concepts of
superstatistics—although offering fits to the observed be-
haviors of, e.g., P (x, t) and the TAMSDs—may, however,
still lack a clear physical rationale for the observed be-
havior, see the examples in Ref.102. Similar caution is
required when providing physical interpretations of SPT
observations using the concepts of ensemble-distributed,
time-local, and time-random or diffusing model param-
eters, such as diffusing diffusivity54,71,88,90,107. Het-
erogeneous diffusion74,87,99,102,108,109—as a superposi-
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tion of simple ergodic diffusion with distributed model
parameters—can be also of relevance for the current data.
Such a hierarchical embedding of distributions of pa-
rameters into a standard diffusion model can give rise,
e.g., to a multitude of non-Gaussian density-distribution
functions90,93,102.

The vacuoles—during a finite diffusion time in our
experiments—do not manage to sample the entire cell
uniformly. Due to size variations, certain processes of ac-
tive and passive nature can differ from vacuole to vacuole.
Additionally, the vacuoles experience different intercellu-
lar conditions during highly motile AC motion and due
to heterogeneity of its cytoplasm. Therefore, some dis-
tributions of model parameters can be involved into the
models—in the superstatistical sense—on multiple levels.
These may mimic, e.g., an ensemble of non-identical par-
ticles or varying environments for vacuole subpopulations
(see Ref.65).

A motor-driven component of vacuole transport can be
present in the current data. It is, however, currently not
clear to what extent the network of ”cytoskeletal-based
highways” stays intact in the course of AC locomotion.
This affects how viable the cytoskeletal elements are as
the transducers of amoebae motion in terms of creating
cytoplasmic flows and streams20, see also the supplemen-
tary video files in real time. At the moment, it is not clear
whether the vacuoles are evolving with the cell membrane
which is rolling-over upon amoeba motion (the ”rotation
wheel” analogy). Also, how strongly the vacuoles of dif-
ferent sizes are involved in microtubuli- and actin-based
transport is currently not clear.

Yet, a two-state active and passive diffusion model
may be realistic for vacuole motion. The passive dif-
fusivity of vacuoles can depends, i.a., on their radial dis-
tance in the AC cell, vacuole size, and cell-locomotion
speed in a model with ab initio Gaussian displacements,
Dpas = Dpas(r,Rvac, |vAC |). Likewise, for the active
(motor-driven) mode of vacuole motion one sets Dact =
Dact(r,Rvac, |vAC |). Additionally, the distributions of
diffusion times vacuoles spend in each of these modes
should be parameterized. ∗∗∗ To unveil the proper-
ties of vacuole binding-unbinding kinetics and active-to-
passive switchings from individual time series, more del-
icate methods may be needed, see, e.g., Refs.101,112. Dif-
ferent states for multi-state diffusion processes71,112 as
well as certain separation of particles into subpopulations
may be required to quantify these features. Moreover,
time-local diffusivity of vacuoles along their tracks can
be analyzed to detect two-state diffusion (see the method
of Ref.71).

∗∗∗Such a system with two diffusivities (see Ref.110 and also later
studies101,111,112) is reminiscent of ”hopping-and-sliding” diffusion
of DNA-binding proteins searching for targets on DNA113–115.

C. Discussion of directions of future research

Clearly, a number of additional quantifiers—both for
the ensemble-averaged and single-trajectory-based prop-
erties of recorded time series—can be employed in a more
extended analysis, see, e.g., Refs.12,22,65,101,116. For in-
stance, one additional property we unveiled for one of
four AC cells is positive correlations in the directions of
motion of vacuoles and amoebae hosting them, Fig. S10.
We find that the discreteness of vacuole displacement (as
seen in Fig. 7, see also endnote69) also gets reflected
in certain preferred/discretized directions of vacuole az-
imuthal motion, as examined from the increments after
one time step, dt/∆t = 1. Although some amoebae do
reveal correlations in motion with their internalized vac-
uoles, see Fig. S10, larger sample sizes are crucial to
understand this in depth. Such directional correlations
render slightly superdiffusive motion of vacuoles inside
highly-motile amoebae—as we observe in a certain win-
dow of lag times in Fig. 3—plausible also without active
mechanisms of cytoplasmic transport. The mechanism
of superdiffusive transport of vacuoles is thus—at least
partly—due to persistence of motion of AC cells them-
selves (a model of diffusion with a constant drift).

In addition to a possible ”wheel effect”, locomo-
tive amoebae can create internal membrane-originating19

flows involving cytoplasmic components, including vac-
uoles. These flows are known to be pronounced for other
locomotive cells (see also the video files in the Supple-
mentary Material). For instance, the flow velocities of
up to 40% of the cell velocity in the direction of the
leading-edge were detected for rapidly moving fish ep-
ithelial keratocyte cells in Ref.13. The flows of cyto-
plasmatic fluid were quantified13 for the probes of var-
ious sizes diffusing in thin lamellipodia of these highly-
persistent keratocytes13 (average speed of ≈0.3 µm/sec).
Surprisingly, however, only slightly subdiffusive spread-
ing of small quantum dots was detected in the lamel-
lipodia in the reference frame of the cell13. Namely, the
exponent was found to be α ≈ 0.89, with the tracer dy-
namics featuring large variations (in terms of trajectory-
specific diffusivities)13. Interestingly, the flow-induced
concentration of larger probes near the leading edge in
these cells was larger than of small probes (30-nm quan-
tum dots)13. Blebbistatin-treated cells did not change
severely the behavior of the leading edge, but rather
affected the intercellular fluid flows and hydrostatic-
pressure gradients from the front to the rear end of the
cell.

Anomalous, heterogeneous, and non-Gaussian
diffusion—with a certain degree of cell-to-cell variability
and cell-size-dependent particle diffusivity—was recently
reported for the spreading dynamics of intrinsically-
polymerising H-NS proteins in live Escherichia coli, see
Ref.73. Projecting to our data set, a differentiation of
AC cells based on their size can shed light on certain
diffusive properties of internal vacuoles. A much larger
sample of trajectories from different and well controlled
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cells is, however, required to draw statistically meaning-
ful conclusions here. For instance, one can ask whether
larger cells host, on average, faster vacuoles (Fig. S6).

Note that different degrees of compression of amoebae
towards the surface can also affect the magnitude and ex-
ponent of the TAMSD trajectories of vacuoles. In these
lines, for instance, a dramatic reduction of the TAMSD
(at a constant exponent) was recently reported97 for
diffusion of DNA chromosomal loci in compressed Es-
cherichia coli cells. Additional dynamic fluctuations of
shapes and sizes of vacuoles also impact their diffusive
properties (see also the discussion in Ref.71).

Finally, and quite naturally, the physical mechanisms
of two-dimensional motion of AC cells on adhesive sup-
ports may differ16,117 from those for many natural three-
dimensional media. The tracking process in three di-
mensions may, however, be very challenging, see Ref.118

for the recent SPT advances. More sophisticated track-
ing methods67,104,118 may help to unveil new details of
functioning of this pathogenic system. Such methods
should have a better localization precision of vacuoles,
higher recording frequencies, smaller effects of cell-to-
cell variability, advanced vacuole-size control, as well as
better control over possible noise sources (vibrations of
the setup table, fluctuations of the light intensity, etc.).
These questions point the directions for future research.
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APPENDIX A: SUPPLEMENTARY FIGURES

Below we present additional figures supporting the
claims in the main text of the paper.
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