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ABSTRACT: The lateral diffusion of embedded proteins along lipid membranes in
protein-poor conditions has been successfully described in terms of the Saffman−
Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly
dependent on its radius R as D ∝ ln(1/R). However, instead of being protein-poor,
native cell membranes are extremely crowded with proteins. On the basis of extensive
molecular simulations, we here demonstrate that protein crowding of the membrane at
physiological levels leads to deviations from the SD relation and to the emergence of a
stronger Stokes-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises
due to geometrical factors: smaller proteins are able to avoid confinement effects much
better than their larger counterparts. The results highlight that the lateral dynamics in
the crowded setting found in native membranes is radically different from protein-poor
conditions and plays a significant role in formation of functional multiprotein complexes.

I n living biological cells, the plasma membrane hosts
numerous integral proteins. Together with membrane lipids

and other macromolecules, they are thermally driven to
diffuse1,2 along the plasma membrane to form functional
protein oligomers3,4 and lipid−protein assemblies5,6 involved
in, for example, metabolism, recognition, and signaling.
In this context, the major challenge is to understand protein

diffusion under the crowding of proteins. Membranes of living
biological cells are highly heterogeneous, partitioned, and
extremely rich in proteins,7−10 with typical lipid/protein ratios
ranging between 50 and 200.11,12 The average in-plane distance
between membrane proteins is just a few nanometers, implying
that the proteins are in constant interplay colliding with one
another. However, how this dynamical interplay induced by
protein crowding influences membrane protein diffusion
remains poorly understood.
It is known that crowding, together with other phenomena

occurring in the membranes of living cells, leads to complex
effects,13,14 but their characterization in the nanoscale has
turned out to be difficult. Molecular simulations would be an
excellent approach or even the method of choice to explore this
challenging topic, but surprisingly, quite little has been done
until now. Simulations15,16 have revealed the emergence of
crowding-induced anomalous diffusion13,14 in lipid membranes,
complementing earlier Monte Carlo simulations with immobile
objects17 and clarifying the interpretation of fluorescence
correlation spectroscopy experiments18 that originally con-
firmed anomalous diffusion to take place in lipid bilayer
systems. Besides this, simulations have largely just supported

the experimental observations19 that diffusion slows down for
increasing crowding.15,20,21 As to recent progress on the
experimental side, modern atomic force microscopy, single-
particle tracking, and a variety of super-resolution microscopy
techniques are able to detect, for example, heterogeneity,
anomalous diffusion, and nonergodicity in the motion of
membrane proteins.22−24 These techniques have potential to
generate breakthrough insight on how functional protein
complexes form in native membranes through diffusion and
oligomerization. Planning and interpretation of these experi-
ments is difficult, though, given the lack of theoretical
understanding of how membrane protein diffusion takes place
under protein-rich conditions.
Meanwhile, in the protein-poor limit, the diffusion of

proteins is fairly well understood.1,19 Experimental data have
provided compelling evidence that for a membrane protein of
lateral radius R, the protein diffusion coefficient D scales
logarithmically as D ∝ ln(1/R) . This logarithmic dependence
has been observed for a variety of membrane proteins1,25−27

and aggregated peptides.28 Computer simulations of proteins in
protein-poor conditions also support this relation,20,29 even in
the presence of hydrophobic mismatch.30 While deviations
from this relation have also been reported,31−33 they have been
suggested to result from local membrane deformations34 or
experimental setups.25
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Theoretically, the logarithmic dependence of D on R is
predicted by the Saffman−Delbrück (SD) model derived for
protein-poor conditions. The SD model links the diffusion
coefficient of a protein with the physical properties of the lipid
membrane and the surrounding solvent35,36
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where μm and μf are the viscosities of the membrane and the
surrounding solvent (typically water), h is the hydrophobic
thickness of the membrane, and γ ≈ 0.5772 is the Euler−
Mascheroni constant. The SD model treats the lipid bilayer as a
continuum liquid, thus failing to describe the diffusion of
membrane lipids37 unless the interleaflet friction is consid-
ered.38 The SD model should be valid for membrane inclusions
smaller than the SD length LSD = hμm/(2μf) with a typical value
of ∼100 nm.39 This holds for membrane proteins, but for
diffusing objects larger than LSD, the SD model was extended
and a Stokes-like dependence D ∝ 1/R was found.39,40 This
relation successfully describes domain diffusion in monolayer
experiments,41,42 computer simulations on large inclusions,29

and diffusion in viscous membranes.43 However, interpretation
of the parameters, such as R, in the SD model is not obvious,44

and fits to data measured in living cells provide nonphysical
values for them.27 Still, the SD model is consistent with
extensive experimental data for the logarithmic dependence on
R and hence widely accepted under dilute conditions.
However, given the assumptions made in deriving the SD

model for infinitely dilute protein concentrations, can one
assume its applicability to biologically relevant membrane
systems characterized by protein crowding? If not, then the
central questions are, what is the size dependence D(R)
replacing the SD law, and for what physical reasons?
In this work, we tackle these outstanding questions by

molecular dynamics (MD) simulations. Previous MD studies
have addressed the effects of crowding and highlighted
decreased diffusivities,15,20,21 an extended subdiffusion re-
gime,15,16,20 and deviations from Gaussian statistics.16 Despite
all of the experimental and computational efforts, however, no
studies have attempted to probe the validity of the SD model in
crowded membranes or found rigorous descriptions for D(R)
in the protein-rich limit.
On the basis of the present work on membranes hosting a

polydisperse set of proteins, we find that in dilute conditions we
reproduce the SD-like weak D ∝ ln(1/R) dependence.
However, protein crowding at physiological levels is here

shown to result in a crossover to a significantly more
pronounced Stokes-like D ∝ 1/R relation. We argue that this
1/R law mainly arises due to geometrical factors: smaller
proteins are able to avoid confinement effects much better than
their larger counterparts. This claim is in full agreement with
our additional simulations of crowded membranes with a
monodisperse protein population and with simulations of a 2D
Lennard-Jones (2DLJ) liquid.
To elucidate the effect of protein crowding on the D(R)

relationship, we performed MD simulations using two very
different models. First, we simulated extensive membranes in
the coarse-grained (CG) scheme45−47 using the Martini model.
These membranes contained a polydisperse mixture of seven
transmembrane proteins with effective radii between 1 and 4.5
nm, thus mimicking realistic conditions to a satisfactory extent.
In each of the simulated five membranes, with lipid/protein
ratios equal to 50, 75, 100, 200, and 400 per leaflet, the relative
concentrations of the seven protein types were equal. These
proteins, chosen to have minimal extramembrane domains and
a cylindrical shape, are shown in Figure 1, along with examples
of simulated membrane systems. The protein−protein
interactions were slightly reduced, resulting in realistic transient
oligomerization. Additionally, we used this Martini model to
simulate crowded membranes with a monodisperse set of
proteins and a lipid/protein ratio of 50 per leaflet. Here, in
addition to the proteins shown in Figure 1, the simulations also
included two other small proteins (see section S1.4). Second,
we simulated 2DLJ fluids with 15 circular inclusions of different
radii. The free LJ particle/inclusion ratio varied between 300
and 1000, which provides similar protein/inclusion area
coverages as the CG Martini systems. Details on the CG and
2DLJ models and simulations are provided in sections S1.1−
S1.4.
The simulations of polydisperse CG models were run for 100

μs each, which allowed reliable extraction of D in the
microsecond regime, where diffusion is no longer anomalous
but normal15,16 (section S2.2). The extracted lipid and protein
D are shown as a function of the lipid/protein ratio in the top
panel of Figure 2. The effect of crowding is somewhat
nonlinear, in agreement with earlier works.15,48 In particular,
the effect of crowding on the D’s of the smallest proteins and
the lipids is most severe. The diffusion coefficients measured for
each individual protein reveal fairly small scatter around the
mean, indicating that no proteins are immobilized by, for
example, extensive aggregation or confinement (section S2.6),
except for the P21QJP; see below.

Figure 1. Top: Transmembrane proteins in the polydisperse coarse-grained simulations, labeled P1−P7; the subscript is the PDB identifier (Tables
S1 and S2 in the Supporting Information). Two DPPC lipids, making up the bilayer, are also shown to scale. Bottom: Examples of the simulated
polydisperse CG membranes with a varying lipid/protein ratio of 400, 100, and 50 lipids per protein per leaflet (left to right). The rightmost system
has also appeared in ref 13.
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It is established that the radius of a diffusing protein is not
simply that of the bare protein alone but includes a shell of
lipids moving together with the protein.44,49 We estimated
these effective radii Reff from average lipid displacements in the
vicinity of the protein in single-protein simulations (sections
S1.2 and S2.1). Protein Reff as well as their bare gyration radii Rg
are shown in the bottom panel of Figure 2. Reff values exhibit a
systematic increase as a function of Rg. Superimposing the lipid
displacement profiles reveals that the thickness of the lipid shell
is approximately 1.5 lipid layers thick and independent of the
size of the protein as well as of the lipid/protein ratio (see
section S2.1).
Figure 3 depicts the protein diffusion coefficient as a function

of Reff. Fits of the logarithmic SD-like (eq 1) and the Stokes-like
behavior (D = kBTλ(4πμmhR)

−1 + c with characteristic length
λ) are shown in Figures 3 and S9. The value of constant c was
insignificant. It is evident that at low protein concentrations the
data follow D ∝ ln(1/R), in line with previous studies.
However, at higher protein concentrations, D(R) becomes
increasingly Stokes-like. This observation is independent of the
definition of the protein radius (section S2.3), even though Reff
provides slightly better fits. The change from the SD-like to the
Stokes-like behavior upon crowding is evident on the double-
logarithmic scale (insets of Figures 3 and S9). Importantly,
these conclusions for the crossover from the logarithmic SD-
like to the Stokes-like behavior hold for the polydisperse CG
Martini model and also for the 2DLJ model. Further, under
protein crowding, the Stokes-like behavior is observed also in
monodisperse CG systems (see section S2.9). As an exception
to the general trend, the diffusion coefficients calculated for the

second smallest protein (P21QJP) do not follow the observed
tendencies in most of the systems due to its tendency to
aggregate with the largest protein (P73TDP) (see section S2.4),
which serves as a reminder that simplified theoretical models
cannot account for specific interactions in biological systems.
Yet, in monodisperse crowded CG systems (section S2.9),
P21QJP diffuses freely in the absence of P73TDP and hence
follows the D ∝ 1/R behavior. Overall, the observation of the
Stokes-like behavior for crowded membranes is our first main
result.
Setting the hydrophobic thickness of the membrane to h = 4

nm50 and the water viscosity to μf = 0.7 mPa s51 and using Reff,
we extract 2.7 mPa s for the membrane viscosity μm from fits to
the SD model (eq 1) for the most dilute system. This agrees
favorably with 3 mPa s measured for a pure DPPC bilayer,50

suggesting that the D ∝ ln(1/R) dependence arises from an
underlying SD-like relationship.
Our extensive CG simulations already provide compelling

evidence that at high protein crowding, corresponding to
physiological conditions (section S2.8), the D ∝ ln(1/R)
relation gets replaced by the D ∝1/R one. We also considered a
2DLJ model that contains no coupling between the diffusion
plane and the surrounding solvent. This model successfully
reproduced the key features of membrane dynamics in our
earlier work.16,52 Remarkably, the change in the dependence of
D(R) from SD to Stokes-like behavior is also convincingly
reproduced by the 2DLJ systems; see Figure 3 (and section
S2.5).
The extracted μm from the dilute CG simulations gives LSD ≈

7.7 nm. The SD model assumes that the diffusing proteins have
radii smaller and interprotein distances larger than LSD and that
the host membrane and the surrounding solvent are infinite.
Otherwise, the finite size of the simulation system might affect
its dynamic properties.38 The observation that D ∝ ln(1/R) is
observed in our state-of-the-art simulations, which only partly

Figure 2. Top: Lipid and protein diffusivities from polydisperse CG
simulations. Note that the x axis is linear in protein/lipid values.15

Bottom: Gyration radii and effective radii of the proteins extracted
from single-protein simulations. Inset: size distribution in the 2DLJ
system. Coloring as in Figure 1.

Figure 3. Diffusion coefficients versus protein/inclusion size of the
polydisperse CG membrane and 2DLJ models shown in dimensionless
units. Unscaled data are shown in sections S2.3 and S2.5. In the dilute
case, the data fully agree with the SD model, whereas in the crowded
case, the 1/R dependence of the diffusivity is evident. Coloring as in
Figure 1.
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fulfill these requirements,39 suggests that the regime where the
relation holds is actually broader than what is expected based
on the SD model. Alternatively, the D ∝ ln(1/R) law might
result from another underlying and unresolved mechanism,
supported by similar behavior of the 2DLJ simulations without
membrane−solvent coupling. The observation of the D ∝ ln(1/
R) relation in conditions where SD is not expected to hold is
our second main result.
Figure 3 combines data from the polydisperse CG (colored

dots) and the 2DLJ simulations (black dots) for the dilute (top,
400 lipids per protein, 1000 free LJ particles per inclusion) and
crowded (bottom, 50 lipids per protein, 300 free LJ particles
per inclusion) cases using dimensionless units (both
diffusivities and radii are divided by the corresponding values
of a lipid or a single LJ particle (see section S1.5)). While the
compared systems do not have exactly the same protein/lipid
or inclusion/free LJ particle ratios nor the same surface
coverage of proteins/inclusions, this normalization reveals the
striking similarity of the functional relationship between
diffusion coefficients and radii in these two fundamentally
different systems. The data for the dilute systems are well fitted
by the D ∝ ln(1/R) model. The crowded case does not follow
this SD-like dependence but is instead described accurately by
the Stokes-like 1/R law. This full quantitative consistency of the
D(R) behavior between the CG and the 2DLJ models is our
third main result.
What is the physical origin of the observed change in the

functional form of D(R)? Protein crowding increases
membrane viscosity, which results in an increase of the SD
length and hence should expand the validity of the SD model.
However, we instead find that the SD model no longer
describes diffusion in the crowded regime. The presence of
other proteins violates the basic assumption in the SD model of
a single protein embedded in an isotropic continuum liquid.
Could interprotein interactions and aggregation lead to smaller
effective protein mobilities and thus effect deviations from the
SD law? This effect is excluded as due to the specifics of our
model setup (sections S1.1 and S1.3) no significant aggregation
between proteins or inclusions was observed, except for the
aforementioned P21QJP−P73TDP interaction (see section S2.4).
Crowding may also alter the protein and lipid dynamics due to
confinement, and proteins mutually act as moving obstacles. It
was recently found that proteins need to escape their
confinement to properly sample the membrane plane and
reach the normal diffusion regime.15 This escape probability is
directly proportional to the protein cross section and hence
radius. In the crowded systems, the smallest proteins are able to
travel longer distances by slipping through small openings
between proteins that are impenetrable for larger proteins. This
is visualized in section S2.7 showing 35 μs long trajectories of
each of the protein types in the most crowded system. The
trajectory of the smallest protein shows both localized rattling
motion and rapid movement across longer distances. These
spurts correspond to events where the small protein slips
through an opening between the larger proteins.
The hypothesis that geometric confinement is responsible for

the crossover from D ∝ ln(1/R) behavior to the 1/R law is
further supported by the 2DLJ simulations, in which the
diffusion of disk-shaped inclusions of different radii undergoes
an identical transition, as demonstrated quantitatively in Figure
3. Also, given that the 2DLJ system is void of any
hydrodynamic interactions with the solvent, it is obvious that
the change in D(R) must arise from geometric factors: The

embedded disks act as obstacles and give rise to confinement
effects. Because hydrodynamics is not predominant for this
system, the dynamics are likely mostly affected by collisions,
which can effectively be modeled by the 2D Enskog theory.53

While this theory was derived for fairly dilute conditions, it
interestingly suggests a 1/R dependence of the collision rates
on the particle radius.
Does the observed change in the D(R) dependence have any

biological relevance? Proteins occupy at least 20% of the surface
area of a red blood cell membrane.11 This corresponds to
between 100 and 200 lipids per protein. On the basis of data for
lateral protein concentration in the rod outer segment and in
the baby hamster kidney cell membranes, an estimate of 50
lipids per protein has been made.12 In the present work, we
found that the crossover from the SD law to the Stokes-like
regime takes place at about 200−300 lipids per protein (section
S2.8). Therefore, in cell membranes exceptionally crowded with
proteins, the diffusion takes place in a regime characterized by
Stokes-like scaling D ∝1/R.
Hence, in the crowded case, there is an order of magnitude

difference between the diffusion coefficients of the smallest
proteins and protein complexes that can be as large as 10 nm,
such as the nuclear pore complex. Under crowding, large
protein complexes are essentially immobile but interact with
small proteins that diffuse rapidly and aggregate with the
complex to render them functional. The dynamics in the
crowded setting is therefore radically different from protein-
poor conditions, where the diffusion of proteins is largely
independent of their size, as highlighted by the SD law.
We demonstrated that the D ∝ ln(1/R) relation akin to the

celebrated SD model fails to describe protein diffusion under
protein crowding. Such conditions favor the diffusion of smaller
proteins that are able to escape geometric confinement.
Remarkably, this behavior is reproduced in a simple 2DLJ
fluid, providing compelling support for the hypothesis that the
observed crossover from D ∝ ln(1/R) to D ∝ 1/R in crowded
membranes is mainly affected by geometric constraints and
thus the ability of a given protein to escape confinement.
Importantly, the change from the SD-like to the Stokes-like
behavior occurs at protein concentrations that are relevant for
cellular membranes.11,12 This suggests that while the SD model
has been successful in describing diffusion coefficients in dilute
model systems, it should be applied to more realistic biological
membranes with extreme care.
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