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Abstract
We present rigorous results for the mean first passage time and first passage 
time statistics for two-channel Markov additive diffusion in a 3-dimensional 
spherical domain. Inspired by biophysical examples we assume that the 
particle can only recognise the target in one of the modes, which is shown 
to effect a non-trivial first passage behaviour. We also address the scenario 
of intermittent immobilisation. In both cases we prove that despite the 
perfectly non-recurrent motion of two-channel Markov additive diffusion in 
3 dimensions the first passage statistics at long times do not display Poisson-
like behaviour if none of the phases has a vanishing diffusion coefficient. 
This stands in stark contrast to the standard (one-channel) Markov diffusion 
counterpart. We also discuss the relevance of our results in the context of 
cellular signalling.

Keywords: first passage time, Markov additive processes, Fokker–Planck 
equation, random search processes, coupled initial boundary value problem, 
cellular signalling, asymptotic analysis

(Some figures may appear in colour only in the online journal)

1.  Introduction

When does a stochastic variable reach a preset threshold (e.g. a physical target or a given asset 
value) for the first time? This generic first passage time (FPT) problem [1, 2] is central to the 
kinetics across many disciplines, such as diffusion controlled chemical reactions [3], signalling 
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cascades in biological cells [4–10], transport in disordered media [12] including the break-
through dynamics in hydrological aquifers [13], the location of food by foraging bacteria and 
animals [14], up to the global spreading of diseases [15, 16] or stock market dynamics [17].

Despite their diverse phenomenology and owing to the central limit theorem, the kinetics in 
stochastic systems such as the above can often be mapped onto a standard Markovian random 
walk. Here we will discuss the FPT behaviour in the context of a particle diffusing in space. In 
open domains the FPT statistics of the random walk—or its diffusion limit—decay as a power 
law4, giving rise to a diverging mean FPT (MFPT) [1]. Heavy tails are common when it comes 
to persistence properties of infinite systems [18]. A finite domain size, however, introduces an 
exponential long time decay and thus a finite MFPT, which becomes a function of the system 
size and dimensionality [1, 9–11, 19]. In unbounded domains all first passage trajectories 
are nominally direct [10], whereas in confinement a particle can arrive at the target site also 
via reflection with the confining boundary, i.e. via an indirect trajectory [10]. Moreover, the 
MFPT for non-recurrent and translation invariant Markov dynamics is often strongly domi-
nated by the long time behaviour—by indirect trajectories [10, 19]. This is the case when the 
volume of the domain tends to be very large and/or the target size tends to be very small [19]. 
In such non-recurrent scenarios knowing the MFPT fully—yet non-trivially— characterises 
the long time asymptotic of the FPT statistics [10, 19]. In non-recurrent systems with strongly 
broken translation invariance an additional time scale emerges, mirroring brief excursions 
away from the target [10]. This intermediate time scale in turn significantly contributes to the 
MFPT [10]. Conversely, for recurrent motion the rate of the long time exponential decay is 
strongly affected by both, direct and indirect trajectories [19].

Often the dynamics additionally depend on some internal state, such as for example in the 
so-called ‘intermittent search model’, where the particle randomly switches between passive 
diffusion and active ballistic motion in a Poissonian [20–23] or Lévy [24] fashion, or equiva-
lently in the ‘facilitated diffusion model of gene regulation’ [25], where the particle switches 
between 3-dimensional and 1-dimensional diffusion, with an additional dynamical component 
due to conformational dynamics of DNA [26], which in the annealed limit gives rise to Lévy 
flights [27]. A similar case is the transitioning between search and recognition modes in the 
1-dimensional search of transcription factors along DNA [28].

A similar random transitioning occurs in stochastically gated chemical reactions [7, 29] 
and stochastically gated narrow escape [6, 7]. The Markovian switching between the internal 
states introduces a much richer phenomenology and can lead to qualitative changes in the 
FPT statistics, such as in the case of the random search for a stochastically gated target [29]. 
Conversely, by combining recurrent and non-recurrent motion phases and thereby suppressing 
oversampling on large spatial scales and improving the hitting on small length-scales, one can 
improve stochastic search processes in the sense of minimising the MFPT to reach the target 
[20, 21, 25].

From a mathematical point of view all these compound processes are called Markov addi-
tive (MA) [30]. MA processes are a class of Markov processes, whose state space = Ω×G F 
is at least 2-dimensional and can be split into Ω, a Markovian component and an additive 
component F, which is translation invariant [30]. Formally, some features of the FPT proper-
ties of MA processes with a general state space have already been addressed in the mathemati-
cal literature using algebraic methods (see, e.g. [31]). Yet, explicit results on the FPT statistics 
for MA processes are sparse. Moreover, the interplay between (non)recurrent motion and 
Markovian switching between internal states and its comparison to standard Markov diffusion 
processes remains elusive.

4 With a logarithmic correction in dimension 2.
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Here we present rigorous results for the MFPT and FPT statistics for two-channel Markov 
additive diffusion5 in a 3-dimensional spherical domain with the additive component F being 
Markovian. We consider a gated particle, that is, the particle can only recognise the target 
in one of the modes, which is shown to lead to non-trivial FPT behaviour. We also address 
the FPT problem of transitioning to an immobile phase. In particular, we prove that despite  
the perfectly non-recurrent motion of two-channel Markov additive diffusion in 3 dimensions, the  
MFPT does not fully specify the asymptotic exponential decay of the FPT statistics as soon 
as none of the phases is static (i.e. has a vanishing diffusion coefficient), in contrast to the 
standard Markovian counterpart.

The paper is organised as follows. First we set up the model of two-channel MA as a mixed 
boundary value problem for two coupled forward Fokker–Planck equations. Next, we sum-
marise our main results on the MFPT and FPT statistics and discuss the implications of our 
results in a biophysical context. In the following sections we present detailed calculations, 
proofs and additional technicalities. As these contain essential mathematical approaches we 
include here all crucial steps of the derivation. Finally, we give a concluding perspective and 
discuss possible extensions of the work.

2.  Markov additive two-channel diffusion

We consider a 3-dimensional spherical domain of size R with a perfectly absorbing target with 
radius a at the centre (see figure 1). The particle’s diffusion coefficient Dk, i.e. the internal 
variable, randomly switches between states k  =  1 and k  =  2 in a Markovian fashion with rates 

5 Note that the term ‘double diffusion’ also appears in the literature [32].

Figure 1.  Schematic of the model system: a particle performs 3d Brownian motion in 
a spherical domain with a reflecting confining boundary at R and randomly switches 
between diffusion coefficients D1 and D2. The duration of the respective phases is 
exponentially distributed with rates k1,2. The particle only recognises the target (red 
sphere in the centre) in phase 1—the recognition mode, whereas it experiences the 
target as a reflecting sphere in phase 2—the non-recognition mode.
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k1 and k2, respectively. In other words, the duration of the respective phases is exponentially 
distributed with mean ⟨ ⟩τ = −k1 1

1 and ⟨ ⟩τ = −k2 2
1. At any instance, the particle’s dynamics on 

infinitesimal time-scales ∆t can be discretized as (see e.g. [7, 33])

( )
( )

( ) ( )⎪

⎪
⎧
⎨
⎩ ξ

+∆ =
∆

+ ∆ − ∆
t t

t k t

t D t t k t
x

x

x

w.p. ,

2 w.p. 1 .
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i i i
� (1)

Here w.p. denotes ‘with probability’ and with ≠ =i j 1, 2 and ξk being the component of a 
zero mean Gaussian white noise with ⟨ ( ) ( )⟩ ( )ξ ξ δ δ= −′ ′t t t tk l kl

6. We introduce the propaga-
tor ( )| ′p t i t jx y, ; , ; —the transition probability density for the particle to be at x at time t in 
internal state i given that it was previously at y at time ′t  in the internal state j. To first order 
in τ during any infinitesimal interval τ = − ′t t  the propagator can be split into two steps, (i) 
switching from j to the internal state i without diffusion, and (ii) diffusion in this new state 
without switching:

τ δ δ τ δ

τ δ δ δ τ δ τ

| = − + − + ∇ −

= − + − + ∇ − +

′ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ O

p t i t j k k D

k k D

x y x y

x y

, ; , ; 1 1 1

1 1 ,

j ij ij j j

j ij j ij ij j

2

2 2

( ) ( ) ( )( ) ( )

( ) ( ( ) ) ( ) ( )
�

(2)

where ∇2 is taken with respect to x. Using equation (2) as well as the Chapman-Kolmogorov 
equation [7, 33]

( ) ( ) ( )∫ ∑τ τ+ | = + | |′ ′
Ω =

p t i t j p t i t k p t k t jx y z x z z y, ; , ; d , ; , ; , ; , ; ,
k 1

2

� (3)

we obtain, upon taking the limit →τ 0 the forward Fokker–Planck equation (FPE), which for 
convenience we write in a vector form as

( ) ( )∂ | =
∇ −

∇ −
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⎛

⎝
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⎟t t
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where ( )= p pp ,1 2  is the transition probability density vector with the general initial condi-
tion ( ) ( ( ) [ ] ( ))δ δ= − − −w wp x x x x x, 0 , 10,1 0,2  with arbitrary real [ ]∈w 0, 1 . As the system 
is linear the solution to this general initial condition can be reconstructed from the solutions 
for w  =  1,0 and = =x x x0,1 0,2 0. The FPE (4) is complemented by inhomogeneous boundary 
conditions at the surface of the target and confining boundary, ∂Ωa and ∂ΩR, respectively:
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where n̂a and n̂R denote the respective surface normals. The FPT probability density is obtained 
from the flux into the absorbing target from the recognition phase 1

[ ]( ) ( ) ˆπ℘ = ∇ ⋅
=∂Ω

t a D p tx n4 , a x
2

1 1
a

� (6)

and the MFPT corresponds to the first moment of ( )℘ t , namely ⟨ ⟩ ( )∫= ℘
∞

t t t td
0

. All quantities 

are made dimensionless by expressing time in units of /τ = R D0
2

1, length, or in fact radii, in 
units of the domain radius → /≡r x r Ri i i  and by introducing the dimensionless ratios /=z k k2 1 
and /ϕ = D D2 1. Note that the time unit τ0 is ‘natural’ as it holds trivially for any normal 

6 Here ( )δ x  and δik denote the Dirac and Kroenecker delta functions, respectively.
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diffusion process with a hyperspherical symmetry that the mean first passage time scales as 
⟨ ⟩∝t R2 with the confining hypersphere radius R, irrespective of the dimension [32].

In the Brownian dynamics simulations reported herein the dynamics are implemented by 

first drawing a sojourn time τs from the respective exponential density with mean −k1,2
1 and 

then propagating the particle’s position within the interval τs according to the overdamped 
Langevin equation with the respective diffusion coefficient D1,2. The initial condition is sam-
pled uniformly over the surface of a sphere with radius r0. Reflecting boundary conditions are 
implemented by neglecting any move that would take the particle into the reflecting boundary 
(while still updating the time). The particle is propagated until it reaches the target while being 
in the recognition mode 1.

3.  Summary and discussion of the main results

3.1.  Mean first passage times

We first focus on the MFPT. The proofs of the equations presented in this sections will be 
described in later sections. The MFPT to arrive at xa if starting from x0 in the recognition mode 
1, ⟨ ( )⟩t xx 0 1a , is given exactly as

⟨ ( )⟩ ⟨ ( )⟩
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where we introduced the mean first passage time of standard 3-dimensional Brownian motion
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as well as the auxiliary functions
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1
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Note that the prefactor in equation (7) is just the inverse of the effective diffusion coefficient 
( / / )/( )= + +− −D D k D k k keff 1 1 2 2 1

1
2

1  expressed in units of D1. Note that if the switching between 
the internal states is fast compared to the time needed to arrive to the vicinity of the target, then 
trajectories essentially behave as 3-dimensional Brownian motion with an effective diffusion 
coefficient Deff. Thus ⟨ ( )⟩t xx 0 1a  has the form of the MFPT of standard 3-dimensional Brownian 
motion with Deff plus a term compensating for the contribution of trajectories where the  
particle does not switch between modes sufficiently many times.

The result in equation  (7) as a function of z for various values of k1 and ϕ, divided by 
⟨ ( )⟩t xx 0 0a , is depicted in figure 2(a) (full lines) and shows excellent agreement with Brownian 
dynamics simulations (symbols). Note that intuitively for sufficiently large /ϕ = D D2 1, the 
MFPT ⟨ ( )⟩t xx 0 1a  can be significantly shorter than ⟨ ( )⟩t xx 0 0a . In addition, for sufficiently large k1 
there exists an optimal value of z where ⟨ ( )⟩t xx 0 1a  has a minimum. The optimisation of ⟨ ( )⟩t xx 0 1a  ,  
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which essentially corresponds to solving a non-linear algebraic equation for z, is beyond the 
scope of the present work.

Additional insight is obtained from the joint dependence of ⟨ ( )⟩t xx 0 1a  on z and k1. The 
results for three different values of ϕ are shown in figure 3. As already mentioned, for suf-
ficiently large ϕ we find that ⟨ ( )⟩t xx 0 1a  intuitively decays with increasing k1, as it is beneficial 
if the particle spends more time in the faster diffusing phase. The dependence on z is however, 
non-monotonic due to the simple fact that there is always a trade-off between reaching the 
target in the (faster) non-recognition mode and hitting the target from close distance through 
the recognition mode. For example, for large ϕ, the effective Deff can become very large and 
consequently the MFPT can decrease substantially as long as z is not too close to ϕ, i.e. the 
particle spends enough time in the non-recognition mode. Intuitively, for →∞z  and ϕ finite 
Deff converges to 1. However, if →z 0, i.e. very long residence time in the non-recognition 
mode, the second term of equation (7) diverges as 1/z because even if the motion in mode 2 is 
fast enough to essentially reach a local steady state, the rate to switch back to the recognition 
mode becomes rate limiting.

Figure 2.  Normalised MFPT as a function of /=z k k2 1 for various values of k1 and ϕ. 
The results correspond to x0  =  0.5 and xa  =  0.01. Panel (a) corresponds to a particle 
starting in the recognition mode 1, whereas (b) depicts the results for starting in the 
non-recognition mode 2.

Figure 3.  Normalised MFPT ⟨ ( )⟩ /⟨ ( )⟩t x t xx x0 1 0 0a a  as a function of k1 and /=z k k2 1 
for various ϕ and x0  =  0.5 and xa  =  0.01. The yellow contour corresponds to 
⟨ ( )⟩ /⟨ ( )⟩ =t x t x 1x x0 1 0 0a a .
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Conversely, ⟨ ( )⟩t xx 0 2a  , the MFPT to xa starting from x0 in the non-recognition mode 2 is 
given exactly as

〈 ( )〉 〈 ( )〉
( )

( )
( ) ( )
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= +
+
+

+
− ∆
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0
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where we introduced the effective time to hit the target from the non-recognition mode 2 once 
arriving within a distance to the target, which corresponds to the typical distance moved in a 
switching cycle +− −k k1

1
2

1

( )/
/ /

ϕ
ϕ

=
−
+

≡
−
+

− −t k
D D k

D k D k
k

z

1
.h

eff 1
1 1 2 2

1 1 2 2
1

1
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Note that the effective hitting-time correction th
eff can be positive or negative depending  

on ϕ. The result in equation (11) as a function of z for various values of k1 and ϕ, expressed 
relative to ⟨ ( )⟩t xx 0 0a , is depicted in figure 2(b) (full lines) and as before shows excellent agree-
ment with Brownian dynamics simulations (symbols). The joint dependence of 〈 ( )〉t xx 0 2a  on 
both z and k1 for various ϕ is shown in figure 4. Qualitatively, the scenario of starting in the 
non-recognition mode is very similar to the previous one.

To understand the subtle difference between the two initial conditions more deeply we 
inspect the meaning of the effective hitting-time correction th

eff in equation (12) in more detail. 
If ϕ� 1 then /∼t k1h

eff 2, i.e. the correction time is equal to the mean time spent in the non-
recognition mode. Conversely, th

eff gives a large negative contribution to ⟨ ( )⟩t xx 0 2a  when k1 is 
small and ϕ� 1 and ϕ� z, that is, the particle resides over long periods in the recognition 
mode while simultaneously the typical distance moved in mode 2 is much larger than the 
one moved in mode 1, / /�D k D k2 2 1 1. The particle therefore has no difficulty in hitting the 
target from mode 2 as soon as it arrives to within a typical distance to it. However, as this also 
implies a small D1 the natural time unit /τ = R D0

2
1 explodes and the search time increases.

Finally, we inspect the scenario of intermittent immobilisation such as occurring in chro-
matography, i.e. ϕ = 0. We find from equations (7) and (11) that

⟨ ( )⟩ ( )⟨ ( )⟩

⟨ ( )⟩ ( )⟨ ( )⟩

= +

= + +

−

− −

t x z t x

t x z t x k

1 ,

1 .

x s x

x s x

0 1,
1

0 0

0 2,
1

0 0 2
1

a a

a a

� (13)

Note that the prefactor 1  +  z−1 is the inverse of the steady-state probability to be in the recog-
nition mode 1. The results in equation (13) are intuitive as the diffusion coefficient becomes 
trivially reduced by the fraction of time spent in mode 1 (since mode 2 is static). Moreover, 
⟨ ( )⟩t xx s0 2,a  contains the additional term accounting for the fact that the particle needs to switch 
to mode 1 exactly once more since it starts from mode 2.

3.2.  Probability density of first passage times

Due to the complexity of the problem it is not possible to obtain a general exact closed-form 
expression for ( )℘ t  valid on all time scales. Therefore we here limit the discussion to the exact 
long time asymptotic of ( )℘ t . In this section we simply state the results, whereas the proofs are 
presented in the next section. As intuitively expected (and proven in section 4.3) all moments 
of ( )℘ t  are finite as long as xa  >  0 and <∞R . Moreover, as ( )℘ t  is smooth, this implies that 
it decays exponentially for long times, ( ) ( )℘ ∼ λ−Ct x x, ea

t
0

0 , where  ∼  stands for asymptotic 
equality. Exact expressions for λ0 and ( )C x x, a0  can be obtained from ˜ ( )℘ s , the Laplace trans-

form of the FPT density ( ) ˆ { ˜( )}℘ = ℘
−
Lt s

1
. The results read
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where ( )( )u xk
0  and ( )( )v xk

a  denote the kth order derivative of the numerator and denominator 
of ˜ ( )℘ s  with respect to s, respectively, evaluated at s  =  0 as a function of xa and x0 (defined in 
section 4.3) and Mk stands for the ‘almost’ triangular matrix with elements

( ) ( )
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where ( )Θ n  denotes the discrete Heaviside step function and with the symbolic convention 
≡Mdet 11 . Note that equations (14) and (16) are fully general and are derived under very mild 

assumptions, which are warranted by the physics of the problem. More precisely, one has to 
assume (i) that all moments of ( )℘ t  exist, (ii) that ˜ ( )℘ s  has no branch points on the negative real 
axis, and (iii) that /→

( ) ( )<∞∞u vlimk
k k . While (i) is satisfied trivially, (ii)7 and (iii) are borne 

out in practice (see section 4.3).
We are particularly interested in the physically relevant scenario of a small target size. In 

the present case equation (14) actually defines a power series in xa and we find in the limit 
�x 1a  (note that for convenience we here present the inverse of λ0)
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where we introduced the auxiliary function
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Analogously, the series in (15) converges with the first term for →x 0a  and we obtain the exact 
asymptotic result

( ) ⟨ ( )⟩ ( ) ( )λ℘ ∼ λ−t t x x e .x a
x t

1,2 0 1,2 0
2

a
a0� (19)

Equation (19) is the central result of this paper. It reveals that the exponential decay rate is 
independent of the initial condition (i.e. the position as well as the internal state). This regime 
describes indirect trajectories, which interact with the confining boundary before heading 
towards the target [10]. The fact that the decay rate of ( )℘ t1,2  is independent of the initial 
condition suggests that reaching the external boundary from the initial location is much faster 
than reaching the target from the external boundary. Moreover, only the prefactor depends 
on the initial condition—the position as well as internal state, which suggests the statistics of 
direct trajectories, i.e. those that reach the target without ever interacting with the boundary, 

7 One can show for most Markov processes, incl. Brownian motion (BM) in dimensions 1, 2, and 3, diffusion on 
fractals, uniformly biased 1-dimensional BM, radially biased 2-dimensional BM and the Ornstein-Uhlenbeck  
process, that ˜ ( )℘ s  has only simple poles and removable singularities on the negative real axis [34].
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controls the statistical weight of the exponential asymptotic, which is equivalent to the sim-
pler Markovian counterparts [10]. To see this we can rewrite equation (19) as a product of the 
‘weight’ factor ⟨ ( )⟩ ( )λt x xx a0 1,2 0a  and a normalised exponential ( )( ) λλ− xe x t

a0
a0 . Therefore, the 

contribution of the long-time regime to expectations taken over ( )℘ t1,2  will depend only on the 
‘weight’ factor and the smallest time where equation (19) becomes valid.

Moreover, equation (19) highlights that the asymptotic of ( )℘ t  cannot be fully reconstructed 
by knowing the MFPT, as both the prefactor and the exponent contain a non-trivial correction 
term in λ0. This observation is in stark contrast to the simpler Markovian counterpart, where 
the ( )℘ t  asymptotic can indeed be reconstructed once the MFPT is known (see [10, 19]) as 
long as the dynamics is non-recurrent, highlighting the non-trivial first passage character of 
Markov additive processes.

Furthermore, if we rescale time according to / ( )θ λ≡ t xa0 , then all FPT densities must col-
lapse onto the master curve

( ) ( )/[ ( )⟨ ( )⟩ ]θ θ λ℘ ≡℘ = θ−x t x e .a x1,2 1,2 0
2

0 1,2a� (20)

Indeed, this collapse is shown in figure 5 for a variety of parameters and initial conditions.
In the case of a static non-recognition mode we again find for �x 1a  an intuitive renor-

malisation of the diffusion coefficient and we can identify the universal form for non-recurrent 
single-channel Markov dynamics [10]

( ) ⟨ ( )⟩ ⟨ ( )⟩ /⟨ ( )⟩℘ ∼ − −t t x t 1 e .s
x s x s

t t
1,2 0 1,2; 2,

2 1
a a

xa s2,� (21)

Note that in contrast to ϕ≠ 0 (see equation (19)), the transient immobilisation case leads to a 
Poisson-like asymptotic (21) [10, 19].

3.3.  Biophysical implications of the results

The stochastic switching between different internal states is relevant in various biophysical 
problems, in particular in cellular signalling pathways. Namely, proteins can switch between 
different conformations with different diffusivities, either spontaneously or upon interaction 
with other signalling molecules [4, 7, 29]. Similarly, in the regulation of gene transcription 
regulatory proteins can change the affinity of TF for the promoter site [35, 36]. Most proteins 
transiently bind non-specifically to other proteins and other cytoplasmic constituents, incl. 
immobilised structures [37, 38]. Furthermore, some signalling molecules such as calmodulin 
(a cellular calcium sensor) are intrinsically ‘sticky’ and bind to various cytoplasmic constitu-
ents when biochemically stimulated (in the case of calmodulin by calcium [38]), and as a 

Figure 4.  Normalised MFPT ⟨ ( )⟩ /⟨ ( )⟩t x t xx x0 2 0 0a a  as a function of k1 and /=z k k2 1 
for various ϕ and x0  =  0.5 and xa  =  0.01. The yellow contour corresponds to 
⟨ ( )⟩ /⟨ ( )⟩ =t x t x 1x x0 0 0 2a a .
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result display a smaller diffusion coefficient in the activated mode. In these cases only the 
active form typically binds to its target and triggers a biological response. The cellular regula-
tion machinery can adjust the binding rates and hence the resulting spatio-temporal dynamics 
of signalling molecules [4, 38].

Therefore, in biological systems wide ranges of z and ϕ occur and may have been selected 
by evolution. In the biophysical context the first passage time problem studied here would 
correspond to the association time of a signalling molecule with its target. Our results show 
that changing z and ϕ can profoundly affect the association dynamics. In particular, our results 
demonstrate that it is possible to tune specific stages of the target search process, such as 
delivery to the target from a distance or the hitting step from close proximity. Conversely, our 
findings highlight the fact that the dynamics cannot be quantified in terms of effective param
eters alone, e.g. with an average diffusion coefficient. Nor can the first arrival time statistics 
be specified solely on the basis of MFPT concepts.

4.  Proofs and details of calculations

In this section we describe details of the calculations and provide proofs of the equations pre-
sented in the previous section.

4.1.  Solution of the coupled mixed boundary value problem

To solve equation (4) we first introduce auxiliary dimensionless coordinates /=′ k Dx x1 1  and 
=′t k t1  and Laplace transform in time ˜ ˆ [ → ]= ′L t sp p ;T T . Defining for convenience /=z k k2 1 

and /ϕ = D D2 1, we find that the components of p̃T obey

( ) ˜ ˜ ( )
π

δ∇ − − + = − −
′

′ ′s p zp
w

r k D
r r1

4
2

1 2
0
2

1 1
0� (22)

( ) ˜ ˜ ( ) ( )ϕ
π

δ∇ − − + = −
−

−
′

′ ′z s p p
w

r k D
r r

1

4
,2

2 1
0
2

1 1
0� (23)

Figure 5.  Rescaled FPT probability density ( ) ( )/( ( )⟨ ( )⟩ )θ θ λ℘ ≡℘ x t xa x1,2 1,2 0
2

0 1,2a  
obtained from Brownian dynamics simulations as a function of the rescaled time 

/θ λ= t 0 for xa  =  0.01 and various k1,z and ϕ and two different initial conditions x0 
for the scenario of (a) starting in the recognition mode and (b) starting in the non-
recognition mode. The full black line corresponds to the unit exponential master scaling 
in equation (20). The simulation results perfectly collapse on the master curve.
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where we take either w  =  1 or w  =  0, as any other solution is obtained by linear superposition 
of these solutions. Since we assume that initially the particle’s position is uniformly distributed 
over the surface of a sphere with radius r0 (see section 2), the boundary value problem in equa-
tions (22) and (23) becomes effectively 1-dimensional in the radial coordinate. Equations (22) 
and (23) show that p̃1,2 correspond to the Green’s functions of our coupled mixed boundary 
value problem. The general solution to the homogeneous coupled equations  is obtained by 
inserting equation (23) into equation (22) to obtain the 4th order PDE for p̃1

{ [( ) ] ( )} ˜ϕ ϕ ϕ∇ − + + + ∇ + + + =s z s s z p1 1 0.4 2
1� (24)

To solve it we make the standard ansatz

˜ ˜∇ =p qp2
1 1� (25)

such that q is the root of the quadratic equation

[( ) ] ( )ϕ ϕ ϕ− + + + + + + =q s z q s s z1 1 02� (26)

or explicitly,

( ) ( ) [( ) ( )]⎡
⎣

⎤
⎦ϕ

ϕ ϕ ϕ ϕ ϕ= + + + ± − + − −±q s s z s z z
1

2
1 1 4 .2� (27)

The general solution of equations (22) and (23) for a 3-dimensional system with spherical 
symmetry can now be written as

( )˜ ( ) ′= + + +′ − − −′ ′ ′ ′+ + − −p r s r C C C C, e e e eq r q r q r q r
1

1
1 2 3 4� (28)

˜ ( ) [ ]

[ ]

⎛
⎝
⎜

⎞
⎠
⎟

=
+ −

+

+
+ −

+

′
′

′

+ −

− −

′ ′

′ ′

+ +

− −

p r s
s q

r z
C C

s q

r z
C C

,
1

e e

1
e e ,

q r q r

q r q r

2 1 2

3 4

�

(29)

where equation (28) is obtained as a solution of equations (25) and (29) is obtained by first 
inserting the solution (28) into the homogeneous form of equation (22) and then solving for 
p̃2. Moreover, C1 to C4 are constants determined by the boundary conditions in equation (5), 
and the continuity and jump discontinuity of the Green’s functions in equations  (22) and 
(23). These lead to two inhomogeneous systems of 8 linear equations with 8 unknowns, C1 
to C4 for ⩽r r0 and C5 to C8 for r  >  r0, for each of the cases w  =  0 and w  =  1, respectively. 
These are in turn solved by Cramer’s rule. We omit these calculations as they are tedious but 
straightforward.

The Laplace transformed FPT density ˜ ( )℘ s  in the dimensionless units introduced in sec-
tion 2 is obtained from the flux into the absorbing boundary (i.e. from the Laplace transform 
of equation  (6)) and in the final form reads for the recognition and non-recognition initial 
condition, respectively,

˜ ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟℘ =

∆ − ∆
∆ − ∆

D D

D D
s

x

x

Q s s x s x Q s s x s x

Q s s x s x Q s s x s x

, , , ,

, , , ,
,a a a

a a a a
1

0

2 1 0 2 1 2 0 1

2 1 2 1 2 1
� (30)

˜ ( ) [ ( ) ( ) ( ) ( )]
( ) ( ) ( ) ( ) ( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟ ϕ

℘ =
∆ −∆
∆ − ∆

− D D

D D
s

x

x

s x s x s x s x

Q s s x s x Q s s x s x

, , , ,

, , , ,
.a a a

a a a a
2

0

1
2 0 1 1 0 2

2 1 2 1 2 1
� (31)
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Here we introduced the auxiliary functions ( ) ( ( ))/( )= + − + −Q s s k k q s k z1,2 1 1 , 1  as well as

= − −

+
− −

+ −

+ − + −

+ −

D s y y k q s y

yk q s k q s y

k q s

, 1 cosh 1

1 sinh 1

1,2 1 ,

1 , 1 ,

1 ,

( ) ( ) [ ( ) ( )]

[ ( ) ] [ ( ) ( )]

( )

�
(32)

( ) [ ( ) ( )]
[ ( ) ( )]

( )
∆ = − −

−
+ −

+ −

+ −

s y k q s y
k q s y

k q s
, cosh 1

sinh 1
,1,2 1 ,

1 ,

1 ,

� (33)

where we always take the first or second index on both sides, respectively. Note that here 
we already back-transformed the auxiliary coordinates →′x x and → /s s k1. Obviously, 

( ) ( )=D Dy y0,1 1  and ( ) ( )∆ = ∆y y0,1 1  (see equations  (9) and (10)). Note that ˜ ( )℘ s1,2  has a 
removable singularity at s  =  0, therefore we re-define the analytic function ˜ ( )℘ s1,2  at s  =  0 as 
˜ ( ) ˜ ( )→℘ ≡ ℘ s0 lims1,2 0 1,2 .

4.2.  Mean first passage times

Proving equations (7) and (11) is henceforth easy, and is carried out by taking the derivative 
of equations (30) and (31)

⟨ ( )⟩
˜ ( )

= −
∂℘

∂ =

t x
s

s
.x

s

0 1,2
1,2

0
a� (34)

Noticing that ( ) =D y 02 , ( )∆ =y y2  as well as q−(0)  =  0, ( ) ( / )ϕ= ++q k z0 11 , and finally 
( ) ( / )/( )ϕ ϕ ϕ= + +′
+q z z0 , ( ) ( )/( )ϕ= + +′

−q z z0 1 , and performing some elementary alge-
braic manipulations already completes the proof of equations (7) and (11).� □

4.3.  Inverse Laplace transform of ℘ s˜ ( )

4.3.1.  Justification of assumptions (i)–(iii) made in section 3.2.  Note that the analytic func-
tion ˜ ( )℘ s  defined in section  4.1 is regular at s  =  0, has no branch points on the negative 
real axis (hence justifying assumption (ii) in section 3.2) and allows a moment expansion 
˜ ( ) ( ) 〈 〉/℘ = ∑ −=

∞s s t n!n
n n

0  converging for ( ) λ<sRe 0, where Rλ− ∈0  is the pole of ˜ ( )℘ s  clos-
est to the origin [34]. This also implies that all moments of ( )℘ t  are finite, which justifies 
assumption (i) in section 3.2 [34]. Moreover, the moments ⟨ ⟩tn  are obtained recursively from 
Taylor coefficients of the series of the numerator and denominator of equations (30) and (31), 

( ) /( )∑ =
∞ u s k0 !k

k k
0 1,2  and ( ) /( )∑ =

∞ v s k0 !k
k k

0 , respectively,

⟨ ⟩ ( ) ( )
( )

( ) ( )
( )

⟨ ⟩
( )

( )

( )

( )
⎜ ⎟
⎛
⎝

⎞
⎠∑= − − −

=

−t
u

v

n

k

v

v
t1

0

0
1

0

0
.n n

n

k

n
k

k
n k

0
1

0� (35)

Explicitly, the coefficients ( )( )u 0k
1  of the numerator read
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( )
( )

( )

( ) ( ) [ ( ) ]
( [ ] ) ( )

[ ( ) ( ) ( ) ( ) ( )]

( )

( )

∑

∑

ϕ
ϕ

ϕ
ϕ

=
+
+

+

×
− − − +

− + +
× + + + −

=

∞

=

− +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

S S S S S

u n
k z

k z

x x k l x

k l l

k l n k l n k l n k l n k l n

0 !
1

2

1 1 2

2 1 ! 2 1 !

, , , , , , , , , ,

n
n

k

k

l

k k l
a

l
a

1
1 0

1

0

0
2 2 1

1 2 3 4 5

� (36)

where the functions S1 to S5 are defined as

( ) ( ) ( )

( ) ( )

⌊ ⌋ ⌊ ⌋

∑=
− −

Θ −

×Θ − − Θ − Ξ
=

− ∧

− −

S k l n
l x x

x z
k n

k n n W

, ,
2 1

2i 2i ,

a a

i

k l l

k l l i n k l l i

1
0 0

2 2

, , , , ,

� (37)

∑=
− + −

Θ + −

×Θ + − − Θ − Ξ
=

− ∧ +

− + − +

S k l n
l x x k

x k z
k n

k n n W

, ,
2 1 1

1

1 2i 2i ,

a a

i

k l l

k l l i n k l l i

2
1

0 1 0

2
1

2

, 1, , , 1,

( ) ( ) ( ) ( )

( ) ( )

⌊ ⌋ ⌊ ⌋

� (38)

( ) ( ) ( )

( ) ( )

⌊ ⌋ ⌊ ⌋

∑=
− −

Θ + −

×Θ + − − Θ + − Ξ
=

− ∧

− − −

S k l n
l x x

x k z
k n

k n n W

, ,
2 1

1

1 2i 2i 1 ,

a a

i

k l l

k l l i n k l l i

3
0 1 0

2 2

, , 1, , ,

� (39)

( ) ( )

( ) ( )

⌊ ⌋ ⌊ ⌋

∑= Θ + −

×Θ + − − Θ + − Ξ
=

− ∧ +

− + − − +

S k l n
x

x k z
k n

k n n W

, , 2

2 2i 2i 1 ,

a

i

k l l

k l l i n k l l i

4
0 1 0

2
1

2

, 1, 1, , 1,

�

(40)

( ) ( )

( ) ( )

⌊ ⌋ ⌊ ⌋

∑= Θ + −

×Θ + − − Θ − Ξ
=

− ∧ +

− + − +

S k l n
x

x k z
k n

k n n W

, , 2

2 2i 2i ,

a

i

k l l

k l l i n k l l i

5
0 1 0

2
2

2

, 2, , , 2,

�

(41)

where ( )Θ n  is the discrete Heaviside step function, ⌊ ⌋x  is the floor function, ( )∧ ≡x y x ymin ,  
and

∑= Θ − − Θ −
+

+Θ − Θ − −
+

=

⎜ ⎟

⎜ ⎟

⎧
⎨
⎩

⎛
⎝

⎞
⎠
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝

⎞
⎠
⎫
⎬
⎭

W q j p i
p q

j

q j p i
p

j

q

2 1 2
2i 2 1

2 2 1
2 1 2i

,

p q i
j

i

, ,
0

(⌊ / ⌋ ) (⌊ / ⌋ )

(⌊ / ⌋ ) (⌊ / ⌋ )
�

(42)

and where we also introduced

( ) ( )

( )( )
( )( )

( )
⌊( )/ ⌋

⌊( )/ ⌋ ⌊( )/ ⌋ ( )

⌊( )/ ⌋

∑

ϕ ϕ
ϕ ϕ

ϕ
ϕ

ϕ
ϕ

Ξ = Θ + − + − Θ −
+ −
−

×
− +
+ −

−
−

× − − + − −
−

=
−

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜

⎞
⎠
⎟

⎧
⎨
⎩

⎫
⎬
⎭

p q m k m
p q

k m m

z

z

z

k z k m

F k m k m
z

k z

2i 2i
2i 2i

1

1

2i

2

1, 2 2i, 1 2 ; .

k p q i
m

k

m k m

, , ,
0

2

1

2

2 1

2

1

�

(43)
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Finally, { }F i j k z, , ;2 1  denotes the Gauss hypergeometric function. The coefficients v(k)(0) of the 
denominator are obtained by replacing x0 with xa.

For the scenario of starting in the non-recognition mode the Taylor series of the numerator 
is simpler and the coefficients read

∑

∑

∑

ϕ
ϕ
ϕ

ϕ
ϕ

= −
+
+

+

×
− − − +

− + +

× + Θ + − Θ + − −

×Θ − Ξ

=

∞

=

− +

=

− ∧ +

− + − +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

S

u
n

k z

k z

x x k l x

k l l

k z k l n
x

x
k n k n

n W

0
! 1

2

1 1 2

2 1 ! 2 1 !

, , 1 1 2i

2i .

n
n

k

k

l

k k l
a

l
a

a

i

k l l

k l l i n k l l i

2
1 0

1

0

0
2 2 1

1 1
0 0

2
1

2

, 1, , , 1, ]

( )
( )

( )

( ) ( ) [ ( ) ]
( [ ] ) ( )

[ ( ) ( ) ( )

( )

( )

( )

⌊ ⌋ ⌊ ⌋

�
(44)

The calculation leading to the Taylor series (36) and (44) is essentially straightforward and 
amounts to combining the respective Taylor series of the individual functions occurring 
in equations (30) and (31) and carefully performing a sequence of changes of the order of  
summations thereby bringing the summation over powers of s to the outermost sum.  
The numerous step functions ( )Θ x  in the expressions for the coefficients are merely a conse-
quence of the preservation of the domain of summation upon changing the order in which they 
are carried out.

The coefficients ( ) ( )( ) ( )u u0 , 0k k
1 2  and v(k)(0) are hence given in the form of convergent series 

and it is not difficult to check (e.g. using Mathematica) that ( )/ ( )→
( ) ( ) =∞u vlim 0 0 0n
n n

1  and 
( )/ ( )→

( ) ( ) =∞u vlim 0 0 0n
n n

2 , thereby justifying the assumption (iii) of section  3.2, that is 
( )/ ( )→

( ) ( ) <∞∞u vlim 0 0n
n n . Summing up this now justifies assumptions (i)–(iii) in section 3.2, 

i.e. the necessary conditions for the validity of equations (14)–(16) [34].

4.3.2.  Asymptotic inversion of the Laplace transform.  Since ˜ ( )℘ s  has no branch points we can 
invert it using Cauchy’s theorem

( ) [( ) ˜ ( ) ]
→

λ℘ ∼ + ℘
λ−

t s slim e ,
s

st
0

0
� (45)

where the contour used to evaluate the residue is chosen as to enclose λ− 0 such that 
( )R λ<s 0. A rigorous solution to this problem, i.e. determining λ0 and evaluating the residue 

in equation  (45), was obtained recently under the assumptions (i)–(iii) in section 3.2 [34]. 
A detailed proof is given in [34]. Here we merely state the result, which has the form of 
equations (14)–(16).

To proceed towards our central result equation (19) we note that the first terms of the series 
(14) are

( ) ( )
( )

( ) ( )
( )

[ ]
( )

( )

( ) ( )

( )

⎛
⎝
⎜

⎞
⎠
⎟λ = + +Ox

v x

v x

v x v x

v x
1

2
1 ,a

a

a

a a

a
0

0

1

0 2

1 2� (46)

where ( ) ( )
( )

( ) ( )

( )
v x v x

v x2
a a

a

0 2

1 2 is of the order of xa and moreover, O is also of the order of xa. This can be 

seen either by computing the respective derivatives explicitly or from the Taylor coefficients 
in equation (36) by making the replacement →x xa0 . Therefore all correction terms vanish in 
the limit →x 0a , and equations (14) and (15) both fully converge already with the first term, 
which completes the proof of equation (19).� □
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5.  Conclusion

Our results highlight the complex character of the first passage time statistics of Markov addi-
tive processes. While it appears to be a common feature of non-recurrent Markov processes 
that the first passage time asymptotics can be fully reconstructed from the corresponding 
mean first passage time [10, 19], we here showed that this is not the case for Markov addi-
tive processes. The present results on a Markovian sum of two perfectly non-recurrent Bessel 
processes establish rigorously the non-trivial connection between mean first passage times 
and long time first passage asymptotics. In addition, we also obtained results for the case of 
transient immobilisation, i.e. the transitioning into an immobile phase.

The results of this paper are important in a broader context, as most existing studies of 
the first passage behaviour of Markov additive processes are limited to the analysis of mean 
first passage times [7, 21, 25]. Moreover, our results also demonstrate that the first passage 
behaviour of Markov additive processes in general cannot be adequately captured by effective 
quantities such as the effective diffusion coefficient. This is important if one would attempt to 
develop effective medium or averaging type approximations.

The exact Laplace inversion formula presented in this paper (equations (14)–(16)) will be 
useful in various problems, as it reduces the problem of deriving first passage asymptotics to 
the much simpler problem of finding the Laplace transform of the first passage time density. 
It will also be very useful for developing singular perturbation results, such as the small target 
limit studied here.

The present results can be extended in numerous ways. For instance, a straightforward 
extension would be to include more internal states, or to combine diffusive and advective 
states such as in the intermittent search model [21] or in the presence of so-called cytoplasmic 
streaming in cells [39]. One could also take into account the spatial heterogeneity of diffusion 
coefficients [9, 10, 40], spatial or energetic disorder [41] or consider a more complex fluctuat-
ing environment [42]. Similarly, one could address the role of anomalous diffusion, such as 
observed in the motion of proteins and submicron objects in the cell cytoplasm [43].
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