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Abstract
The emergingdiffusivedynamics inmany complex systems showa characteristic crossover behaviour
fromanomalous tonormal diffusionwhich is otherwisefittedby two independentpower-laws.A
prominent example for a subdiffusive–diffusive crossover are viscoelastic systems such as lipidbilayer
membranes,while superdiffusive–diffusive crossovers occur in systemsof activelymovingbiological cells.
Wehere consider the general dynamics of a stochastic particle drivenby so-called tempered fractional
Gaussiannoise, that is noisewithGaussian amplitude andpower-lawcorrelations,which are cut off at
somemesoscopic time scale.Concretelywe consider suchnoisewithbuilt-in exponential or power-law
tempering, driving anoverdampedLangevin equation (fractional Brownianmotion) and fractional
Langevin equationmotion.Wederive explicit expressions for themean squareddisplacement and
correlation functions, includingdifferent shapes of the crossover behaviour dependingon the concrete
tempering, anddiscuss thephysicalmeaningof the tempering. In the case of power-law temperingwe also
finda crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion.As a
direct applicationof ourmodelwedemonstrate that the obtaineddynamics quantitatively describes the
subdiffusion–diffusion and subdiffusion–subdiffusion crossover in lipid bilayer systems.Wealso show
that amodel of tempered fractionalBrownianmotion recently proposedbySabzikar andMeerschaert
leads tophysically verydifferent behaviourwith a seemingly paradoxical ballistic long time scaling.

1. Introduction

Diffusion, the stochasticmotion of a tracer particle, was beautifully described by Brown in his study of pollen
granules and amultitude of othermolecules (microscopic particles) [1]. Diffusion is typically described in terms
of themean squared displacement (MSD)

x t t 12 á ñ a
a( ) ( )

of the particle spreading.Whenα=1 this is thewell known law of normal (Brownian or Fickian) diffusion
observed in detailed quantitative studies by Perrin, Nordlund, andKappler [2–4], among others. In the case of a
scalingwith an exponentα different fromunity, the dynamics encoded by theMSD (1) can be classified in terms
of the anomalous diffusion exponentα as either subdiffusive for 0<α<1 or superdiffusive forα>1 [5, 6].
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In expression (1) the generalised diffusion coefficient has physical dimension cm s2 =a
a[ ] . Anomalous

diffusionwith 1a ¹ has been revealed in amultitude of systems [5–7]. In particular, following themassive
advances ofmicroscopy techniques anomalous diffusionwas discovered in a surging number of biological
systems [8, 9]. Thus, subdiffusionwasmonitored for both endogenous and introduced submicron tracers in
biological cells [10–17] or in inanimate, artificially crowded systems [18–20]. Supercomputing studies of protein
internalmotion [21] or of constituentmolecules of dilute and protein-crowded lipid bilayermembranes [22–26]
also show subdiffusive behaviour. Due to activemotion, also superdiffusion has been reported from several
cellular systems [10, 11, 27–29]. For amore exhaustive list of systems see the recent reviews [8, 9, 30–32].

Inmost of these systems the observed anomalous diffusionwas identified as fractional Brownianmotion or
fractional Langevin equationmotion type defined below. Both are characterised by power-law correlations of
the driving noise [7, 8, 33]. At sufficiently long times, however, this anomalous diffusionwill eventually cross
over to normal diffusion, when the system’s temporal evolution exceeds some relevant correlation time. For
instance, all atommolecular dynamics simulations of pure lipid bilayermembranes exhibit a subdiffusive–
diffusive crossover at around 10 ns, the time scale when two lipidsmutually exchange their position [22]. The
quantitative description of this anomalous-to-normal crossover is the topic of this paper. For both the
subdiffusive and superdiffusive situationswe include amaximum correlation time of the driving noise and
provide exact solutions for theMSD in the case of hard, exponential and softer power-law truncation, so-called
tempering, that can be easily applied in the analysis of experimental or simulations data. The advantage of such a
model, in comparison to simply combining an anomalous and a normal diffusive law for theMSD is that the
crossover is built into a two-parameter exponential temperingmodel depending only on the noise strength
driving themotion and the crossover time. For the case of a power-law tempering an additional scaling exponent
enters. Depending on itsmagnitude, the anomalous-normal crossover dynamics can be extended to a crossover
from either faster to slower superdiffusion or slower to faster subdiffusion. In our approach the crossover
between different diffusion regimes thus naturally emerges, and the type of tempering governs the exact
crossover shape. Aswewill show the crossover shape encoded in this approach nicelyfits actual data.

The paper is structured as follows. In section 2we consider the tempering of superdiffusive fractional
Brownianmotion and derive the crossover to normal diffusion. In section 3we perform the same tasks for the
subdiffusive generalised Langevin equation. Section 3.5 compares our subdiffusive to normal diffusivemodel of
the tempered generalised Langevin equation to supercomputing data from lipid bilayermembranes exhibiting
characteristic crossover dynamics. The data analysis demonstrates excellent agreement with the built-in
crossover behaviour of ourmodel. Section 4 addresses direct tempering suggested byMeerschaert and Sabzikar
aswell as its physicality. Indeed, we show that this type of tempering leads to ballisticmotion.We conclude in
section 5. Several short appendices provide some additionalmathematical details.

2. Tempered superdiffusive fractional Brownianmotion

We start from the overdamped stochastic equation ofmotion of a physical test particle in a viscousmedium
under the influence of a stochastic force ξ(t) [34, 35]

x t
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d
, 2
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( ) ( ) ( ) ( )

where x(t) is the particle position and v(t) its velocity.Without loss of generality we assume the initial condition
x(0)=0. Furthermore,m is the particlemass, and η, of physical dimension s 1h = -[ ] is the friction coefficient.
The stochastic force ξ(t) is assumed to be a stationary andGaussian noise of zeromean. Then the velocity
autocorrelation function fulfils
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for all τ�0. By formal integration of equation (2) theMSD yields in the form
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From this result we infer that if the autocorrelation function v2á ñt decays sufficiently fast at long times, such that

vd
0

2ò t á ñt
¥

isfinite, then theMSD reads

x t t v2 d , 52

0

2ò tá ñ ~ á ñt
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( ) ( )

at t  ¥, and diffusion becomes asymptotically normal. Thus, one should expect anomalous diffusion at long
timeswhenever vd

0
2ò t á ñt

¥
is either infinity or zero. This is exactly the case for the persistent and antipersistent
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fractional Gaussianmotions considered inwhat follows, respectively. In the case of superdiffusive fractional
Brownianmotionwe choose the autocorrelation function in the form

v
H2 1

, 6H H2 2 2
tá ñ =

G -
t

-

( )
( )

where the constant noise strength H has dimension cm sH
H2 2 =[ ] ,Γ(z) is theGamma function, and the

Hurst exponentH is in the interval H1 2 1 < .We note here that this approach leads to the correct power-
law asymptotics of the classicalMandelbrot-vanNess fractional Gaussian noise at long times [36]with

vd
0

2ò t á ñ = ¥t
¥

, but at the same time leads to an infinite zero-point variance v2
0á ñt= of the noise11. Keeping

away from τ=0we are allowed to restrict ourselves to the power-law form (6). Furthermore the coefficient
H2 1G -( ) in equation (6) is introduced to capture thewhite noise limit. Indeed, due to the property of the

δ-function [37]

H
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atH=0.5 andwith d 1
0ò td t =
¥

( ) equation (6) reduces to

v 82 d tá ñ =t ( ) ( )

with 1 2 = .12

Now, after plugging result (6) into expression (4) theMSD can be readily calculated, yielding

x t
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t
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which yields sub-ballistic superdiffusionwith the anomalous diffusion exponentα=2H, and thus1 2a< < .
Inwhat followswe consider both a hard exponential and a power-law truncation (tempering) of the

persistent fractional Gaussian noise withHurst exponent H1 2 1 < .

2.1. Exponentially truncated fractional Gaussian noise
Let usfirst consider an exponential tempering of the form

v
H2 1

e , 10H H2 2 2
tá ñ =

G -
t

t t- -

( )
( )

for τ>0, where 0t > is a characteristic crossover time scale. For instance, in the case ofmoving cells the
crossover time t would correspond to the time scale when the cellmotion becomes uncorrelated, similar to the
decorrelation of the lipidmotion in the example of the lipid bilayer systemdiscussed below.

Here we note that one should keep inmind that the autocorrelation function v2á ñt cannot be chosen
arbitrarily. Namely, its Fourier transform, the spectrum v2 wá ñ˜ ( ) of the randomprocess v(t)must be non-
negative [41]. The positivity of v2 wá ñ˜ ( ) for the case of exponential tempering in equation (10) is shown in
appendix A.Note also that now vd H

H

0
2 2 1 ò t tá ñ =t

¥ - isfinite, thuswe expect normal diffusion at long

times.
With the use of expression (4) theMSD for the exponentially truncated fractional Gaussian noise takes on

the exact form
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where a z t t, e d
z a t

0
1òg = - -( ) is the incompleteγ-function.Using the asymptotic a z z a, ag ~( ) for z=1, and

a z a,g ~ G( ) ( ) for z?1,weobserve superdiffusivebehaviour at short times, andnormal diffusion at long times,
namely,
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11
Amore consistent approach using the smoothening procedure of fractional Brownianmotion over infinitesimally small time intervals à la

Mandelbrot and vanNess [36] shows that theweak divergence of the autocorrelation function (6) at τ=0 does not lead to a change of
theMSD.
12

The power-law correlations in the autocorrelation function (6) contrast the sharp δ-correlation of relation (8) [38, 39].We note that in
this combination of the Langevin equation (2) and the autocorrelation function (6) the fluctuation dissipation theorem is not satisfied, and
the noise ξ(t) can be considered as an external noise [40], see also the discussion of the generalised Langevin equation below.
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The emerging normal diffusion thus has the effective diffusivity H
H2 1 t
- . Note that the approximate formula at

long times is in concordancewith the simple estimate given by expression (5).
Figure 1 shows the crossover behaviour from superdiffusion to normal diffusion encoded in expression (11),

alongwith the short and long time asymptotes given by result (12). As can be discerned from the plot, the
crossover region is fairly short, spanning less than a decade in time for the chosen parameters.

2.2. Power-law truncated fractional Gaussian noise
Wenow consider the softer power-law truncation of the form

v
H2 1

1 , 13H H2 2 2


t

t
t
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for τ>0,μ>0 and compare the resulting behaviourwith the scenario of exponential tempering. Here, apart
from the crossover time t the newpower-law exponentμ is introducedwhich effects the exact nature of the
dynamics at long times, as we are going to showbelow.We remark that the positivity of the spectrum for the
power-law truncated form is discussed in appendix A. After plugging (13) into expression (4)wefind for the
MSD that
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wherewe introduced the notation
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Now, using the integral representation [42] of the hypergeometric function F2 1 [43]we rewrite the integral in
equation (15) as

f a
a
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and thus rewrite theMSD (14) in thefinal form
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In this notation theMSD can be directly evaluated byWolframMathematica [44]. Note that F b c z0, ; ; 12 1 =( ) ,
and thus result (17) reduces exactly to theMSD (9) for the untruncated caseμ=0. To obtain the limiting
behaviours of theMSD (17) at short times t t we use theGauss hypergeometric series for the function F2 1,
see 15.1.1 in [42]. As result, to leading order we recover theMSD (9) of untruncated fractional Brownianmotion.

At long times t t the situation for power-law tempering is actually richer than for the case of exponential
tempering. To see this, wefirst employ the linear transformation formula 15.3.7 in [42] andwrite expression (17)
in the form

Figure 1.Mean squared displacement (11) for superdiffusive fractional BrownianmotionwithH=3/4, 1H = , and t =
1 (blue line). The short and long time asymptotics given by expression (12) are depicted by the red and green lines, respectively.
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Weconsider two possible cases:

2.2.1.Weak power-law truncation, H0 2 1 1m< < - <
In this case the third and fourth terms in the square brackets of expression (18) are dominating andwefind
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for t t . Note that in the limitμ→0 result (19) reduces to the untruncated formula (9). Thus, sincewe
observe the inequality H2 1m- > in the case of weak power-law truncation the dynamics is still superdiffusive,
however, with a reduced anomalous diffusion exponent smaller than the value H2 in the short time limit.

2.2.2. Strong power-law truncation, H2 1 0m > - >
Note that in this case the integral of the velocity autocorrelation function (13) over thewhole time domain

converges, v Hd 2 1H
H

0
2 2 1 ò t t m má ñ = G - + Gt

¥ - ( ) ( ), see 2.2.5.24 in [45]. Thus, with expression (5)we
expect a linear time behaviour in the long time limit, whereas the term to next order in (4) gives
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t t H H2 2 1 2ò òtt ttá ñt m m- - -  , a sublinear contribution since H2 1m- < . Alternatively, it follows

from (18) that themain contribution comes from the first term in the square brackets. Thus, in full accordance
with expression (5)we get
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at t t .
Finally, for the borderline case H0 2 1 1m< = - < it is in fact easier to consider equation (17).Making

use of formula 7.3.1.81 in [46]we see that the leading contribution comes from the first hypergeometric function
in the square brackets in expression (17), as
F H H H z H H z z2 1, 2 1; 2 ; 2 2 1 lnH

2 1
1 2 1- - ~ G G - - -- - +( ) ( ) ( )( ) ( ). For theMSDwe thenfinally obtain
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Thus, in this borderline limit betweenweak truncation (leading to reduced superdiffusion at long times) and
strong truncation (normal long time diffusion)we here obtain normal diffusionwith a logarithmic correction.

Figure 2 demonstrates that for the power-law tempering the crossover region is significantly enhanced,
spanning several orders ofmagnitude, as compared to themuch swifter crossover in the case of exponential
tempering.

TheMSDs for both cases of exponential and power-law truncation are directly compared infigure 3, along
with the time derivative of theMSD.As can be seen, the crossover for the exponential tempering occursmuch
more rapidly. Thus also the amplitude of the long time Brownian scaling is higher in the case of the power-law
tempering for the same value of the crossover time scale t .

A graphical representation of the correlation functions (6), (10) and (13) is given infigure 4. The exponential
cutoff appearsmore abrupt, as it should.However, this difference will obviously be reduced for larger values of
the cutoff exponentμ. Tofit data, the crossover shape can thus be adjusted by the choice ofμ for the case of
power-law tempering, thus having the possibility to effect a gradual adjustment from softer power-law to hard
exponential tempering.

3. Tempered subdiffusive generalised Langevin equationmotion

Wenow consider themotion encoded in the overdamped generalised Langevin equation for a particle withmass
mmoving in a viscousmedium characterised by the friction kernel tHg ( ) of dimension t sH

2g = -[ ( )] [7, 38, 47]
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Figure 2.MSD (17) for power-law tempered fractional BrownianmotionwithH=3/4, 1H = , and 1t = . The red solid line is for
μ=0.3 (weak power-law truncation), whereas the blue solid line is forμ=1 (strong power-law truncation). The red and blue
dashed lines correspond to the asymptotics (19) and (20), respectively. The behaviour for the untruncated case given by expression (9)
is depicted by the green solid line.

Figure 3.Comparison of the ratio x t2á ñ for differentmodes of truncation of the power-law noise in equation (2). Parameters:
H=3/4,DH=1, and 1t = . Frombottom to top the blue line depicts the exponential truncation (11)while the red line and green
lines show expression (17) for strong (μ=1) andweak (μ=0.3) power-law truncation, respectively.

Figure 4.Main figure. Comparison of the velocity autocorrelation functions, from top to bottom: untruncatedmotion, equation (6)
(blue line), weak power-law truncation, equation (13)withμ=0.3 (green line), strong power-law truncation, equation (13)with
μ=1 (yellow line), and exponential truncation, equation (10) (red line). Parameters:H=3/4,DH=1, and 50t = . Inset: double-
logarithmic representation.
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where x(0)=0without loss of generality. Similar to themodel considered in section 2 ξ(t) is aGaussian noise
with power-law correlation of the form (6)with H1 2 1 < . However, in contrast to the fractional Brownian
motionmodel considered above, we require the system to be thermalised, such that the random force is coupled
to the friction kernel through theKubo–Zwanzigfluctuations dissipation relation [38, 47]
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3.1.Mean squared displacement
Let us recall the derivation of theMSD from equations (22) and (23).With our choice x(0)=0we obtain for the
Laplace transformof x(t), x s x t st texp d

0ò= -
¥

˜( ) ( ) ( ) that

x s
s

ms s
. 24

H

x
g

=˜( )
˜( )
˜ ( )

( )

Inverse Laplace transformation produces

x t
m

t H t t t
1

d , 25
t

0
ò x= ¢ - ¢ ¢( ) ( ) ( ) ( )

where the kernelH(t) is the inverse Laplace transformof H s s s1 Hg=˜ ( ) [ ˜ ( )]. After some transformationwe
recover theMSD
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We stop to include a note onwhen exactly we expect asymptotically normal diffusion in the generalised
Langevin equationmodel. The reasoning is similar to that presented at the beginning of section 2.Namely, from
equation (28) it follows that diffusion is normal at long times if sHg̃ ( ) tends to a constant in the limit s→0. This

is equivalent to requiring that the average dH0ò g t t
¥

( ) isfinite or, taking into account the fluctuation

dissipation relation (23) that d
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isfinite (similar to the conclusion in section 2). Then, from expression

(28)we infer the following behaviour in the long time limit (compare with equation (5))

x t
k T

m
t

2

d
. 29B

H

2

0ò g t t
á ñ = ¥( )

( )
( )

According to this, anomalous diffusion is expected at long timeswhenever dH0ò g t t
¥

( ) is either infinite

(subdiffusion) or zero (superdiffusion)13.
In accordance with section 2we choose the friction kernel in the power-law form

H2 1
, 30H

H H2 2g t t=
G

G -
-( )

( )
( )

where the coefficientΓH is of dimension sH
H2G = -[ ] . The normal Brownian case is recovered from

equation (22) forH=1/2 since forH→1/2+we see that t tH 1 2g d G( ) ( ) (note that in this Brownian limit,
Γ1/2=η) and equation (22) assumes the formof the standard Langevin equation driven bywhite Gaussian
noise obeying the regular fluctuation dissipation theorem.Wenote that thememory kernel for the power-law
form (30) can be rewritten in terms of a fractional derivative, and the resulting version of equation (22) is then

13
Note here the difference to the results in section 2where the fluctuation dissipation theorem is not applied: in that case divergence of the

integral over the correlator of the noise ξ(t) over the entire time domain leads to superdiffusion, while subdiffusion emerges when the
integral is identical to zero.
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often referred to as the fractional Langevin equation [7, 48–50]. Power-lawmemory kernels of the form (30) are
typical formany viscoelastic systems [8, 9, 14–17, 19, 20, 22, 50].

We nowuse the Laplace transformof equation (30), s sH H
H1 2g = G -˜ ( ) , plug this into the above expression,

and take an inverse Laplace transformation. This procedure leads to thefinal result

x t
H

k T

m
t

1

3 2

2
, 31B

H

H2 2 2á ñ =
G - G

-( )
( )

( )

which reduces to the classical result x t k T m t2 B
2 há ñ =( ) ( [ ]) for normalBrownianmotion in the limitH=1/2.

Therefore, due to the requirement that the system is thermalised and thus theKubo–Zwanzigfluctuation theorem is
fulfilled, the samenoise leads to subdiffusion in this casewith anomalousdiffusion exponent H2 2a = - and

H0 2 2 1< - < . Indeed, due to the coupling in relation (23) largenoise values lead to large friction values, and
therefore thepersistence of thenoise is turned into antipersistent diffusiondynamics [7, 48, 50].

3.2. Autocorrelation functions of displacements and velocities
Wenowderive the autocorrelation function of the displacements, following the procedure laid out by Pottier
[51]. First, we note that the double Laplace transformof the correlation function of the random force can be
written as

s s k Tm t t t td d e . 32B
s t s t

H1 2
0

1
0

2 2 1
1 1 2 2ò òx x gá ñ = -

¥ ¥
- -˜( ) ˜( ) (∣ ∣) ( )

Thenwe split the domain of integration over t2 into the two domains t t0 2 1  and t t1 2 < ¥. After
introducing t t1 2t = - and t t2 1t = - in each domain, respectively, we arrive at

s s k Tm
s s

s s
. 33B

H H
1 2

1 2

1 2

x x
g g

á ñ =
+
+

˜( ) ˜( ) ˜ ( ) ˜ ( ) ( )

This expression represents the Laplace domain formulation of the fluctuation dissipation theorem (23). By help
of equations (22) and (33)we then obtain the double Laplace transformof the displacement correlation
function,

x s x s
k T

m

s

s s s s

s

s s s s

1 1
. 34B H H

1 2
1

1 2 1 2

2

1 2 1 2

g g
á ñ =

+
+

+

⎛
⎝⎜

⎞
⎠⎟˜( ) ˜( ) ˜ ( )

( )
˜ ( )

( )
( )

In thefirst term in the parentheses wefirst take the inverse Laplace transformation over s2, going from
s s s1 2 1 2+[ ( )] to s t s1 exp 1 2 1- -[ ( )] . Exchanging s2 for s1 we perform the same operation on the second term.

Thenwe inverse Laplace transform thefirst termwith respect to s1 andmake use of the translation formula
bs f t f t b t bexps s

1L L- = - Q -- { ( ) { ( )}} ( ) ( ), where b>0 andΘ(t) is theHeaviside step function. As result
yields

x t x t
H

k T

m
t t t t

1

3 2
. 35B

H

H H H
1 2 1

2 2
2
2 2

2 1
2 2á ñ =

G - G
+ - -- - -( ) ( )

( )
( ∣ ∣ ) ( )

The velocity autocorrelation function is obtained by differentiation of this expression,

v t v t v
H H k T

m

sin 2 1 2
, 36B

H

H
1 2

2 2p
p

tá ñ = á ñ = -
- G

G
t

-( ) ( ) ( [ ]) ( ) ∣ ∣ ( )

where t t2 1t = - .We see that in the relevant parameter range 1/2<H<1 the velocity autocorrelation is
negative, v 02á ñ <t , reflecting the antipersistent character of the resultingmotion.

3.3. Exponentially truncated fractional Gaussian noise
For the exponentially truncated friction kernel and thus noise autocorrelation

k Tm H2 1
e 37H

B

H H
2

2 2 g t
x

t=
á ñ

=
G

G -
t t t- -( )

( )
( )

we obtain the corresponding Laplace transform

s s . 38H H
H1 1 2

g t= G + - -˜ ( ) ( ) ( )

After plugging this expression into relation (28) and taking the inverse Laplace transformationwe obtain

x t
k T

m
t E

t2
39B

H

H
H

H2 2 2
1,3 2
1 2

t
á ñ =

G
--

-
- ⎛

⎝⎜
⎞
⎠⎟( ) ( )

in terms of the three parameterMittag-Leffler function E z,a b
d ( ) (see appendix B for its definition and some

relevant properties).When the crossover time t tends to infinity, E 0 1, b= Ga b
d ( ) ( ), andwe arrive at result (31)

8

New J. Phys. 20 (2018) 103027 DMolina-Garcia et al



for the untruncated noise. In the limitH=1/2we have δ=0 and E z 1 2 11,2
0 = G =( ) ( ) , such that

equation (39) reduces to theMSDof normal Brownianmotion.
At short times t t theMSD (39) reduces to the subdiffusive expression (31), whereas at long times

t t with the help of E t tH
H H

1,3 2
1 2 2 1

 t t- ~-
- -( ) ( ) (see appendix A), in accordancewith relation (29) the

MSD exhibits normal Brownian behaviour,

x t
k T

m
t

2
. 40B

H
H

2
2 1
t

á ñ ~
G -( ) ( )

Wenote that a similar crossover was observed in [52]where amodified three parameterMittag-Leffler form for
the kernel γH(τ)was considered.

The crossover from subdiffusion to normal diffusion in this exponentially tempered generalised Langevin
equation picture is shown infigure 5. The crossover behaviour occurs over an interval of the order of a decade in
time for the chosen parameters.

Let us now turn to the autocorrelation functions. Using expression (38) in equation (34)we obtain

x s x s
k T

m s s s s s

s s s s s

1

1
. 41

B

H
H

H

1 2
1 2 1 2 1

1 1 2

1 2 1 2 2
1 1 2





t

t

á ñ =
G + +

+
+ +

- -

- -

⎛
⎝⎜

⎞
⎠⎟

˜( ) ˜( )
( )( )

( )( )
( )

As above, in thefirst term in the parentheses we take an inverse Laplace transformationwith respect to s2, and
over s1 in the second term. Then, with the translation formula and the Laplace transform (B.2) of the three
parameterMittag-Leffler function, wefind

x t x t
k T

m
t E

t
t E

t

t t E
t t

. 42

B

H

H
H

H H
H

H

H
H

H

1 2 1
2 2

1,3 2
1 2 1

2
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1,3 2
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2 1
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t t

t

á ñ =
G

- + -

- - -
-

-
-

- -
-

-

-
-

-

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

( ) ( )
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Differentiation over t1 and t2 (with the help of equation (B.6)) then produces the velocity autocorrelation
function,

v t v t v
k T

m
E 43B

H
H H

H
1 2

2
2 1,1 2

1 2

t
t
t

á ñ = á ñ =
G

-t -
- ⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )

with t t 02 1t = - > . Using the definition (B.1) of the three parameterMittag-Leffler function it is easy to check
that E z zexp1, d= Gd

d ( ) ( ) ( ). Thus, for the velocity autocorrelation functionwefind the result

v
H H k T

m

sin 2 1 2
e , 44B

H

H2 2 
p

p
tá ñ = -

- G
G

t
t t- -( [ ]) ( ) ( )

which is anticorrelated and reduces to the untruncated result (36)when the crossover time t tends to infinity.

Figure 5.MSD (39) for exponentially tempered generalised Langevin equationmotionwithH=3/4, k T m 1B HG =[ ] , and 1t =
(blue line). The short and long time asymptotics (31) and (40) are shown by the red and green lines, respectively.
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3.4. Power-law truncated fractional noise
For the power-law truncated friction kernel and noise autocorrelator,

k Tm H2 1
1 45H

B

H H
2

2 2


g t

x
t

t
t

=
á ñ

=
G

G -
+t

m
-

-⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

with τ>0,μ>0 the Laplace transformof thememory kernel can be performed by use of the integral
representation of the Tricomi hypergeometric functionU(a, b; z) (see 13.2.5 of [42]), leading to

s U H H s2 1, 2 ; . 46H H
H2 1
 g t m t= G - --˜ ( ) ( ) ( )

With the general relation (28)we thus have

x t
k T

m
g t

2
47B

H
H

2
2 1
t

á ñ =
G -( ) ( ) ( )

with the abbreviation

g t
s U H H s

1

2 1, 2 ;
. 48s

1
2

L
m t

=
- -

-
⎧⎨⎩

⎫⎬⎭( )
( )

( )

The inverse Laplace transformof expression (47) cannot be performed analytically. However, wemake use of the
Tauberian theorems14 tofind theMSDat short and long times.

At short timeswith s 1t  weuse the large argument asymptotic of the Tricomi function,
U H H s s2 1, 2 ; H1 2

 m t t- - ~ -( ) ( ) (13.5.2 in [42]) and thus s sH H
H1 2g ~ G -˜ ( ) . From equation (28) (or,

equivalently, equations (47) and (48))we then get to result (31) by use of the Tauberian theorem.
Similar to the case considered in section 2 at long times corresponding to s 1t  the situation is actually

richer than for the case of exponential tempering. To see this we firstmake use of (13.1.3) in [42] to express the
Tricomi function via theKummer functionM(a, b; z) through

U H H s
H

M H H s

H

s
M H s

H H

2 1, 2 ;
sin 2

2 1, 2 ;

2

, 2 2 ;

2 1 2 2
. 49H1 2
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-
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⎡
⎣⎢

⎤
⎦⎥

( )
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( ) ( )
( ) ( )

( )

Taking into account the series expansion of theKummer function ((13.1.2) in [42])we consider the following
two possibilities:

3.4.1.Weak power-law truncation, H0 2 1 1m< < - <
In this case the second term in (49) is dominant at small s and thus

U H H s
s

H H H
2 1, 2 ;

sin 2 1 2 1 2 2
. 50

H1 2


m t

p t
p m m

- - ~
- - G - G + -

m+ -
( ) ( )

( [ ]) ( ) ( )
( )

Plugging this leading behaviour into expressions (47) and (48) and using the Tauberian theorem, after few
transformationswe obtain the long time behaviour of theMSD,

x t
H

H H

k T

m
t

2 1

2 1 3 2

2
. 51B

H

H2 2 2

m m t
á ñ ~

G -
G - - G + - G m

m+ -( ) ( )
( ) ( )

( )

Note that in the limitμ→0 expression (51) reduces to the untruncated formula (31). Thus, sincewe observe the
inequality H0 2 2 1m< + - < in the present case of aweak power-law truncation, the dynamics is still
subdiffusive, however, with an anomalous diffusion exponent larger than the value H2 2- in the short time
limit.

3.4.2. Strong power-law truncation, H2 1 0m > - >
In this case the first term in the square brackets in equation (49) becomes dominant at small s and
U H H s H2 1, 2 ; 1 2m t m m- - ~ G + - G( ) ( ) ( ), wherewemade us of the reflection formula for the
Gamma function. From results (47) and (48) by use of the Tauberian theoremwe obtain

x t
H

k T

m
t

1 2

2
, 52B

H
H

2
2 1


m
m t

á ñ ~
G

G + - G -( ) ( )
( )

( )

14
The Tauberian theorems state that for slowly varying function L(t) at infinity, i.e. lim 1t

L at

L t
=¥

( )
( ) , a>0, if r s s L

s

1r- ( )ˆ ( ) , for s 0 ,
ρ�0, then r t r s t t L t t,1 1 1L ^=  ¥

r
r-

G
-( ) [ ( )]( ) ( )

( ) . A similar statement holds for t→0.
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valid for t t . As expected, wefind the desired crossover to the normal Brownian scaling of theMSD.Note
that this result is in full accordancewith equation (29). Indeed, from expression (45)we get (see 2.2.5.24 [45])

H
d

1 2
. 53H H

H

0

2 1
ò g t t

m
m

t=
G + -

G
G

¥
-( ) ( )

( )
( )

After plugging expression (53) into (29)we arrive at result (52). Note also that the condition of a strong power-
law truncation is equivalent to the condition that integral (53) converges.

In the borderline case with H0 2 1 1m< = - < we use 13.5.9 in [42] andfind
U H s s H2 1, 1; ln 2 1 t t- ~ - G -( ) ( ) ( ).With the use of the Tauberian theorem equations (47) and (48)
yield

x t H
k T

m

t

t
2 1

2

ln
54B

H
H

2
2 1
 t t

á ñ ~ G -
G -( ) ( )

( )
( )

at t t . Thus, in this borderline situation between the cases of weak truncation (leading to increased
subdiffusion at long times) and strong truncation (normal long time diffusion)we observe a logarithmic
correlation to normal diffusion.

Figure 6 shows the crossover dynamics for power-law tempering for the two possible cases: for weak power-
law truncationwithμ=0.3we observe the predicted crossover from slower to faster subdiffusion, while in the
case of strong power-law truncation the subdiffusive dynamics crosses over to normal diffusion.

Figure 7 shows a direct comparison between the cases of exponential and power-law truncation. As
expected, the crossover is faster for the exponential tempering, and thus the resulting amplitude in this case
exceeds the amplitude for the power-law tempering. Note that the latter observation contrasts the case of the
truncated fractional Brownianmotion infigure 3, for which the amplitude of the power-law tempering is higher.

3.4.3. Velocity autocorrelation function
To gain some insight into the correlation behaviourwe use equation (34)with sHg̃ ( ) from equation (46). Taking
the inverse Laplace transformation over s1 and s2 in the sameway as abovewe obtain the position autocorrelation
function

x t x t
k T

m
g t g t g t t , 55B

H
H1 2 2 1 1 2 2 1
t

á ñ =
G

+ - --( ) ( ) ( ( ) ( ) (∣ ∣)) ( )

where g(t) is given by relation (48). Fromhere the velocity autocorrelation function is obtained as

v
k T

m
g

d

d
56B

H
H

2
2 1

2

2
t t

tá ñ =
G

t - ( ) ( )

with τ>0.Wefirst note that expression (56) alongwith (48)may suggest that the Tauberian theoremmay be
directly applied to the expressionU H H s2 1, 2 ;1

m t- -- ( ) in order to calculate the asymptotic behaviour of
the velocity autocorrelation function v2á ñt . However, for short times corresponding to s 1t  the function
U s H1 2 1

t~- -( ) , and since 1/2<H<1, the Tauberian theoremdoes not apply as H2 1- is positive. Instead,
we shouldfirst obtain the asymptotic of g(τ) at short times t t by use of the Tauberian theorem, and only
then differentiate twice to get the asymptotic of the velocity autocorrelation function. This waywe arrive at

Figure 6.MSD (47) for power-law truncationwithH=3/4, k T m 1B HG =[ ] , and 1t = . The red solid line corresponds toweak
power-law truncationwithμ=0.3, the blue solid line to strong truncationwithμ=1. The asymptotics (51) and (52) are shown by
red and blue dashed lines, respectively. The thin green solid line corresponds to theMSD (31) for the untruncated case.
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expression (36). At long times t t we again consider the cases of weak and strong power-law truncations
separately.

For theweak power-law truncationwith H0 2 1 1m< < - < the situation is similar to the short time
limit above. Indeed,U s H1 2 1

t~ m- - -( ) , see result (50), and the Tauberian theoremdoes not apply. Insteadwe
first plug relation (50) into expression (48) and then apply the Tauberian theorem. Following relation (56)we
thenfind

v C
k T

m

1
, 57B

H
H

2
2

t t
á ñ ~ -

G
t m m-

( )

where C H H H2 1 sin 2 1 2 11m p p m= - - - - G --( ) ( [ ]) ( ) is a positive constant. Note that for weak
power-law truncationwe have H1 2 2m< - < , and in the limitμ→0 expression (57) reduces to the velocity
autocorrelation function (36) in absence of truncation. From comparison of result (57)with (36)we see that the
autocorrelation function in the truncated case decays slower than in the untruncated case. Thismay appear
counterintuitive, however, it is in agreementwith the antipersistent character of the fractional Langevin equation
model inwhich theMSD scales like t H2 2- and the velocity autocorrelation function at long times scales as

H2t- - for 1/2<H<1. Thismeans that a steeper decay of the velocity autocorrelation function corresponds
to amore subdiffusive regime. In otherwords, whenH is closer to 1/2 (the subdiffusive regime is closer to
normal diffusion) then the decay of the autocorrelation function is slower. To see this better consider the
effectiveHurst indexHeff=H−μ/2. Then, for weak power-law truncation theMSD scales like t H2 2 eff- with

H H1 2 1eff< < < , and the velocity autocorrelation function decays as H2 efft- - . Thus, in the truncated
case the diffusion becomes closer to normal, as it should be, while the velocity autocorrelation function decays
slower than in the untruncated case, fully consistent with the antipersistent fractional Langevin equationmodel.

Now let us turn to the case of strongpower-law truncationwith H2 1 0m > - > inwhich for simplicitywe
assume that H n1 2m + - ¹ where n Î is a positive integer.We are interested in the exponent of the power-
lawdecay of the velocity autocorrelation function.Then expression (49) yieldsU H H s2 1, 2 ; m t- - ~( )
a a s a s a s a s a sk

k H
k

k
0 1 2

2 1 2
1

1+ + + ¼ + + + ¼m
m+ -

+
+ , where aiwith i 0, 1, 2,= ¼are constants that can

be easily found fromexpansion 13.1.2 in [42] for thefirstKummer function in the square brackets of expression
(49) and k H1 2m= + -[ ]denotes the integer part of the corresponding argument in the Landaubracket [·].
ThenU H H s b b s b s b s2 1, 2 ; k

k H1
0 1

1 2
m t- - ~ + +¼+ + + ¼m

m- + -( ) where the biwith i=0, 1, 2,K
are again constant factors. Fromhere andwith equations (48) and (56)wefind after applicationof theTauberian
theoremand subsequent doubledifferentiation

v C
k T

m

1
, 58B

H
H H

2
2 1 2 2
t t

á ñ ~ -
G

t m- + -
( )

whereC is a positive constant. Note that in the borderline case H1 2 1 0m> = - > both expressions (57) and
(58) tend to the same limit resulting in the logarithmic correction to normal diffusion in expression (54).

A graphical representation of the velocity autocorrelation function (36), (44) and (58) is shown infigure 8.

Figure 7.Comparison of the ratio x t2á ñ for different truncationmodes of the power-law noise in the generalised Langevin
equation (22). Parameters:H=3/4, k T m 1B HG =[ ] , and 1t = . From top to bottom the blue line represents the exponential
truncation, equation (39), the red line the strong power-law truncation, equation (47)withμ=1, and the green line theweak
power-law truncation, equation (47)withμ=0.3. The asymptotic (51) is shown by dashed green line.
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3.5. Application to lipidmolecule dynamics in lipid bilayermembranes
Wehere demonstrate the usefulness of our tempered fractional Gaussian noise approach to a concrete physical
system. The datawe have inmind are from all atommolecular dynamics simulations of lipid bilayermembranes
[30]. In their simplest form, these are double layered leavesmade up of relatively short amphiphilic polymers
called lipids. Immersed inwater the double layer arrangement prevents the exposure of the hydrophobic tail
groups to the ambient water, while the hydrophilic head groups are in contact with thewater. At room
temperature the lipid bilayer assumes a quite disordered liquid structure [30]. In this lipidmatrix, comparatively
largemembrane proteinsmay be additionally embedded [30]. Natural biologicalmembranes are composed of
lipids ofmany different chemistries, and they are crowdedwithmembrane proteins. Supercomputing studies
have the task to reveal the dynamics of both proteins and lipids in such protein-decorated bilayer systems. This
thermally driven diffusion of the constituents influence biological properties of the bilayer, such as diffusion
limited aggregation, domain formation, or themembrane penetration by nanoparticles [30].

Figure 9 depicts the simulations results in a chemically uniform, liquid disordered lipid bilayermembrane as
well as in the liquid ordered state in the presence of cholesterolmolecules—the system is specified in detail in
[22]. Themotion of the lipids is Gaussian for all cases and best described as viscoelastic diffusion governed by the
generalised Langevin equation (22) fuelled by power-law noise [22, 24, 25]15. As can be seen infigure 9 theMSD

Figure 8.Comparison of the velocity autocorrelation functions for the untruncated case, equation (36) (blue line), with exponential
truncation, equation (44) (red line), andwith strong power-law truncation, equation (58)whereμ=1 (yellow line), as well as with
weak power-law truncation, equation (57)whereμ=0.3 (green line). Parameters:H=3/4, k T m 1B HG =[ ] , and 50t = .

Figure 9.MSDof themotion of lipidmolecules in a lipid bilayermodelmembrane, at room temperature in the liquid disordered and
liquid ordered phases (symbols) [22]. The crossover from subdiffusion to normal diffusion or increased subdiffusion at around 10 ns
is distinct. Data courtesyHectorMartinez-Seara, University ofHelsinki. The black solid lines provide a fit with equations (39) and (47)
resulting fromour generalised Langevin equationmodel with exponentially and power-law truncated noise, respectively. The
parameters are presented in table 1, see also discussion in the text.

15
Note that theGaussian character is lost and intermittent diffusivity dynamics emerge in highly crowdedmembranes [24], a phenomenon

that can be understood in terms of a superstatistical approach [54] orwithin afluctuating diffusivity picture [55, 56].
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of the liquid disordered lipid systems exhibits a clear crossover from subdiffusion to normal diffusion at roughly
10 ns, the typical crossover time scale discussed in literature, at which two nearest neighbour lipidmolecules
exchange theirmutual positions and thus decorrelate theirmotion [22, 30, 31]. For the liquid ordered cases, one
lipid chemistry also shows a subdiffusive–normal crossover, while the two other lipid chemistries lead to a
crossover from slower to faster subdiffusion [22]. Fromfit of the parameters (see the summary in table 1) to the
data we observe an excellent agreementwith the short and long time scaling regimes and, remarkably, themodel
fully describes the crossover behaviours without further tuning for both liquid disordered and ordered
situations.We note that subdiffusive–diffusive crossovers are also observed for protein-crowdedmembranes
[23, 24, 53].

We note that from equation (31) and the effective diffusion coefficient

K t
t

x t
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d
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wefind the short time limiting behaviour
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For the long time limit, from equation (40), it follows that
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for the exponential tempering, whereas the cases ofDSPC and SOPC lipid chemistries the long time limit in the
weak power-law truncation case is given by
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Thefit values given in table 1 are in very good agreement with those obtained in the simulations study [22].We
note, however, that for theweak power-law temperingmodel fit the crossover time is somewhat
underestimated.

4.Direct tempering ofMandelbrot’s fractional Brownianmotion

So farwe introduced the tempering on the level of the noise ξ(t), which drives the position co-ordinate x(t).
Anotherway to introduce the crossover from anomalous to normal diffusion is to consider a truncation of the
power-law correlations directly in the original definition of fractional Brownianmotion according to
Mandelbrot and vanNess [36]. Such a formulationwas recently proposed byMeerschaert and Sabzikar [57].
Herewe analyse thismodel and demonstrate that it leads to a very different behaviour of theMSD than the
previous tempered fractionalmodels. A formalmathematical analysis of thismodel was provided very recently
in [58].We here recall some of their results for the convenience of the reader and present clear physical
arguments for the seemingly paradoxical behaviour of thismodel. In particular we come upwith a comparison
to a fractionalOrnstein–Uhlenbeck scenario.

Table 1. Fit parameters for themodelmembrane simulations data shown in figure 9. The coloursmentioned in the first column correspond
to the colour coding infigure 9. Bold face stands for liquid ordered systemswith embedded cholesterols.

H μ t k T mB HG[ ] shorta K shorta αlong K longa

ns( ) nm nsec H2 2 2-( ) nm nsec H2 2 2-( ) nm nsec2 longa( )

DSPC (purple) 0.70 — 4.0 0.050 0.60 0.034 1.0 0.029

SOPC (pink) 0.67 — 2.5 0.88 0.66 0.064 1.0 0.064

DOPC (blue) 0.69 — 3.0 0.067 0.62 0.046 1.0 0.044

DSPC (grey) 0.76 0.41 0.60 0.019 0.48 0.010 0.89 0.003 5

SOPC (green) 0.75 0.44 0.22 0.025 0.50 0.014 0.94 0.002 6

DOPC (brown) 0.72 — 4.3 0.038 0.57 0.024 1.0 0.021
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4.1.Meerschaert and Sabzikar direct temperingmodel
Meerschaert and Sabzikar defined this extension of fractional Brownianmotion by applying an exponential
truncation inMandelbrot’s definition [36, 57] 16,

B t t t t B t t
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whereH,λ, t>0. B t¢( ) is whiteGaussian noise of δ-covariance B t B t t t1 2
2

1 2s dá ¢ ¢ ñ = -( ) ( ) ( ) and zeromean.
The parameterλ stands for the truncation parameter, and classical fractional Brownianmotion is then obtained
in the limiting caseλ→0when H 0, 1Î ( ). It should be noted that the prefactor 1/Γ(H+1/2) in
Mandelbrot’s original definition is dropped here in linewith the procedure of [57]. TheMSD encoded in
equation (64) is (see appendix C for the derivation)
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KH(z) denotes themodified Bessel function of the second kind, which for small argument z behaves as [42]
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while for large zwe have K z z2 eH
zp~ -( ) ( ) . The fact that the prefactorCt

2 is an explicit function of time
contrasts the result of standard fractional Brownianmotion, andwewill readily see the ensuing consequences.

In the short time limit t=λ−1 expression (65) has the compound power-law form
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withV H H1 2 1 sinH p= G +[ ( ) ( )]. Thus, the limitλ→0 indeed reduces to the expression for standard
fractional Brownianmotion. In the long time limit t?λ−1 theMSDof this tempered fractional Brownian
motion, remarkably, converges exponentially towards a constant value,
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a result which is atfirst surprising. This point will be discussed and compared to the fractionalOrnstein–
Uhlenbeck process below. The functional behaviour of result (69) is shown infigure 14.We note that if we
consider the Langevin equation (2) in combinationwith the directly tempered noise B tH¢ l ( ), expression (65) and
its limiting behaviours (68) and (69) exactly correspond to the dynamics of theMSD x t2á ñ( ) .

As shown in [58] it is possible to define a tempered fractional Gaussian noise followingMandelbrot and van
Ness’ smoothening procedure involving a short time lag δ (see appendix C.2). The autocorrelation function of
this tempered fractional Gaussian noise is given through
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An important feature of the autocorrelation function (70) for tempered fractional Gaussian noise is its
antipersistent behaviour over thewhole range 0<H<1 for any finiteλ, that is, the integral of expression (70)
over the entire domain of τ vanishes:

B t B t d 0. 71H H
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, ,ò t tá ¢ ¢ + ñ =l l

¥
( ) ( ) ( )

This is in sharp contrast to (conventional) fractional Gaussian noise. Indeed, in the limit 0l  the noise
autocorrelation function (70) approaches the one of fractional Gaussian noise [36, 57], as can be derived by using
the small argument expansion (67) of the Bessel function. In this limitλ→0 for anyfinite τ the autocorrelation
function (70) converges to

16
Note that in this sectionwe use dimensionless units in order not to obfuscate the discussion.
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and shows negative correlations for 0<H<1/2 and positive correlations for 1/2<H<1, see appendix C.3.
The autocorrelation function (70) and its limit forλ→0 are shown infigures 10 and 11 for different values

of theHurst parameter.While for the tempered process it is antipersistent for thewhole range ofH, in the limit
λ→0we clearly see the difference between the antipersistent casewith the overshoot to negative values and a
slow recovery back to zero. The autocorrelation function for the persistent case is always positive.

It is easy to show that for τ=1/λ and δ→0 the autocorrelation function (70)decays as a power-law,
consistent with the behaviour of fractional Gaussian noise,
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Figure 10.Theoretical results for the autocorrelation function, equations (70) and (72), for three different H 1

2
> values. The solid

lines show the antipersistent behaviour of the autocorrelation function of tempered fractional Gaussian noise, which approaches zero
exponentially; while dashed lines represent the power-law decay of the autocorrelation function of the fractional Gaussian noise.
Parameters used:λ=103, δ=10−5.

Figure 11.Theoretical results for the autocorrelation function, equations (70) and (72), for three different H 1

2
< values. The solid

lines show the autocorrelation function of tempered fractional Gaussian noise and dashed lines represent the autocorrelation function
for fractional Gaussian noise. There is no significant difference between the two functions, except around the truncation time,λ−1,
which ismagnified in figure 12. Parameters used:λ=10, δ=10−3.
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while the asymptotic behaviour at long observation times, τ?λ−1 ,
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decays exponentially, in contrast to the non-tempered limit in equation (73). This different asymptotic
behaviour of tempered versus non-tempered fractional Gaussian noise around the truncation time, is shown in
figure 12.

4.2. Fractional Langevin equationwith directly tempered fractional Gaussian noise
Considering the internal noise ξ(t) of the system as the tempered fractional Gaussian noise B tH,¢ l ( ) defined
above, the overdamped tempered fractional Langevin equation reads [58]
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inwhich B t B t2H H H, ,g t t= á ¢ ¢ + ñl l( ) ( ) ( ) . Similar to our derivation above, we obtain the Laplace transformof
theMSD (28) in dimensionless units,
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inwhichwe have tofind the Laplace transformation of the autocorrelation function (70).We assume that
σ2=1 for simplicity fromnowon. To proceed, in the second and third termswe change the variables and split
the resulting integrals,
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First, we expand the above functions up to second order in δ. Since in the second integral δ=λ−1 and t<δ the
relevant regimes are δs=1 andλt=1. Therefore, to second order in δ, sHg̃ ( ) is
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Figure 12.Comparison between the exponentially fast decay of the autocorrelation function of tempered fractional Gaussian noise
(solid lines), equation (74), and the slower power-law decay of its (λ→0) regime, which is equivalent to fractional Gaussian noise
(dashed lines), equation (73), around the truncation time. Parameters used:λ=10, δ=10−3.
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Using expansion (67) and keeping terms up to the second order of δwefind
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Insertion of this result back to relation (79) yields
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The integral in (81) is a Laplace transformation, for whichwe apply equation (2.16.6.3) of [59]. Hencewefind the
expression for the autocorrelation function in Laplace space,
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in terms of the hypergeometric function F2 1 [42].

4.2.1. Short time behaviour of theMSD
For the regime of short observation times, δ=t=1/λwe apply the linear transformations for
hypergeometric functions (formore details see (appendix C.4)). Then, with the general definition for
hypergeometric functions up to second order and some simplifications, wefind the dominant term for the
autocorrelation function,
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Substituting this into expression (76), we see that

x s
H

H
s

2 sin

2
. 84H2

2 1

2

2 3p
á ñ ~

G +
-

( )˜ ( ) ( ) ( )

By inverse Laplace transformationwefind the asymptoticMSDbehaviour in time,
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This result corresponds to subdiffusion for 1/2<H<1 in agreement with the findings in section 3. For
0<H<1/2 the behaviour is superdiffusive.

4.2.2. Long time behaviour of theMSD
For the long times regime t?1/λ orλ/s?1we go back to expression (82) and use the samemethod as in the
previous subsection (see also (appendix C.5)). It can be seen that the dominant term is a linear function of s,
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Getting back to equation (76) for theMSD, this yields
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After inverse Laplace transformation, we obtain
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Thus, at long times this process converges to ballistic diffusion, as already observed in [58].
The general behaviour of theMSDand its crossover from short time power-law behaviour to long time

ballisticmotion is shown infigure 13 for differentHurst exponents.
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4.3. Physical discussion of the direct temperingmodel andOrnstein–Uhlenbeckwith fractional Gaussian
noise
To come back to the above observedfinite limiting value at long times, encoded in expression (69), of theMSD in
the tempered fractional Brownian process we briefly study the confined fractional Brownianmotion in an
harmonic potential. Experimentally, such a situation arises, for instance, when particle tracking is performed
with an optical tweezers setup in a viscoelastic environment [9, 20].We thus consider theOrnstein–Uhlenbeck
process

x t

t
x t B t

d

d
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for t>0 andwith x(0)=0, where the noise B tH¢ ( ) is again fractional Gaussian noise. TheMSD reads (see
appendixD)

x t V t
t

H
f t f te 1

4 2
e e , 90H

H t t
H

t
H

2 2 2s
l

l lá ñ = +
+

- -l l l- -
⎡
⎣⎢

⎤
⎦⎥( ) ( ( ) ( )) ( )

where f x M H H x2 1; 2 2;H º + +( ) ( ) is Kummer’s confluent hypergeometric function. For t 1l- , the
MSDof this fractionalOrnstein–Uhlenbeck process assumes the form
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which corresponds to unconfined fractional Brownianmotionwith a correction proportional toλt. In the long
time limit an exponentially fast convergence occurs to the stationary limit
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Figure 14 compares theMSDs of tempered fractional Brownianmotion and of the fractional Ornstein–
Uhlenbeck process. Both of them saturate at long times, where the plateau value depends on the value ofH,
compare also [60, 61]. Curiously, the plateau values of both processes become identical for theHurst exponent
H=0.768 149.

From the comparisonwith this fractional Ornstein–Uhlenbeck process we see that the direct tempering
model ofMeerschaert and Sabziker actually describes a confinedmotion, in contrast to the simple intuition of
the tempering in equation (64). In that sense it is fundamentally different from the truncatedmodels considered
in the previous sections which show a crossover between two regimes of steadily increasingMSD.

The effect of direct tempering for the fractional Langevin equationmodel, a priori is evenmore surprising.
Namely, as we saw from equations (85) and (88), thismodel demonstrates a crossover from a short time
subdiffusive to a ballistic regime at long times. Such a behaviour appears counterintuitive. However, as we show
now, it is actually a simple consequence of the two basic features of the directly tempered internal fractional
Gaussian noise (75): (i) the integral of its autocorrelation function over the entire time domain from zero to
infinity is identical to zero, see relation (71); (ii) at long times the autocorrelation function exhibits the
exponential decay (74). To demonstrate that these two conditions indeed effect the ballistic long time behaviour,
consider a toymodel for the noise ξ(t) in the fractional Langevin equation (75), namely, we assume the

Figure 13.MSD for the tempered Langevin equation (75), fromnumerical Laplace inversion based on result (82).We also show the
transition from anomalous diffusion for short time, equation (85), to the ballistic regime for long observation times, equation (88), is
shown for differentHurst exponents andλ=0.1.
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Note that the spectral density of the noise is non-negative and the autocorrelation function (93) obeys conditions
(i) and (ii). Now, the Laplace transformof the autocorrelation function (93) reads s s sHg l= +˜ ( ) ( ), andwith
relation (76)we thusfind theMSD
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in Laplace space. As function of time, this indeed produced the ballistic long time behaviour x t t2 2lá ñ ~( ) for
t?1/λ.

Aswe see the direct tempering approach leads to unexpected behaviours. Because of the stationary limit (69)
themodel byMeerschaert and Sabzikarmay bemore appropriate formodelling the velocity process rather than
the position of a diffusing particle, compare [62]. Conversely, the emergence of the ballisticmotion (88) at long
times for the directly tempered fractional Langevin equationmay find useful applications for active systems.

5. Conclusions

Infinite systems anomalous diffusion is typically a transient phenomenon, albeit the crossover time to normal
diffusive behaviourmay be beyond the observationwindow of the experiment or simulations. In those analyses
that explicitlymonitor the anomalous-to-normal diffusive crossover, it is desirable to have a complete
quantitativemodel combining the initial anomalous and the terminal normal diffusive regimes, instead of a
naive fitting of a non-linear ( 1a ¹ ) and a linear (α=1) power-law for theMSD. The explicit analytical results
obtained here provide a two-parameter (exponential cutoff) or three parameter (power-law cutoff)model for
such crossover dynamics and thus have the additional advantage of allowing one to determine the crossover
time t in those cases when the crossover is rather prolonged and t otherwise difficult to extract. Considering
systems driven byGaussian yet power-law correlated noise we introduced two types of tempering of these
correlations, a hard exponential and a softer power-law truncation allowing also crossovers from an initial to a
final power-law behaviourwith different scaling exponent. By plugging this persistent noise into the regular
Langevin equation, we produce a superdiffusive–normal diffusive crossover, as would be observed for actively
moving but eventually decorrelating particle or animals. In contrast, whenwe fuel the generalised Langevin

Figure 14.MSDof the tempered fractional Brownianmotion (equation (69), violet line) and the fractionalOrnstein–Uhlenbeck
process (equation (90), green line) and their long time plateaus (horizontal lines) for several values of theHurst exponentH and the
same parametersσ2=1 andλ=0.1. Top left:H=0.3, top right:H=0.5, bottom left:H=0.768 149 (equivalence of the plateau
values), bottom right:H=0.8.
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equationwith this noise, due to thefluctuation dissipation relation the resultingmotion becomes antipersistent,
and the tempering leads to a subdiffusion–normal diffusion crossover. For the latter case we explicitly showed
that the tempered anomalous diffusionmodel is very useful for the quantitative description of simulations data
of lipidmolecules in a lipid bilayermembrane. Including the shape of the crossover regime excellent agreement
between data andmodel are observed.

Autocorrelation functions of time series, as studied here, can be directly related to the distribution offirst
passage times, that is, the distribution of times between consecutive zero crossings of the time series [63].More
recently, the first passage time distributionwas studied in the presence of crossovers in the autocorrelation
function of the series [64]. In that work the authors demonstrate that the presence of a crossover in the
autocorrelation function is relatedwith a crossover in the first passage time distributionwhich is in factmuch
more complicated to determine. It will be interesting to explore such a connection for the crossover behaviour
studied herein.

We also note here that there exist other classes of anomalous diffusionmodels such as semi-Markovian
continuous time randomwalkswith scale-free waiting time statistic [65],Markovian continuous time random
walkswith time scale populations [66], scaled Brownianmotion [67], heterogeneous diffusion processes [68],
generalised grey Brownianmotion [56, 69], or a recent approach using heterogeneous Brownian particle
ensembles [70]. The use of eithermodel depends on the physical situation. Themotion fuelled by fractional
Gaussian noise considered here is useful for a large range of systems, in particular, themotion of submicron
tracer particles in living biological cells and artificially crowded environments, or themotion ofmembrane
constituents in pure and protein-decorated lipid bilayermembranes. Similarly, applications to stochastic
transport in otherfields such as sediment transport in earth science [71] are conceivable. To identify such types
ofmotion it is not always sufficient to only look at theMSDof the particlemotion, instead, a range of
complementary quantitativemeasures should be considered [7, 32]. To analyse the exact behaviour of these
measures for the temperedmotion analysed here, including the statistics of time averaged observables [7, 72],
will be the focus of future work.
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AppendixA. Spectral densities of truncatedGaussian noise

Atfirst we check the positivity of the spectral density of the noise (6). Defining the autocorrelation function v2á ñt
as symmetric function of the time τ on the infinite axis with respect to τ=0, the power spectrumbecomes
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which is positive since 1/2<H<1.
Let us check that for the exponential tempering (10) the spectral density is also positive:
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wherewemade use of 2.5.31.4 [59]. This expression is non-negative since the argument of the cosine function
lies between−π/2 and+π/2.
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Let us now go to the case of power-law tempering, given by expression (13). Using 2.5.7.6 of [45]wefind that
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The positivity of this expressionwas checked numerically withMathematica for various values of the
exponentμ.

We note that since F a b; ; 0 1p q p q =(( ) ( ) ) [43], we have
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for allμ.Moreover, forμ=1 result (A.3) can be simplifiedwith the use of the following property of the
generalised hypergeometric function ([46] 7.2.3.7): if for r values of ap there also exist equal r values of bq, then
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Appendix B.Mittag-Leffler functions and derivation of equation (39)

The three parameterMittag-Leffler function is defined by [73]
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where kkd d d= G + G( ) ( ) ( ) is the Pochhammer symbol. Its Laplace transform is given by [73]
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Fromdefinition (B.1)we conclude that the behaviour of the three parameterMittag-Leffler function is the

stretched exponential [74]
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Using the series expansion around z = ¥ [75] (for details see also [76])
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for 0<α<2 and z  ¥, wefind that the asymptotic behaviour of the three parameterMittag-Leffler
function is given by
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The following formula for the derivative of theMittag-Leffler function follows directly fromdefinition (B.1)
applying term-by-termdifferentiation,
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From the generalised Langevin equation (22) and the exponentially truncated friction kernel (37) via the
Laplace transformmethod, we find for theMSD
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Therefore, from the Laplace transform formula (B.2), whereα→1, H1 2d  - , 2ad b-  - , that is,
H3 2b  - , and 1

n t - , we obtain the result (39).

AppendixC.Derivations for section 4

C.1.Derivation ofMSD for tfBm
Due to thewhite Gaussian noise in equation (64) theMSDof tempered fractional Brownianmotion (64) can be
written as
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After expanding the square of the second integral and using the appropriate changes of variable, it becomes
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These integrals can be found, for instance, as equations (3.3814) and (3.3838) in [77]. This produces
equation (65).

C.2.Derivation of autocorrelation function of tempered fractional Gaussian noise
In the classical paper byMandelbrot and vanNess [36] a smooth fractional Brownianmotion is defined in terms
of the small and positive parameter δ, through
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Its derivative is known as the fractional Gaussian noise
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wherewe omit the explicit dependence on δ in themain text. The autocorrelation function of equation (C.4) is
given in expression (72).

The same procedure can be applied to tempered fractional Brownianmotion to define the corresponding
continuous fractional noise
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By virtue of relation (65) the autocorrelation function of tempered fractional Gaussian noise becomes expression
(70). The autocorrelation function of tempered fractional Gaussian noise (70) has awell defined limit when
δλ→0,
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C.3. Evaluating the integral over the autocorrelation function of fractional Gaussian noise
Taking the integral over expression (72) and denoting
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C.4. Tempered fractional Gaussian noise:MSD for short observation times
For the regime of short observation times, t 1d l-  , we apply the linear transformation 15.3.6 from [42] for
hypergeometric functions. In the resulted definition, the argument of the hypergeometric function is small,
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For small arguments we use the general definition of hypergeometric functions, 15.1.1 in [42], up to the second
order. Then
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Now,we simplify theGamma functions using the duplication formula 6.1.18 in [42],
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Using Euler’s reflection formula,
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thefirst two terms cancel each other and it can be seen that the dominant term in the autocorrelation function
scales as s H1 2- ,
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C.5. Tempered fractional Gaussian noise:MSD for long observation time
For the regime of long observation time or 1

s

l  , we go back to equation (82) and use relation (15.3.8) from
[42] for hypergeometric functionswith small arguments. Then, by applying the expansion of hypergeometric
functions up to the second order for small argument, s/λ=1,

F H
s

s H

H
F H

s

s H

H
F H

s

s H

H H

k k H

k k

s

s
H

H

k k H

k k

s

s H

H
H H

s

s H

H

H H s

1

2
, 1;

3

2
; 1

1 1

1

2
,

1

2
;

1

2
;

1, 1;
3

2
;

1

1

1

2
2

1 1

1 1 1

1

1

2

3

2

1

1 2 2

1
. C.16

k

k

k

k

2 1

2

2

3

2

1

2
2 1

2

2

2

2

3

2

1

2

1

2

1

2

2 1

2

2

3

2

1

2

1

2

1

2
0

1

2

1

2

1

2

2

2

2

2

3

2

0
3

2

2

2

1

2
2

2

2

2

1

2

3

2

3

2

2

2

å

å

l
l l

l l

l

p

l

l l

l

p

l

l

p

l

+ - =
G + G

G G +
+

+
G + G -

G G +
+

=
G +

G +

G

G G +

G + G + +

G +

+ + -
G

G G +
G + G + +

G +

=
+

G +
G + + G +

-
+

G +
G +

G
+

G G +

G +

=

¥

=

¥

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

( )
( )

( )

( )
( ) ( )

( ) ( )

( ) !

( )
( ) ( )

( ) ( )
!

( )

( )
( ) ( ) ( ) ( )

As a result, the integral in expression (82) is approximated as
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Applying these approximations, the resulting expression for the autocorrelation function in the Laplace
domain is
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It can be seen that the dominant term is a linear function of s,
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AppendixD.Derivation of theMSDof the fractionalOrnstein–Uhlenbeck process

The solution of equation (89) for a general noise ξ(u) is
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terms of theKummer functionM(a; b; z),
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IfH=1/2, using g u u2s d=( ) ( ) in equation (D.2), we arrive at

x t
2

1 e . D.5t2
2

2s
l

á ñ = - l( ) ( ) ( )

This result coincides with equation (D.4) forH=1/2, such that equation (D.4) is valid for all H 0, 1Î ( ). Using
the properties of the Kummer function (which in our case reduces to the incomplete gamma function), relation
(D.4) is shown to be equivalent to equation (90).
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