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Abstract
Aconsiderable number of systems have recently been reported inwhich Brownian yet non-Gaussian
dynamics was observed. These are processes characterised by a linear growth in time of themean
squared displacement, yet the probability density function of the particle displacement is distinctly
non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour
observed in very different physical systems has been interpreted as resulting fromdiffusion in
inhomogeneous environments andmathematically represented through a variable, stochastic
diffusion coefficient. Indeed differentmodels describing afluctuating diffusivity have been studied.
Herewe present a new view of the stochastic basis describing time-dependent randomdiffusivities
within a broad spectrumof distributions. Concretely, our study is based on the very generic class of the
generalisedGamma distribution. Twomodels for the particle spreading in such randomdiffusivity
settings are studied. Thefirst belongs to the class of generalised grey Brownianmotionwhile the
second follows from the idea of diffusing diffusivities. The two processes exhibit significant
characteristics which reproduce experimental results fromdifferent biological and physical systems.
Wepromote these two physicalmodels for the description of stochastic particlemotion in complex
environments.

1. Introduction

The systematic study of the diffusivemotion of tracer particles influids dates back to the 19th century,
particularly referring to Robert Brown’s experiments observing the erraticmotion of granules extracted from
pollen grains whichwere suspended inwater [1]. Since then numerous scientists contributed by improving the
experiments [2–4] as well as in defining the basis of the theory of diffusion [5–9]. In brief, Brownian or standard
diffusion processes aremainly characterised by two central features: (i) the linear growth in time of themean-
squared displacement (MSD),

á ñ =( ) ( )x t Dt2 , 12

whereD is the diffusion coefficient, and (ii) theGaussian probability density function (PDF) for the particle
displacement,
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Here and in the followingwe focus on a one-dimensional formulation of themodel, a generalisation to higher
dimensions can be achieved component-wise.

Discoveries of deviations from the linear time dependence (1) have a long history. Thus, Richardson already
in 1926 reported his famed t-cubed law for the relative particle diffusion in turbulence [10]. Scher andMontroll
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uncovered anomalous diffusion of the power-law form

á ñ a
a( ) ( )x t D t , 32

with the anomalous diffusion exponent 0<α<1 and the generalised diffusion coefficientDα [11], for the
motion of charge carriers in amorphous semiconductors [12].With the advance ofmodernmicroscopy
techniques, in particular, superresolutionmicroscopy, as well asmassive progress in supercomputing,
anomalous diffusion of the type (3) has been reported in numerous complex and biological systems [13, 14].
Thus, subdiffusionwith 0<α<1was observed for submicron tracers in the crowded cytoplasmof biological
cells [15–19] aswell as in artificially crowded environments [20–23]. Further reports of subdiffusion come from
themotion of proteins embedded in themembranes of living cells [24–26]. Subdiffusion is also seen in extensive
simulations studies, for instance, of lipid bilayermembranes [27–30] and relative diffusion in proteins [31].
Superdiffusion, due to activemotion ofmolecularmotors, was observed in various biological cell types for both
introduced and endogenous tracers [16, 17, 32, 33].

Most of the anomalous diffusion phenomenamentioned here belong to twomain classes of anomalous
diffusion: (i) the class of continuous time randomwalk processes, inwhich scale-free power-lawwaiting times in
betweenmotion events give rise to the law (3) [12, 34], alongwith a stretchedGaussian displacement probability
densityG(x, t) [11, 12, 34] aswell as weak ergodicity breaking and ageing [35, 36].We note that similar effects of
non-Gaussianity, weak non-ergodicity, and ageing also occur in spatially heterogeneous diffusion processes
[37–40]. (ii)The second one is the class of viscoelastic diffusion described by the generalised Langevin equation
with power-law friction kernel [41, 42] and of fractional Brownianmotion (FBM) [43]. These processes are both
fuelled by long-range, power-law correlated noise. Its distribution is Gaussian, so that the displacement
probability densityG(x, t) is Gaussian, as well.Moreover, these are ergodic processes [23, 42, 44–46].

Over the last few years a new class of diffusive processes has been reported, namely, so-called Brownian yet
non-Gaussian diffusion [47, 48]. This class identifies a dynamics characterised by a linear growth (1) of theMSD
combinedwith a non-Gaussian PDF for the particle displacement. The emergence of a non-Gaussian
distribution, despite the BrownianMSD scaling, suggests the presence of an inhomogeneity that can be located
both on the single tracer particle and on the ensemble levels. The study of these processes is becoming
increasingly relevant with the growing number of complex systems discovered to exhibit such statistical features.
For instance, wemention softmatter and biological systems, in which themotion of biologicalmacromolecules,
proteins and viruses along lipid tubes and through actin networks [47, 48], as well as alongmembranes and
inside colloidal suspension [49] and colloidal nanoparticles adsorbed at fluid interfaces [50–52] are studied.We
alsomention ecological processes, involving the characterisation of organismmovement and dispersal [53, 54],
as well as processes, that are Brownian but non-Gaussian in certain timewindows of their dynamics. These
concern the dynamics of disordered solids, such as glasses and supercooled liquids [55–57] as well as interfacial
dynamics [58, 59]. Also anomalous diffusion processes of the viscoelastic class that typically are expected to
exhibit Gaussian statistic of displacements, were reported to have non-Gaussian displacements alongwith
distinct distributions of diffusivity values. These concern themotion of tracer particles in the cellular cytoplasm
[60–62] and themotion of lipids and proteins in protein-crowdedmodelmembranes [29].

Here we study two alternative stochastic approaches to non-Gaussian diffusion due to randomdiffusivity
parameters, namely, generalised grey Brownianmotion (ggBM) and diffusing diffusivities (DD).We analyse
their exact behaviour and relate these approaches to the idea of superstatistics. To prepare the discussion,
section 2 presents a primer on the approach of superstatistics andwhat has been done in the context of ggBM
andDDmodels. In section 3we then study the ggBMmodel with a randomdiffusivity distributed according to
the generalisedGammadistribution. In particular, ggBMwill be shown to represent a stochastic description of
the superstatistics approach and is equivalent to the short time (ST) limit of theDDmodel. In section 4we
formulate a set of stochastic equations for the dynamics within theDD framework, inwhich the diffusivity
statistic is governed by the generalisedGammadistribution. This is then incorporated in the framework of the
minimalmodel ofDD in section 5. In section 5.4we describe the behaviour of the kurtosis of the twomodels, an
important quantity for data analysis. Section 6 introduces an analysis for an initial non-equilibrium setting for
the randomdiffusivity, relevant, for instance, for the description of single particle trajectories. To transfer this
concept to the ggBMapproachwe propose a non-equilibrium version of ggBM. Finally our conclusions are
reported in section 7. In the appendices somemathematical details are collected.

2. Pathways to Brownian yet non-Gaussian diffusion: superstatistics andDD, and ggBM

Whenwe talk about an ensemble of particles, we could imagine that non-Gaussian statistic in this ensemble
sense emerges due to the fact that different particles are located in different environments with different
transport characteristics, such as the diffusion coefficient. If during the observation time each particle remains in
its own environment characterised by a given valueD of the diffusivity, the ensemble of particles shows a
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mixture of individual Gaussians, weighted by some distribution p(D) of local diffusivities. This is the idea behind
superstatistics, an approach promoted byBeck andCohen [63], see also [64]. As a result, the ensemble dynamics
is still Brownian yet the PDF of particle displacements will correspond to a sumor integral of single Gaussians
with specific value ofD, weighted by the distribution p(D). For instance, an exponential form for p(D)will
produce an exponential shape of the ensemble displacement PDF, sometimes called a Laplace distribution.We
note that there also exist superstatistical formulations on the basis of the stochastic Langevin equation, leading to
Brownian yet non-Gaussian behaviour [65]. A quite general superstatistical formulation in terms of the gamma
distributionwas put forward byHapca et al [53].

More recently, similar concepts have been sought to describe non-Gaussian viscoelastic subdiffusion. Thus,
Lampo et al [61] observed exponential distributions of the generalised diffusivityDα for themotion of
submicron tracers in living bacteria and eukaryotic cells. As a theoretical description they used a superstatistical
formulation of the stochastic equation for FBM [61]. Following the observation of stretchedGaussian shapes of
the displacement PDF in protein-crowded lipid bilayermembranes [29], more general forms for the distribution
of the generalised diffusion coefficient were introduced, see, for instance, [66, 67]. Viscoelastic, non-Gaussian
diffusionwas also described in terms of the generalised Langevin equationwith superstatistical distribution of
the friction amplitude [68, 69].

Some othermodels instead introduce afluctuating diffusivity, for instance to describe segregation in solids
[70] or to analyse data fromdiffusion processes assessed bymodernmeasurement techniques [71]. Brownian
motion influctuating environments, or governed by temperature or friction fluctuations has been studied in
[72–74] andmodels with intermittency between two values of the diffusivity are considered in [75, 76].
Anomalous diffusion in a disordered systemwas also described in terms of a superstatisticalmodel based on a
Langevin equation formulation, combining a Rayleigh-shaped diffusivity distributionwith deterministic
power-law growth or decay of themean diffusivity [77].

A general framework for the description of diffusion in a complex environment is provided also by the class
of stochastic processes identified as ggBM [78–82]. The basic idea of this approach is that the complexity or
heterogeneity of themedium is completely described by the randomnature of a specific parameter. Choosing
this parameter to be the diffusivity leads to a stochastic interpretation of the system thatmay be viewed as
complementary to the superstatistics concept and thus suitable for the description of the class of Brownian yet
non-Gaussian processes.Wewill define ggBMwith a randomdiffusivity inmore detail in the next section 3, and
in the following demonstrate that ggBM is equivalent to the ST limit of theDDmodel.

Recently the idea ofDDhas received considerable attention. According to this approach, in addition to the
introduction of a population of diffusivities, each particle during itsmotion is affected by a continuously
changing diffusivity. Chubynsky and Slater first introduced thismodel describing the dynamics of the diffusion
coefficient by a biased, stationary randomwalkwith reflecting boundary conditions [83].With this assumption
the diffusivity changes slowly step by step, in the ST limit giving rise to normal diffusionwith exponential
displacement PDF6. In the long time (LT) regime simulations showed a crossover toGaussian diffusionwith a
single, effective diffusion coefficient [83]. In amore recent work a direct test of theDDmechanism for diffusion
in inhomogeneousmedia is reported [86].

TheDD concept was further studied by Jain and Sebastian [87, 88] andChechkin et al [67].While Jain and
Sebastian use a path integral approach, Chechkin et al invoke the concept of subordination and an explicit exact
solution for the PDF in Fourier space. Despite the differentmathematical approach, bothmodels recover the
linear trend of theMSD and a distribution of displacements that at ST is exponential, while, at LT, it crosses over
to aGaussianwith effective diffusivity, in agreementwith the results in [83]. Tyagi andCherayil [89] present a
hybrid procedure between the two approaches, finding that themodulation of white noise by any stochastic
process, whose time correlation function decays exponentially, is likely to have features similar to the ones
obtained in [67, 83, 87, 88]. As a recent result we also report thework by Lanoiselée andGrebenkov inwhich the
concept ofDD is further investigated, for instance, with respect to time averages and ergodicity breaking
properties [90].

In this paperwe present a detailed comparison between the concept of ggBMwith randomdiffusivity and
theDDmodel. Themain difference between theDDand ggBMmodel is represented by the interaction between
environment and particles. On the one hand, in theDDmodel two different statistical levels are taken into
account, one for themotion of the environment and one for themotion of the particles. The relation between
these two gives rise to specific characteristics. Thus, at ST the slow variability of the environment guarantees the
superstatistical limit. In the LT regime the diffusivity reaches a stationary average value leading the particles to
develop aGaussian statistic. On the other hand, the ggBMmodel does not directly involve an environment
dynamics but only implies a dynamics inwhich the statistical features of the environment continuously drives
the particles in theirmotion, see below formore details.

6
This approach has some commonalities in spirit with the correlated continuous time randomwalkmodel [84, 85].
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Concretely, for both ggBMandDDmodels a set of stochastic equations is introduced to generate a random
diffusivity with awell defined stationary distribution. Until nowmainly exponential orGammadistributions
have been considered for the randomdiffusivity.We here base the discussion on the generalisedGamma
distribution, which represents an even broader class of distributions including the onesmentioned above, as
particular cases.We define the generalisedGammadistribution by
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The choice of the generalisedGammadistribution is based on experimental evidence demonstrating its role as a
versatile description for generalised distributions in various complex systems. Indeed, in the context of
superstatistics the generalisedGammadistributionwas studied by Beck in [91]. Importantly, the generalised
Gammadistribution includes those cases labelled as Gammaor exponential distribution that have already
shown good agreement with several systems [53, 55–57].Moreover it comprises the cases of stretched and
compressed exponential distributionswhichmay be useful for the interpretation of various systems
[26, 53, 92, 93].

In the followingwe generalise the ggBMmodel from [78–82] to incorporate the generalisedGamma
function (4).We then demonstrate how to reformulate theOrnstein–Uhlenbeck picture of theDDminimal
model [67] and the closely relatedDDmodels [83, 87, 88] to include the distribution (4).With this extension
bothmodels are considerablymore flexible for the description ofmeasured data.Moreover, wewill show that
the ggBMmodel is a powerful stochastic representation of the superstatistics approach, and that the ggBM
model equals the ST limit of theDDmodel. Finally, we consider non-equilibrium conditions in theDDmodel
and propose a non-equilibrium extension of the ggBMmodel to consider similar effects in the stochastic setting
of superstatistics. Such non-equilibrium initial conditions represent an important extension of the random
diffusivitymodels, especially for experimentally relevant cases of single particle trajectorymeasurements.

3.Generalised grey Brownianmotionwith randomdiffusivity

GgBM is defined through the stochastic equation [78–82]

= ´( ) ( ) ( )X t D W t2 , 6ggBM

for the particle trajectory ( )X tggBM , inwhich ò x= ¢ ¢( ) ( )W t t td
t

0
is standard Brownianmotion, theWiener

process defined as the integral over thewhiteGaussian noise ξ(t)with zeromean.Moreover,D is a random
diffusivity, here taken to be distributed according to the generalisedGammadistribution (4). The idea is that
different, but physically identical particlesmove in disjointed environments, inwhich they experience different
diffusivities, the essential view of the superstatistics approach. Alternatively, we could also think of physically
different particles, with different diffusion coefficients,moving in an identical environment. The latter could, for
instance, correspond to an ensemble of tracer beadswith varying radius or different surface properties.

Moremathematically speaking, ggBM is defined through the explicit construction of the underlying
probability space based on self-similar increments, and it can be represented by the stochastic equation

= LX XgggBM , whereΛ is an independent, non-negative randomvariable, andXg is a Gaussian process
[78–82]. The characterisation of this class has also been studied for the casewhenXg is a standard FBMandΛ is
distributed according to the quite general class ofM–Wright functions [81, 94].We note that the definition (6) is
similar to the superstatistical Langevin equationmodels in [65, 77].

Figure 1 shows trajectories obtained fromdirect simulations of the scheme (6), for which the diffusivity
valuesD are chosen from the generalisedGammadistribution (4). As a result we obtain a Brownianmotion
characterised by a randomamplitude, as demonstrated explicitly by theMSDplots for the same trajectories
shown in the bottompanel offigure 1. For the value n = 1.5 (right panels) largerD values are observed, in
accordancewith the shape of the distribution (4). The ggBMdescription is indeed close to the superstatistical
concept and fundamentally different from the time evolution of the sample paths for theDDmodel, compare
figure 7.However, at very ST both processes lookmuch alike, as theDDmodel at STwill be shown to reduce to
the ggBMmodel.

The particle displacement distribution can be recovered following Pagnini and Paradisi [94]. If we define
withZ1 andZ2 two real independent random variables whose PDFs are p1(z1) and p2(z2)with  -¥ +¥z1

and   +¥z0 2 , respectively, andwith the randomvariableZ obtained by the product ofZ1 andZ2
γ, that is,
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= gZ Z Z1 2 , then, if we denote the PDF ofZwith p(z), we find that
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In the present casewe identifyXggBM(t),W(t), and the randomdiffusivityDwithZ,Z1, andZ2, respectively.
The PDF for the particle displacement encoded by equations (6) and (7) is given by
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where ( ∣ )G x t D, is theGaussian distribution (2) for givenD. Such a representation of the PDF corresponds to
the one of the superstatistical approach, proving the similarity of the twomethods. The distribution pD(D) is
defined in (4) and the integral in (8), which can be solved exactly through differentmethods (appendix), provides
the result (A.6) in terms of a FoxH-function (see appendix, where also the series expansion is given). The
asymptotic behaviour of this result acquires the generalised exponential shape
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In particular, the choice η=1 leads us back to exponential distributions, with power-law prefactor. Figure 2
demonstrates the agreement between the analytical result (9) for the PDF and the result of stochastic simulations
of the underlying ggBMprocess, for different times and afixed set of the parameters ν and η. In particular, we see
that the shape of the distribution remains invariant—as for the superstatistical approach—and in contrast to the
DDmodel analysed below.

Figure 1.Top: trajectories governed by the ggBMmodel for η=1.3 and two different parameters ν (seefigure legend). Bottom: time
averagedMSD for the respective traces shown in the top panel, with identical colour coding. The different trajectories exhibit random
diffusivity values and thus random slopes in the time averagedMSDplots.Within each trajectory the value ofD remainsfixed.
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TheMSD follows immediately from the following transformations,
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where, according to (5), the effective diffusivity becomes

 n h n há ñ = G + G([ ] ) ( ) ( )D D 1 . 11stat

Figure 3 demonstrates the linearity of the variance. Thefitted parameters are consistent with themodel
prediction, á ñ =D 0.20stat comparing to the values chosen in the simulations.

Bymeans of the ggBMapproach andwith the introduction of a generalisedGammadistribution for the
diffusivity we are able to reproduce a diffusivemotionwith a linear scaling of theMSDand a PDF characterised
by a stretched or compressedGaussianwith a power-law prefactor. This is ourfirstmain result.

4.Diffusing diffusivity: stochastic equations for randomdiffusivity

Wenow consider the diffusion coefficientD(t) to be a random function of time, defined bymeans of the
auxiliary variableY(t) throughD(t)=Y2(t), similarly to theDDminimalmodel introduced earlier [67]. Our
goal is to construct a stochastic equation for the additional variableY(t) such that the stationary PDF for its
square is the generalisedGammadistribution in (4). Thus, our presentmodel is represented by the following set
of stochastic equations

s= + ´( ) ( ) ( )Y a Y t W t ad d d 12

Figure 2. Short (a) and long (b) time behaviour of the PDF of the ggBMprocess for the parameters η=1.3 and ν=0.5, as well as
 =D 1 2. Solid lines represent the asymptotic behaviour (9), while symbols are obtained from stochastic simulations of the ggBM

process.

Figure 3.Variance of the ggBMmodel (blue line) and linear fit (solid line). The corresponding fit parameters are indicated in thefigure
legend. The value of  =D 1 2.
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=( ) ( ) ( )D t Y t b, 122

where ( )a Y is a nonlinear functionwhose explicit shape is obtained below, s is a constant andW(t) is aWiener
process with variance á ñ =( )W t t2 . The physical dimension of the auxiliary variable is = -[ ]Y cm s 1 2 and for
the constant s wehave s = -[ ] cm s 1.

Our approach is based on the central idea that it is possible to establish a direct relation between the PDFs of
the two variablesY(t) andD(t). This allows us to introduce a completely new dynamics for the auxiliary variable.
Such a dynamics, even thoughmore complex, allows to reproduce amore general class of PDFs for the random
diffusivity and thus provides a significant extension of theDDmodel, whichwill be our secondmain result.

To proceedwe set p(Y, t) to represent the PDF of the processY(t) described in (12a). It fulfils the Fokker–
Plank equation [9]
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Considering the stationary situation the corresponding time independent PDF pY(Y) fulfils the equation
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directly relating the drift coefficient a(Y)with the stationary distribution ofY(t) [95].
We then recall that, given two random variablesZ1 andZ2 related byZ2=g(Z1), for appropriate functions

g(z)we have [96]
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This implies that the distributions of the variablesY(t) andD(t) are related via

=( ) ∣ ∣ ( ) ( )p Y t Y p Y t, , . 17Y D
2

Based on this we construct a set of stochastic equations for the desired quantityD(t). Starting from the
chosen stationary distribution pD(D) of the randomdiffusivity we define the stationary distribution pY(Y) for the
auxiliary variableY(t) bymeans of equation (17). Finally relation (15) allows us to recover the suitable coefficient
a(Y) in equation (12a). Following the described scheme for the generalisedGammadistribution (4)we obtain
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Thisfinally leads us to the desired drift coefficient
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The stochastic equations (12a) together with the explicit form (20) of the drift coefficient for the diffusivity
fluctuations provide a complete and generalised analogue of theDDmodel, which is extremelyflexible for the
modelling of experimental data.

We notice that in the particular case of ν=0.5 and η=1we recover theOrnstein–Uhlenbeckmodel
(diffusion in an harmonic potential) considered in the originalminimalDDmodel [67]. As already remarked in
[67] in this setting the resulting stochastic equation forD(t) is nothing else than theHestonmodel, that is widely
used infinancialmathematics and specifies the time evolution of the stochastic volatility of a given asset
[90, 97, 98].

Equation (12a) can be readily solved numerically with initial conditions taken randomly from the
equilibriumdistribution (18). Figures 4 and 5 show sample time evolutions of the auxiliary variableY and the
diffusivityD=Y2 for theDDprocess based on the steady state generalisedGammadistribution, as obtained
below.We note that for the case ν=0.5 infigure 4 the sample paths of the variableY(t) frequently cross the zero
line, while for the case ν=1.5 infigure 5 the zero line is avoided, corresponding to the uni- and bimodal shapes
of the PDFs of the variableY(t) evaluated infigure 6. The existence of a pole in the generalisedGamma
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Figure 4.Top: trajectories and bottom: autocorrelation functions (21), of the auxiliary variableY(t) and the randomdiffusivityD(t) in
theDDmodel. The green solid lines in the autocorrelation function plots represent exponential fits.We took ν=0.5 and η=1.3.

Figure 5.Top: trajectories and bottom: autocorrelation functions (21), of the auxiliary variableY(t) and the randomdiffusivityD(t) in
theDDmodel. The green solid lines in the autocorrelation function plots represent exponential fits.We took ν=1.5 and η=1.3.
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distribution (4) atD=0 for the case ν=0.5 thus creates a very different behaviour than for the case ν=1.5
without singularity. For the diffusivity variableD(t) in figures 4 and 5 the regions ofY(t) close to the zero line lead
to smallerD(t) values in the same regions. Finally, figures 4 and 5 demonstrate the exponential shape of the
autocorrelation functions for bothY(t) andD(t),

¢ = á - á ñ + ¢ - á ñ ñ( ) ( ( ) )( ( ) ) ( )t t Y t Y Y t t YACF , 21Y

and an analogous expression for ( )D t .
We know fromprevious studies ofDDmodels that the correlation time of the randomdiffusivity represents

a key factor in the study of the particle dynamics. The correlation time τc is evaluated both bymeans of a two-
parametric numericalfit to the exponential function and through the integral

òt t t~
¥

( )
( ) ( )1

ACF 0
ACF d , 22c

0

which is exact for pure exponential autocorrelation functions. The results obtained by the twomethods are
reported infigure 4 and 5 and they are in excellent agreement, fromwhichwe conclude that the diffusivity
autocorrelation is exponential to leading order and thus the correlation time τcwell defined.

It is interesting to notice that the auxiliary function ( )Y t in the case of a bimodal distribution possesses a
non-zero correlation function in the stationary state. This is due to the fact that despite a vanishing globalmean
of the PDF, depending on the initial setting each trajectory is representative of only one side of the bimodal PDF.

5. A generalisedminimalmodel forDD

With the set of equations defined in section 4we can consider the generalisation of theDDminimalmodel
described in [67], and obtain the process in position space, ( )X tDD . Recalling the idea of introducing an analytic
description for the dynamics of the randomdiffusivity, we take that themotion of the particle is defined by the
integral version of the overdamped Langevin equation,

ò x= ¢ ´ ¢ ¢( ) ( ) ( ) ( )X t D t t t2 d , 23
t

DD
0

where x ( )t is whiteGaussian noise andD(t) is the random time-dependent diffusivity obtained in section 4. This
dynamics based on the above results for the diffusivity dynamics generalises the idea introduced in [67], where
anOrnstein–Uhlenbeck process was selected for the auxiliary variable. Figure 7 shows trajectories obtained from
the stochastic equation (23)where the diffusivity was generated from (12a)with initial conditions taken
randomly from the stationary distribution. In ggBMeach trajectory has the sameD value, while in theDDmodel
the value ofD changes as function of time. In turn, individual trajectories of theDDmodel are quite similar.

Since theDDmodel is a direct generalisation of theminimalDDmodel we expect a crossover to aGaussian
displacement PDF for times longer than the correlation time τc.We thus carry on our analysis for the ST and LT
regimes separately, before analysing theMSD and kurtosis of this DDprocess.

5.1. Short time regime
Since the dynamics of the environment is determined by the correlation time τcwe expect that on ST scales with

tt c the diffusion coefficient is approximatelyfixed for each particle andwe thus suppose the validity of a
superstatistical description at ST,

Figure 6.PDFs of the auxiliary variableY(t) and the randomdiffusivityD(t) for two different sets of parameters, as indicated in the
figure legends.
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ò x~ ¢ ¢ = ´( ) ( ) ( )X D t t D W t2 d 2 . 24
t

DD
ST

0

The existence of the superstatistical regime at tt c is consistent with themodel considered in [67] andwith the
results reported in [89] concerning themodulation of white noise by any stochastic process whose time
correlation function decays exponentially. The superstatistical approach allows us to estimate the ST distribution
of the particle displacement bymeans of

ò~
¥

( ) ( ) ( ∣ ) ( )f x t p D G x t D D, , d . 25DDD
ST

0

This representation corresponds to the ggBM scenario established above, whichmeans that we can borrow its
results in equations (A.6) and (9), considering that ~( ) ( )f x t f x t, ,

DD
ST

ggBM .

The expected behaviour (9) is confirmed by extensive numerical simulations. Figures 8(a) and 9(a) show the
STPDFs for two different sets of the parameters ν and η, and in both cases we observe excellent agreementwith
the asymptotic behaviour (9).

Comparing figure 2with figure 8(a)wenotice that the ggBMmodel allows one to describe a process that
preserves the exact non-Gaussian PDF,which is exactly the same PDFwe obtain in theDDmodel in the ST
regime. Both approaches describe the same superstatistical frame but theDDmodel then crosses over to a
Gaussian beyond the correlation time τc, see below the discussion of the kurtosis. The establishment of the
relation between theDDmodel and the previously devised ggBMat ST is our thirdmain result.

5.2. Long time regime
At LT, again taking our clue from [67] and from the general results in [89], we expect that eventually a crossover
to aGaussian distribution is observed (as already anticipated infigures 8 and 9). Above the correlation time, that
is, for times tt c we thus look for a PDF given by

p
~

á ñ
-

á ñ

⎛
⎝⎜

⎞
⎠⎟( ) ( )f x t

D t

x

D t
,

1

4
exp

4
, 26

DD
LT

stat

2

stat

with the effective diffusivity (11). The numerical results reported infigures 8(b) and 9(b)prove the validity of this
behaviour. At sufficient LT the particles have explored all the diffusivity space and aGaussian behaviourwith an
effective diffusivity emerges. This leads to a standard Brownian diffusive behaviour.We stress again that the

Figure 7.Top: trajectories of theDDmodel for two different sets of parameters ν and η, as indicated in thefigure legend and bottom:
corresponding time averagedMSDs. In contrast to the behaviour of the ggBMmodel shown infigure 1, the temporal variation of the
diffusivityD(t) is distinct.
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transition from anon-Gaussian to aGaussian profile depends on the value of the correlation time τc of the
diffusivity process.

5.3.Mean squared displacement
For theDDmodel we found a crossover of the PDF of the spreading particles. An initial non-Gaussian behaviour
is slowly replaced by aGaussian one. The superstatistical behaviour of theDD approach at ST is equivalent to the
ggBMmodel and is characterised by the non-Gaussianity. Nevertheless, as expected fromprevious studies [67],
theMSDdoes not change in the course of time and is the same at ST and LT regimes. Direct calculation indeed
produces the invariant form

á ñ = á ñ( ) ( )X t D t2 . 27DD
2

stat

This continuity of theMSD is demonstrated infigure 10, together with a linearfit proving the validity of the
linear trend.

5.4. Kurtosis
Inwhat follows the second and fourthmoments of the non-Gaussian PDF identified in equations (8) and (25)
are studied in terms of the kurtosis that represents one of the first checks for non-Gaussianity.We recall the
second ordermoment calculated in (10) and in a similar waywe obtain the fourth ordermoment

á ñ = á ñ = á ñ( ) ( ) ( )X t X t D t12 , 28ggBM
4

DD
4

ST
2

stat
2

where á ñD2
stat is the secondmoment of the diffusivity in the stationary state. Bymeans of results (10) and (28)

and recalling the definition of the diffusivitymoments in equation (5), the kurtosis = á ñ á ñ( ) ( )K x t x t4 2 2 is
given by

Figure 8. Short time (a) and long time (b)PDFof theDDmodel for η=1.3 and ν=0.5. The solid lines represent the asymptotic
behaviour (9)while the dashed lines represent theGaussian behaviour (26) expected at sufficiently long times.

Figure 9. Short time PDF (a) and long time PDF (b) of theDDmodel for η=1.3 and ν=1.5. The solid lines represent the asymptotic
behaviour in (9)while the dashed lines represent theGaussian behaviour in (26) at long times.
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for ggBMand the short-timeDDprocess. The non-Gaussian PDF represents a leptokurtic behaviour as can be
observed infigure 11, showing the kurtosis of theDD and ggBMmodels. The value for the kurtosis at ST is in
agreementwith the value reported in (29). At LT theDDkurtosis approaches the value 3 characteristic of the
Gaussian distribution, while the ggBMone keepsfluctuating around the same initial value.

6.Non-equilibrium initial conditions

The results discussed above consider equilibrium initial conditions for the diffusivity fluctuations. In particular,
results (10) and (27) for the particleMSD exhibit the invariant form á ñ = á ñ( )X t D t22

stat in both cases. Such
equilibrium initial conditionswill in general not be fulfilled for particles that are initially seeded in a non-
equilibrium environment. For instance, in single particle tracking a tracer bead can be introduced into the
system at t=0, or similar in computer simulations. After this disturbance the environment equilibrates again.
To accommodate for such a case we here study aminimalmodel for the case of non-equilibrium initial
conditions, which leads to anothermain result of this work. Aswe are going to see, this non-equilibrium
scenario gives rise to differences in the characteristics of the two studiedmodels. In particular, we observe an
initial ballistic behaviour. The LT behaviour, of course, does not showdifferences since in this range the
diffusivity reaches its stationary state andwe can again consider the results obtained in the previous sections for
the LT limit.

We illustrate the role of non-equilibrium conditions by taking a specific, and in fact the simplest, set of
parameters, ν=0.5 and η=1. This defines the stochastic dynamical equation in (12a) as

=( ) ( ) ( )D t Y t a302

Figure 10.Variance of theDDmodel. The solid green line represents a linearfit and the corresponding slope is reported in the plot. It
is consistent with the expected value 0.40 according to equation (11).

Figure 11.Kurtosis of theDDprocess (green) and ggBM (blue) for 10,000 realisations. For the indicated value of η and ν equation (29)
yields »K 7.74ggBM .
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s
s= - + ( ) ( )Y

D
Y t W t bd d d , 30

2

that corresponds to thewell knowndynamics of theOrnstein–Uhlenbeck process for the study in [67]with the
correlation time t s= Dc

2.We start considering the related Fokker–Planck equation



s s¶
¶

=
¶
¶

+
¶
¶

( ) ( ) ( ) ( )
t

p Y t
D Y

Yp Y t
Y

p Y t, ,
2

, . 31
2 2 2

2

Wecan solve this equationwith a non-equilibrium condition, for instance, p(Y, 0)=δ(Y−Y0), using the
method of characteristics in Fourier space.We readily derive the general solution
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Recalling relation (16) for the diffusivity PDFwe then obtain
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Wepoint out that in the limit of LT this result provides exactly the stationary distribution described in (4)with
the specific set of parameters defined above. This is also verified by the trend of the average value

  á ñ = - +s s- -( ) ( ( ) ) ( )D t D D
1

2
1 e 2 e , 34t D t D2

0
22 2

in agreementwith result (4).
In contrast to the previous analysis, we observe an explicit dependence on time of pD(D, t), whichmakes the

calculationsmore involved. Thus, we select an initial condition for the diffusivity,D0=0, which is convenient
for the study of the particles displacement distribution. This leads to a reduction in (33), namely,
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⎞
⎠⎟( ∣ ) ( ( ( )))
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( )p D t D D D t D
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, 0 1 exp 2 exp

1 exp 2
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2

Wenow study the twomodels in this particular case of a non-equilibrium initial condition for the diffusivity.

6.1.Diffusing diffusivities with non-equilibrium initial diffusivity condition
The dynamics for the diffusivity encoded in equations (30a) and (30b)when choosing the specific set of
parameters ν=0.5 and η=1 is the same as described in [67]when d=n=1. Thus, in this paragraph, we
extend the description of theminimal DDmodel studied in [67] to the case of non-equilibrium initial conditions
for the diffusivity. In order to proceedwith the same notationwe introduce dimensionless units for relations
(30a) and (30b) as well as for the overdamped Langevin equation describing the particlemotion [67], such that
the full set of stochastic equations reads

ò x= ¢ ¢ ¢

=
= - +

( ) ( )

( ) ( )
( ) ( )

X D t t t

D t Y t

Y Y t W t

2 d

d d d . 36

t

DD
0
2

A subordination approach can then be used to obtain the distribution of the particle displacement [67], namely,

ò t t t=
¥

( ) ( ) ( ) ( )f x t T t G x, , , d , 37DD
0

whereG(x, τ) is theGaussian (2) andT(τ, t) represents the PDF of the process òt = ¢ ¢( ) ( )t Y t td
t

0
2 . Starting

from the subordination formula (37)we obtain the relation

= =ˆ ( ) ˜( ) ( )f k t T s k t, , 38DD
2

wherewith the symbols ·̂ and ·̃ we indicate the Fourier and Laplace transforms, respectively. For the particular
initial conditionD0=0, which is equivalent to y0=0, the solution is known [99, 100],
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This latter quantity is directly related to theMSDof the particles through [67]
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We readily obtain the closed form result
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The resulting dynamics is thus no longer Brownian at all times. In contrast, at times shorter than the correlation
time (in the dimensionless units used here t = 1c )we obtain a ballistic scaling of theMSD. This behaviour
reflects the fact that the diffusivity equilibration in this case withD0=0 leads to an initial acceleration.

Starting from equations (38) and (39)we consider approximations of the PDF for ST and LTwhich, sincewe
are in dimensionless units, correspond to t 1and t 1 respectively. In the ST limit, the Fourier transformof
the PDF becomes
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Note that this expression is normalised, = =ˆ ( )f k t0, 1DD . After taking the inverse Fourier transformwefind
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Re-establishing dimensional units, this result becomes
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HereKν(z) is themodified Bessel function of second type. The asymptotic behaviour of this distribution for
 ¥∣ ∣x is the Laplace distribution
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In the LT limit equations (38) and (39) yield
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that again is normalised. If we focus on the tails of the distribution in the limit k 1we obtain theGaussian
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in Fourier space, corresponding to theGaussian
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in direct space. Restoring dimensional units and recalling that á ñ =D D 2stat , eventually provides
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where in the last stepwe identified the equilibrium value á ñD stat of the diffusivity. From the approximations (45)
and (49)we readily recover the two limiting scaling laws for the variance in equation (41).

Figure 12 nicely corroborates thesefindings, comparing the non-equilibriumDDmodel results for the PDF
obtained abovewith results from stochastic simulations. The crossover behaviour of the associatedMSD is
displayed infigure 13, again showing very good agreementwith the theory.
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6.2. Non-equilibrium ggBM
The ggBMmodel discussed in section 3 is based on the static distribution pD(D) of the diffusivity. In order to
explore non-equilibrium effects as discussed above for theDDmodel alsowithin the superstatistical approach,
we here propose a non-equilibrium generalisation of the ggBMmodel. Thus, we generalise the standard ggBM
definition (6) and introduce a variability ofD in time, according to the stochastic equation

= ´( ) ( ) ( ) ( )X t D t W t2 . 50ggBM

Physically, this new conceptmay be interpreted as fluctuations of the disjointed environments experienced by
the different particles or to temporal changes of the particle size, for instance, due to agglomeration-separation
dynamics.

Based on the definition (50) it is then straightforward to take the dynamics of ( )D t to be the same as the one
considered for theDDmodel. This guarantees that the ensemble properties of this generalised process (50) are

Figure 12.PDFs of theDD (left) and ggBM (right)models with non-equilibrium initial conditionD0=0 of the diffusivity. Top: short
time behaviour. Bottom: long time behaviour. For theDDmodel, the dashed–dotted lines represent the asymptotic behaviour (45) at
short times, while the dashed lines areGaussian fits. For the ggBMmodel the solid lines represent the analytical result (52).

Figure 13.MSDof theDDmodel (green) and ggBM (blue). On the left  =D 1 andD0=0while on the rightwe have  =D 4 and two
different values ofD0, = á ñ =D D D 20 stat andD0=0.04. The first value generates a linear trend of the variance for bothmodels, as
we saw for the equilibrium case. In the second case, where D D0 , we observe three regimes. Nice agreement with the analytical
results is observed.
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exactly the same as the ones of the standard ggBMmodel studied in section 3. In particular, the dependence on
time of the diffusivity does not affect the validity of equation (7), so in order to estimate the PDF of the particle
displacement of the ggBMmodel, we consider the distribution (35) in the calculation of the integral

ò=
¥

( ∣ ) ( ∣ ) ( ∣ ) ( )f x t D p D t D G x t D D, , , d , 51DggBM 0
0

0

whichmay be defined in general as a dynamic superstatistics because of the dependence of pD(D, t) on t.We
obtain an explicit solution bymeans of theMellin transform following the same procedure as described in
appendix A.2,
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whereKν(z) is themodified Bessel function of second type. The asymptotic behaviour for  ¥∣ ∣x is given by
the exponential
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However, in comparisonwith the result (9) in the equilibrium situationwe nowobserve a different time scaling
in the exponent. For STwe see that
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while at LT

 p
= ~ -

⎛
⎝⎜

⎞
⎠⎟( ∣ )

∣ ∣

∣ ∣ ( )f x t D
x D t

x

D t
, 0

1

2
exp . 55

ggBM
LT

0

Comparing the STPDF in (54)with theDDmodel obtained in (45)wenotice that they show a difference in the
time scaling of a factor 2 which is exactly whatwe observe infigure 12.

Starting from equation (51) theMSD can bewritten as
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Note that this result is valid for any initial conditionsD0, not only for the caseD0=0. As already suggested
above, the scaling of the variance is no longer linear at all times. According to the relation between the parameters
it is possible to observe the different scaling behaviours
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Thus, when D D0 we observe three regimes for theMSD.WhenD0=0 orwhen the relationD0=Dådoes
not holdwe directly observe an initial ballistic behaviour followed by the stationary linear trend. This behaviour
is nicely corroborated infigure 13.

7. Conclusions

Agrowing range of systems are being revealedwhich exhibit Brownian yet non-Gaussian diffusion dynamics.
Often, an exponential (Laplace) shape of the displacement PDF is observed, however, also stretchedGaussian
shapes have been reported. The comparison of diffusion processes recorded by new experimental techniques
suggests that the complexity and inhomogeneity of themedium, interpreted as the cause of non-Gaussian
behaviour,may influence the spreading of particles in specific fashion and at different levels. In particular,
experiments have demonstrated that a non-Gaussian dynamicmay persist throughout the observationwindow
and that there are systems that, instead, at LT, exhibit a crossover toGaussian diffusion. In this article we
introduced an analytic approach to generate a randomand time-dependent diffusivity with specific features and
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weproposed two possiblemodels for the spreading dynamics of particles in complex systems: one belonging to
the class of ggBMand the other supporting the idea ofDD.

We saw that the twomodels have in common the idea that the non-Gaussianity of the PDF is a direct
consequence of an inhomogeneity of the environment, represented by a population of diffusivities. The same
PDF for the randomdiffusivity was introduced for bothmodels.We defined an operative set of dynamic
stochastic equations to study randomdiffusivity effects within the broad class of generalisedGamma
distributions. This includes theGammadistribution, or the exponential PDFwhich produces the Laplace
distribution for the particle displacements.

Weobserved that themaindifferencebetween the ggBMand theDDmodel is the descriptionof theparticle
dynamics in theLT regime, corresponding todifferent physical scenarios for the environment.GgBMdoesnot
consider an active dynamics of the environment, and the characteristic thatmainly influences theparticlemotion is
the randomness of themedium.Thismeans that the statistical features of themediumcompletely drive theparticles
in their entiremotion. In contrast theDDmodel supports the idea of randomly evolving diffusivity corresponding to
adynamics also for the environment. In thisway theparticles evolve experiencing both a continuous variability in
timeanda stochasticity in the ensemble. Thefirstmodel delineates a specificnon-Gaussiandynamics for the entire
diffusionprocess,while the secondallows to describe a transition fromanon-Gaussian to aGaussiandiffusion. In
fact, itwas shown that the STnon-Gaussiandynamics is the same in the twomodels,whereas at longer times the
ggBMmodel retains thediffusivity distribution and theDDmodel leads to an effective value for thediffusivity.

We here also studied the influence of non-equilibrium initial conditions for the diffusivity dynamics and
found twomain effects. First, the non-equilibrium case breaks the equivalence of theDD and the dynamic
generalisation of the ggBMmodels at ST and, second, it causes changes in the temporal evolution of theMSD. In
this case the ggBMmodel, which in the static case we showed to represent a stochastic interpretation of
superstatistical Brownianmotion, describes whatwemay call a dynamical superstatistics that leads to the
presence of different time scaling regimes in the process. TheDDmodel, whichwe investigated in this case via a
subordination approach, at ST can no longer be described through a superstatistic approximation, since the
subordination results in that regime diverge from the behaviour of ggBM. Furthermorewe observed different
time scaling regimes for theDDmodel, as well. Nevertheless, we note that for bothmodels we never obtained an
anomalous time scaling for theMSD, only a crossover between ballistic and linear (Brownian or Fickean)
behaviour. In the LT regimewe obtained a description of the twomodels which is in agreement with the one for
the equilibrium case, as it should be.

It will be interesting to generalise the present findings to anomalous dynamics with stochastic diffusivity by
implementing different types of noise.Maintaining the same population of diffusivities the results obtained for
the PDF of the particle displacement will not be affected, yet theMSD scalingwill become anomalous.
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Appendix. Computation of the superstatistical integral

In this appendixwe provide differentmethods to solve the integral representing the non-Gaussian PDFof the
twomodels discussed in this work,

ò=
¥

¯ ( ) ( ) ( ∣ ) ( )P x t p D G x t D D, , d , A.1D
0

where ( ∣ )G x t D, represents aGaussian distribution and pD(D) is the generalisedGammadistribution (4).

A.1. Computation via FoxH-function
Recalling equation (A.1)wehave
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wherewe set l = x D t42 . Changing the variable of integration to = h( )y D D we get
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With the identification

ðA:4Þ
with the FoxH-function and exploiting some (very convenient) properties of theH-function [101]we then
obtain

ðA:5Þ
The Fox function is defined as a generalisedMellin-Barnes integral and has very convenient properties under
integral transformations. The Fox function comprises a large range of special functions, includingMejer’sG-
function, hypergeometric functions, or Bessel functions [102]. In the notation used here the vertical line
separates the argument from the function’s parameters, and the horizontal line denotes the lack of upper
parameters [102].

Recalling that l = x D t42 , we finally obtain

ðA:6Þ

The series expansion of this function reads [102]

ðA:7Þ

The asymptotic behaviour is then obtained in the form [102]
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A.2. Computation viaMellin transform
It is possible to rearrange the integral in equation (A.1) as a convolution integral,
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wherewe defined =x̄ x t1 2 and x = D1 2, andM1/2 denotes theM-Wright functionwith parameterβ=1/2
[78]. Considering the convolution formula for theMellin transform
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and remembering the property
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we compute theMellin transformof the obtained integral in equation (A.9), recovering
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TheMellin transforms for theM-Wright function [78] and the generalisedGammadistribution [102] are known
and given by
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Nowwe notice that theMellin transformof theH-function is [102]
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Thus, recalling also the property of theMellin transform in equation (A.11)we obtain that

ðA:17Þ

andfinally

ðA:18Þ

The result here recovered is consistent with equation (A.6).

A.3. Asymptotic trend via Laplacemethod
Starting again from equation (A.1) it is also possible to calculate directly the asymptotic behaviour through the
Laplacemethod.We introduce the new variable =y D D in equation (A.1),
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Now the integral looks like a Laplace integral of the form

òl = l
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In order to apply the Laplacemethodwe need f (0)¹0which is not our case since f (0)=0 together with all its
derivatives. Thus, to evaluate the asymptotics, we define themaximumof the function,

f l= - - h-( ) ( )y y y , A.21
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for  ¥∣ ∣x . This result is, up to a numerical prefactor, identical to the asymptotic behaviour obtained in (A.1).
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