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Abstract
In the scenario of the narrow escape problem (NEP) a particle diffuses in afinite container and
eventually leaves it through a small ‘escapewindow’ in the otherwise impermeable boundary, once it
arrives to this window and crosses an entropic barrier at the entrance to it. This generic problem is
mathematically identical to that of a diffusion-mediated reactionwith a partially-reactive site on the
container’s boundary. Considerable knowledge is available on the dependence of themean first-
reaction time (FRT) on the pertinent parameters.We here go a distinct step further and derive the full
FRTdistribution for theNEP.Wedemonstrate that typical FRTsmay be orders ofmagnitude shorter
than themean one, thus resulting in a strong defocusing of characteristic temporal scales.We unveil
the geometry-control of the typical times, emphasising the role of the initial distance to the target as a
decisive parameter. A crucialfinding is the further FRTdefocusing due to the barrier, necessitating
repeated escape or reaction attempts interspersedwith bulk excursions. These results add new
perspectives and offer a broad comprehension of various features of the by-now classical NEP that are
relevant for numerous biological and technological systems.

1. Introduction

TheNarrowEscape Problem (NEP) describes the search by a diffusing particle for a small ‘escapewindow’ (EW)
in the otherwise impermeable boundary of afinite domain (figure 1) [1, 2]. TheNEP represents a prototypical
scenario, inter alia, in biophysics, biochemistry,molecular and cell biology, and in nanotechnology. Specifically,
the particle could be an ion, a chemically activemolecule or a protein confined in a biological cell, a cellular
compartment or amicrovesicle. The EWcould be a veritable ‘hole’ in the boundary, for instance, amembrane
pore, but it could also represent a reactive site right inside (or on) the boundary, such as a protein receptor
waiting to be triggered by a specific diffusingmolecule. Similarly, theNEPmay pertain to a tracermolecule
trying to leave froman interstice in the porous structure of an underground aquifer.When one is solely
interested in how the particle reaches the target, theNEP corresponds to the first-passage time problem [3]. The
situation becomesmore complicatedwhen some further action is needed after the EW is reached. For instance,
the particlemay have to react chemically with an imperfect, partially-reactive site, whichwill require the crossing
of an activation energy barrier. To produce a successful reaction event the particlemay repeatedly need to revisit
the target after additional rounds of bulk diffusion. Similarly, when the particle has to leave the domain through
a pore or a channel, an entropy barrier due to the geometric confinement at the entrance to the EWneeds to be
crossed [4]. In these scenarios, the relevant quantities are the first-reaction orfirst-exit times, which are often
substantially longer than the first-passage time to the EW. For brevity, in what followswewill call the first-
passage times to the successful reaction event as the first-reaction time (FRT), for both the eventual passage
through the EWconstrained by an entropic barrier or for the reactionwith a partially reactive site. This is a

OPEN ACCESS

RECEIVED

6August 2019

REVISED

31October 2019

ACCEPTED FOR PUBLICATION

22November 2019

PUBLISHED

13December 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd on behalf of the Institute of Physics andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/ab5de4
https://orcid.org/0000-0002-6273-9164
https://orcid.org/0000-0002-6273-9164
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0001-8467-3226
https://orcid.org/0000-0001-8467-3226
mailto:denis.grebenkov@polytechnique.edu
mailto:rmetzler@uni-potsdam.de
mailto:gleb.oshanin@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab5de4&domain=pdf&date_stamp=2019-12-13
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab5de4&domain=pdf&date_stamp=2019-12-13
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


randomvariable dependent on a variety of physical parameters and herewe unveil its non-trivial statistical
properties.

The paradigmatic NEPhas been extensively studied in terms ofmean FRTs [2, 5–7].While early analyses
concentrated on idealised, spherically-symmetric domains enclosed by a perfect hard-wall with a perfect (that is,
barrierless)EW [8–14], more recent work examined theNEP for domainswithmore complicated geometries
and non-smooth boundaries, when, e.g. a perfect barrierless target is hidden in a cusp or screened by surface
irregularities [15–19]. A striking example of theNEPwith very severe escape restrictions is the dire strait
problem [20]. Effects of short-ranged (contact) and long-ranged interactions with the confining boundary,
which are quite ubiquitous and give rise to ‘intermittentmotion’ characterised by alternating phases of bulk and
surface diffusion, were shown to allow for an optimisation of the search times [4, 21–26]. It was also studied how
molecular crowding in cellular environments impacts the search dynamics [13, 27, 28].When the target is
imperfect the contributions due to diffusive search and penetration through a barrier were shown to enter
additively to themean FRT [4, 29–31], akin to the celebratedCollins-Kimball relation in chemical kinetics [32].
Since these two rate-controlling factors disentangle the concept of search- versus barrier-controlledNEPwas
proposed [4, 30].

Despite of this considerable body of works published on theNEP, information beyond themean FRT is
scarce, only two recent analytical and numerical works consider the full distributions offirst-passage times to
perfect targets and only in two-dimensional settings [33, 34]. In fact, theNEP typically involves a broad spectrum
of time scales giving rise to a rich and interesting structure of the probability density function (PDF) of FRTswith
different time regimes. Knowledge of this full PDF is therefore a pressing case. Aswe showhere the FRTmay be
strongly defocused over several orders ofmagnitude, effecting noticeable trajectory-to-trajectory fluctuations
[35]. One therefore cannot expect that, in general, solely the firstmoment of the PDF can be sufficient to
characterise its form exhaustively well.Moreover, it is quite common that the behaviour of the positivemoments
of a distribution is dominated by its long-time tail and, hence, stems from anomalously long and rarely observed
trajectories [35–37]. Fluctuations between realisations are indeed common in diffusive processes and can be
characterised by the amplitude fluctuations of time-averagedmoments [38, 39] and single-trajectory power
spectra [40–42].

We here present the PDF of the FRTs for theNEP in the generic case of a spherical domainwith an imperfect
target and an arbitrary fixed starting point of the diffusing particle. Indeed, in cellular environments, this setting
represents one of themost interesting applications of theNEP, as particles such as small signallingmolecules or
proteins are usually released at some fixed point inside the cell [43] and need to diffusively locate specific targets
such as channel or receptor proteins embedded in the cellmembrane [44, 45]. Our analytical approach is based
on a self-consistent closure scheme [4, 46, 47] that yields analytical results in excellent agreementwith numerical
solutions.We demonstrate that in these settings the PDF exhibits typically four distinct temporal regimes
delimited by three relevant time scales, for whichwe also present explicit expressions. These characteristic times
may differ from each other by several orders ofmagnitude.We fully characterise the PDF of FRTs by identifying
the cumulative reaction depths (the fractions of FRT events corresponding to each temporal regime of the PDF)
and analyse their dependence on the systemparameters. Overall, our analysis provides afirst complete and
comprehensive framework for the understanding ofmultiple facets of the biologically and technologically
relevantNEP, paving away for a better theoretical understanding of theNEP and ameaningful interpretation of
experimental data. Last but not least, it permits for a straightforward derivation of the FRTPDF for amore

Figure 1. Spherical domain of radiusR containing a target (a partially reactive site or an EW) depicted as a spherical cap (inmagenta)
of a polar angle e located at theNorth pole. The red dot denotes the starting point (r, θ) of the diffusing particle, and the zigzag line
depicts a randomdiffusive path to the target.
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general problemwith several diffusive particles starting their randommotion fromgiven locations. In
appendices, we also discuss the forms of the PDF and the relevant time scales for other possible initial conditions.

2. TheNEP

As depicted infigure 1we consider a diffusing point-like particle with diffusion coefficientD inside a spherical
domain of radiusR. The boundary enclosing the domain is perfectly reflecting everywhere, except for the
imperfect target—a spherical cap of angle e at theNorth pole. By symmetry, the behaviour is independent of the
azimuthal angle, andwe need to solve the diffusion equation for the survival probability S(r, θ; t) that a particle
released at position r=(r, θ) at time 0 has not reactedwith the partially-reactive site or has not escaped through
the EWup to time t. The diffusion equation is completed by the initial condition S(r, θ; t=0)=1 and by the
mixed boundary conditions of zero-current at the hardwall combinedwith the standardCollins-Kimball
partially-reactive (or partially-reflecting) boundary condition imposed at the EWor the chemically-active site
[32] (see also [48, 49] for an overview)

q k q q e
e q p

-
¶

¶
=

<

=


 

D
S r t

r

S R t, ; , ; 0 ,
0 .

1
r R

⎧⎨⎩
( ) ( ) ( )

( ) ( )

The latter Robin boundary condition signifies that the reaction is a two-stage process consisting of (a) the
diffusive transport of the particle to the vicinity of the target and (b) the eventual imperfect reactionwhich
happenswith afinite probability. The proportionality factorκ here is the intrinsic reactivity, which is defined as
κ=ωl, where l is the effective ‘thickness’ of the reaction zone in the vicinity of the target—theminimal reaction
distance, whileω is the rate (frequency) describing the number of elementary reaction acts per unit of time
within the volume of the reaction zone. Clearly,ω (and hence,κ) depends on the amplitude of the barrier against
the reaction event: w = ¥ (k = ¥) corresponds to the case of a perfect barrierless reaction or an immediate
escape upon thefirst encounter with the EW. In this case the FRT reduces to the first-passage time to the target.
Conversely,ω=0 (κ=0) implies that the reaction/escape event is completely suppressed. In our calculations,
we suppose thatκ is a given parameter(for heterogeneous, space-dependent reactivity, see [50] and references
therein). In section 4, wewill elaborate on possible distinctions between its values for reaction and escape
processes. Once S(r, θ; t) is obtained, the PDFH(r, θ; t) of the FRT is given by the negative derivative of the
survival probability with respect to t. Further details on theNEP, our analytical derivation, and the comparison
with numerical results are presented in appendices.

3. Results

Our principal analytical result is the explicit, approximate expression for the PDFH(r, θ; t) of the FRT,
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where f e e= P1, cosn0( ) ( ) are the Legendre polynomials, jn(z) are the spherical Bessel functions of the first
kind, the prime denotes the derivative with respect to the argument, whileαm are the positive solutions
(organised in ascending order) of the transcendental equation
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Equations (2)–(5) completely determine the explicit formofH(r, θ; t). As we alreadymentioned above, this result
is obtained by resorting to a self-consistent closure scheme, developed earlier for the calculation of themean
FRT in certain reaction-diffusion problems [4, 46, 47]. This approximation consists in replacing the actual
mixed boundary condition (1) by an inhomogeneousNeumann condition and in the derivation of an
appropriate closure relation, which ensures that themixed boundary condition (1) holds on average. The
adaptation of such a scheme to the calculation of the full PDF inNEP is discussed in detail in appendices A andB.
Wenote that despite an approximate character of our approach, the obtained result turns out to be very accurate
for arbitrary starting position (r, θ) (although not too close to the target), for a verywide range of ε, and for
arbitrary value ofκ. The accuracywas checked by comparing our approximation to a numerical solution of the
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original problemby afinite-elementsmethod (FEM, see appendix E).We note, as well, that two important
characteristic length-scales can be read off directly from expression (2) and are associatedwith the smallest and
the second smallest solutions of (5), (that being,α0 andα1), which define the largest and the second largest decay
times of the PDF, respectively. The analysis of all the solutions of (5), which define the full formof the PDF valid
at arbitrary times, their relation to the characteristic time scales, the derivations of the asymptotic forms ofH(r,
θ; t), and its easy-to-implement approximatemathematical form are provided in the appendices. The latter also
present a variety of other useful results based onH(r, θ; t), e.g. the surface-averaged and volume-averaged PDFs
(see equations (B.14) and (B.15)).

Infigure 2we depict the PDFH(r, θ; t) defined by (2)–(5) for three different fixed initial positions (polar
angles θ=0 (a), θ=π/2 (b), and θ=π (c), with fixed r/R=0.9), four values of the intrinsic reactivityκ, and
for a particular choice e = 0.1.We observe that the PDFhas a clearly defined structure, which depends on
whether the starting point is close to the target or not. In the former case (as in panel (a)), the PDF consists of a
hump-like region around themost probable FRT tmp, an extended plateau-like region after the crossover time tc
(remarkably, within this region all values of the FRT are nearly equally probable), and, ultimately, exponential
decay starting right after themean FRT tmean. Note that up to tmean the particle experiencesmultiple collisions
with the boundary of the container after unsuccessful reactions, thereby loosing thememory about its precise
starting location. Due to this circumstance, the ultimate, long-time exponential decay (which is themost trivial
part of the PDF), holds for all bounded domains, regardless of the precise initial condition (see also appendices).
As evidenced in figure 2 the difference between tmp, tc and tmeanmay span orders ofmagnitude revealing a
pronounced defocusing of the FRTs (see below). In contrast, when the starting point is far from the target
(panels (b) and (c)), the hump-like region ismuch less apparent, and the extended plateau and the exponential
decay are themajor features of the PDF. Although themaximumof the PDF formally exists, the corresponding
most probable time is not informative because the escape (or reaction)may happen at anymoment over the
plateau regionwith almost equal probabilities.We note that the overall shape of the curves presented infigure 2
is generic and gets only slightlymodified upon parameter changes—see, e.g.figure A1 in appendices inwhich a
similar plot for =r R 0.5 is presented. Note, as well, that the behaviour of the PDF in the case when the starting
point is uniformly distributed over a spherical surface some distance r away from the origin, appears to be very
similar to the one depicted infigure 2 in panels (b) and (c) (see figure C1, panel (b)). Conversely, in the case when
the location of the starting point is randomand uniformly distributed over the volume of the container, the PDF
consists essentially of a plateau-like region and the ultimate exponential tail (seefigureC1(a)).

The existence of the hump-like region is not an unexpected feature in the case of afixed initial condition. For
a particle initially placed some distance away from the target, it is impossible to reach the latter instantaneously
such that the probability of having a very short FRT is close to zero. This defines themost probable reaction time
tmp, which can be estimated as function of the initial distanceσ to the target (in panel (a) offigure 2, s = -R r
as θ=0) in the form (see appendices),

Figure 2.PDFH(r, θ; t) of FRTs, from equation (2), rescaled by R D2 , as function of Dt R2 for e= =r R 0.9, 0.1, four values of the
dimensionless reactivity k k= R D¯ indicated in the panels, and (a) θ=0, (b) θ=π/2, (c) θ=π. Insets in all panels indicate
schematically the location of the starting point shown by red circle, with respect to the target (blue) placed at theNorth pole. Note that
k̄ includesR andD such that atfixedκ, smaller values of k̄ can be achieved by loweringR or increasingD. The approximation in (2) is
truncated to n = 50 termsVertical arrows indicate themean FRT tmean. The dashed vertical line shows the crossover time =t R Dc

2 ,
at which the particlefirst engages with the boundaries. The coloured bar-codes above eachmain panel indicate the cumulative
reaction depths corresponding to the four values of k̄, in decreasing order from top to bottom. Each bar-code is split into ten regions
of alternating brightness, representing the ten 10%-quantiles of the PDF. The numbers on top of the bar-codes indicate the values of
Dt R2. For example, in panel (a) thefirst dark blue region for the case k = ¥¯ (perfect reaction or no entropic barrier at the EW)
indicates that 10%of reaction events occur up to » ´ -Dt R 3 102 3, which is close to the dimensionlessmost probable FRT
Dt Rmp

2. Themean FRT tmean in this case is almost four orders ofmagnitude longer than themost probable FRT tmp, and over 70%of
trajectories arrive to the target up to this time. Analogous estimates of the cumulative reaction depths for other initial conditions are
presented in the text below and also in appendices. Comparefigure A1 for the case of r/R= 0.5.
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Themost probable FTR corresponds to ‘direct’ trajectories [51] onwhich the particlemoves fairly straight to the
target, with immediate successful reaction. Consequently the value of tmp is ‘geometry-controlled’ [51, 52] by the
initial distanceR−r. At such short time scales, the particle has not yet explored the boundaries of the domain,
and thus the initial increase up to tmp and the subsequent power-law descent of the PDF arewell-described by the
Lévy-Smirnov-type law a-A t texp 3 2( ) [3] (see appendix C.2 formore details). In our case of an imperfect
target, the amplitudeA also acquires the dependence on the reactivityκ and the target radius ρ. In particular, the
descent from the peak value of the PDF obeys
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The independence on the domain size stems from the fact that the particle at such short times has no knowledge
about the boundaries.

The hump-like region is delimited by the crossover time

»t R D, 8c
2 ( )

an important characteristic time-scale, at which the particle first engages with the domain boundaries and
realises that it lives in a bounded domain. The plateau-like regime, which sets in at tc, is a remarkable feature for
theNEP that has not been reported in literature on this important and generic problem. The existence of such a
plateau for diffusion-reaction systemswith an activation energy barrier at the target has only been recently
discovered in other geometrical settings, such as, e.g. the diffusive search for a partially-reactive site placed on a
hard-wall cylinder confined in a cylindrical container [47] and a spherical target at the centre of a larger spherical
domain [52]. The fact that it also appears in typical NEP settings, as shownhere, evidences that it is a

Figure A1.PDFH(r, θ; t) of the FRT, determined from (2) to (5) and rescaled by R D2 , as function Dt R2 for e= =r R 0.5, 0.1,
several values of dimensionless reactivity k k= R D¯ (indicated in the plots), and θ=0 (a), θ=π/2 (b), θ=π (c). Self-consistent
approximation is truncated to n=50 termsVertical arrows indicate themean FRT, tmean. Coloured bar-codes above each figure
indicate the cumulative depths corresponding to four considered values of k̄, in decreasing order from top to bottom. Each bar-code
is split into ten regions of alternating brightness, each representing ten 10%-quantiles of the distribution. The numbers on top of the
bar-codes indicate the values of Dt R2. For example, in panel (a) thefirst dark blue region for the case k = ¥¯ (perfect reaction)
indicates that 10%of reaction events occur till ´ -Dt R 3 102 1 . The dimensionlessmean FRT in this case is around 101, i.e. is
almost two orders ofmagnitude bigger that Dt Rmp

2, and over 70%of all trajectories arrive to the target up to this time.

FigureC1.Volume-average (left) and surface-averaged (right)PDFs H t( ) and H t r( ) of thefirst reaction time through a spherical cap,
with e= = = =R r D1, 0.5, 1, 0.2, and several values ofκ. Self-consistent approximation is truncated to n=100 termsArrows
indicate themean FRT. Thin lines show the short-time asymptotic behaviours (C.11) and (C.14) for two plots, respectively.

5

New J. Phys. 21 (2019) 122001



fundamental feature of systems inwhich the reaction event requires not only a diffusive search but also a barrier
crossing.

The plateau typically persists for several decades in time, up to themean FRT tmean (indicated by vertical
arrows infigure 2), which is very close (but not exactly equal) to the decay-time l=t D1d 0( ), associatedwith
the smallest eigenvalueλ0 of the Laplace operator (see appendices formore details). As a consequence, the FRT
PDF features the exponential shoulder

q ~ -H r t t t, ; exp . 9d( ) ( ) ( )

Note that the right-tail of the PDF is thus fully characterised by the unique time scale td. For a perfectly-reactive
target, the asymptotic behaviour of td in the narrow-escape limit (i.e. for e  0)was first obtained by Lord
Rayleigh [8]more than a century agowithin the context of the theory of sound, and then refined and adapted for
theNEPby Singer et al [10], yielding (see also discussions in appendices and in [53–55])
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For an imperfect target, however, this asymptotic result is no longer valid and onefinds instead that (see
appendices)
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which signifies that the decay time divergesmuch fasterwhen e  0, as compared to the case of a perfect
barrierless target. Lastly, we note that the fact that tmean and td appear very close to each other is an apparent
consequence of the existence of the plateau regionwith an exponential cut-off, suggesting that themajor
contribution to tmean (andmost likely to all positivemoments of the PDF) is dominated by the integration over
this temporal regime.

4.Discussion

The results presented above revealmany interesting and novel features of theNEP that we nowput intomore
general context.

(i) In case of chemical reactions with a partially-reactive site,the intrinsic reactivityκ is independent of e. As
a consequence, td in equation (11) (aswell as tmean, see appendices) diverges in theNEP limit as e~t 1d

2. The
situation ismuchmore delicate in the case of an entropy barrierΔS. The impeding effect of the latter has been
studied in various guises, including transport in narrow channels with corrugatedwalls (see, e.g. [56–60]) and
also for theNEP (see, e.g. [61, 62]), although for the latter problemno explicit results have been presented. In
particular, for diffusion in channels represented as a periodic sequence of broad chambers and bottlenecks, the
influential works [56, 58] expressed this barrier through a profile h(x) of the channel cross-section,while in [60],
for ratchet-like channels, this barrier was estimated as bD ~ -S h hln1

max min( ),whereβ is the reciprocal
temperature, hmax and hmin are themaximal andminimal channel apertures (a chamber versus a bottleneck).
Therefore, onemay expect that for theNEP the entropic barrier scales as b a eD ~ -S ln 11 ( ), whereα>0 is a
numerical constant characterising the precise formof the profile h(x). Assuming that the particle penetrates
through the barrier solely due to a thermal activation,i.e. that k b~ - DSexp( ), one expects then that k e~ a

and thus vanishes in theNEP limit e  0. Thismeans,in turn,that here e~ a+t 1d
2 , i.e. td divergesmore

strongly in theNEP limit than its counterpart in the case of a partially-reactive site. As a consequence, the overall
effect of such an entropy barrier on the size of the plateau region and on the cumulative reaction depth on this
temporal stage, ismuchmore significant for theNEP than for diffusion-reaction systems. Importantly, both for
theNEP and for reactionswith a partially-reactive site, as e  0, themean FRT is always controlled by the
penetration through the barrier rather than by the stage of random search for the target whose contribution to td
diverges in the leading order only as e1 .

We also remark that, of course, theNEP limit has to be understoodwith an appropriate caution: taking
e  0, one descends tomolecular scales at which both themolecular structure of the container’s boundaries,
surface irregularities, presence of contaminants and other chemically active species come into play. At such
scales, the solvent can also be structured close to thewall, affecting characteristic diffusion times and hence, the
value of the diffusion coefficientD.Moreover, the size of a particle doesmatter here and one can no longer
consider it as point-like. The entropic barrier is then a function of the ratio between the particle radius a and the
radius ρ of the EW.Understanding theoretically the functional formofκ is so far beyond reach and onemay
address the problemonly by numerical simulations or experiments.We are, however, unaware of any systematic
approach to these issues, except for a recent paper [63], which studied the particle-size effect on the entropic
barriers via numerical simulations. It was observed that the dependence of the inverse transition rate (and hence,
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ofκ) of a Brownian particle in amodel system consisting of a necklace of hard-wall spheres connected to each
other by EWs, can bewell-fitted by an empirical law of the form k r~ - a1 3 2( ) signifying thatκ vanishes
very rapidly when ra .When the particle size a is comparable to that of the EW, the entropic barrier becomes
very high resulting in a significant decrease ofκ. Some other effects of the particle size and shape onto diffusive
search, unrelated to ourwork, were discussed in [64, 65].

(ii)The concept of the search-controlled versus barrier-controlledNEPproposed in [4, 30] holds indeed for
themean FRT, see equation (C.6). In contrast, we observe that two other important characteristic
time-scales—tmp and tc—are unaffected by the reactivity and solely depend on the diffusion coefficient and the
geometry. Thismeans that the two controlling factors represented byκ andD do not disentangle.Moreover,
both affect the shape of the PDF and the corresponding cumulative reaction depths.

(iii) For theNEPwithfixed starting point of the particle the characteristic time-scales tmp, tc and tmean differ
by orders ofmagnitudemeaning that the FRT are typically very defocused. This is a conceptually important
point for the understanding of theNEP, but alone it does not provide a complete picture. Indeed, one should
also analyse the cumulative reaction depths corresponding to each temporal regime. For example, for the
settings used infigure 2 (panel (a)), the shortest relevant time-scale is tmp. For perfect, barrierless reactions the
amount of reaction events appearing up to this quite short time » -Dt R 102 3( ) is surprisingly non negligible,
being of the order of 10%.Upon lowering the dimensionless reactivity k k= R D¯ (i.e. upon increase of the
activation barrier at the target or of the diffusion coefficientD, or upon loweringR), this amount drops
significantly and the contribution of ‘direct’ trajectories becomes less important. This is quite expected because
the latter now very rarely lead to the reaction event. In turn, the contribution of thewhole hump-like region (for
t stretching up to tc) for barrierless reactions ismore than 50%,meaning thatmore than a half of all reaction
events take place up to the time-scale when the particle first realises that itmoves in a confined domain.One
infers next fromfigure 2 (panel (a)) that upon lowering k̄, this amount also drops rapidly. At the same time, the
plateau-like region becomes increasinglymore pronounced for smaller k̄ and progressivelymore reaction
events take place during this stage: wefind 25%, 30%, 47%and 55%of all reaction events for k = ¥, 10, 1¯ and
0.1, respectively. Interestingly, the fraction of ‘unsuccessful trajectories’, which survive up to the largest
characteristic time tmean, appears to be veryweakly dependent on the value of k̄, and is rather universally about
30%.Note that this number is close to the fraction of outcomes of an exponentially distributed randomvariable
above itsmean, -exp 1 0.37( )  . Therefore, even for this particular case when the starting point is very close to
the target, one observes a rather diverse behaviour—there is no apparent unique time-scale and no overall
dominant temporal regime: the regionwith the rise to themost probable value, the onewith the subsequent
descent to the plateau, the plateau-like region itself, and the eventual exponential decaymay all become relevant
for different values of the parameters and hence, their respective contributions depend on the case at hand. This
illustrates our earlier statement that the knowledge of the full PDF of FRT is indispensable for the proper
understanding of distinct facets of theNEP.

For a random starting point, when it is either uniformly distributed over the volume, or is located at a
randompoint on a distance r away from the origin, the situation is somewhat different. Here, the hump-like
region is smeared away and the PDF consists of just two regions: a plateau-like region and the ultimate
exponential decay. As a consequence, in these cases tmean is a unique characteristic time-scale, as it was claimed
previously (see, e.g. [7]). In appendices, we present explicit results for the general case of diffusion-mediated
reactionswith an activation energy barrier and imperfect EWwith an entropy barrier. Concerning the
cumulative reaction depths in case of a random starting point, we observe an analogous surprising behaviour to
whatwas noted above: the cumulative reaction depth over the plateau region (up to tmean) appears to be rather
universally (i.e. independent ofκ and other parameters) equal to≈70%,while the remaining≈30%of
trajectories react within thefinal exponential stage.

(iv)Apart from the analysis of the cumulative depths, it is helpful towork out an explicit approximate
formula for the PDF,whichmay be used tofit experimental or numerical data. In appendices, we outline a
derivation of such a formula, which agrees verywell for thewhole range of variation of the FRT.

(v)One often deals with situations when several diffusing particles, starting at some fixed points, are present
in a biophysical system and the desired random event is triggered by the one, which arrives first to a specific site
on the surface of the container. Amongmany examples (see e.g. [66]), onemaymention, for instance, calcium
ionswhich activate calcium release in the endoplasmic reticulum at neuronal synapses. Our results for thefixed
starting-point PDFH(r, θ; t) and the corresponding survival probability provide the desired solution to this
problem too. As amatter of fact, if the particles are present at a nanomolar concentration, such that their
dynamics are independent, the probability that neither of the particles arrived to the target site up to time t is just
the product of the single-particle survival probabilities. The PDFof the time of the first reaction event then
follows by amere differentiation of this product.
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5. Conclusion

Withmodern opticalmicroscopy, production events of single proteins [43], their passage through the cell [67] as
well as single-molecule binding events [68, 69] can bemonitored in living biological cells [70]. Typical processes
in cells such as gene expression involve the production of proteins at a specific location, their diffusive search for
their designated binding site, and the ultimate reactionwith this partially-reactive site [71, 72]. Given the often
minute, nanomolar concentrations of specific signallingmolecules in cells, the FRTPDFof a diffusingmolecule
with its target in the cell volumewas shown to be strongly defocused and geometry-controlled [47, 51, 52]. These
analyses demonstrate that the concept ofmean FRTs (or reaction rates) is no longer adequate in such settings
involving very low concentrations. Here one invariably needs knowledge of the full PDF to describe such systems
faithfully.

Complementary to this situationwhen a particle is released inside afinite volume andneeds to react with a
target somewhere else in this volume, we here analysed the important case when a diffusing particle is released
inside a bounded volume and needs to react with a target on the boundary. Our results for the FRTPDF
including the passage of an energetic or entropic barrier leading tofinal reactionwith the target or the crossing of
the EW, demonstrate a pronounced defocusing of time scales.While themost likely FRT corresponds to a direct
particle trajectory to the target and immediate reaction, indirect paths decorrelating the initial position by
interactionwith the boundary are further emphasised by unsuccessful reaction events, leading to further rounds
of exploration of the bulk. This effect is shown to imply a pronounced defocusing, and thus a large reaction
depth is reached long before themean FRT. In particular, we demonstrate that the shapes of the PDF are
distinctly different from the case when the particle needs to react with a target inside the volume of the bounded
domain.

Our findings have immediate relevance to biological cells, inwhich specificmolecules released in the cell
need to locate and bind to receptors on the inside of the cell wall, or they need to pass the cell wall or
compartmentmembrane through protein channels ormembrane pores. Similar effects occur in inanimate
systems, when chemicals in porous aquifers need to leave interstices through narrowholes in order to penetrate
further. From a technological perspective our results will find applications in setups involving lipid bilayer
micro-reaction containers linked by tubes [73].
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AppendixA. Solution in Laplace domain

Our starting point is the diffusion equation for the survival probability S(r, θ; t) of a particle started at position (r,
θ) inside a sphere of radiusR, up to time t:

q q¶ = DS r t D S r, ; , , A.1t t( ) ( ) ( )

subject to the initial condition S(r, θ; t=0)=1 and themixed boundary conditions:

q
k q q e

e q p
- ¶ =

<
=


 

D S r t
S R t

, ;
, ; 0 ,

0 ,
A.2n r R

⎧⎨⎩( ( ) ( ) ( )
( ) ( )

where∂n=∂r is the normal derivative directed outwards the ball,Δ the Laplace operator,D the diffusion
coefficient,κ the intrinsic reactivity, and e the angular size of the EW (or target site) at theNorth pole (figure 1).

The Laplace transformof the survival probability,

òq q=
¥

-S r p t S r t, ; d e , ; , A.3pt

0

˜( ) ( ) ( )

satisfies themodifiedHelmholtz equation

q- D =p D S r p, ; 1, A.4( ) ˜( ) ( )
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subject to the samemixed boundary condition:

q k q q e
e q p

- ¶ = <
=


 

D S r p
S R p

, ;
, ; 0 ,

0 .
A.5r r R

⎧⎨⎩( ˜( )
˜( ) ( )

( )
( )

According to the self-consistent approximation [4, 46, 47], we substitute thismixed boundary condition by an
effective inhomogeneousNeumann condition:

q e q- ¶ = Q -=D S r p Q, ; , A.6r r R( ˜( ) ( ) ( )

whereQ is an effective flux to be computed, andΘ is theHeaviside step function.
We search the solution of themodified problem in (A.4), (A.6) in the form

åq q= +
=

¥

S r p u r
R

D
a g r P, ; cos , A.7

n
n n n0

2

0

˜( ) ( ) ( ) ( ) ( )

where u0(r) is the solution of (A.4)with theDirichlet boundary condition, = -u r g r g R1
p0
1

0 0( ) ( ( ) ( )),Pn(z)
are the Legendre polynomials, an are the unknown coefficients to be determined, and gn(r) are the radial
functions satisfying

 + ¢ -
+

- =g
r

g
n n

r
g

p

D
g

2 1
0, A.8

n n n n2

( ) ( )

where prime denotes the derivative with respect to r. A solution of this equation, which is regular at r=0, is the
modified spherical Bessel function of thefirst kind, which reads as

p
= =

+
g r i r p D

I r p D

r p D2
, A.9n n

n 1 2

1 2
( ) ( )

( )
( )

( )

where Iν(z) is themodified Bessel function of thefirst kind, andwe fixed a particular normalisation (as shown
below, the result does not depend on the normalisation).

Substituting (A.7) into themodified boundary condition in (A.6), multiplying by q qP cos sinn( ) and
integrating over θ from0 toπ, one gets

e
¢

- ¢ = - =D
g R

pg R

R

D
a g R Q n2 1 cos for 0 , A.100

0

2

0 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )

( ( ) ( ) ( )

and

e e- ¢ = - >- +R a g R Q P P n2 cos cos for 0 . A.11n n n n
2

1 1( ) ( ( ) ( ) ( ) ( )

Combining these results, we can express an as

f e
= -

¢

¢
- = ¼a

g R

g R

D

pR g R
a n

1
1, 2, , A.12n

n

n

0
2

0

0

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( )

( ) ( )

where

f e
e e

e
=

-
-

= ¼- +P P
n

cos cos

1 cos
1, 2, . A.13n

n n1 1( ) ( ) ( ) ( ) ( )

The remaining coefficient a0 is determined by requiring that themixed boundary condition in (A.5) is
satisfied on average on the target, i.e.,

ò òq q q q q k q- ¶ =
e e

=D S r p S R pd sin , ; d sin , ; . A.14r r R
0 0

( ˜( ) ˜( ) ( )

Using (A.6) and (A.10) for the left-hand side of this relation and substituting (A.7) into the right-hand side, one
gets

åk
e f e¢

- ¢ =
-

+=

¥

D
g R

pg R

R

D
a g R

R

D
a g R

n
2

1 cos

2 1
, A.15

n
n n

n0

0

2

0 0

2

0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )

( ( )
( ) ( )

( )

wherewe completed (A.13) by setting f e º 10( ) . Expressing an via (A.12), one obtains a closed expression for a0

h= -
¢

a
D

pR g R

g R

Rg R
1 , A.16p0 2

0

0

0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
( )

( )
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where

h
k e

=
-

+ e

-
D

R

2

1 cos
, A.17p

1

R
⎛
⎝⎜

⎞
⎠⎟( )

( )

with

å
f e

=
¢ +

e
=

¥ g R

Rg R n2 1
. A.18

n

n

n

n

0

2

R
( )
( )

( )
( )

From (A.12), we get thus

f e
h= -

¢
a

Rg R

D

pR
, A.19n

n

n
p2

( )
( )

( )

andfinally

åq h f e q= -
¢=

¥

S r p
p

g r

Rg R
P, ;

1
1 cos . A.20p

n
n

n

n

n
0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜( ) ( )

( )
( )

( ( )

As a consequence, the Laplace-transformed PDFof the FPT, q q= -H r p pS r p, ; 1 , ;˜ ( ) ˜( ), reads

åq h f e q=
¢=

¥

H r p
g r

Rg R
P, ; cos . A.21p

n
n

n

n

n
0

˜ ( ) ( )
( )
( )

( ) ( )

Asmentioned above, the solution does not depend on the normalisation of functions gn(r), as they always enter
as a ratio of ¢g

n
and gn. One can check that the PDFH(r, θ; t) is correctly normalised, i.e. q = =H r p, ; 0 1˜ ( ) . In

fact, one has in the limit p→0:

¢
 ¥

¢
 = ¼

g r

Rg R

g r

Rg R

r R

n
n, 1, 2, A.22n

n

n
0

0

( )
( )

( )
( )

( ) ( ) ( )

so that the termwith n=0 dominates both in ηp and in the series in (A.21).
When the starting point is uniformly distributed over a spherical surface of radius r, the surface average

yields

ò òp
q q f q hº =

¢

p p
H p H r p

g r

Rg R

1

4
d sin d , ; . A.23r p

0 0

2
0

0

˜ ( ) ˜ ( )
( )
( )

( )

In turn, if the starting point is uniformly distributed in the volume of the ball, one gets the volume average

ò ò òp
q q f q

h h
º =

¢
=

p p
H p

R
r r H r p

R p D

g R

Rg R R p D

1

4 3
d d sin d , ;

3 3
. A.24

R p p

3 0

2

0 0

2
1

0
2

˜ ( ) ˜ ( )
( )
( )

( )

The explicit expressions (A.21), (A.23), and (A.24) for the Laplace-transformed PDFpresent one of themain
results.We recall that (A.21) is the exact solution of themodifiedHelmholtz equation in (A.4), inwhich the
mixed boundary condition (A.5) is replaced by an effective inhomogeneousNeumann condition (A.6). As a
consequence, (A.21) and its volume and surface averages in (A.23) and (A.24) are approximate solutions to the
original problem. In appendix E, we compare these approximate solutions to the numerical solution of the
original problemobtained by a FEM.We show that the approximate solutions are remarkably accurate for a
broad range of p, for both narrow (e = 0.1) and extended (e = 1) targets.

It is worthmentioning that the developed self-consistent approximation can also be applied to the exterior
problemwhen a particle is released outside a ball of radiusR and searches for a target on its boundary. The
derivation follows the same lines, with twominor changes: (i) themodified Bessel function of thefirst kind in
equation (A.9) should be replaced by themodified Bessel function of the second kind, i.e.

p
=

+
g r

K r p D

r p D

2
, A.25n

n 1 2

1 2
( )

( )
( )

( )

and (ii) the normal derivative is directed inside the sphere so that the sign of all radial derivatives should be
modified. As a consequence, the former expressions (A.21), (A.23), (A.24) remain valid, except that
equation (A.17) is replaced by

h
k e

= -
-

e

-
D

R

2

1 cos
. A.26p

1

R
⎛
⎝⎜

⎞
⎠⎟( )

( )
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Appendix B. Solution in time domain

To get the PDFH(r, θ; t) in time domain, we need to perform the inverse Laplace transformof qH r p, ;˜ ( ) from
(A.21). As diffusion occurs in a bounded domain, the spectrumof the underlying Laplace operator is discrete
and is determined by the poles of qH r p, ;˜ ( ), considered as a function of a complex-valued parameter p.We note
first that the zeros of the functions g0(R) and ¢g R

n
( ), standing in the denominator of qH r p, ;˜ ( ), are not the poles,

as the corresponding divergence is compensated by vanishing of the function ηp at these points. So, we are left
with the poles of the function ηp from (A.17)which are determined by the following equation on Î p :

å
f e

k e+ ¢
= -

-=

¥

n

g R

Rg R

D

R2 1

2

1 cos
. B.1

n

n n

n0

2( ) ( )
( ) ( )

( )

As the eigenvalues are positive, the poles lie on the negative real axis of the complex plane: p<0. Setting
a=R p D i , one has

a a a= ¢ = ¢g R i j Rg R i j, , B.2n
n

n n
n

n
( ) ( ) ( ) ( ) ( )

where

p= +
j z

J z

z
2 B.3n

n 1 2( )
( )

( )

are the spherical Bessel functions of the first kind.
Substituting these relations into (B.1), one gets the following transcendental equation:

a
k e

= -
-

F
D

R

2

1 cos
, B.4( )

( )
( )

where

åa
f e a

a a
º

+ ¢=

¥

F
n

j

j2 1
. B.5

n

n n

n0

2

( )
( ) ( )

( )
( )

Let us denote byαm all positive solutions of (B.4). The numerical computation of these zeros employs the
monotonous increase of F(α) that can be checked by evaluating its derivative,

åa
f e a a a a a a a

a a
¢ =

+

¢ + ¢ + - +
¢=

¥

F
n

j j j n n j

j2 1

1
, B.6

n

n n n n n

n0

2 2 2 2 2

3 2
( )

( ) [ ( )] ( ) ( ) [ ( )][ ( )]
[ ( )]

( )

and recognising that the numerator of the second factor is proportional a positive integral:

òa
a a a a a a a= ¢ + ¢ + - +

a
x x j x j j j n n j

2
d 1 , B.7

n n n n n
0

2 2 2 2 2 2( ) [ ( )] ( ) ( ) [ ( )][ ( )] ( )

which is actually the standard normalisation of spherical Bessel functions. For each n=0, 1, 2,K, let ank
0

( = ¼k 0, 1, 2, )denote all positive zeros of the function ¢j z
n

( ). Putting all these zeros in an increasing order, we
call the elements of this sequence by am

0 (i.e. a a=m nk
0 0 for some indices n and k). At each am

0 , the function F(α)
diverges. As a consequence, one can search for zerosαm on intervals between two successive zeros am

0 and a +m 1
0 .

As the function F(α) is continuous on each such interval andmonotonously increasing, there is precisely one
solution of (B.4) on each interval. The solution can be easily found by bisection orNewton’smethod. This
observation implies that all poles are simple.Moreover, the second eigenvalue l a= R1 1

2 2 is bound frombelow
as

l a > R R4 , B.81 10
0 2 2 2( ) ( )

where a a= = ¼2.081 575 9781
0

10
0 is the smallest strictly positive zero of ¢j z

1
( ) (i.e. the right-hand side is the

first strictly positive eigenvalue of the Laplace operator for the full reflecting sphere). As expected, this bound is
independent of the target size and determines the crossover time tc that we set as

=t
R

D
B.9c

2

( )

(as a qualitative border between two regimes, tc is determined up to an arbitrary numerical factor thatwe select
here to be 1).

The Laplace transform can nowbe inverted by the residue theorem that yields

åq q= a

=

¥
-H r t

D

R
v r, ; e , , B.10

m

Dt R
m2

0

m
2 2( ) ( ) ( )
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where

åq
a

f e q
a

a
º

¢ - ¢=

¥

v r
F

P
j r R

j
,

2
cos . B.11m

m n
n n

n m

n m0

( )
( )

( ) ( )
( )

( )
( )

Note that the signminus in front of a¢j
n m( ) comes from the change of variable:

a a
a

a
a

¶
¶

= ¢ = - ¢
p

F F
p

F
R

D

d

d 2
. B.12

2

( ) ( ) ( ) ( )

The explicit expression (B.10) of the PDF is ourmain result. From this spectral expansion, one gets the
survival probability

åq
a

q= a

=

¥
-S r t v r, ;

1
e , . B.13

m m

Dt R
m

0
2

m
2 2( ) ( ) ( )

One can also compute the volume- or surface-averaged PDFs, namely,

å a a
=

¢

a

=

¥ -
H t

D

R F

6 e
B.14

m

Dt R

m m
2

0

m
2 2

( )
( )

( )

and

å
a

a a
=

- ¢ ¢
a

=

¥
-H t

D

R

j r R

j F

2
e

1
. B.15r

m

Dt R m

m m
2

0

0

0

m
2 2( )

( )
( ) ( )

( )

Another simpler expression is obtained for the starting point at the centre of the sphere, inwhich case
a= ¢v F0, 0 2m m( ) ( ) and thus

å a
=

¢

a

=

¥ -
H t

D

R F
0, 0;

e
. B.16

m

Dt R

m
2

0

m
2 2

( )
( )

( )

In the particular case e p= , the full sphere is reactive so thatfn(π)=δn,0, and (B.5) is reduced to
a a a a= ¢F j j0 0

( ) ( ) ( ( )), while (B.4) is thus reduced to the Robin boundary condition:

a a k a¢ + =j R D j 0. B.17
0 0( ) ( ) ( ) ( )

In this case, (B.11) yields

q
a k

a k k
a
a

=
+ -

v r
j r R

j
,

2
, B.18m

m

m

m

m

2

2 2
0

1

( ) ¯
¯ ¯

( )
( )

( )

wherewe evaluated explicitly a¢F m( ) by using (B.17), and k k= R D¯ . As a consequence, (B.10) is reduced to the
classical spectral expansion of the probability densityH(r, θ; t) of the FPT to a partially reactive sphere.

B.1. Partially reactive target
When either the target is small (e 1 ) or its reactivity is small (kR D 1 ), one can perform the perturbative
analysis to get approximate solutions of (B.4). In fact, one searches for a zero of this equation in the form

a a da d= + + O , B.19nk nk nk
0 1 2( ) ( )

where ank
0 is the kth zero of ¢j z

n
( ), and

d
k e

=
-R

D

1 cos

2
1 B.20

( ) ( )

is the small parameter. Expanding a¢j
n nk( ) and ajn nk( ), using the properties of spherical Bessel functions and

identifying the leading terms, one gets ank
1 , fromwhich

a a d
f e

a
d= +

+ - +
+

n n n
O1

2 1 1
, B.21nk nk

n

nk

0
2

0 2
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )[( ) ( )]

( ( )

which is valid for all n and k except n=k=0. The computation for the case n=k=0 is different because
a = 000

0 , so that the last factor in the right-hand side is undefined. Since

¢
- +

j z

zj z z
O

3
1 , B.220

0
2

( )
( )

( ) ( )

one gets in this case

a a d d= + O3 . B.230 00 ( ) ( )
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Note that this correction is particularly important. The leading order of the corresponding eigenvalue reads as

l
d k e

=
-

R RD

3 3 1 cos

2
. B.240 2

( ) ( )

As expected, when the target is small or its reactivity is small, the Laplacian spectrum is close to that of the fully
reflecting sphere.

B.2. Perfectly reactive target
When k = ¥, the right-hand side of (B.4) is zero, and the asymptotic analysis for small e is different. Let usfirst
consider the smallest polewhich is expected to be small as e  0. Since

a
a a

a
¢

 
j

j n

1
0 , B.25n

n

( )
( )

( ) ( )

one gets for smallα

åa

f e
- +

+
=

=

¥

n n

3

2 1
0. B.26

n

n
2

1

2( )
( )

( )

The asymptotic behaviour of the second termwas given in [4]:

å
f e

p
e e e

+
= + - + +

=

¥
-

n n
O

2 1

32

3
ln 1

7

4
ln 2 , B.27

n

n

1

2
1

( )
( )

( ) ( ) ( ) ( )

fromwhich, in the leading order, one gets

a
p
e

9

32
. B.280

2 ( )

As discussed in [4], the numerical coefficient of this asymptotic behaviour differs by around 10% from the exact
coefficientπ/3 [10].With the help of these expressions, we plotfigure 2 in themain text andfigure A1 here for
two different cases of the initial particle radius.

AppendixC. Asymptotic behaviour

In this section, we discuss the long-time and the short-time asymptotic behaviours of the PDFH(r, θ; t).

C.1. Long-time behaviour
As expected for diffusion in a bounded domain, the PDF exhibits an exponential decay at long times, with the
rate determined by the pole with the smallest amplitude. The latter is given by the smallest positive solution of
(B.4)whose asymptotic behaviourwas discussed in appendices B.1 andB.2. In the narrow escape setting, this
decay rate is close to the inverse of the volume-averagedmean FRT tmean . In turn, thismean, as well as higher-
ordermoments, can be obtained from qH r p, ;˜ ( ) in the limit p 0.

Using the basic properties of the functions gn (see appendixD), we get

å
f e

= + +
+

+e
=

¥D

pR n n
O p
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As a consequence, the Laplace-transformed PDFbehaves as

q = - +H r p p t O p, ; 1 , C.3mean
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with themean FRT
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Thefirst two terms provide the classical exact formof themean FRTwhen the target is the full sphere (e p= ).
This result generalises our earlier formula for the volume-averagedmean FRT [4], which can be retrieved by
averaging over the starting point uniformly distributed in the bulk:
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In the narrow escape limit (e  0), this expression behaves as [4]
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Asmentioned earlier, the leading term in the latter expression is exact, while the numerical prefactor 32/(9π) in
the subdominant term in this approximate relation exceeds by 10% the exact prefactor π/3 (for further details,
see [4]).

C.2. Short-time behaviour
The short-time asymptotic behaviour is determined in the limit  ¥p .We note that
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where x = R p D (note that thefirst relation is very accurate, up to exponentially small corrections). Using
(D.13), one gets in the lowest order:
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wherewe used the identity
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(the next-order terms in (C.8) seems to be ξ−2, possibly with logarithmic corrections).We get thus
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Figure C1(left) illustrates the accuracy of this asymptotic behaviour.
Since
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wefind
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Figure C1(right) illustrates the accuracy of this asymptotic behaviour.
In the particular case r=0, one gets
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Finally, the short-time asymptotic behaviour ofH(r, θ; t) is obtained by combining (C.10) and (C.12) to get
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The sum in the parentheses can be computed exactly by noting that

ò- =
+
+

- ¢ = + ¢ ¢- +P x P x
n

n n
x P z n x P x

2 1

1
1 2 1 dn n n

x
n1 1

2
1

( ) ( )
( )

( ) ( ) ( ) ( )

and using the completeness of the Legendre polynomials:
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whereΘ(x) is theHeaviside function. The inverse Laplace transform reads
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TheHeaviside function distinguishes two cases.When the starting point lies within the solid angle of the target (
i.e. q e< ), the distance to the target is justR−r, and this asymptotic formula holds. In turn, when the starting
point lies outside this solid angle (i.e. q e> ), the distance to the target is larger than q-R r H r p, , ;˜ ( ) should
decay faster, the contributions in (C.18) and (C.19) are thus cancelled, and one needsmore refined asymptotic
analysis.Without dwelling further on this analysis, we present below probabilistic arguments to get a reasonable
approximation.

When the starting point is far from the small EW, small exit times are extremely unlikely, with the
probability density vanishing exponentially fast as s- Dtexp 42( ( )), where s Dt is the distance to the EW.
Tofind the correct prefactor to this exponential tail, we note that (i) a small spherical cap, seen from far away,
can approximated by a small sphere of the same radius r e= R2 sin 2( ), centred at theNorth pole; the distance
to the boundary of this sphere is s q r= + - -R r rR2 cos ;2 2 and (ii) the reflecting boundary of the
spherical confining domain can be removed because only almost straight trajectories to the target, not touching
the confining boundary, domatter in the short-time limit. In other words, the short-time behaviour of the
density qH r t, ;( ) should be close to that of the density s¥H t;( ) for diffusion in the exterior of a small spherical
target. The latter was derived byCollins andKimball [32],
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where =x e xerfcx erfcx2( ) ( ) is the scaled complementary error function (see also discussion in [52]). In the
limit k  ¥, this expression reduces to

s
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In the limit s rDt max ,{ } , (C.20) yields the long-time behaviour in (7).
Figure C2 reproduces the rescaled PDF fromfigure 2 to illustrate the quality of the short-time asymptotic

formulae. For the case θ=0, the panel (a) confirms that the short-time asymptotic formula (C.19) accurately
captures the left exponential tail of the PDFup to themost probable time, i.e. for t tmp. However, this
approximation fails at longer times due to the confinement. Note also that the estimation of themost probable
time tmp from (C.19), suggested in [52] for a simpler geometric setting, is not accurate here, except for the
perfectly reactive target. FromfigureC2(a), we only can say that < -t R r D6mp

2( ) ( ) for the perfectly reactive
target (k = ¥), and < -t R r D2mp

2( ) ( ) for partially reactive targets (k < ¥). The panels (b) and (c)
illustrate the accuracy of another short-time asymptotic formula, given by (C.20), which is applicable when the
starting point is far away from the target (θ=π/2 and θ=π, respectively). Once again, the left exponential tail
ofH(r, θ; t) is captured reasonably well. In this case, there is no hump, and a plateau region emerges immediately
after this tail. As themost probable time nowbelongs to this plateau region, it is very difficult to quantify. This is
a radically new feature of theNEP, as compared to recent works [47, 52].
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C.3. Explicit closed-form approximation
The knowledge of both short-time and long-time asymptotic behaviours of the probability densitymotivated
the search of closed-form approximations for the probability densityH(r, θ; t) over thewhole range of times. For
instance, Isaacson andNewby developed a uniform asymptotic approximation for perfectly reactive small
targets in bounded domains using a short-time correction calculated by a pseudopotential approximation [54].
In turn, a linear superposition of the short-time approximation in (C.20)with the long-time exponential decay
was proposed in [52] for a partially reactive spherical target located in the centre of a larger confining sphere.

Here, we rationalise and improve the linear superposition by employing the simple idea of splitting
trajectories toward a small target into two groups: (i) ‘direct’ trajectories that do not hit the boundary of the
confining domain and thus do not ‘know’ about its presence, and (ii) ‘indirect’ trajectories that reach the
boundary and thus explore the bounded confining domain until eventual reactionwith the target. The statistics
of direct trajectories is close to that of trajectories in the unbounded exterior of the target; in particular, if the
starting point is far from a small target, the probability density of the first exit (reaction) times is close to

s¥H t;( ) given by (C.20). In turn, the indirect trajectories are responsible for the long-time exponential decay of
the probability density. If τ1 and τ2 denote the conditional first exit times for such direct and indirect trajectories
respectively, then one can set τ=τ1 with the probability q1 of realising a direct trajectory, and τ=τ2 with the
probability = -q q12 1of realising an indirect trajectory. If the related probability densities ρ1(t) and ρ2(t)were
known, then the probability density of τwould be simply

q r r= +H r t q t q t, ; . C.221 1 2 2( ) ( ) ( ) ( )

The computation of the probability densities ρ1(t) and ρ2(t) is an evenmore complicated problem than the
originalmixed boundary problem forH(r, θ; t). So, we propose another,much simpler splitting into two groups
by introducing a heuristic thresholdT for thefirst exit time. In this approximation, all trajectories toward the
target that are shorter thanT are treated as ‘direct’, whereas all longer trajectories are treated as ‘indirect’.
According to this construction, thefirst exit times of direct trajectories, that can be described by the probability
density s¥H t;( ), are conditioned to be shorter thanT; in turn, the first exit times of indirect trajectories, that
can be described by the probability density m m-e t withμ=Dλ0 being related to the smallest eigenvalueλ0 of the
Laplace operator in the confining domain, are conditioned to be longer thanT. The related conditional
probability densities are then given as
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is the survival probability obtained by integrating s¥H t;( ). To ensure the continuity of ρ(t) in (C.22), we set

m s
s m s

=
-

+ -

m

m m

-
¥

¥
- -

¥
q

S T

H T S T

e 1 ;

; e e 1 ;
. C.25

T

T T1
( ( ))

( ) ( ( ))
( )

The thresholdT can either befixed to a prescribed value (e.g.T=tc), or determined by imposing an additional
condition, i.e. the continuity of the derivative of ρ(t). Figure C3 illustrates the accuracy of this explicit
approximation.

FigureC2. PDFH(r, θ; t), rescaled by R D2 , as shown onfigure 2, is compared to its short-time approximation (C.19) for θ=0 (a)
and (C.20) for θ=π/2 (b) and θ=π (c), shown by thin lines of the same colour. The other parameters are kept:

e k k= = =r R R D0.9, 0.1, ¯ as indicated in the panels. Vertical arrows indicate the rescaledmean FRT Dt Rmean
2, while the

dashed vertical line shows the rescaled crossover time =Dt R 1c
2 .
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AppendixD. Basic properties and implementation

The functions gn and their derivatives can be computed via the recurrent relations
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with x = r p D . As a consequence, one has

x¢
= =r

g r

g r
r p D

g r

g r f
, D.50

0

1

0

2

1

( )
( )

( )
( )

( )

¢
= - + = ¼r

g r

g r
f n n1 1, 2, , D.6n

n
n

( )
( )

( ) ( ) ( )

where new functions

x= -f
g r

g r
D.7n

n

n

1( )
( )

( )

satisfy the recurrent relations
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Unfortunately, these relations are numerically unstable for ξ below n that prohibits their use even for
moderate n.

In order to resolve this numerical problem,we propose the following trick. Rewriting (D.9) as

x
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one can consider the recurrent relations for fn as a continued fraction representation:
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To overcome numerical instabilities, we propose the following algorithm: (i) for any ξ, we select a large enough
truncation parameter nmax such that xnmax ∣ ∣ (in practice, we set nmax=max{ 100, [10ξ]}); (ii)we
approximate fnwith n=nmax according to its Taylor expansion

FigureC3. PDFH(r, θ; t), rescaled by R D2 , as shown onfigure 2, is compared to the approximation in (C.22) for θ=0 (a), θ=π/2
(b) and θ=π (c), shown by thin lines of the same colour. The other parameters are kept: e= =r R 0.9, 0.1, k k= R D¯ as
indicated in the panels. Vertical arrows indicate themean FRT tmean, while the dashed vertical line shows the crossover time
=t R Dc

2 .We set =T t0.5 c .
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which is validwhenever x n∣ ∣  (even if x∣ ∣ is large); (iii) applying (D.10) in a backward direction, we compute all
fnwith  n n1 max.When the argument x∣ ∣ is very large (as compared to n), one can use the asymptotic
relation
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Wechecked that this algorithmprovides very accurate results for real ξ. Qualitatively, the improved
numerical stability of recurrent relations in the backward direction resembles the advantage of an implicit Euler
scheme for solving differential equations over an explicit one. Note that the computation can bemore subtle for
some imaginary ξ, at which xcoth diverges (i.e. at x p= ki with an integer k). However, we have not experienced
such numerical difficulties for considered parameters.

We note that (D.5) and (D.12) imply
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which could also be obtained directly from
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(with =z r p D ). One sees that for z�0, all functions gn(r) are positive andmonotonously increasing
because
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In particular, one gets
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Note that these recurrent relations yield very accurate results for a  n. For smallerα, one can use the

Taylor expansion of fn̂.

Appendix E.Numerical verification

In order to assess the accuracy of the self-consistent approximation, we solve numerically the original boundary
value problem for themodifiedHelmholtz equation

q- D =p D H r p, ; 0, E.1( ) ˜ ( ) ( )

subject to themixed boundary condition:

k
q e¶ + = <D

H H 1 0 , E.2n ˜ ˜ ( ) ( )

e q p¶ =  H 0 . E.3n ˜ ( ) ( )

Setting r q r q=u s H R p, ; , ;( ) ˜ ( )with rescaled radial coordinate ρ=r/R, this equation can bewritten in
spherical coordinates as
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r q q r q¶ ¶ + ¶ ¶ - =r r q qu u s usin sin sin 0, E.42 2 ( )

where =s pR D2 andwe omitted the azimuthal angle due to the axial symmetry of the problem.We solve the
above equation on the planar computational domain p= ´C 0, 1 0,( ) ( ) by using a finite elementsmethod
(FEM) implemented as PDE toolbox inMatlab. For this purpose, we rewrite this equation in the conventional
matrix form:
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where c is the diagonal 2×2matrix with elements r qsin2 and qsin , and r q=a s sin2 . This equation is to be
solved subject to the boundary conditions:

¶ = ¶ = ¶ =r r q q q q p= = =u u u 0, E.60 0( ) ( ) ( ) ( )

k
q e¶ + = <r r r= = D

R
u u 1 0 , E.71 1( ) ( ) ( )
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Once the solution is found, we also evaluate the volume average H p˜ ( ) (by numerical integration over the

triangularmesh), and the surface average H p r
˜ ( ) (by interpolating the solution to a line r = const and then

integrating numerically over θ).We selected themaximalmesh size to be hmax=0.01. In order to verify the
accuracy of the FEM solution, we solved the problem twice, with twomesh sizes hmax and 2hmax, and checked
that the resulting solutionswere barely distinguishable.

Figures E1 and E2 compare the volume-averaged and surface-averaged Laplace-transformed PDFs H p˜ ( )
and H p r

˜ ( ) , obtained via our self-consistent approximation (lines) and by FEM (symbols). One can see that the
self-consistent approximation is remarkably accurate over a broad range of p, for both narrow e = 0.1and
extended e = 1 target region. The accuracy is higher for less reactive targets.

Figure E1.Volume-averaged Laplace-transformed PDF H p˜ ( ) of the FRT through a spherical cap, with e= = =R D1, 1, 0.1 (left)
and e = 1 (right), and several values ofκ. Self-consistent approximation (lines), truncated to n = 1000 terms, is compared to the FEM
solution of the original problem (symbols), with hmax = 0.01.Note that our theoretical predictions are almost indistinguishable from
the FEM solution for several decades of variation of the dimensionless parameter R p D2 .

Figure E2. Surface-averaged Laplace-transformed PDF H p r
˜ ( ) of the FRT through a spherical cap, with

e= = = =R D r1, 1, 0.5, 0.1 (left) and e = 1 (right), and several values ofκ. Self-consistent approximation (lines), truncated to
n=1000 terms, is compared to the FEM solution of the original problem (symbols), with hmax = 0.01.Note that our theoretical
predictions are almost indistinguishable from the FEM solution for several decades of variation of the dimensionless parameter
R p D2 .
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Figure E3 compares the Laplace-transformed PDF qH r p, ;˜ ( ), obtained via our self-consistent
approximation (lines) and by FEM (symbols), for the three starting points used infigures 2, C2 andC3.One can
see that the self-consistent approximation is remarkably accurate over a broad range of p, for both narrow
e = 0.1and extended e = 1 target region. The accuracy is higher for less reactive targets.Minor deviations seen
in panel (c) for the case k = ¥ are caused by the truncation ton=50 terms and can be corrected by increasing
n (not shown). In turn,minor deviations in panel (e) cannot be corrected by increasing n and can thus be
attributed to a limited accuracy of the self-consistent approximation for extended targets.
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