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Abstract

The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour
from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A
prominent example for a subdiffusive—diffusive crossover are viscoelastic systems such as lipid bilayer
membranes, while superdiffusive—diffusive crossovers occur in systems of actively moving biological cells.
We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional
Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at
some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law
tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional
Langevin equation motion. We derive explicit expressions for the mean squared displacement and
correlation functions, including different shapes of the crossover behaviour depending on the concrete
tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also
find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a
direct application of our model we demonstrate that the obtained dynamics quantitatively describes the
subdiffusion—diffusion and subdiffusion—subdiffusion crossover in lipid bilayer systems. We also show
that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert
leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling.

1. Introduction

Diffusion, the stochastic motion of a tracer particle, was beautifully described by Brown in his study of pollen
granules and a multitude of other molecules (microscopic particles) [ 1]. Diffusion is typically described in terms
of the mean squared displacement (MSD)

(x2(1)) ~ Dt~ )

of the particle spreading. When o = 1 this is the well known law of normal (Brownian or Fickian) diffusion
observed in detailed quantitative studies by Perrin, Nordlund, and Kappler [2—4], among others. In the case of a
scaling with an exponent « different from unity, the dynamics encoded by the MSD (1) can be classified in terms
of the anomalous diffusion exponent « as either subdiffusive for0 < a < 1 or superdiffusive for a > 1[5, 6].
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In expression (1) the generalised diffusion coefficient has physical dimension [D,] = cm?/s®. Anomalous
diffusion with @ = 1has been revealed in a multitude of systems [5-7]. In particular, following the massive
advances of microscopy techniques anomalous diffusion was discovered in a surging number of biological
systems [8, 9]. Thus, subdiffusion was monitored for both endogenous and introduced submicron tracers in
biological cells [10—17] or in inanimate, artificially crowded systems [ 18—-20]. Supercomputing studies of protein
internal motion [21] or of constituent molecules of dilute and protein-crowded lipid bilayer membranes [22-26]
also show subdiffusive behaviour. Due to active motion, also superdiffusion has been reported from several
cellular systems [10, 11,27-29]. For a more exhaustive list of systems see the recent reviews [8, 9, 30-32].

In most of these systems the observed anomalous diffusion was identified as fractional Brownian motion or
fractional Langevin equation motion type defined below. Both are characterised by power-law correlations of
the driving noise [7, 8, 33]. At sufficiently long times, however, this anomalous diffusion will eventually cross
over to normal diffusion, when the system’s temporal evolution exceeds some relevant correlation time. For
instance, all atom molecular dynamics simulations of pure lipid bilayer membranes exhibit a subdiffusive—
diffusive crossover at around 10 ns, the time scale when two lipids mutually exchange their position [22]. The
quantitative description of this anomalous-to-normal crossover is the topic of this paper. For both the
subdiffusive and superdiffusive situations we include a maximum correlation time of the driving noise and
provide exact solutions for the MSD in the case of hard, exponential and softer power-law truncation, so-called
tempering, that can be easily applied in the analysis of experimental or simulations data. The advantage of such a
model, in comparison to simply combining an anomalous and a normal diffusive law for the MSD is that the
crossover is built into a two-parameter exponential tempering model depending only on the noise strength
driving the motion and the crossover time. For the case of a power-law tempering an additional scaling exponent
enters. Depending on its magnitude, the anomalous-normal crossover dynamics can be extended to a crossover
from either faster to slower superdiffusion or slower to faster subdiffusion. In our approach the crossover
between different diffusion regimes thus naturally emerges, and the type of tempering governs the exact
crossover shape. As we will show the crossover shape encoded in this approach nicely fits actual data.

The paper is structured as follows. In section 2 we consider the tempering of superdiffusive fractional
Brownian motion and derive the crossover to normal diffusion. In section 3 we perform the same tasks for the
subdiffusive generalised Langevin equation. Section 3.5 compares our subdiffusive to normal diffusive model of
the tempered generalised Langevin equation to supercomputing data from lipid bilayer membranes exhibiting
characteristic crossover dynamics. The data analysis demonstrates excellent agreement with the built-in
crossover behaviour of our model. Section 4 addresses direct tempering suggested by Meerschaert and Sabzikar
as well as its physicality. Indeed, we show that this type of tempering leads to ballistic motion. We conclude in
section 5. Several short appendices provide some additional mathematical details.

2. Tempered superdiffusive fractional Brownian motion

We start from the overdamped stochastic equation of motion of a physical test particle in a viscous medium
under the influence of a stochastic force £(¢) [34, 35]

dx(t) _ €0 _

” o v (1), (@)

where x(¢) is the particle position and v(¢) its velocity. Without loss of generality we assume the initial condition
x(0) = 0. Furthermore, m is the particle mass, and 7, of physical dimension [1)] = s~ !is the friction coefficient.
The stochastic force £(¢) is assumed to be a stationary and Gaussian noise of zero mean. Then the velocity
autocorrelation function fulfils

(vt + 1) = (), ®)
forall T > 0.By formal integration of equation (2) the MSD yields in the form

(xz(t)>=j: ds fot dt> (v (5) v (1))
= 2f(: dy t: dh(v(n)v(n)) = 2j: dr(t — 1) (v?),. 4)

From this result we infer that if the autocorrelation function (v2), decays sufficiently fast at long times, such that
fo < dr (v¥), is finite, then the MSD reads

2 ~ o 2
(x2(1)) ~ 2t j; dr (v?),, ®)

att — 00, and diffusion becomes asymptotically normal. Thus, one should expect anomalous diffusion at long
. oo . . . . . . . . .
times whenever fo d7 (v2), is either infinity or zero. This is exactly the case for the persistent and antipersistent
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fractional Gaussian motions considered in what follows, respectively. In the case of superdiffusive fractional
Brownian motion we choose the autocorrelation function in the form

<V2>T — Dy F2H-2 (6)
I'CH-1)

where the constant noise strength Dy has dimension [Dy] = ¢cm?/s?, T'(z) is the Gamma function, and the
Hurst exponent Hisin theinterval 1/2 < H < 1. We note here that this approach leads to the correct power-
law asymptotics of the classical Mandelbrot-van Ness fractional Gaussian noise at long times [36] with
fo *dr (v?), = 0o, butat the same time leads to an infinite zero-point variance (v2),_, of the noise' . Keeping
away from 7 = 0 we are allowed to restrict ourselves to the power-law form (6). Furthermore the coefficient
I'(2H — 1)inequation (6) is introduced to capture the white noise limit. Indeed, due to the property of the
6-function [37]

. 2H-2
s Ter—n @

at H = 0.5 and with ‘/(; ~ dré (1) = 1equation (6) reduces to
(v3), = Db(7) (8)

Wlth D]/z = D.lz
Now, after plugging result (6) into expression (4) the MSD can be readily calculated, yielding
2Dy L,y

2 —
(i) = I'QH + 1)

©
which yields sub-ballistic superdiffusion with the anomalous diffusion exponent &« = 2H,and thus1 < a < 2.

In what follows we consider both a hard exponential and a power-law truncation (tempering) of the
persistent fractional Gaussian noise with Hurst exponent1/2 < H < 1.

2.1. Exponentially truncated fractional Gaussian noise
Let us first consider an exponential tempering of the form

<V2>T — Dy 7_2H—Ze—'r/'r*’ (10)
I'CH - 1)

for7 > 0, where 7, > 0isa characteristic crossover time scale. For instance, in the case of moving cells the
crossover time 7, would correspond to the time scale when the cell motion becomes uncorrelated, similar to the
decorrelation of the lipid motion in the example of the lipid bilayer system discussed below.

Here we note that one should keep in mind that the autocorrelation function (v?), cannot be chosen
arbitrarily. Namely, its Fourier transform, the spectrum (#?(w)) of the random process ¥(t) must be non-
negative [41]. The positivity of (#?(w)) for the case of exponential tempering in equation (10) is shown in

appendix A. Note also that now fo *dr (v¥), = D72~ 'isfinite, thus we expect normal diffusion at long

times.
With the use of expression (4) the MSD for the exponentially truncated fractional Gaussian noise takes on
the exact form
2D 2H
2y = =1 | oo, L) = 5ol L, (11)
I'CH - V| 7 T T

where v (a, z) = fo © ta~le=tdt isthe incomplete y-function. Using the asymptotic y(a, z) ~ z%/a forz < 1,and
v(a, z) ~ I'(a) forz > 1, we observe superdiffusive behaviour at short times, and normal diffusion at long times,
namely,

z’itm, P Ty
(x2(1)) ~q T2H + 1) (12)
ZIDHTiHilt, t> 7.

11 . . . . . . . o . . N

A more consistent approach using the smoothening procedure of fractional Brownian motion over infinitesimally small time intervals a la
Mandelbrot and van Ness [36] shows that the weak divergence of the autocorrelation function (6) at 7 = 0 does notlead to a change of
the MSD.

12 . . . . . . .

The power-law correlations in the autocorrelation function (6) contrast the sharp 6-correlation of relation (8) [38, 39]. We note that in
this combination of the Langevin equation (2) and the autocorrelation function (6) the fluctuation dissipation theorem is not satisfied, and
the noise &(#) can be considered as an external noise [40], see also the discussion of the generalised Langevin equation below.
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Figure 1. Mean squared displacement (11) for superdiffusive fractional Brownian motion with H = 3/4, Dy = l,and 7, =
1 (blue line). The short and long time asymptotics given by expression (12) are depicted by the red and green lines, respectively.

The emerging normal diffusion thus has the effective diffusivity Dy 727~ Note that the approximate formula at
long times is in concordance with the simple estimate given by expression (5).

Figure 1 shows the crossover behaviour from superdiffusion to normal diffusion encoded in expression (11),
along with the short and long time asymptotes given by result (12). As can be discerned from the plot, the
crossover region is fairly short, spanning less than a decade in time for the chosen parameters.

2.2. Power-law truncated fractional Gaussian noise
We now consider the softer power-law truncation of the form

—
<V2>T — LTZHZ(I + l) R (13)
'CH -1 Ty
forT > 0, u > 0and compare the resulting behaviour with the scenario of exponential tempering. Here, apart

from the crossover time 7, the new power-law exponent 1 is introduced which effects the exact nature of the
dynamics at long times, as we are going to show below. We remark that the positivity of the spectrum for the
power-law truncated form is discussed in appendix A. After plugging (13) into expression (4) we find for the

MSD that
2Dy |t t t

1)) = —H = | Zflpu,2H — 15 — | — f|p 2H; —1 ]|, 14
() F(ZHD[T*f(u )1 )] (1)

where we introduced the notation

a y().’fl

> ya) = d * 15
S = [ Fdy (15)

Now, using the integral representation [42] of the hypergeometric function ,F; [43] we rewrite the integral in
equation (15) as

aO[
flu, o; a) = ;zFl(u, a, a + 1; —a), (16)

and thus rewrite the MSD (14) in the final form

2H
(x2(1)) = 2Dyt 1 2B s 2H — 1; 2H; _t
TQH — 1| 2H — 1 "

N %21:1(#, 2H; 2H + 1; —TL)] (17)
In this notation the MSD can be directly evaluated by Wolfram Mathematica [44]. Note that ,F, (0, b; ¢; z) = 1,
and thus result (17) reduces exactly to the MSD (9) for the untruncated case ;¢ = 0. To obtain the limiting
behaviours of the MSD (17) at short times ¢ < 7, we use the Gauss hypergeometric series for the function ,Fj,
see 15.1.11n [42]. As result, to leading order we recover the MSD (9) of untruncated fractional Brownian motion.

Atlong times ¢ >> T, the situation for power-law tempering is actually richer than for the case of exponential
tempering. To see this, we first employ the linear transformation formula 15.3.7 in [42] and write expression (17)
in the form
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2y = 2P [T@H - DU+ 1-2H) TPEH+ DO -2H)7
I'(2H — 1) D(p) 2HT () t
1 7 |2 Ty
+ 7(_) zpl(u, p+1—2H; pu + 2 — 2H; ——) (18)
2H — p— 1\ ¢t t
1 . p+1-2H ( 7—*)
- | Elu, p—2H; p+ 1 — 2H; ——=| |.
2H — N( ; ) 24 s K ¢

We consider two possible cases:

2.2.1. Weak power-law truncation, 0 < 4 < 2H — 1 < 1
In this case the third and fourth terms in the square brackets of expression (18) are dominating and we find

Z’DHT& tZHf,u

2 ~
(x*(1)) QH — )QH — 1 — w)TQH — 1)

(19)

for t > T,.Note thatin the limit z — 0 result (19) reduces to the untruncated formula (9). Thus, since we
observe the inequality 2H — p > 1in the case of weak power-law truncation the dynamics is still superdiffusive,
however, with a reduced anomalous diffusion exponent smaller than the value 2H in the short time limit.

2.2.2. Strong power-law truncation, t > 2H — 1 > 0

Note that in this case the integral of the velocity autocorrelation function (13) over the whole time domain
converges, fooo dr (v¥), = Dy 'T(u — 2H + 1)/F(u), see 2.2.5.24 in [45]. Thus, with expression (5) we
expect alinear time behaviour in the long time limit, whereas the term to next order in (4) gives

f ‘drr (v¥), ~ f "drr2Ho1-p o p2H-p ,asublinear contribution since 2H — 1 < 1. Alternatively, it follows
from (18) that the main contribution comes from the first term in the square brackets. Thus, in full accordance
with expression (5) we get

2Dy ( — 2H + 121t

2(4)) ~
(x*(0) T

(20)

att > 7.

Finally, for the borderline case 0 < p1 = 2H — 1 < litisin fact easier to consider equation (17). Making
use of formula 7.3.1.81 in [46] we see that the leading contribution comes from the first hypergeometric function
in the square brackets in expression (17), as
JFIQH — 1, 2H — 15 2H; z) ~ TQH)T'"'2H — 1)(—z)2H*1In(—z). For the MSD we then finally obtain

ZDHTiH_l 1 ( t

2 ~ -
(x*(1)) TH = D n ) (21)

Tx

Thus, in this borderline limit between weak truncation (leading to reduced superdiffusion at long times) and
strong truncation (normal long time diffusion) we here obtain normal diffusion with a logarithmic correction.
Figure 2 demonstrates that for the power-law tempering the crossover region is significantly enhanced,
spanning several orders of magnitude, as compared to the much swifter crossover in the case of exponential

tempering.

The MSDs for both cases of exponential and power-law truncation are directly compared in figure 3, along
with the time derivative of the MSD. As can be seen, the crossover for the exponential tempering occurs much
more rapidly. Thus also the amplitude of the long time Brownian scaling is higher in the case of the power-law
tempering for the same value of the crossover time scale 7.

A graphical representation of the correlation functions (6), (10) and (13) is given in figure 4. The exponential
cutoff appears more abrupt, as it should. However, this difference will obviously be reduced for larger values of
the cutoff exponent x. To fit data, the crossover shape can thus be adjusted by the choice of 1 for the case of
power-law tempering, thus having the possibility to effect a gradual adjustment from softer power-law to hard
exponential tempering.

3. Tempered subdiffusive generalised Langevin equation motion

We now consider the motion encoded in the overdamped generalised Langevin equation for a particle with mass
m moving in a viscous medium characterised by the friction kernel ~, (t) of dimension [, (t)] = s7*[7, 38,47]

5
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Figure 2. MSD (17) for power-law tempered fractional Brownian motion with H = 3/4, Dy = 1,and 7, = 1. The red solid line is for
1 = 0.3 (weak power-law truncation), whereas the blue solid line is for ;¢ = 1 (strong power-law truncation). The red and blue
dashed lines correspond to the asymptotics (19) and (20), respectively. The behaviour for the untruncated case given by expression (9)
is depicted by the green solid line.
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Figure 3. Comparison of the ratio (x2) /¢ for different modes of truncation of the power-law noise in equation (2). Parameters:
H = 3/4,Dy = 1,and 7, = 1. From bottom to top the blue line depicts the exponential truncation (11) while the red line and green
lines show expression (17) for strong (1 = 1) and weak (1 = 0.3) power-law truncation, respectively.
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Figure 4. Main figure. Comparison of the velocity autocorrelation functions, from top to bottom: untruncated motion, equation (6)
(blue line), weak power-law truncation, equation (13) with 2 = 0.3 (green line), strong power-law truncation, equation (13) with

1t = 1 (yellow line), and exponential truncation, equation (10) (red line). Parameters: H = 3/4, Dy = 1,and 7, = 50. Inset: double-
logarithmic representation.




10P Publishing

NewJ. Phys. 20 (2018) 103027 D Molina-Garcia et al

m [ e - dx(t SO g0 — ¢ o), 22)
0

where x(0) = 0 withoutloss of generality. Similar to the model considered in section 2 £(¢) is a Gaussian noise
with power-law correlation of the form (6) with 1/2 < H < 1. However, in contrast to the fractional Brownian
motion model considered above, we require the system to be thermalised, such that the random force is coupled
to the friction kernel through the Kubo-Zwanzig fluctuations dissipation relation [38, 47]

(&%)r = kg Tmyp (7). (23)

3.1. Mean squared displacement
Let us recall the derivation of the MSD from equations (22) and (23). With our choice x(0) = 0 we obtain for the
Laplace transform of x(¢), X(s) = fo ~ x (t)exp(—st)dt that

#(s) = —&_ (24)
mse (s)
Inverse Laplace transformation produces
t
x(t) = if EENH(t — t)dr, (25)
m J0

where the kernel H(?) is the inverse Laplace transform of H(s) = 1 / [s7y (s)]. After some transformation we
recover the MSD

(X2 (1)) = iz | “an [ dnHG - 0H - 0)(E),
0 h
_ 2T f H()M (¢)dt, (26)

where we introduced M (t) = fot VH(t’)H(t — t")dt’. Its Laplace transform is M(s) = 4, (s)H(s) = 1/s,and
thus simply M(f) = 1. We therefore arrive at

wa) = 2L [T rear. @)

In Laplace space, this relation reads

m s m  s29y(s)

We stop to include a note on when exactly we expect asymptotically normal diffusion in the generalised
Langevin equation model. The reasoning is similar to that presented at the beginning of section 2. Namely, from
equation (28) it follows that diffusion is normal at long times if 4, (s) tends to a constant in the limits — 0. This

is equivalent to requiring that the average fo >~ ¥y (7)d is finite or, taking into account the fluctuation

dissipation relation (23) that fo = (&%), dr is finite (similar to the conclusion in section 2). Then, from expression
(28) we infer the following behaviour in the long time limit (compare with equation (5))

2kgT
(x2(1) = —m 2 t. (29)
m f yu(T)dT
According to this, anomalous diffusion is expected at long times whenever f vy (7)dT is either infinite
(subdiffusion) or zero (superdlffuswn)
In accordance with section 2 we choose the friction kernel in the power-law form
T 2H-2
T) = T > 30
W = Fo (30)

where the coefficient I'f;is of dimension [[y] = s~2F. The normal Brownian case is recovered from

equation (22) for H = 1/2since for H — 1/2+ wesee that , (t) — I3 26 (¢) (note that in this Brownian limit,
I'; ;» = n) and equation (22) assumes the form of the standard Langevin equation driven by white Gaussian
noise obeying the regular fluctuation dissipation theorem. We note that the memory kernel for the power-law
form (30) can be rewritten in terms of a fractional derivative, and the resulting version of equation (22) is then

13 . . . . T . s 1 .

Note here the difference to the results in section 2 where the fluctuation dissipation theorem is not applied: in that case divergence of the
integral over the correlator of the noise £(¢) over the entire time domain leads to superdiffusion, while subdiffusion emerges when the
integral is identical to zero.
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often referred to as the fractional Langevin equation [7, 48—50]. Power-law memory kernels of the form (30) are
typical for many viscoelastic systems [8, 9, 14-17, 19, 20, 22, 50].

We now use the Laplace transform of equation (30), 4;;(s) = Iys , plug this into the above expression,
and take an inverse Laplace transformation. This procedure leads to the final result

(x*(1)) = ;Mﬂ—w, (31)
T3 — 2H) mly
which reduces to the classical result (x(¢)) = 2(kg T /[mn])t for normal Brownian motion in the limit H = 1/2.
Therefore, due to the requirement that the system is thermalised and thus the Kubo—Zwanzig fluctuation theorem is
fulfilled, the same noise leads to subdiffusion in this case with anomalous diffusion exponent & = 2 — 2H and
0 < 2 — 2H < 1.Indeed, due to the coupling in relation (23) large noise values lead to large friction values, and
therefore the persistence of the noise is turned into antipersistent diffusion dynamics [7, 48, 50].

1-2H

3.2. Autocorrelation functions of displacements and velocities

We now derive the autocorrelation function of the displacements, following the procedure laid out by Pottier
[51]. First, we note that the double Laplace transform of the correlation function of the random force can be
written as

(€D E(s2)) = kg Tm fooo dy J;OO dre 2ty (|t — #). (32)

Then we split the domain of integration over #, into the two domains 0 < t, < fand f < #, < oco. After
introducing 7 = f — t,and 7 = t, — # in each domain, respectively, we arrive at

(E(sDE(s2) = kyTm I+ F(52), (33)
s1+ 5

This expression represents the Laplace domain formulation of the fluctuation dissipation theorem (23). By help
of equations (22) and (33) we then obtain the double Laplace transform of the displacement correlation
function,

(s X(s2)) = (34)

m \s12(s1+52) 5182051 + 52)

kB_T( VAu) | 1/Fm(s) )

In the first term in the parentheses we first take the inverse Laplace transformation over s,, going from
1/[s2(s1 + sp)]to[1 — exp(—s1t2)] /5. Exchanging s, for s; we perform the same operation on the second term.
Then we inverse Laplace transform the first term with respect to s; and make use of the translation formula
L Mexp(—=bs) Z{f(t)}} = f(t — b)O(t — b),whereb > 0and O(f) is the Heaviside step function. As result
yields

1 ks T (2-2H
(3 — 2H) mly
The velocity autocorrelation function is obtained by differentiation of this expression,

_sin(w[2H — 1DI'Q2H) kgT |7|-2H
T mly ’

(x(h)x(t)) = + 157 — |t — 422, (35)

v()v() = (vH, =

(36)

where 7 = f, — f. Wesee that in the relevant parameter range 1/2 < H < 1 the velocity autocorrelation is
negative, (v2), < 0, reflecting the antipersistent character of the resulting motion.

3.3. Exponentially truncated fractional Gaussian noise
For the exponentially truncated friction kernel and thus noise autocorrelation

<§2>T _ FH 2H72ef‘r/‘r* (37)

1) = T TaH 1)

we obtain the corresponding Laplace transform
Fr(s) = Tu(s + 7,12 (33)
After plugging this expression into relation (28) and taking the inverse Laplace transformation we obtain

2kgT . t
(x?(1) = LtZZHEll,SZszH(__) (39)
mly Tx
in terms of the three parameter Mittag-Leffler function E(f) 53(2) (see appendix B for its definition and some

relevant properties). When the crossover time 7, tends to infinity, E(‘z 30) =1 / I'(8), and we arrive at result (31)

8
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Figure 5. MSD (39) for exponentially tempered generalised Langevin equation motion with H = 3/4, kg T/[mIy] = l,and 7, = 1
(blueline). The short and long time asymptotics (31) and (40) are shown by the red and green lines, respectively.

for the untruncated noise. In the limit H = 1/2 wehave § = 0 and Efz (2) =1 / I'(2) = 1,such that
equation (39) reduces to the MSD of normal Brownian motion.

Atshorttimes t < 7, the MSD (39) reduces to the subdiffusive expression (31), whereas at long times
t > 7, with the help of E' 2, (—t/7.) ~ (t/7,)*"~ (see appendix A), in accordance with relation (29) the
MSD exhibits normal Brownian behaviour,

2kgT

t.
mFHTiH7 !

(x2(t)) ~ (40)
We note that a similar crossover was observed in [52] where a modified three parameter Mittag-Leffler form for
the kernel yx(7) was considered.

The crossover from subdiffusion to normal diffusion in this exponentially tempered generalised Langevin
equation picture is shown in figure 5. The crossover behaviour occurs over an interval of the order of a decade in
time for the chosen parameters.

Let us now turn to the autocorrelation functions. Using expression (38) in equation (34) we obtain

(X(sD)X(s2)) =

kBT( 1

mLy  sis2(s1 + s2) (1 + 7, )21

! ) (41)

sis2(s1 + $2)(s2 + 7, DI

As above, in the first term in the parentheses we take an inverse Laplace transformation with respect to s,, and
over sy in the second term. Then, with the translation formula and the Laplace transform (B.2) of the three
parameter Mittag-Leffler function, we find

kg T f t
(x(t)x(t) = B—(t122HE11,3221H(_—1) + t222HE11,32§IH(_—2)
mFH Tx *
_ t) —
— |t - tll“HEl‘,sz’ZH(—'szl')]- (42)
*

Differentiation over t; and t, (with the help of equation (B.6)) then produces the velocity autocorrelation
function,

(vmv(n) = (), = "B—TME%,IE’ZH(i) (43)

ml'yT Ty
with 7 = t, — #; > 0. Usingthe definition (B.1) of the three parameter Mittag-Leffler function it is easy to check
that El‘f s(2) = exp(2) / I'(6). Thus, for the velocity autocorrelation function we find the result

W), = — sin(w[2H — 1DI'QH) kgT B —
™ mFH

(44)

which is anticorrelated and reduces to the untruncated result (36) when the crossover time 7, tends to infinity.

9



10P Publishing

NewJ. Phys. 20 (2018) 103027 D Molina-Garcia et al

3.4. Power-law truncated fractional noise
For the power-law truncated friction kernel and noise autocorrelator,

_ <§2>T - Ty 2H2( l)u
WO T Ten-1n. (. @

with7 > 0, 4 > 0 the Laplace transform of the memory kernel can be performed by use of the integral
representation of the Tricomi hypergeometric function U(a, b; z) (see 13.2.5 of [42]), leading to

Au(s) = FHTiHilU(ZH — 1, 2H — p; sTy). (46)
With the general relation (28) we thus have

2kg T
(x*(1) = ﬁg(ﬂ (47)
HT x
with the abbreviation
1
H=2" ) 48
&) : {SZU(ZH —1,2H — p; sr*)} (48)

The inverse Laplace transform of expression (47) cannot be performed analytically. However, we make use of the
Tauberian theorems'* to find the MSD at short and long times.

Atshort times with s7;, > 1 we use the large argument asymptotic of the Tricomi function,
UQH — 1, 2H — p; s7) ~ (s7,)' 721 (13.5.2in [42]) and thus 4}, (s) ~ Tyys' ~2H. From equation (28) (or,
equivalently, equations (47) and (48)) we then get to result (31) by use of the Tauberian theorem.

Similar to the case considered in section 2 at long times corresponding to s, < 1 the situation is actually
richer than for the case of exponential tempering. To see this we first make use of (13.1.3) in [42] to express the
Tricomi function via the Kummer function M(a, b; z) through

UQH — 1, 2H — p; s7) = . [M(ZH — L 2H — i 57

sin(m[2H — pl) F(wI'QH — p)

M(p, p + 2 — 2H; s73) ]

_ (57.*)/1,+172H
I'QH — DI (i + 2 — 2H)

(49)

Taking into account the series expansion of the Kummer function ((13.1.2) in [42]) we consider the following
two possibilities:

3.4.1. Weak power-law truncation, 0 < p < 2H — 1 < 1
In this case the second term in (49) is dominant at small s and thus

7.r(S,T.*)IerﬁZH

UQRH — 1, 2H — p; s1) ~ — . (50)
sin(m[2H — p — 1)TQH — DI (i + 2 — 2H)
Plugging this leading behaviour into expressions (47) and (48) and using the Tauberian theorem, after few
transformations we obtain the long time behaviour of the MSD,
<X2(t)> ~ I'CH - 1) 2kgT pur2-2H 1)

ITQH — p — DD(u + 3 — 2H) mIy7"

Note that in the limit 1 — 0 expression (51) reduces to the untruncated formula (31). Thus, since we observe the
inequality 0 < p + 2 — 2H < 1inthe present case of a weak power-law truncation, the dynamics is still
subdiffusive, however, with an anomalous diffusion exponent larger than the value 2 — 2H in the short time
limit.

3.4.2. Strong power-law truncation, ;1 > 2H — 1 > 0
In this case the first term in the square brackets in equation (49) becomes dominant at small s and
UQRH — 1, 2H — p; st) ~ I'(nw + 1 — 2H) /T'(u1), where we made us of the reflection formula for the
Gamma function. From results (47) and (48) by use of the Tauberian theorem we obtain
r(w 2ks T
D(u + 1 — 2H) mLyr2H-17

(x2(1)) ~ (52)

L(at)

14 The Tauberian theorems state that for slowly varying function L(¢) at infinity, i.e. lim,_, o, = lL,a > 0,iff(s) ~s’L (%), fors — 0,

p = 0,thenr(t) = L7 UF($)(t) ~ ﬁp)t"’lL(t), t — 00. A similar statement holds fort — 0.
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Figure 6. MSD (47) for power-law truncation with H = 3/4, kg T/[mIy] = 1,and 7, = 1. Thered solid line corresponds to weak

power-law truncation with ;1 = 0.3, the blue solid line to strong truncation with ¢ = 1. The asymptotics (51) and (52) are shown by
red and blue dashed lines, respectively. The thin green solid line corresponds to the MSD (31) for the untruncated case.

valid for t >> 7. As expected, we find the desired crossover to the normal Brownian scaling of the MSD. Note
that this result is in full accordance with equation (29). Indeed, from expression (45) we get (see 2.2.5.24 [45])

fwwﬂﬂ&t¥g&iL:22DﬂT4. (53)
0 ()

After plugging expression (53) into (29) we arrive at result (52). Note also that the condition of a strong power-
law truncation is equivalent to the condition that integral (53) converges.

In the borderline casewith 0 < 4 = 2H — 1 < 1weuse 13.5.91in [42] and find
UQRH — 1, 1; s7,) ~ —In(s7) /T'(2H — 1). With the use of the Tauberian theorem equations (47) and (48)
yield
2kg T t

2 ~T'2H -1
(Ao) ( ) mlym2H 1 n(t/7)

(54)

att > 7,. Thus, in this borderline situation between the cases of weak truncation (leading to increased
subdiffusion at long times) and strong truncation (normal long time diffusion) we observe a logarithmic
correlation to normal diffusion.

Figure 6 shows the crossover dynamics for power-law tempering for the two possible cases: for weak power-
law truncation with ;1 = 0.3 we observe the predicted crossover from slower to faster subdiffusion, while in the
case of strong power-law truncation the subdiffusive dynamics crosses over to normal diffusion.

Figure 7 shows a direct comparison between the cases of exponential and power-law truncation. As
expected, the crossover is faster for the exponential tempering, and thus the resulting amplitude in this case
exceeds the amplitude for the power-law tempering. Note that the latter observation contrasts the case of the
truncated fractional Brownian motion in figure 3, for which the amplitude of the power-law tempering is higher.

3.4.3. Velocity autocorrelation function

To gain some insight into the correlation behaviour we use equation (34) with 4, (s) from equation (46). Taking
the inverse Laplace transformation over s; and s, in the same way as above we obtain the position autocorrelation
function

kgT

mFHTiH_l

(x()x(ty)) = g + gt — g(lta — t), (55)

where g(t) is given by relation (48). From here the velocity autocorrelation function is obtained as

kT &

vy, =
v mlyr2 -1 dr?

g(7) (56)

with7 > 0. We first note that expression (56) along with (48) may suggest that the Tauberian theorem may be
directly applied to the expression U"'(2H — 1, 2H — p; s7,) in order to calculate the asymptotic behaviour of
the velocity autocorrelation function (v2),. However, for short times corresponding to s7, >> 1the function
Ul ~ (s7,)*P~1 andsince 1/2 < H < 1, the Tauberian theorem does not apply as 2H — 1is positive. Instead,
we should first obtain the asymptotic of g(7) at short times 7 < 7, by use of the Tauberian theorem, and only
then differentiate twice to get the asymptotic of the velocity autocorrelation function. This way we arrive at

11
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Figure 7. Comparison of the ratio (x2) /¢ for different truncation modes of the power-law noise in the generalised Langevin
equation (22). Parameters: H = 3/4, kg T /[mIy] = 1,and 7, = 1. From top to bottom the blue line represents the exponential
truncation, equation (39), the red line the strong power-law truncation, equation (47) with & = 1, and the green line the weak
power-law truncation, equation (47) with ;¢ = 0.3. The asymptotic (51) is shown by dashed green line.

expression (36). Atlong times 7 > 7, we again consider the cases of weak and strong power-law truncations
separately.

For the weak power-law truncation with 0 < p < 2H — 1 < 1thesituation is similar to the short time
limitabove. Indeed, U! ~ (s, )21~ 17#, see result (50), and the Tauberian theorem does not apply. Instead we
first plug relation (50) into expression (48) and then apply the Tauberian theorem. Following relation (56) we
then find

kgT 1

<V2>T ~—C TZH*,U.’

57
m].—‘HTfi ( )

where C = QH — p — D7 tsin(w[2H — u — 1])T'(2H — 1)isa positive constant. Note that for weak
power-law truncation we have 1 < 2H — p < 2,andin thelimit g4 — 0 expression (57) reduces to the velocity
autocorrelation function (36) in absence of truncation. From comparison of result (57) with (36) we see that the
autocorrelation function in the truncated case decays slower than in the untruncated case. This may appear
counterintuitive, however, it is in agreement with the antipersistent character of the fractional Langevin equation
model in which the MSD scales like ~~¢2~2H and the velocity autocorrelation function at long times scales as
~—72H for1/2 < H < 1. This means that a steeper decay of the velocity autocorrelation function corresponds
to a more subdiffusive regime. In other words, when H is closer to 1/2 (the subdiffusive regime is closer to
normal diffusion) then the decay of the autocorrelation function is slower. To see this better consider the
effective Hurstindex Hes = H — j1/2. Then, for weak power-law truncation the MSD scales like ~t2 2t with
1/2 < He < H < 1,and the velocity autocorrelation function decaysas =~ — 7 2H.g. Thus, in the truncated
case the diffusion becomes closer to normal, as it should be, while the velocity autocorrelation function decays
slower than in the untruncated case, fully consistent with the antipersistent fractional Langevin equation model.
Now let us turn to the case of strong power-law truncation with 1+ > 2H — 1 > 0 in which for simplicity we
assumethat ¢ + 1 — 2H = nwhere n € Nisapositive integer. We are interested in the exponent of the power-
law decay of the velocity autocorrelation function. Then expression (49) yields U QH — 1, 2H — p; s73) ~
ag + ais + ars? + ... agsk + a, st 4 og sk 4 wherea;withi = 0, 1, 2, ... are constants that can
be easily found from expansion 13.1.2 in [42] for the first Kummer function in the square brackets of expression
(49)and k = [ + 1 — 2H] denotes the integer part of the corresponding argument in the Landau bracket [-].
Then U '(2H — 1, 2H — p; s7,) ~ by + bys + ... + bysk + b,s# 172 4+ wherethe b;withi = 0,1,2, ...
are again constant factors. From here and with equations (48) and (56) we find after application of the Tauberian
theorem and subsequent double differentiation

kg T 1

_ _ b
mFHTiH 17_;4-0—2 2H

(v, ~ —C (58)

where Cis a positive constant. Note that in the borderline case 1 > p = 2H — 1 > 0 both expressions (57) and
(58) tend to the same limit resulting in the logarithmic correction to normal diffusion in expression (54).
A graphical representation of the velocity autocorrelation function (36), (44) and (58) is shown in figure 8.
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Figure 8. Comparison of the velocity autocorrelation functions for the untruncated case, equation (36) (blue line), with exponential
truncation, equation (44) (red line), and with strong power-law truncation, equation (58) where yt = 1 (yellow line), as well as with
weak power-law truncation, equation (57) where ;1 = 0.3 (green line). Parameters: H = 3/4, kg T /[mIy] = 1,and 7, = 50.
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Figure 9. MSD of the motion of lipid molecules in a lipid bilayer model membrane, at room temperature in the liquid disordered and
liquid ordered phases (symbols) [22]. The crossover from subdiffusion to normal diffusion or increased subdiffusion at around 10 ns
is distinct. Data courtesy Hector Martinez-Seara, University of Helsinki. The black solid lines provide a fit with equations (39) and (47)
resulting from our generalised Langevin equation model with exponentially and power-law truncated noise, respectively. The
parameters are presented in table 1, see also discussion in the text.

3.5. Application to lipid molecule dynamics in lipid bilayer membranes

We here demonstrate the usefulness of our tempered fractional Gaussian noise approach to a concrete physical
system. The data we have in mind are from all atom molecular dynamics simulations oflipid bilayer membranes
[30]. In their simplest form, these are double layered leaves made up of relatively short amphiphilic polymers
called lipids. Immersed in water the double layer arrangement prevents the exposure of the hydrophobic tail
groups to the ambient water, while the hydrophilic head groups are in contact with the water. At room
temperature the lipid bilayer assumes a quite disordered liquid structure [30]. In this lipid matrix, comparatively
large membrane proteins may be additionally embedded [30]. Natural biological membranes are composed of
lipids of many different chemistries, and they are crowded with membrane proteins. Supercomputing studies
have the task to reveal the dynamics of both proteins and lipids in such protein-decorated bilayer systems. This
thermally driven diffusion of the constituents influence biological properties of the bilayer, such as diffusion
limited aggregation, domain formation, or the membrane penetration by nanoparticles [30].

Figure 9 depicts the simulations results in a chemically uniform, liquid disordered lipid bilayer membrane as
well as in the liquid ordered state in the presence of cholesterol molecules—the system is specified in detail in
[22]. The motion of the lipids is Gaussian for all cases and best described as viscoelastic diffusion governed by the
generalised Langevin equation (22) fuelled by power-law noise [22, 24, 25]"". As can be seen in figure 9 the MSD

15 . . . . . .. . s
Note that the Gaussian character is lost and intermittent diffusivity dynamics emerge in highly crowded membranes [24], a phenomenon
that can be understood in terms of a superstatistical approach [54] or within a fluctuating diffusivity picture [55, 56].
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Table 1. Fit parameters for the model membrane simulations data shown in figure 9. The colours mentioned in the first column correspond
to the colour coding in figure 9. Bold face stands for liquid ordered systems with embedded cholesterols.

H H T kB T/[WIFH] Qlshort Kﬂshon Qlong K“lnng
(ns) (nm?/nsec?—2H) (nm?/nsec?—2H) (nm?/nseclong)

DSPC (purple) 0.70 — 4.0 0.050 0.60 0.034 1.0 0.029
SOPC (pink) 0.67 — 2.5 0.88 0.66 0.064 1.0 0.064
DOPC (blue) 0.69 — 3.0 0.067 0.62 0.046 1.0 0.044
DSPC (grey) 0.76 0.41 0.60 0.019 0.48 0.010 0.89 0.003 5
SOPC (green) 0.75 0.44 0.22 0.025 0.50 0.014 0.94 0.002 6
DOPC (brown) 0.72 — 4.3 0.038 0.57 0.024 1.0 0.021

of theliquid disordered lipid systems exhibits a clear crossover from subdiffusion to normal diffusion at roughly
10 ns, the typical crossover time scale discussed in literature, at which two nearest neighbour lipid molecules
exchange their mutual positions and thus decorrelate their motion [22, 30, 31]. For the liquid ordered cases, one
lipid chemistry also shows a subdiffusive—normal crossover, while the two other lipid chemistries lead to a
crossover from slower to faster subdiffusion [22]. From fit of the parameters (see the summary in table 1) to the
data we observe an excellent agreement with the short and long time scaling regimes and, remarkably, the model
fully describes the crossover behaviours without further tuning for both liquid disordered and ordered
situations. We note that subdiffusive—diffusive crossovers are also observed for protein-crowded membranes
[23,24,53].

We note that from equation (31) and the effective diffusion coefficient

1d
Ki) = S (20)- (59)
we find the short time limiting behaviour
K3() = K ghont' 1 (60)
with
O L — (61)
: mly T2 — 2H)

For the long time limit, from equation (40), it follows that

« kT 1

a,long — _
8 I’I’ZFH TiH !

(62)

for the exponential tempering, whereas the cases of DSPC and SOPC lipid chemistries the long time limit in the
weak power-law truncation case is given by

a,long = . (63)
’ I'CH — p+ DT (u + 2 — 2H) mIyth

The fit values given in table 1 are in very good agreement with those obtained in the simulations study [22]. We
note, however, that for the weak power-law tempering model fit the crossover time is somewhat
underestimated.

4. Direct tempering of Mandelbrot’s fractional Brownian motion

So far we introduced the tempering on the level of the noise £(¢), which drives the position co-ordinate x().
Another way to introduce the crossover from anomalous to normal diffusion is to consider a truncation of the
power-law correlations directly in the original definition of fractional Brownian motion according to
Mandelbrot and van Ness [36]. Such a formulation was recently proposed by Meerschaert and Sabzikar [57].
Here we analyse this model and demonstrate that it leads to a very different behaviour of the MSD than the
previous tempered fractional models. A formal mathematical analysis of this model was provided very recently
in [58]. We here recall some of their results for the convenience of the reader and present clear physical
arguments for the seemingly paradoxical behaviour of this model. In particular we come up with a comparison
to a fractional Ornstein—Uhlenbeck scenario.
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4.1. Meerschaert and Sabzikar direct tempering model
Meerschaert and Sabzikar defined this extension of fractional Brownian motion by applying an exponential

truncation in Mandelbrot’s definition [36, 57] '°,

0
Buat)= [ [0t — )it — NI B () Y
700t r 1
[ e - B e, (64)
0

where H, A\, t > 0. B/(t) is white Gaussian noise of §-covariance (B'() B(t,)) = o6 (# — t,) and zero mean.
The parameter ) stands for the truncation parameter, and classical fractional Brownian motion is then obtained
in the limiting case A\ — Owhen H € (0, 1). It should be noted that the prefactor 1/I'(H + 1/2)in
Mandelbrot’s original definition is dropped here in line with the procedure of [57]. The MSD encoded in
equation (64) is (see appendix C for the derivation)

(Bii(1) = o*CPt?H, (65)
where the prefactor is
»_[20CH) 20 + 1/2) Ku(M) )
"l ean N et |
Kx(z) denotes the modified Bessel function of the second kind, which for small argument zbehaves as [42]
P(H) —H P(_H) H F(H) 2—H
KH(Z) ~ 21—HZ + 21+H 23—H(1 _ H)Z (67)

while for large zwe have K (z) ~ +/7/(2z) e 2. The fact that the prefactor C; is an explicit function of time
contrasts the result of standard fractional Brownian motion, and we will readily see the ensuing consequences.
In the short time limit t << A~ expression (65) has the compound power-law form

0T (2H)

BZ (1)) ~ o TX(H 4+ 1/2)Vyt?H 4 —— "7
(BizA (1) ~ o T'( /D) Vi 2HH(H — 1)

)\272Ht2 (68)

with Vi = 1/[['(2H + 1)sin(wH)]. Thus, thelimit A — 0indeed reduces to the expression for standard
fractional Brownian motion. In the long time limit > A~ the MSD of this tempered fractional Brownian
motion, remarkably, converges exponentially towards a constant value,

2QH) 2V HTH+1/2) 40 n
(2)\)21-1 - MN+1/2 g ¢ ’

(BiiA (1) ~ az( (69)
aresult which is at first surprising. This point will be discussed and compared to the fractional Ornstein—
Uhlenbeck process below. The functional behaviour of result (69) is shown in figure 14. We note that if we
consider the Langevin equation (2) in combination with the directly tempered noise By, (t), expression (65) and
its limiting behaviours (68) and (69) exactly correspond to the dynamics of the MSD (x2(¢)).

As shown in [58] it is possible to define a tempered fractional Gaussian noise following Mandelbrot and van
Ness’ smoothening procedure involving a short time lag 6 (see appendix C.2). The autocorrelation function of
this tempered fractional Gaussian noise is given through

F(H + %)02
(BiA()Bi (£ + 7)) = W[ZTHKHQATD — (7 + OHKu (T + 8))
— |7 = 8P Ka (AT — )] (70)

An important feature of the autocorrelation function (70) for tempered fractional Gaussian noise is its
antipersistent behaviour over the whole range 0 < H < 1 for any finite ), that is, the integral of expression (70)
over the entire domain of 7 vanishes:

j;oc (Bl (DBl A(t + 7)) dT = 0. 71)

This is in sharp contrast to (conventional) fractional Gaussian noise. Indeed, in the limit A — 0 the noise
autocorrelation function (70) approaches the one of fractional Gaussian noise [36, 57], as can be derived by using
the small argument expansion (67) of the Bessel function. In this limit A\ — 0 for any finite 7 the autocorrelation
function (70) converges to

16 . . . . . . . .
Note that in this section we use dimensionless units in order not to obfuscate the discussion.
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Figure 10. Theoretical results for the autocorrelation function, equations (70) and (72), for three different H > % values. The solid
lines show the antipersistent behaviour of the autocorrelation function of tempered fractional Gaussian noise, which approaches zero
exponentially; while dashed lines represent the power-law decay of the autocorrelation function of the fractional Gaussian noise.
Parameters used: A = 10,6 = 10°.
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Figure 11. Theoretical results for the autocorrelation function, equations (70) and (72), for three different H < % values. The solid
lines show the autocorrelation function of tempered fractional Gaussian noise and dashed lines represent the autocorrelation function
for fractional Gaussian noise. There is no significant difference between the two functions, except around the truncation time, AL
which is magnified in figure 12. Parameters used: A = 10,6 = 10>,

T2(H + 5)o?V
262
and shows negative correlations for 0 < H < 1/2 and positive correlations for 1/2 < H < 1, see appendix C.3.
The autocorrelation function (70) and its limit for A — 0 are shown in figures 10 and 11 for different values
of the Hurst parameter. While for the tempered process it is antipersistent for the whole range of H, in the limit
A — 0 we clearly see the difference between the antipersistent case with the overshoot to negative values and a
slow recovery back to zero. The autocorrelation function for the persistent case is always positive.
Itis easy to show that for 7 < 1/Aand 6 — 0 the autocorrelation function (70) decays as a power-law,
consistent with the behaviour of fractional Gaussian noise,

/l\im (B (OB \(t + 7)) ~ (7 + &) 4 |7 — §PH — 272H] (72)
—0

(Bjj \(©)Bfy \(t + 7)) ~ 0?(2H — 1)HT*(H + 1/2) Vig| 712

O’ZF(2H))\272H
o 22H+1(1 — H) ’ (73)
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Figure 12. Comparison between the exponentially fast decay of the autocorrelation function of tempered fractional Gaussian noise
(solid lines), equation (74), and the slower power-law decay of its (A — 0) regime, which is equivalent to fractional Gaussian noise
(dashed lines), equation (73), around the truncation time. Parameters used: A = 10,6 = 107,

while the asymptotic behaviour at long observation times, 7 >> AL,

H—l)é

H-Ll.—\r 2
T 2

T2 70 cosh(MS) + sinh()\é)(i

QH—3 \H+342 - (74)

(Bi (D) Bip p(t + 7)) ~

decays exponentially, in contrast to the non-tempered limit in equation (73). This different asymptotic
behaviour of tempered versus non-tempered fractional Gaussian noise around the truncation time, is shown in
figure 12.

4.2. Fractional Langevin equation with directly tempered fractional Gaussian noise
Considering the internal noise £(#) of the system as the tempered fractional Gaussian noise By; , (¢) defined
above, the overdamped tempered fractional Langevin equation reads [58]

t dx
[ = nTar =, 75)
0 dr
inwhich 7, (1) = 2(Bf; ,(t)B{; \(t + 7)). Similar to our derivation above, we obtain the Laplace transform of

the MSD (28) in dimensionless units,

2

=2 _
FO = Fe

(76)

in which we have to find the Laplace transformation of the autocorrelation function (70). We assume that
o® = 1 for simplicity from now on. To proceed, in the second and third terms we change the variables and split
the resulting integrals,

) ZP(H + %) oo
’}/H(S) = W{Z[l — COSh(éS)] j(; dte 't KH()\t) (77)
o
+2 f dr sinh(s (6 — t))tHKH()\t)}. (78)
0

First, we expand the above functions up to second order in §. Since in the second integral § << A\~ 'and t < §the
relevant regimes are 6s < 1and At < 1. Therefore, to second order in 6, 4, (s) is

0(H+3) (s o
2) ], =(%) dre sttHKy (\t
ﬁ(zA)Héz{ 2 j; K (M)

)
42 fo e (s(5 — t))tHKH(/\t)}. (79)

Fu (s) ~
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Using expansion (67) and keeping terms up to the second order of é we find

6 2Hsr 5?2
2 dt(s(6 — ) tHKy () ~ —. 80
fo (6@ = K (A ~ e T~ I 2 (80)
Insertion of this result back to relation (79) yields
ZF(H + l) H—1.82 00
- 2 w2 1s6

~ — (6s)? dte "tH Ky (At) ¢ 81
e ﬁ(zA)H52{sin(7rH)r(1 “ Jy dree K )} 1

The integral in (81) is a Laplace transformation, for which we apply equation (2.16.6.3) of [59]. Hence we find the
expression for the autocorrelation function in Laplace space,

20 (H + = 2H—1452
T (s) ~ ( 2>{ -

JTQMHS? | sin(rH)T (1 — H) M

—IXH I'QH + 1) 1 3 N
— (6522 Rl= sH+ 251 - & 82
R T YE R & "3 52 (82

in terms of the hypergeometric function ,F; [42].

4.2.1. Short time behaviour of the MSD

For the regime of short observation times, § < t < 1/Awe apply the linear transformations for
hypergeometric functions (for more details see (appendix C.4)). Then, with the general definition for
hypergeometric functions up to second order and some simplifications, we find the dominant term for the
autocorrelation function,

2r(H + 1)

- sI—2H, (83)
2sin(mH)

Fu (s) ~

Substituting this into expression (76), we see that

(#2(5)) o M) it (84)
2r2(H + 1)
By inverse Laplace transformation we find the asymptotic MSD behaviour in time,
sin(mH 22
(2 (1)) ~ 0D (85)

r(H + 1) TG - 2H)

This result corresponds to subdiffusion for 1/2 < H < 1 in agreement with the findings in section 3. For
0 < H < 1/2 thebehaviour is superdiffusive.

4.2.2. Long time behaviour of the MSD
For the long times regime t >> 1/Aor A\/s >> 1 we go back to expression (82) and use the same method as in the
previous subsection (see also (appendix C.5)). It can be seen that the dominant term is a linear function of s,

= w(H+)

J(s) ~ . 86
) 20H sin(rH)T'(1 — H)S (86)
Getting back to equation (76) for the MSD, this yields
2H _
2(5)) ~ 2X % sin(mH)I'(1 — H) 3 87)
{ ;
2T (H + 5) T
After inverse Laplace transformation, we obtain
: _ 2H 2H
() ~ SRCDTA DX o STA (88)
F(H—i— E)Jﬁ I‘(H+ 5)F(H)

Thus, at long times this process converges to ballistic diffusion, as already observed in [58].
The general behaviour of the MSD and its crossover from short time power-law behaviour to long time
ballistic motion is shown in figure 13 for different Hurst exponents.
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Figure 13. MSD for the tempered Langevin equation (75), from numerical Laplace inversion based on result (82). We also show the
transition from anomalous diffusion for short time, equation (85), to the ballistic regime for long observation times, equation (88), is
shown for different Hurst exponents and A = 0.1.

4.3. Physical discussion of the direct tempering model and Ornstein—Uhlenbeck with fractional Gaussian
noise
To come back to the above observed finite limiting value at long times, encoded in expression (69), of the MSD in
the tempered fractional Brownian process we briefly study the confined fractional Brownian motion in an
harmonic potential. Experimentally, such a situation arises, for instance, when particle tracking is performed
with an optical tweezers setup in a viscoelastic environment [9, 20]. We thus consider the Ornstein—Uhlenbeck
process

SO — ) + By, (89)

fort > 0and with x(0) = 0, where the noise By, (t) is again fractional Gaussian noise. The MSD reads (see
appendix D)

At
x2(t)) = o2 VgtHe M1 + —(eMf, (= \t) — e Mf, (At ], 90
(x*(1)) H [ 4H+2( fu(—=At) (A1) (90)
where f,;(x) = M(2H + 1; 2H + 2; x) is Kummer’s confluent hypergeometric function. For t < X!, the
MSD of this fractional Ornstein—Uhlenbeck process assumes the form

(x2(1)) ~ a?Vyt?H (1 — A1), (91)

which corresponds to unconfined fractional Brownian motion with a correction proportional to Af. In the long
time limit an exponentially fast convergence occurs to the stationary limit

0.2

2 ~—_—
b 2sin(mH) NH

(92)

Figure 14 compares the MSDs of tempered fractional Brownian motion and of the fractional Ornstein—
Uhlenbeck process. Both of them saturate at long times, where the plateau value depends on the value of H,
compare also [60, 61]. Curiously, the plateau values of both processes become identical for the Hurst exponent
H = 0.768 149.

From the comparison with this fractional Ornstein—Uhlenbeck process we see that the direct tempering
model of Meerschaert and Sabziker actually describes a confined motion, in contrast to the simple intuition of
the tempering in equation (64). In that sense it is fundamentally different from the truncated models considered
in the previous sections which show a crossover between two regimes of steadily increasing MSD.

The effect of direct tempering for the fractional Langevin equation model, a priori is even more surprising.
Namely, as we saw from equations (85) and (88), this model demonstrates a crossover from a short time
subdiffusive to a ballistic regime at long times. Such a behaviour appears counterintuitive. However, as we show
now, it is actually a simple consequence of the two basic features of the directly tempered internal fractional
Gaussian noise (75): (i) the integral of its autocorrelation function over the entire time domain from zero to
infinity is identical to zero, see relation (71); (ii) at long times the autocorrelation function exhibits the
exponential decay (74). To demonstrate that these two conditions indeed effect the ballistic long time behaviour,
consider a toy model for the noise £(f) in the fractional Langevin equation (75), namely, we assume the
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Figure 14. MSD of the tempered fractional Brownian motion (equation (69), violet line) and the fractional Ornstein—Uhlenbeck
process (equation (90), green line) and their long time plateaus (horizontal lines) for several values of the Hurst exponent H and the
same parameters 0> = 1and A = 0.1.Top left: H = 0.3, top right: H = 0.5, bottom left: H = 0.768 149 (equivalence of the plateau
values), bottom right: H = 0.8.

autocorrelation function
(EDEE+ 1) = (1) = 6(1) — de . (93)

Note that the spectral density of the noise is non-negative and the autocorrelation function (93) obeys conditions
(i) and (ii). Now, the Laplace transform of the autocorrelation function (93) reads 4, (s) = s/(s + ), and with
relation (76) we thus find the MSD

2 2+ N
RO
in Laplace space. As function of time, this indeed produced the ballistic long time behaviour (x?(¢)) ~ At?for
t> 1/

As we see the direct tempering approach leads to unexpected behaviours. Because of the stationary limit (69)
the model by Meerschaert and Sabzikar may be more appropriate for modelling the velocity process rather than
the position of a diffusing particle, compare [62]. Conversely, the emergence of the ballistic motion (88) atlong
times for the directly tempered fractional Langevin equation may find useful applications for active systems.

(&(s) = (54)

5. Conclusions

In finite systems anomalous diffusion is typically a transient phenomenon, albeit the crossover time to normal
diffusive behaviour may be beyond the observation window of the experiment or simulations. In those analyses
that explicitly monitor the anomalous-to-normal diffusive crossover, it is desirable to have a complete
quantitative model combining the initial anomalous and the terminal normal diffusive regimes, instead of a
naive fitting of anon-linear (o = 1)andalinear (o« = 1) power-law for the MSD. The explicit analytical results
obtained here provide a two-parameter (exponential cutoff) or three parameter (power-law cutoff) model for
such crossover dynamics and thus have the additional advantage of allowing one to determine the crossover
time 7, in those cases when the crossover is rather prolonged and 7, otherwise difficult to extract. Considering
systems driven by Gaussian yet power-law correlated noise we introduced two types of tempering of these
correlations, a hard exponential and a softer power-law truncation allowing also crossovers from an initial to a
final power-law behaviour with different scaling exponent. By plugging this persistent noise into the regular
Langevin equation, we produce a superdiffusive—normal diffusive crossover, as would be observed for actively
moving but eventually decorrelating particle or animals. In contrast, when we fuel the generalised Langevin
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equation with this noise, due to the fluctuation dissipation relation the resulting motion becomes antipersistent,
and the tempering leads to a subdiffusion—normal diffusion crossover. For the latter case we explicitly showed
that the tempered anomalous diffusion model is very useful for the quantitative description of simulations data
of lipid molecules in a lipid bilayer membrane. Including the shape of the crossover regime excellent agreement
between data and model are observed.

Autocorrelation functions of time series, as studied here, can be directly related to the distribution of first
passage times, that is, the distribution of times between consecutive zero crossings of the time series [63]. More
recently, the first passage time distribution was studied in the presence of crossovers in the autocorrelation
function of the series [64]. In that work the authors demonstrate that the presence of a crossover in the
autocorrelation function is related with a crossover in the first passage time distribution which is in fact much
more complicated to determine. It will be interesting to explore such a connection for the crossover behaviour
studied herein.

We also note here that there exist other classes of anomalous diffusion models such as semi-Markovian
continuous time random walks with scale-free waiting time statistic [65], Markovian continuous time random
walks with time scale populations [66], scaled Brownian motion [67], heterogeneous diffusion processes [68],
generalised grey Brownian motion [56, 69], or a recent approach using heterogeneous Brownian particle
ensembles [70]. The use of either model depends on the physical situation. The motion fuelled by fractional
Gaussian noise considered here is useful for a large range of systems, in particular, the motion of submicron
tracer particles in living biological cells and artificially crowded environments, or the motion of membrane
constituents in pure and protein-decorated lipid bilayer membranes. Similarly, applications to stochastic
transport in other fields such as sediment transport in earth science [71] are conceivable. To identify such types
of motion it is not always sufficient to only look at the MSD of the particle motion, instead, a range of
complementary quantitative measures should be considered [7, 32]. To analyse the exact behaviour of these
measures for the tempered motion analysed here, including the statistics of time averaged observables [7, 72],
will be the focus of future work.
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Appendix A. Spectral densities of truncated Gaussian noise

At first we check the positivity of the spectral density of the noise (6). Defining the autocorrelation function (v?);
as symmetric function of the time 7 on the infinite axis with respect to 7 = 0, the power spectrum becomes

52\ *© 2 WwT o 2
(7% = Lm dr (v¥), e = Zj; dr (v%); cos(wr)
2D . 1
= MZH"_I - sin ([H - E]w), (A1)

which is positive since 1/2 < H < 1.
Let us check that for the exponential tempering (10) the spectral density is also positive:

(7)., = J%COS(“H ~ Harctan(wr)), 2

where we made use 0of 2.5.31.4 [59]. This expression is non-negative since the argument of the cosine function
lies between —7/2 and +7/2.

21



10P Publishing

NewJ. Phys. 20 (2018) 103027 D Molina-Garcia et al

Let us now go to the case of power-law tempering, given by expression (13). Using 2.5.7.6 of [45] we find that

TQH — DI(u — 2H + 1)2F3(2H271) H %, 2H—p 2H—p+1, _(m‘*)z)

~ _ZDHTiH’l 2 2 4

<V2>w =
IF'H — 1) T'(w)

L TeH-—p-1 COS([zH— - 1]7r)

(wT*)ZH—u—l 2
Xpﬁqul-l w—2H+3 u—2H+2'_(w7'*)2

243 2) 2 > 2> 2 > 5 > 4

. —2H+1

+uT'QCH — p — 2)sm(W)

F p+l p+2 3 p—2H+4 p—2H+3 (wn)?

243 ;0 5 2 P > 5 > 4
% . (A.3)

(wr, P2

The positivity of this expression was checked numerically with Mathematica for various values of the
exponent /.
We note that since ,F,((a,); (b,); 0) = 1[43], we have

lim (#2), = 2I'2 — 2H)Dyr2"1 > 0 (A.4)

w—0

for all ¢+. Moreover, for 4 = 1 result (A.3) can be simplified with the use of the following property of the
generalised hypergeometric function ([46] 7.2.3.7): if for rvalues of a,, there also exist equal r values of b,, then

P ((ap—r), (¢r); (bq,,), (cr); 2) = p—rBy—r((@p—r)s (bq,,); z). (A.5)

Appendix B. Mittag-Leffler functions and derivation of equation (39)

The three parameter Mittag-Leffler function is defined by [73]

- O
Efp(2) =y ————", (B.1)
w0 ,;0 T(ak + () k!
where (8); = I'(6 + k) /T'(6) is the Pochhammer symbol. Its Laplace transform is given by [73]
ad—f
LIOE ,(—t)](s) = ———, B.2
[ () = s (B.2)

where Re(s) > |v]'/.
From definition (B.1) we conclude that the behaviour of the three parameter Mittag-Leffler function is the
stretched exponential [74]

[T RS Sy SR (—6Lﬁ)t“). B.3
= G T Tar 1B T+ B )

Using the series expansion around z = oo [75] (for details see also [76])

z® i ro+b (=2

§

Fad ) = S A TG =t +m) (B.4)
for0 < a < 2and z — o0, we find that the asymptotic behaviour of the three parameter Mittag-Leffler
function is given by

s ’ tfm‘)'
Ea)ﬂ(fta) >~ m, t — OQ. (BS)

The following formula for the derivative of the Mittag-Leffler function follows directly from definition (B.1)
applying term-by-term differentiation,

%(tﬁ’lEﬁ’ﬂ(ata)) = t972E% ;_\(at). (B.6)

From the generalised Langevin equation (22) and the exponentially truncated friction kernel (37) via the
Laplace transform method, we find for the MSD
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(x2(t)) = ZkBTﬁl[ 57 ] (B.7)

mly (s + 7, H—2H

Therefore, from the Laplace transform formula (B.2), wherea — 1,6 — 1 — 2H, ad — 3 — —2,thatis,
08— 3 —2H,andv — T:l, we obtain the result (39).

Appendix C. Derivations for section 4

C.1. Derivation of MSD for tfBm
Due to the white Gaussian noise in equation (64) the MSD of tempered fractional Brownian motion (64) can be
written as

t
(Bia(1) = 02[ f e P — w2 ldu
0
0
+ f (e A= (¢t — y)H-1/2 — e’\“(—u)Hl/z)zdu]. (C.1)
After expanding the square of the second integral and using the appropriate changes of variable, it becomes
o0 o0
(B3 (D) = Uz[f e 2Nis2H- 145 _ e*’\'f e2Ns(] 4 S)H71/25H71/2d5:|‘ (C.2)
0 0

These integrals can be found, for instance, as equations (3.3814) and (3.3838) in [ 77]. This produces
equation (65).

C.2. Derivation of autocorrelation function of tempered fractional Gaussian noise
In the classical paper by Mandelbrot and van Ness [36] a smooth fractional Brownian motion is defined in terms
of the small and positive parameter 6, through

By (t; §) = % ft By du, (C.3)

Its derivative is known as the fractional Gaussian noise
1
By'(t; 6) = g[BH(t + 6) — Bu(1)], (C4)

where we omit the explicit dependence on § in the main text. The autocorrelation function of equation (C.4) is
given in expression (72).

The same procedure can be applied to tempered fractional Brownian motion to define the corresponding
continuous fractional noise

Bt 8) = ~1Biua(t +8) = Bun (o)l C5)
With the identity
2@ —b)(c—dy=(@—d?+ B — ) —(a—c)? — (b - d)? (C.6)

and the fact that tempered fractional Brownian motion has stationary increments, and By, (0) = 0, we obtain
1
(Bl OBl A\ (t+ 75 8)) = E[<BI%M(T — 8)) + (BiA(T + &) — 2(BE \(M)]. (C.7)

By virtue of relation (65) the autocorrelation function of tempered fractional Gaussian noise becomes expression
(70). The autocorrelation function of tempered fractional Gaussian noise (70) has a well defined limit when
o6\ — 0,

o’T(H + 1/2) X2 —2H
28
— AITDPK— g (AIT)]. (C.8)

(B A(OBj (¢ + 7)) = [ATDH K (AT

C.3. Evaluating the integral over the autocorrelation function of fractional Gaussian noise
Taking the integral over expression (72) and denoting

. F2(H + %)
o (C.9)
2TQH + sin(xH)
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one gets
K = f drlim (Bl \(t)Bly\(t + 7))
0 A—0

A A A
— % X lim [fo dr(r + &)™ + fo drlr — 8pH — zfo dTTZH:|

A—o0

A+6 A—6 A
= Wa x lim f drr#f + f drr?f — 2f drr2H
8 a-x|ds -5 0

= (ZH‘/—\:ﬁ X Alim [(A 4+ §)2HT1 — §2H+1 L (A — §)2H+1 _ §2H+1 _ ) A2H+1]

2
W x lim |A2H+11 + 2H + 1)ﬁ + 2H(2H + 1)5— — §2H+I
(2H + 1)(52 A—o0 A 2A?
2
+ A2HH1 — (2H + 1)é + 2HQH + 1)5— — S+ _ pA2H+]
A 2A?

B (zHYﬁ x lim [2HQH + D6
A—o00

r2(H+1
:—( , 2) x lim [AZH-1]
2I'2H)sin(mH)  A—oo

oo, H>—
_ . (C.10)

C.4. Tempered fractional Gaussian noise: MSD for short observation times
For the regime of short observation times, § < t < X!, we apply the linear transformation 15.3.6 from [42] for
hypergeometric functions. In the resulted definition, the argument of the hypergeometric function is small,

1
S (5) = ZF(H + E) m2H-1g B 52571/\7}1 T 1, 2H3—|— 1
YH STV | sin(rH)T(1 — H)NH SH+1 H+ >

) F(H+ %)F(H) zFl(l, - iz)
T+ Hr(H+1) 7 \2 52

3
)\2 HF(H+ E)F(_H) 1 )\2
2
For small arguments we use the general definition of hypergeometric functions, 15.1.1 in [42], up to the second
order. Then
20(H + 1) oHI e [L2H
Fr(s) =

— r 3
JTQRMH | sin(rH)T'(1 — H)M 2H+1\H [ H + 2

P(H+2rHE) po gy TS Ta+ Dro p
T(H + I)F(H n %) F(%) Il — H) rQ-H) s

. (ij)HF(H + %?F(H) LG + 1 (P(H + 1)
F(E) F(H + E)F(H +1)

N
3\ N\
+ P(H + E)?)]} (C.12)
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Now, we simplify the Gamma functions using the duplication formula 6.1.18 in [42],

(o) — ZF(H+ %) m2H-1s C2MrH)s 2HT(H)s X
TS =T Z 0 sin(rH) (L — H)M N N1 — H) 52
o g F(H)F(—H)F(H + z)()\z )H
X (H+3) r(s) d
iy g TEDD(-HI(H+3) N
'_AH(H+3 TG) (H 5)5—2 (C.13)
2 2
Using Euler’s reflection formula,
I)IA - z) = —~ (C.14)
sin(7z)

the first two terms cancel each other and it can be seen that the dominant term in the autocorrelation function
scalesas s!=2H

N ) I L F(“%)(A)wl

NN e AH—l(H+§) sin(tH) & \s

- oal(H+ 2 2H+1
- A (2), 20T ( 2)(1) oL (C15)

M-1(1 — H) “lsin(rH) VT

C.5. Tempered fractional Gaussian noise: MSD for long observation time
For the regime of long observation time or % > 1, we go back to equation (82) and use relation (15.3.8) from
[42] for hypergeometric functions with small arguments. Then, by applying the expansion of hypergeometric
functions up to the second order for small argument, s/ A < 1,
s? )
2

zFl(;,l;mgﬂ_ﬁ)_( ol ) e

§? T(OI(H + 1)

s F(_l) 3 s?
(r) o+ ) alvmenss)
)

1.1
2’2

N r( o Tk + 1) (k+ H+ ) 1 (2
SR (O ) #(5)
F(%) Tkk+ DGk + H+1) 1
( ) - P(l)P(H+1)kz;; : (k+2) : k'( )

H+ )vw 2
_ i@ fore ) e 2)2
A TH+Y 2 2/ X
1
B i(H +I)VFl @+ 1) T + 2) s* ©.16)
2 3 3 2 | ’
X TH+1) F(E) r(E + 1) X
As aresult, the integral in expression (82) is approximated as
foo dte "tHKy (\t) ~ s—le—l)\—H{ﬁF(H + l)i
0
$
+4—F(H 4 )A— —2T(H + 1)— - —(H + DI(H + 1)—} (C.17)

Applying these approximations, the resulting expression for the autocorrelation function in the Laplace
domain is
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2I'NH + L H-1
A(s) = ( 2) : 27 s _ 2 H-1)-H
JTCRMNE | sin(rH)T(1 — H)M

1)s 3)s? s2
w|vwr|H+ = )2 ¢ wr(H+ 2 xS
2]\ BN 22

4 st
——H+DI'H A+ 1)—|¢. C.18
SH + DI W]} (C.18)
It can be seen that the dominant term is a linear function of s,
2I'NH + l 2H—1
A(s) = (#+3) e S (C.19)

JTQRMHE sin(rH)T(1 — H)ME

Appendix D. Derivation of the MSD of the fractional Ornstein—Uhlenbeck process

The solution of equation (89) for a general noise &(u4) is
t
x(f) = e N f ME (u)du, (D.1)
0
)

(x2(1) = e 2N J; t j; " A (€ (1) € (1)) iy duty (D.2)

In general, for a noise such that (£ (1)) € (up)) = g(|ty — wy]), equation (D.2) becomes

(x2() = i[ fo Ce Mg (rydr — e fo t e/\Tg(T)d’T:l. (D.3)

Inour case, £ (u) = Bj;(u). For H = 1/2, g(u) = 0*H(2H — 1) Vyu*'~2 and the MSD can be expressed in
terms of the Kummer function M(a; b; 2),

O'ZHVH tzH_l

(x2()) = [M(QH — 1; 2H; —)\t)

— e MM (2H — 1; 2H; M\b)). (D.4)
IfH = 1/2,using g (u) = %6 (u) in equation (D.2), we arrive at

2 :‘7_2 _ W2Mt
() = 20— e (D.5)

This result coincides with equation (D.4) for H = 1/2, such that equation (D.4) is valid forall H € (0, 1). Using
the properties of the Kummer function (which in our case reduces to the incomplete gamma function), relation
(D.4) is shown to be equivalent to equation (90).
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