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The dynamics of constituents and the surface response of cellular membranes—also in connection to the binding
of various particles and macromolecules to the membrane—are still a matter of controversy in the membrane
biophysics community, particularly with respect to crowded membranes of living biological cells. We here put
into perspective recent single particle tracking experiments in the plasma membranes of living cells and
supercomputing studies of lipid bilayermodelmembraneswith andwithout protein crowding. Special emphasis
is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded
in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous
diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes signifi-
cantly longer ranged on the addition of disorder—through the addition of cholesterol or proteins—and on passing
of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of
membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis
will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed
in the experiments—the effective diffusivity of themeasured particles is a decreasing function of time.Moreover,
we present results for the time dependent local scaling exponent of themean squared displacement of themon-
itored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in
protein crowded membranes are reported. The properties of the displacement autocorrelation function of the
lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for
non-crowded and crowded membranes. In the last part of this review we address the upcoming field of mem-
brane distortion by elongated membrane-binding particles. We discuss how membrane compartmentalisation
and the particle–membrane binding energy may impact the dynamics and response of lipid membranes. This
article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Anomalous diffusion

On amolecular level the diffusion of reactive particles until theirmu-
tual encounter and subsequent reaction is a fundamentalmechanism. In
fact in 2016 we celebrate the centenary of Marian Smoluchowski's
ground breaking mathematical analysis of this problem [1]. Most stud-
ies applying this approach to diffusion limited molecular reaction
scenarios consider the Brownian motion of the reacting molecules,
characterised by a Gaussian spreading of the probability density func-
tion P(r, t) of the particle under consideration, in conjunction with the
linear time dependence

r2 tð Þ� �
≃K1t ð1Þ

of the mean squared displacement with diffusivity K1, defined in terms
of the probability density function P(r, t) to find the particle at position r
at time t through the expectation [2]

r2 tð Þ� � ¼
Z

r2P r; tð Þd3r: ð2Þ

For two molecules a and b with cumulative radius r=ra+ rb and
diffusivity K1=K1

a+K1
b that instantaneously react upon encounter, the

Smoluchowski rate becomes k=4πK1r in three spatial dimensions [1].
This rate can only be enhanced when additional mechanisms come
into play, such as active reactant transport [3,4] or the dimensional
reduction due to intermittent one-dimensional sliding along the DNA
of DNA binding proteins in the facilitated diffusion model [5–7].

Yet, in many systems significant deviations from the normal
diffusive law Eq. (1) are routinely observed [8–10]. Methods such as
fluorescence correlation spectroscopy (FCS), fluorescent recovery after
photobleaching (FRAP), and single particle tracking often reveal
power-law forms

r2 tð Þ� �
≃Kβtβ ð3Þ

for the mean squared displacement with the generalised diffusion
coefficient Kβ of physical dimension cm2/sβ. Depending on the value
of the anomalous diffusion exponent β one distinguishes between
subdiffusion (0bβb1) and superdiffusion (βN1) [9–14].

Such anomalous diffusion may correspond to a range of different
physical processes. All of these different processes exhibit the same
power-law scaling of the mean squared displacement Eq. (3), however,
their other dynamic properties may differ significantly [12–14]. These
properties in turn critically affect the way we need to extract parame-
ters frommeasurements, and the predictions of our quantitativemodels
for follow-up processes such as diffusion limitation of molecular
reactions [12–14]. To properly identify the physical nature of an anom-
alous diffusion process, a range of diagnosis tools have been developed,
see, for instance, [13–20]. We will comment on these issues further
below.

Signatures of anomalous dynamics in molecular biological systems
were already reported in the 1970s for the rebinding of ligands to
myoglobin molecules [21]. With modern fluorescent methods it was
later proved that the observed power-law distribution of binding
times is related to the non-Brownian gating dynamics of the relative
motion of two amino acids, that are distant to each other when
measured along the chemical backbone of the protein [22]. Very recent
supercomputing studies reveal that this anomalous relative motion in
fact persists over thirteen decades in time and exhibits ageing: the rela-
tive motion of chemically distant amino acids in different proteins is
non-stationary and is characterised by a diffusivity, that is a decaying
function of time [23].

In the following, we first report examples for anomalous diffusion of
the form Eq. (3) from more established bulk scenarios, in particular,
from single particle tracking experiments inside living cells. Based on
the physical insight provided by these studieswe then turn to the corre-
sponding scenario in effectively two-dimensional membranes. We
discuss in detail results fromexperimentsmeasuring the anomalous dif-
fusion dynamics of membrane embedded proteins in living cells, before
turning towards supercomputer simulations studies of simple lipid
bilayer systems as well as crowded membranes (see Fig. 1). In the
final part of this review we then address the consequences of mem-
brane deformations due to binding of larger objects such as elongated
viruses.
2. Volume crowding causes anomalous diffusion

The internal volume of living biological cells constitutes a highly
complex environment, that is compartmentalised by membrane struc-
tures and crowded with macromolecules and structural cytoskeletal
networks. Macromolecular crowding by larger biopolymers makes up
a superdense [25] liquid modulating the kinetics of various biochemical
processes in cells.Macromolecular crowding in live cells, compare Fig. 2,
amounts to volume occupancies beyond 30% [26–28] and generally
facilitates the association of proteins via volume exclusion effects
favouring more compact states [29] and has a variety of implications
[28,30–34]. In model systems, for instance, crowding was shown to in-
fluence fundamental physical processes such as polymer looping rele-
vant to cellular processes [35–37]. Folding of proteins is similarly
affected by crowding [38–42] as well as aggregation [43,44].

Macromolecular crowding in live cells strongly impacts the diffu-
sive motion of endogenous and artificially introduced submicron
tracers. After the report of anomalous diffusion of the subdiffusive
kind with 0bβb1 for different cell types in the pioneering works of
Schwille et al. [45,46], subdiffusion was indeedmeasured for labelled
dextran probes in living HeLa cells [47], labelled messenger RNA in
Escherichia coli bacteria [25,48], DNA loci [48,49], labelled telomeres
in human U2OS cells [50], visible lipid granules in yeast cells [51,52],
insulin lipids in MIN6 cells [53], HIV-1 integrase in HeLa cells [54],
and labelled viruses in HeLa cells [55], see also the systems reviewed
in [9,10,13,14].

Consistent results of anomalous diffusionwere obtained in artificial-
ly crowded systems [56–59]. Similar anomalous diffusion due to
crowding is also observed in soft glassy systems [60]. Anomalous diffu-
sion of submicron tracers due to caging by structural elements similar to
those of the cellular cytoskeleton were studied in vitro in semiflexible
actin gels [61]. Such caging-like trajectories were also observed near
the colloidal glass transition [62]. In simulations of flexible gels anoma-
lous diffusionwas observed for tracer particles of similar size as the typ-
ical mesh size [63]. We note here that due to active motion such as
motor driving [64–66] or cytoplasmic streaming [67] also superdiffusive
motion with βN1 of tracer particles in living cells may be observed. Re-
cently it was demonstrated that not only the relatively large submicron
probes and viruses but also much smaller green fluorescent proteins
(GFPs) perform anomalous diffusion in both the cytoplasm and the nu-
cleoplasm of living cells [68]; see Fig. 3.



Fig. 1. Crowding of a lipid bilayer vesicle with proteins. This is a molecularmodel of a synaptic vesicle filled with neurotransmitters (red). Themembrane (yellow) of the vesicle is packed
with functional proteins, as SNARE complexes (red/orange) that help in the vesicle fusion process, andATPases (blue),which provide the energy for the organelle. The small grey panels on
the right hand side show electron microscopy images of real synaptic vesicles, the big grey image simulates how themolecular model would appear if imaged by an electronmicroscope.
Note how massive the outside domains of the membrane embedded proteins may be. Figure courtesy H. Grubmüller [24].

Fig. 2. Macromolecular volume crowding. The image from an extensive computer study
includes the 50 most abundant proteins in an E. coli bacteria cell [26].
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3. Time averaged observables for single particle tracking

FCS and FRAP measurements reveal ensemble averaged correlation
functions, in which detailed individual molecular behaviour may be
masked. In contrast, single particle tracking provides the full time series
of a single traced particle. Typically only few but long particle trajecto-
ries are measured, and then evaluated in terms of the time averaged
mean squared displacement [12,13]

δ2 Δð Þ ¼ 1
T−Δ

Z T−Δ

0
r t þ Δð Þ−r tð Þð Þ2dt; ð4Þ

where Δ is called the lag time and T is the entire length of the trajectory
(measurement time). The quantity (Eq. (4)) thus corresponds to an
evaluation in terms of a sliding window of width Δ. For each Δ the
information of the entire trajectory is evaluated, in contrast to the en-
semble mean squared displacement Eq. (3), in which the information,
at a given time, stems from a specific configuration of the system at
time t. This conceptual difference between time and ensemble averaged
mean squared displacements may give rise to unusual behaviours, as
shown below. To obtain smoother curves often an additional average
of the quantity (Eq. (4)) is taken over an ensemble of N trajectories,

δ2 Δð Þ
D E

¼ 1
N

XN
i¼1

δ2i Δð Þ: ð5Þ

Image of Fig. 1
Image of Fig. 2


Fig. 3. Anomalous diffusion of single GFP molecules in the nucleus of living CHO cells and
analysed under physiological conditions (inset) [68]. In the double logarithmic plot the
slope of the mean squared displacement significantly deviates from the linear
dependence of Brownian motion, over time ranges from μs and beyond ms.
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Direct quantities to determine deviations from normal Brownian
diffusion based on the mean squared displacement Eqs. (3), (4), and
(5) include the local scaling exponent [13]

β timeð Þ ¼ d log MSD timeð Þ½ �ð Þ
d log time½ �ð Þ ; ð6Þ

where MSD represents the respective definitions of the mean
squared displacements and time stands for either regular time t in
the ensemble definition Eq. (3) or the lag time Δ for the time
averaged quantities. Another quantity used increasingly is the non-
Gaussianity parameter as evaluated from the recorded time series
[62,69,70],

G Δð Þ ¼ d
dþ 2

�
δ4 Δð Þ

D E

δ2 Δð Þ
D E2 −1: ð7Þ

Here d is the dimension of the embedding space. This parameter van-
ishes for Gaussian processes such as Brownian motion. We also men-
tion and quantify the displacement autocorrelation function [71]

Cδt tð Þ ¼ 1

δtð Þ2
r t þ δtð Þ−r tð Þ½ � � r δtð Þ−r 0ð Þ½ �h i ð8Þ

evaluated along the particle trace. Wewill come back to this quantity
below. The function Cδt(t) has quite distinct properties for different
anomalous diffusion processes [13], as we compare below for results
of simulation for the lipid diffusion. We also mention here the van
Hove correlation function, for which time averaged analogues can
be efficiently determined [63].

For Brownian motion we expect that for sufficiently long measure-
ment times T the time average Eqs. (4) and (5) provide the same

information as the ensemble average Eq. (3), formally limT→∞δ2ðΔÞ ¼
limT→∞hδ2ðΔÞi ¼ hr2ðΔÞi [12,13]. Even for some anomalous diffusion
processes such as fractional Brownian and fractional Langevin equation
motion [13] this asymptotic equality is fulfilled. However, there exist
cases when even in the limit of long measurement times an inequality
holds [12,13]

lim
T→∞

δ2 Δð Þ≠ r2 Δð Þ� �
: ð9Þ

This is the situation when the process violates the Boltzmann–
Khinchin ergodic hypothesis [72]. In fact in living biological cells as
well as in in vivo experiments such non-ergodic behaviour was
explicitly measured, see the reviews [9,12–14]. In the above listed
systems the non-ergodic behaviour was identified in several cases
[52,53,59], and we will see further examples in the study of
membrane systems below. Non-ergodicity of the form Eq. (9) is
commonly due to the non-stationarity of the associated process
[13,14].

Non-ergodic behaviour can be accompanied by an intrinsic irre-
producibility of time averaged quantities in the sense that repeated
measurements show a pronounced spread of the time averaged
observable [12,13,73,74]. For the time averaged mean squared dis-
placement this spread is quantified in terms of the dimensionless
variable

ξ Δð Þ ¼ δ2 Δð Þ
δ2 Δð Þ

D E : ð10Þ

Based on this quantity we can determine the distribution function
ϕ(ξ) around the ergodic value ξ=1 which is a good indicator for
the underlying stochastic process [12,13,75,76]. This spread is often
also expressed in terms of the variance of the function ϕ, the so-
called ergodicity breaking parameter [13,75,77]

EB Δð Þ ¼ ξ2 Δð Þ
D E

− ξ Δð Þh i2 ¼ ξ2 Δð Þ
D E

−1: ð11Þ

For a given lag time is describes the deviation of the system from the
ergodic behaviour. For finite measurement times even standard
Brownian motion is not perfectly ergodic, however in the limit of
short lag times or long trajectories the ergodicity breaking parame-
ter converges to zero as [78]

lim
Δ=T→0

EBBM Δð Þ ¼ 4Δ
3T

: ð12Þ

In other systems, the asymptotic value of EB for small values of Δ/T
may remain finite, see below. The parameters EB(Δ) and G(Δ), in-
volving higher moments of the particle displacement, are known to
be sensitive indicators of the type of the anomalous diffusion process
[13,19,79].

Finally, we mention that for non-stationary processes significant
ageing of the system may be observed. Thus, the effective diffusivity of
a subdiffusive system may become a decaying function of time [12,13,
52,53]. In other words the measurement of the system will produce
different information when we start it at different times after the
original preparation of the system. Such a behaviour is well known
from glassy systems [80,81], for which the term ageing was originally
coined. In ageing systems the time averaged mean squared displace-
ment then becomes a function of the ageing time ta, from which we
evaluate the time series of the particle displacement [13,82]

δ2a Δð Þ ¼ 1
T−Δ

ZTþta−Δ

ta

r t þ Δð Þ−r tð Þð Þ2dt: ð13Þ

Image of Fig. 3


Fig. 5. Distribution of immobilisation (waiting) times (top) and ageing behaviour of the
time averaged mean squared displacement (bottom) for the motion of protein channels
in the plasma membrane of living eukaryotic cells [85]. Data courtesy D. Krapf.
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4. In vivo anomalous diffusion in membranes

According to the model developed by Saffmann and Delbrück in
1975 the components of biological membranes perform Brownian
motion [83]. Using FCS measurements, however, anomalous diffusion
of different dye molecules in membranes was reported by Schwille
et al. [45]. A detailed study comparing FCS data of fluorescently tagged
enzymes in the membranes of the endoplasmatic reticulum and the
Golgi apparatus in HeLa cells with simulations of anomalous diffusion
processeswas then presented byWeiss et al. [84]. Using the possibilities
of superresolution microscopy Weigel et al. managed to monitor the
motion of single channel proteins embedded in the plasma membrane
of living kidney cells over minute time ranges [85], as shown in Fig. 4.

Following the theoretical discussion of non-ergodic motion in
anomalous diffusion processes in Refs. [75,86] and the identification of
such motion in the cytoplasm of living yeast cells [52], Weigel et al.
reported a similar behaviour in the plasma membrane. In the recorded
trajectories one can see that the channel protein moves quite vividly
for a certain period of time until its motion becomes replaced by a local-
ised rattling. Only after a waiting period τ the channel protein resumes
its motion, until it is trapped again [85]. The statistics of the waiting
periods exhibits an asymptotic power-law scaling of the form

ψ τð Þ≃τ−1−α ð14Þ

with the scaling exponent α≈0.9, as demonstrated in Fig. 5 [85]. In the
analysis of their data the authors also found that the motion of the
protein channels shows ageing behaviour in the formof the dependence
of the observed value of the time averaged mean squared displacement
Eq. (5) on the measurement time [85]; see also Fig. 5. In the course of
time, that is, the channels become less and less mobile. As studied in
more detail in Ref. [87] this, on first sight strange behaviour may be
related to the physiological function of the specific protein channels
under observation.

In fact this behaviour is not that strange. Consider the distribution of
waiting times (Eq. (14)) and combine this with the general framework
of the Scher–Montroll continuous time random walk model such that
the walker may perform a jump after a random waiting time drawn
from ψ(τ) [88]. It is easy to see that the characteristic waiting time hτi ¼
Fig. 4. Trace of a labelled voltage-gated Kv2.1 potassium channel protein on a plasma
membrane of a living human embryotic kidney cell [85]. The scale bar is 1 μm.
Figure courtesy D. Krapf, Colorado State University, Fort Collins.
∫∞τ�τ
0ψðτ0Þdτ0 , with some microscopic lower cutoff τ⁎, will diverge for

0bαb1. Thus, there is no longer a characteristic time scale allowing us
to separate between a single or few jump events and many jumps,
and the very notion of a long time limit ceases to exist. For such process-
es it was shown that while the ensemble averaged mean squared
displacement follows the power-law scaling (Eq. (3)) with β=α, the
trajectory-averaged time averaged mean squared displacement shows
a linear scaling

δ2 Δð Þ
D E

≃Kβ
Δ

T1−β ð15Þ

with the lag time Δ [12,13,75,86]. This non-ergodic behaviour is also
characteristic for other non-stationary processes such as Markovian
diffusion with space or time dependent diffusion coefficients [89–93].
We also recognise the explicit dependence on the measurement time
T in Eq. (15), which is seen in Fig. 5. We note that subdiffusive continu-
ous time random walks were also proposed to capture the observed
dynamics in glassy systems [94].

Similar results with regards to the scaling of the mean squared
displacement and the ageing behaviour were reported by Manzo et al.
for the motion of DC-SIGN receptor protein and its mutants [95], as
reported in Fig. 6. Again, the non-ergodic and ageing behaviour is ob-
served, along with a broad distribution of the diffusivity characteristic
for non-ergodic processes [12,13,75,76].

The potential causes for the anomalous diffusion behaviour of
embedded proteins in cellular membranes are related to the crowding
of the lipid membrane itself, an extreme example of which is shown
in Fig. 1. Indeed, the cellular plasma membrane is a highly crowded

Image of &INS id=
Image of Fig. 5


Fig. 6.DC-SIGN diffusion shows non-ergodicity and ageing. (a) Time traces of quantum-dot-labelled DC-SIGN nonintegrin proteins diffusing on the dorsal membrane of a Chinese hamster
ovary cell. (b) Representative trajectories for identical recording time T=3.2 s. (c) Log–log plot of the time averagedmean squared displacement for individual trajectories (blue lines). The

dashed lines indicate the linear scaling in time. The circles correspond to the average hδ2ðΔÞi. (d) Distribution of the short time diffusion coefficients for all trajectories. Inset: Cumulative
distribution function of the scaling exponent β. (e) Log–log plot of the ensemble-averaged mean squared displacement 〈r2(t)〉. A fit of the data (dashed line) provides the exponent β=
0.84, showing subdiffusion. (f) Log–log plot of the diffusion coefficient as a function of the observation time T, corresponding to the ageing dependence in Eq. (15). Thefitted slope 1−β=
0.17 is in good agreement with the value of β found in panel (e) [95].
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interfacewith up to 25% of the total area [96] occupied by variousmem-
brane proteins, ion channels, and pores [85,97]; see Fig. 1. These enable
the communication of cells with the environment and active exchange
of chemicals and other products [98]. However, as discussed in Refs.
[85,87,95], the contact to the inside of the cell, in particular, themechan-
ical elements of the cytoskeleton, provide an additional complication of
the motion. An interesting phenomenon is also the dynamics of bulk
mediated surface diffusion in which biomolecules such as proteins
intermittently bind to the membrane surface and undergo transient
excursions into the adjacent bulk volume. This phenomenon was just
quantified experimentally [99] and shown to be consistent with the
analytically predicted behaviour [100].

From the results reported here, we conclude that the motion of
embedded, larger entities such as channel proteins in membranes is
subdiffusive over time ranges of some 10 ms to 100 s as measured by
single particle tracking [85,95], and some 10 μs to 1 s by FCS measure-
ments [84]. Insight into shorter time dynamics and on a resolution of
single lipids is provided by simulations, albeit the first step towards
experimental observation of suchmotion is provided by novel stimulat-
ed emission depletion microscopy (STED) techniques [101], by which
indeed anomalous diffusion of lipids could be observed [102]. Other-
wise, methods such as neutron scattering needs to be employed to
resolved the short time behaviour of lipid molecules [103]. We note
that a recent overview of the advances and experimental aswell as sim-
ulations methods to examine non-Brownian lipid and protein diffusion
in crowded membranes is also provided in Ref. [104].

5. Anomalous membrane diffusion in silico

We now review the anomalous diffusion of lipid molecules and
crowders such as cholesterol or proteins in lipid bilayer membranes
observed in massive computer simulations.

5.1. Pure lipid bilayer systems

Lipid bilayers are effectively two-dimensional systems, which are
highly packed with phospholipid molecules, which undergo thermally
driven lateral diffusion and thus constantly reorganise the membrane.
The dynamic behaviour of such lipid bilayer systems has been exten-
sively studied in terms of molecular dynamics simulations using both

Image of Fig. 6
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all atom and coarse grained approaches. Generally, the lateral mean
squared displacement in such simulations spans three distinct regimes:
(i) a short time ballistic growth with α=2 due to inertial effects,
followed by (ii) a subdiffusive regime with 0bαb1 at intermediate
time, and (iii) a normal diffusive long time regime [105]. The long
time regime has been studied extensively for a range of phospholipid
molecules, see, for instance, Refs. [106]. As we will discuss, lipid diffu-
sion in pure bilayers occurs both in the liquid phases and in the gel
phase below the melting temperature, the latter with decreased diffu-
sivity. Moreover, in bilayers mixed with cholesterols, the lipid mobility
decreases with higher cholesterol concentration, as discussed in the
next subsection.

The intermediate time range subdiffusion of lipid molecules is rela-
tively poorly understood. The traditional microscopic picture claims
that the lateral motion of the lipid molecules occurs via more or less
sudden jumps upon availability of sufficient thermally activated void
space at nearest sites [108–110]. In between successive jumps the
lipid molecule is being caged by its neighbours and undergoes a
rattling-like motion. This jump-diffusion model in the spirit of a contin-
uous time random walk was used to estimate the lipid diffusivities in
the liquid-disordered phase and in cholesterol containing bilayers
[107,108]. However, extensive atomistic molecular dynamics simula-
tions [111] as well as quasi-elastic neutron scattering experiments
[112] demonstrated that such jump-like displacements rarely occur.
Rather the lipid molecules move in a concerted fashion, correlated
with their neighbours as loose clusters.

Can we learn more about the fundamental physical nature of the
lipid motion in pure lipid bilayers from the exact stochastic behaviour
of the lipids in simulations? Ref. [105] shows that the lipidmotion is ap-
proximately Gaussian at time scales above some 10 ns, albeit significant
non-Gaussianity occurs for the lateral motion at shorter time scales. A
more detailed analysis from a stochastic point of view is provided by
Kneller et al. [113], further detailed in Ref. [114], compare also Ref.
[115]. From the velocity correlation function the authors concluded
that the lipid motion is described best by the fractional Langevin equa-
tion [13,113,116–118]

m
d2x tð Þ
dt2

¼ −γ�
Z t

0
t−t0ð Þα−2 dx t0ð Þ

dt0

� �
dt0 þ η�ξfGn tð Þ; ð16Þ

where γ⁎ is a friction coefficient of physical dimension [γ⁎]=g×s−α

and ξfGn(t) represents the fractional Gaussian noise with power-law
correlation

ξfGn t1ð ÞξfGn t2ð Þh i ¼ α α−1ð ÞK�
α

��t1−t2jα−2 ð17Þ
Fig. 7. Snapshots of the lipid bilayer consisting of DOPC at 338 K (left), a mixture of DSPC and c
liquid disordered, liquid ordered, and gel phases, respectively. Each lipid is rendered in a differ
layers. Cholesterols appear in white (middle), Na + and Cl − ions as blue spheres (right) [71].
for t1 , t2N0 and t1≠ t2, with 1bαb2 such that the fluctuation
dissipation relation is fulfilled [117–120]. Here the coefficients η⁎

and Kα⁎ are coupled by the fluctuation–dissipation relation η�

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�kBT=½K�

ααðα−1Þ�p
[13]. The dynamic Eq. (16) exhibits a slowly

decaying power-law memory (on the level of the stochastic equation)
[13,113,118]. An alternative stochastic interpretation of the lipidmotion
was given in Ref. [121], in which jump-like continuous time random
walk motion governed by non-Gaussian fluctuations and scale-free
rattling dynamics were proposed based on an analysis of the trapping
time distributions and the mean maximal excursion method [17]. As
we discuss now, the detailed analysis provided in Ref. [71] turns out in
support of the Gaussian, fractional Langevin equation motion picture.

Fig. 8 shows the trajectory-mean hδ2ðΔÞi of the time averaged mean
squared displacement including the trajectories of all phospholipids. All
three lipid chemistries 1,2-Distearoyl-sn-glycero-3-phosphocholine
(DSPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and
1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) are analysed in the
liquid disordered phase. Panel A depicts the lipid diffusion for pure
single chemistry lipid bilayers, whereas Panel B represents the data for
bilayers with added cholesterol, see the next subsection. In all cases

the resulting curves were fitted by a power-law hδ2ðΔÞi ¼ 4KαΔα ,
separately at short and long times. The corresponding anomalous
diffusion exponents α are indicated in the Panels. Accordingly, in the
pure lipid bilayers all three chemistries of lipid molecules show analo-
gous behaviour. Namely, we observe anomalous diffusionwith a scaling
exponent α~0.6 below a crossover time of τc~10 ns. Beyond that time
the lipid molecules exhibit approximately normal Brownian motion.
This crossover time τc corresponds roughly to the diffusion time that a
single lipid molecule needs to move over a distance corresponding to
the nearest-neighbour separation. The differences in the tail structure
between these lipids affect slightly the lipid diffusivity [71].

To analyse these claims deeper in Ref. [71] we performed molecular
dynamics simulations of lipid bilayers of 128 phospholipidmolecules in
the liquid disordered phase. Three pure single component bilayers
composed of the lipid chemistries DSPC, SOPC, and DOPC phospholipids
were employed. To avoid spurious dynamics due to the free, indepen-
dent translational motion of the upper and lower lipid layers, we
analyse the relative motion r(t) of the lipids with respect to the centre
of mass of the lipids. Fig. 7 shows a snapshot of the simulated lipids
along with the water layer.

Fig. 9 shows the analysis of the obtained single lipid molecule traces.
The individual traces are ergodic and do not exhibit ageing (Fig. 9B), and
the amplitude scatter follows a relatively narrow bell shape. Together
with the moment ratios we find a clear result in favour of the Gaussian
holesterols at 338 K (middle), and DSPC at 310 K (right). These systems correspond to the
ent colour. Explicit water molecules are represented by the upper and lower transparent

Image of Fig. 7


2458 R. Metzler et al. / Biochimica et Biophysica Acta 1858 (2016) 2451–2467
anomalous diffusion picture. Finally, the displacement correlator

Cδt tð Þ ¼ 1

δt2
r t þ δtð Þ−r tð Þ½ � � r δtð Þ−r 0ð Þ½ �h i ð18Þ

for a given time step δt can be shown to have a fit free normalised shape
Cδt(t)/Cδt(0) for any given values of δt and α [71]. The result shown in
Fig. 9D for Cδt(t)/Cδt(0) is fully consistent with those results obtained
in Ref. [113], supporting the fact that the fractional Langevin Eq. (16)
governs the lipid motion [71]. We stress that this form for the velocity
autocorrelation function cannot be consistent with a continuous time
random walks picture for the periodic boundary conditions used here
[72], compare Fig. 9D. Moreover, we demonstrated that the rattling
motion and the escape of a lipid molecule from a finite area are both
consistent with the Gaussian anomalous diffusion picture [71]. More-
over, a further analysis [71] demonstrates that the motion is consistent
with the observation of the collective motion of lipids in flow-like
patterns, as originally reported in Refs. [111,112].

We note that membrane hydration water in fluid-phase lipid bilay-
ers also exhibits anomalous diffusion, as studied by computer simula-
tions and quasi-elastic neutron scattering in Refs. [122,123], see also
Ref. [216]. In these studies the physical origins, such as caging effects
in themembrane-associated water, are also discussed. Similarly the dif-
fusion of protons on lipid membranes is anomalous [124].

5.2. Lipid membranes with cholesterol and gel phase dynamics

Cholesterol is a lipidmolecule, which is biosynthesised by all animal
cells. Cholesterol is an integral structural component of the cell
membranes necessary for themechanical membrane structural integri-
tywhile allowing it to remainfluid. In contrast to plant cells and bacteria
animal cells therefore do not need a cell wall and are often able tomove
about. Cholesterol is known to tune lipid–lipid interaction potentials
often leading to aggregation [125] and supramolecular complex forma-
tion [126]. This in turn controls the protein preference for liquid ordered
versus disordered lipid phases [127] by cooperative action [128,129]. A
certain demixing of lipid components, dynamical composition hetero-
geneities, and pattern formation [130] can be the prerequisite for a
proper functioning of membrane-associated proteins, often orchestrat-
ed by lipid–protein interactions [98,131,132]. The latter include both
close range contacts and membrane mediated forces of a longer range
[133], see also the next section.
Fig. 8. Time averaged mean squared displacements hδ2ðΔÞi, which are further averaged ove
chemistry bilayers in the liquid disordered phases of DSPC, SOPC, and DOPC lipids. A: Cholest
time behaviour are indicated in the Panels. Pure lipid bilayers perform approximately Browni
prolonged subdiffusion [71].
To study how the presence of cholesterol changes the quality of the
lipid diffusion in our model system, we investigated the lipid bilayer
dynamics for three different lipid chemistries with additional 32 choles-
terols (20% molar concentration). The resulting organisation and
structure of the combined lipid–cholesterol bilayer corresponds to the
liquid ordered phase, as shown in Fig. 7 in the middle panel. The exis-
tence of such a liquid ordered phase was confirmed by neutron spin-
echo and neutron backscattering, revealing ordered lipid domains of a
size of some 220 Å [134]. This result is consistent with the coarse
grained simulations presented in Ref. [135], see also Ref. [136].

Fig. 8B shows the time averaged mean squared displacement for
cholesterol-containing bilayers. Interestingly, the presence of the
cholesterols significantly alters both the short and the long time lipid
diffusion. The most significant difference occurs for the saturated
DSPC molecules with the smallest lipid cross section area [137]. We
observe that below the crossover time, which again is of the order of
τc≈ 10 ns, the anomalous diffusion exponent α decreases to about
0.5. More importantly, a new subdiffusion regime emerges with α~0.8
which lasts up to 100 ns. An additional simulation of 1 μs length
confirms that this new long time regime is actually a slow transition
towards normal diffusion that, however, lasts over hundreds of nano-
seconds. In the time window shown in Fig. 8 the diffusion is well fitted
by power-laws. For the unsaturated DOPC molecules, the effect of the
added cholesterols is small, mostly affecting the lipid diffusivity but
not the anomalous scaling exponent. In particular, no subdiffusion is
observed beyond the crossover time τc [71].

Analysing the dynamics of the cholesterol-containing bilayer
further, the ergodic nature of the diffusion patterns of both the lipid
molecules and the cholesterols is preserved [71]. Concurrently, the
presence of the cholesterols markedly affects the amplitude variation
of individual time traces, as captured in the distribution ϕ(ξ). Namely,
compared to the case of the pure bilayer shown in Panel C of Fig. 9,
when cholesterols are added ϕ(ξ) becomes significantly broader, as
shown in Fig. 10B. This observation underlines the fact that individual
lipids undergo considerable variations in their local mobility in the
presence of cholesterols, as indeed observed in Panel A of Fig. 10 [71].
This observation is consistentwith the abovementioned findings of het-
erogeneously structured membranes [134,135]. We also note that with
cholesterols the displacement correlation function Cδt(t) assumes a
somewhat deeper well reflecting a stronger anti-correlation in the
molecular motion [71].

When we follow the motion of the cholesterols themselves and
analyse their stochastic behaviour we observe that, in full analogy to
r the trajectories of all 128 lipid molecules in the model membrane sheet of single lipid
erol-free case. B: With cholesterol. The scaling exponents for both the short and long lag
an diffusion beyond 10 ns, while cholesterol-containing bilayers in the DSPC case show a

Image of Fig. 8


Fig. 9. Analysis of the DSPC motion in a pure liquid phase bilayer. A. Time averaged mean

squared displacement δ2ðΔÞ of all 128 DSPC molecules. B. δ2ðΔÞ as function of the
measurement time T, for lag times Δ=0.01, 0.1, 1 ns. C. Normalised amplitude scatter

distribution ϕ(ξ) of δ2ðΔÞ versus ξ ¼ δ2ðΔÞ=hδ2ðΔÞi , for Δ = 0.1, 1, 10 ns. D.
Displacement autocorrelation function Cδt(t)/Cδt(0) of DSPC lipids, δt=0.2 ns. The solid
and dotted lines represent the fit-free forms of Cδt(t)/Cδt(0) for the fractional Langevin
equation and the continuous time random walk at α=0.63. E. Moment ratios 〈r4(t)〉/
〈r2(t)〉2 (regular) and 〈rmax

4(t)〉/〈rmax
2(t)〉2 [mean maximal excursion (MME)] for DSPC,

SOPC, and DOPC molecules. The horizontal line at 1.49 distinguishes fractional Langevin
equation motion (〈rmax

4(t)〉/〈rmax
2(t)〉2b1.49) from continuous time random walks

(〈rmax
4(t)〉/〈rmax

2(t)〉2N1.49). The horizontal line at 2 is the expected value of the
regular moment ratio for both types of motion [71].
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the lipid molecules, their diffusive motion corresponds to the fractional
Langevin equation picture already identified for the lipids. As we
demonstrate in Panel A of Fig. 10 the cholesterols have a somewhat
higher diffusivity compared to the lipids, the associated anomalous
diffusion exponents of both species are essentially identical. However,
the analysis shows that the amplitude scatter distribution of the choles-
terols are somewhat more concentrated around the ergodic value ξ=1,
supporting that themotion of the cholesterols is more uniform than the
motion of the lipids. Also the displacement correlation function and the
moment ratios are hardly different between lipids and cholesterols [71].

Let us finally address the case of the third known state of pure lipid
bilayers, namely, the gel phase shown in the right panel of Fig. 7. All
Fig. 10. Mixture of DSPC lipid molecules in a liquid phase bilayer membrane with

cholesterol molecules. A: single trace time averaged mean squared displacements δ2ðΔÞ
for all 128 DSPC molecules. The mean, trajectory averages of δ2ðΔÞ are shown for both
the DSPC lipids (red squares) and the cholesterols (blue circle). For clarity, these two
curves were shifted up by a factor of 20. B: Amplitude scatter distribution ϕ(ξ) of the
time averaged mean squared displacements of DSPCs and cholesterols [71].
lipids have a characteristic phase transition temperature at which they
pass from the (‘solid’) gel phase to the so-far considered liquid phase
[138]. In the gel phase the lipids are still able to exchange positions
with their neighbours and in that sense have a liquid-like character,
yet their mobility is significantly decreased. As can be seen from Fig. 7
the tails of the individual lipids are almost fully devoid of internal
fluctuations, causing the width of the bilayer to increase. Does this sig-
nificant change in the conformation space of the lipids affect the
stochastic nature of their motion?

For a bilayer composed of DSPC lipid molecules Panel A of Fig. 11
demonstrates that the diffusion described by the time averaged mean

squared displacement b
�δ2N exhibits an extremely small anomalous

diffusion exponent α≈0.16 at short times. It is significantly smaller
than the value found for the liquid phase of α≈0.6. In addition to this,
we observe a more prolonged subdiffusion with α≈0.59 beyond the
crossover time, which remains of the order τc≈10 ns. As shown in
Panel B of Fig. 11 the recorded lipid motion in the gel phase is fully con-
sistent with the fractional Langevin equation description, here demon-
strated for the excellent match between the theoretical displacement
correlation function and the analysed data. We note that both the am-

plitude variation between individual time traces δ2ðΔÞ and themoment
ratios provide further support for the ergodic, fractional Langevin equa-
tion driven motion [71].

Wenote that formulti-componentmembranes additional important
effects occur such as a fluid–gel phase coexistence [139]. Moreover,
near-critical fluctuationswere studied recently by coarse-grained simu-
lations, revealing anomalous diffusion of the lipids near the coexistence
point [140].

5.3. Diffusion in protein crowded lipid bilayers

The pure lipid and cholesterol-containing bilayer membrane
systems discussed so far are idealised model systems designed to
study fundamental physical properties. In the lab these systems can in-
deed be synthesised and analysed by various experimental tools, such
as the above-mentioned neutron scattering, fluorescence correlation,
or optical microscopy methods [104]. Biologically relevant membranes,
however, contain by necessity channels or receptors to allow for the
exchange of material or molecular information between the two vol-
umes separated by the membrane surface. While in Fig. 1 we show an
extreme case of crowding, simulations now are able to capture relevant
degrees of crowding inwhich themodelmembranes are decoratedwith
a range of different membrane proteins, as depicted in Fig. 12. In gener-
al, the physical setting of crowded membranes combines membrane
constituent particles of markedly different size and molecular mass.

As for the numbers, it was suggested that the molar (number) ratio
of embedded proteins and lipid molecules varies between some 1:50
and 1:100 [96,142]. Practically this means that if we take the typical
cross section area of 0.64 nm2 of a phospholipid and compare it with a
typical α-helical transmembrane protein with 3 nmdiameter, for a pro-
tein–lipid of 1:50 we typically find that the distance between the sur-
faces of vicinal proteins is as small as 3.2 nm. This number suggests
that in lipid membranes, that are crowded with proteins, interactions
between proteinsmay play a decisive role in the lateral diffusion behav-
iour in themembrane. In particular it becomes amajor question in how
far the presence of the proteins affects the very diffusion behaviour of
the smaller lipid molecules.

As discussed in Section 4 experiments showed that in the
membranes of living cells the diffusive behaviour of both proteins and
lipids is significantly different in comparison to simplified model
systems [84,85,101,143–146]. A particular striking observation is that
the diffusivities of individual proteins in different regions of a cellular
membrane vary up tofive-fold, evenwhen the proteinmotion is record-
ed up to macroscopic time scales [144]. Concurrently, the diffusion of
the very lipids may also exhibit complex features. Namely, super-
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Fig. 11. Lipid diffusion in the gel phase of a bilayer of DSPC lipidmolecules. A: Time averagedmean squared displacement hδ2ðΔÞiover all lipid trajectories. B: Displacement autocorrelation
function Cδt(t)/Cδt(0) with time step δt=0.2 ns. The solid line shows the (fit-free) theoretical result for the fractional Langevin equation with α=0.16 [71].
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resolutionmicroscopy imaging in living biological cells showed that the
mobility of the lipids may be reduced significantly on the millisecond
time range corresponding to length scales of some tens of nm [101],
suggesting that there are exist mechanisms confining specific lipid
types (see also Ref. [147]).

To better understand the consequences to the motion of both
proteins and lipids in crowded membrane bilayer systems coarse
grained models were simulated [148]. The membranes were made up
of dilinoleoylphosphatidylcholine (DLPC) and dipalmitoylphosphati-
dylcholine (DPPC) lipids, respectively, with a varying number of
embedded NaK channel (2AHY) proteins. The lipids in conjunction
with the protein channel were chosen such that for the DLPC bilayers
the NaK channels do not aggregate due to the minor protein–lipid
hydrophobic mismatch. In contrast, in the DPPC bilayers the hydropho-
bic mismatch is larger and NaK channels prefer forming aggregates
[148]. Both systems were studied for multiple protein–lipid ratios.
Snapshots of both cases are shown in Fig. 13.

In the simulations proteins in the aggregating systems start to form
aggregates as early as after a few hundred nanoseconds. Almost all of
the proteins become connected during the first microsecond. The
protein clusters are quite stable. In contrast, in the non-aggregating
systems the proteins tend to stay apart from each other for up tomicro-
seconds, some of them even for the entire simulated 10 μs. Aggregates,
that do form, are transient and rapidly break apart again. These different
tendencies towards aggregate formation are not caused by the lateral
mobilities. In the non-aggregating membrane the proteins are found
to have a higher mobility than in the aggregating systems. The proteins
Fig. 12. Crowded model membrane containing a mix of protein ty
therefore are able to meet each other more rapidly, yet in the slower
aggregating system any aggregates form faster [148].

Let us start our diffusion analysis with the long time diffusion
coefficient, obtained from the approximately normal diffusive regimes,
formally

K1 ¼ lim
t→∞

r2 tð Þ� �
4t

: ð19Þ

From the plots of the long time diffusion coefficients in Fig. 14 we see
that in the dilute case the lipid diffusion is considerably faster in the
non-aggregating case, reflecting the properties of the DLPC versus the
DPPC bilayer. Simultaneously, albeit somewhat less pronounced, the
single embedded protein tracer in the non-aggregating bilayer is more
mobile. The lipid diffusivity then systematically decreases with increas-
ing protein crowding. The decrease is approximately linear, and from
the dilute to the crowded case (1:50 protein:lipid ratio) the decrease
corresponds to a fivefold reduction for the non-aggregating system. In
the aggregating case the decrease is more pronounced, given by a factor
≈20, see the red data points in Fig. 14. For the lipids Fig. 14 also shows
that the motion in x and y directions is approximately the same, as it
should be.

The shape of the curve relating the protein diffusivity to the
protein:lipid ratio differs significantly and exhibits a distinct kink
between the ratio 1:150 and 1:100. In the non-aggregating system the
overall drop from the dilute to the 1:50 crowded case is ≈25 fold, for
the aggregating case the corresponding factor is around 100 [148]. In
pes of varying shape and size. Figure courtesy M. Javanainen.
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Fig. 13. Protein crowded lipid bilayer membrane in absence (left) and presence (right) of
protein aggregates. Figures courtesy Matti Javanainen.
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particular, in the most crowded aggregating system the protein motion
has virtually stopped, the diffusivity is down to≈4×10−10 cm2/s. Com-
paring the diffusivities of lipids and proteins the diffusion of proteins is
slower by a factor of 5 (protein-poor) to 30 (protein-rich conditions),
compare Fig. 14.

The diffusion of both lipids and proteins is anomalous in the mem-
brane. This is demonstrated in Fig. 15 depicting the time dependent
anomalous diffusion exponent α(t) determined from the local slope of
〈r2(t)〉 in a log–log plot. In Fig. 15 we show the scaling exponent α(t)
for the lipids in the non-aggregating and aggregating cases, the corre-
sponding results for the proteins are shown in Fig. 16. We first note
that in the dilute case the shape of α(t) is almost identical for both the
non-aggregating and aggregating systems. Any differences between
the two systems in the crowded case are therefore not due to a different
dynamics of the lipid molecules but are consequences of the different
aggregation behaviour of the proteins.

Let us now focus on the lipidmotion. In the non-aggregating systems
we observe that generally the variation of α(t) is less pronounced than
in the aggregating case, in particular the observed dip at around 1 μs is
much less pronounced. Instead, we observe an approximate plateau
over the range of an order of magnitude in time, from a few tens of
nanoseconds to a few hundred nanoseconds. The plateau appears as a
common feature in all non-aggregating systems. Seen for varying
protein crowding we find a systematic decease of the scaling exponent
with growing crowding fraction, in agreement with experiments [149].
In the dilute case normal diffusion is eventually recovered at around
100 ns, when more proteins are added this onset of Brownian motion
is markedly shifted to longer times. Even for the case of lesser crowding
with 1:200 for the protein:lipid ratio we see that this onset is already
shifted to some 1 μs. With increasing crowding it becomes more
Fig. 14.Diffusion coefficients of lipidmolecules (left) and embeddedproteins (right) inmembra
shown in blue while red denotes the aggregating DPPC bilayer. INF stands for infinity, the dilute
directions are denoted by dashed and dotted lines of the same colour, respectively, the full cur
scales.
ambiguous to extract the crossover time to normal diffusion, based on
rough estimated the time scale is on the range of 10 to 100 μs [148].

For the aggregating case we observe that the crossover to Brownian
motion occurs somewhat later than in the non-aggregating case.
Distinct is especially the stark decrease of the value of α(t) in between
1 and 10 μs for the crowding ratios 1:75 and 1:50. For the highest
crowding fraction α(t) reaches a minimum of around 0.6, indicating
quite pronounced anomalous diffusion. As this feature is much less
prominent for the non-aggregated system this drop in α(t) cannot be
due to lipid–protein collisions as such. It appears plausible that the
decrease of α(t) is mainly due to those lipid molecules whose motion
is confined by protein cages. Indeed, Fig. 13 demonstrated the existence
of such cages, which can also be identified in selected lipid trajectories
[148]. The fact that α(t) eventually recovers the Brownian value of
unity suggests that the caging is transient, and caged lipids at longer
times are set free and resume more vivid motion [148].

For the protein motion shown in Fig. 16 we find a behaviour similar
to the lipid motion. Generally, the absolute values of the local anoma-
lous diffusion exponent is smaller than that for the lipid motion.
Moreover, the dip in the value of α(t) occurs at later time scales, as is
the crossover time to normal diffusion. The main difference is for the
aggregating case: here the lipid motion does not exhibit the massive
drop of α(t) as the lipid motion. This reflects the more homogeneous
distribution of mobilities for the proteins, in contrast to the population
splitting between free and caged lipids [148].

5.3.1. Non-Gaussian anomalous diffusion in protein-crowded membranes.
For the dilute bilayer systemwe found that the observed anomalous

diffusion is governed by the fractional Langevin Eq. (16). This means
that the motion becomes antipersistent, as evidenced in the negative
cusp of the displacement autocorrelation function; see Fig. 9D. In partic-
ular, themotionwe observed is of Gaussian nature. This character of the
diffusion is preserved for the liquid phase bilayer in the presence of cho-
lesterols as well as for the gel phase bilayer. Does crowding change this
commonly assumed physical behaviour of the diffusion?

Extensive coarse grained simulations were performed in addition to
those reported in Ref. [148]. The analysis corroborates the time variation
of the anomalous scaling exponent, as reported above. Moreover, it
confirms the population splitting into mobile and caged lipids. This
causes a pronounced amplitude variation between individual time
averaged mean squared displacements, the corresponding amplitude
distribution ϕ(ξ), however, remains qualitatively consistent with frac-
tional Langevin equation type motion. The width of the amplitude scat-
ter decreases with the observation time. The displacement correlation
function shows an antipersistency of the motion, however, there exists
neswith different protein-to-lipid ratios. The data for thenon-aggregatingDLPCbilayer are
case with only one embedded protein. In the left panel the diffusion coefficients in x and y
ve represents their average [148]. Note the different multiplication factors for the vertical
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Fig. 15. Local anomalousdiffusion exponentα(t) for the lipidmotion in the non-aggregating (left) and aggregating (right) systems, colour-coded by: 1:50 (blue), 1:75 (red), 1:100 (green),
1:150 (black), 1:200 (orange), and 1:infinity (cyan). Extrapolations at the longest times (shown by dashed lines) are based on conservative estimates ofα(t) between about 3–20 μs [148].
Approximate crossover times to normal diffusion are indicated by the vertical dotted lines.
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some deviation from the correlation function obtained from the
fractional Langevin equation [150].

The striking feature for the crowded systems is that the probability
density function for both the lipid and protein motion deviates from a
Gaussian shape. Instead the data show a consistent agreement with a
stretched Gaussian form P(r, t)≃ exp(− [r/(ctα/2)]δ), where the
stretching exponent δ is found to vary within the range between 1.4
and 1.6 for the crowded system. The control shows that a fit of this
function to the dilute case diffusion consistently reproduces the Gauss-
ian value δ=2 [150]. This finding is poised to shake some of the
accepted fundamental views of the motion of lipids and proteins in
lipid bilayer systems.

6. Elastic response of elastic substrates

6.1. Particle diffusion, assembly, and electrostatics on membranes

In this section we briefly address the study of the elastic response of
elastic substrates, which is gaining fresh momentum. We include this
section as the physical properties discussed here may impact the lipid
and protein motion in supporting membranes. The reader is referred
here to the review of Matthias Weiss in this BBA special issue on lipid-
mediated interactions of membrane bound proteins [104]. Membrane
shape deformations due to protein crowding and segregation are also
summarised there. Recent studies demonstrate how orientation depen-
dent forces between individual filamentous fd bacteriophages adsorbed
on freestanding cationic lipid DOPC-DOTAP membranes guide the
relative positioning and assembly to higher structures of tohe virus
[151].

Canwe understand the formation of such aggregates, and, ultimate-
ly, its dynamics? In that process the membrane centreline undergoes
out of plane deformations [152–156], as shown schematically in
Fig. 17. As a first attempt we examine in-plane deformations of a
responsive elastic substrate upon binding of a rod-like object. We
Fig. 16. Local anomalous diffusion exponent α(t) for the protein motion in the non-aggregat
quantify the deformations of the elastic substrate as a response to the
adhesion of filamentous particles and demonstrate that tip-to-tip
contacts of rods are favoured for relatively soft substrates while side-
to-side contacts become profitable for stiffer substrates. An example
for our model system is shown in Fig. 18.

The phenomenon of aggregation and self-assembly were also
observed experimentally for colloidal particles on giant phospholipid
vesicles [157]. Another set of experimental observations stems from a
recent study of linear versus side-by-side assembly of BAR proteins on
elastic membranes—both in the absence and presence of external
surface tension—as reported in Ref. [158], compare also Refs. [159,
160]. It was demonstrated by coarse grainedmolecular dynamics simu-
lations that larger protein–membrane adhesion strength favours the
end-to-end protein assembly, while progressively higher membrane
tensions rather facilitate the formation of aggregates with side-by-side
contacts [158].

The topics of assembly and pattern formation of colloidal particles of
various shapes and surface properties on liquid interfaces are actively
studied in colloidal science [161–164]. The analogy between the curva-
ture mediated interactions of particles on membranes and capillary im-
mersion interactions is relatively close [163,165–167]. The
deformations of the neighbourhood of a particle immersed in a liquid
scales with the liquid contact angle due to wetting. This is reminiscent
of the lipid membrane deformations triggered by, for instance, electro-
static binding of oppositely charged DNAmolecules [152] or rod-like vi-
ruses [151] as those model systems schematically shown in Fig. 18. The
propensity of membrane wrapping around the particles scales with
their mutual attraction strength. Meniscus-shape deformations for cap-
illary interactions are similar to out-of-plane bending deformations of
the membrane that trigger the aggregation of the adsorbed particles
[151,163,164,168,169]. We note that the clustering of trans-
membrane proteinswas reviewed recently [170]. The hydrophobicmis-
match of protein-like inclusions [171,172] gives rise to deformations of
themembrane height with power-law decay of long-range forces along
ing (left) and aggregating (right) systems. Colour coding is the same as in Fig. 15 [148].
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Fig. 17. A typical shape of a cationic membrane centreline hosting two parallel DNA rods
[152]. Membrane-DNA wrapping is more pronounced for highly charged and elastically
soft membranes.
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the membrane. We also note that membrane-associated factories of
some viruses—which utilise higher concentrations of virus capsid pro-
teins and other components—employ a membrane-facilitated assembly
strategy [173].

One physical mechanism of the linear assembly of rods is
minimisation of the elastic energy—accumulated in particular around
the particle tips—via connecting the tips on the membrane to reduce
the portion of highly curved membrane surface area. Another
reason—thatmight be relevant particularly at low salt solutions—are re-
pulsive electrostatic interactions [174–176] between the highly nega-
tively charged rod-like particles. For the rod-like particles in closely
aligned side-by-side configurations the repulsion of their charges is ev-
idently stronger than for a tip-to-tip arrangement [200]. For our brief
discussion here we neglect charge mediated effects, focusing on mem-
brane mediated forces.

We end this subsection with some remarks on the relevance of
electrostatic effects on the diffusion and segregation behaviour in
lipid membranes. First, we note that the diffusion of components
on the surface of biological membranes are subject to highly
compartmentalised, heterogeneous and often dynamic environment
imposing various barriers for the particle motion [177]. In such set-
tings charge-mediated interactions may, for instance, influence the
particle diffusion on lipid membranes and monolayers in several dif-
ferent ways. For positively charged lipids the formation of clusters of
lipids may be facilitated upon addition of divalent cations such as
Mg 2+ or Ca 2+ into the system [180], thus effectively adding fea-
tures of crowding. Moreover, the effective interactions of diffusing
particles with membrane lipids and other larger membrane compo-
nents may become affected, altering the dynamics of the relocation
from one site to another along the membrane. Additionally, the ef-
fective size of the tracer might change due to clustering/adhesion
of lipids onto its surface, provided that particle and lipids have oppo-
site charges. Lastly, the effective membrane viscosity for the lateral
particle motion may be affected by electric charges. The relative con-
tribution of these effects will depend on the charges of the lipid and
particle, the size of diffusingmembrane bound particles, salt concen-
tration, ambient temperature, etc.

The implications of electrostatic effects on membrane domain
segregation, phase separation behaviour, and lateral diffusion of mem-
brane components were examined, inter alia, in Refs. [178–180]. Exper-
imentally, the diffusion properties on phase-separated membranes
[180] (see also Ref. [181]) were shown to be sensitive functions of the
Fig. 18. Schematics of adhesive rodspositioned at various orientations on a responsive gel-
like membrane interface. From left to right: the rods are in tip-to-tip orientation, in
perpendicular arrangement, and in parallel side-to-side configuration. The red and blue
colours of the network springs denote stretched and compressed links, respectively
[200]. Image courtesy S. Ghosh.
domain size and particle interactions with the domains, with the effec-
tive domain diffusivity varying differently with the domain density for
pure water versus solutions at nearly physiological salt conditions.
Brownian long time diffusion of domains in Langmuir lipid monolayers
was also shown to slow down with the domain density due to in-
creasing intrinsic viscosity of the lipid layer [179]. For freestanding
membranes, the translational diffusion of membrane bound nega-
tively charged polystyrene beads of 10 nm size the diffusivity was
approximately independent of the fraction of cationic lipids in the
range of up 7% [182]. This indicates nomeasurable effect of themem-
brane charge density on its viscous properties [183].

In simulations, the diffusion properties on phase separated, hetero-
geneous two dimensionalmembraneswere demonstrated to be severe-
ly affected by attractive dipole–dipole interactions of tracer particles to
liquid-condensed membrane domains [178]. A stronger tracer-domain
binding effectively renders the diffusion from two to one dimension,
reducing also the long time diffusion coefficient in the Brownian limit,
see also Ref. [184]. These conclusions about the particle confinement,
anomalous diffusion on intermediate time scales, and localisation of
the tracer particles are qualitatively similar to recent results for
obstructed diffusion in three dimensional lattices of attractive crowders
[79]. Note here that some raft-associatedmembrane proteins such as E-
cadherin and neutral cell adhesion molecules are indeed known to pos-
sess large dipole moments [178].

Note that electrostatic fields emerging from the membrane
surface—varied via changing the solution pH and salt concentration
[185]—will also affect the diffusion of small molecules such as
protons on the outside of lipid membranes. Finally, the effect of a low
dielectric constant of the lipid layer and solution salinity on the strength
of domain–domain electrostatic interactionswasdiscussed in Ref. [180],
see also Refs. [186–188] for a theoretical perspective on charge
interactions along low-dielectricmembranes. The reader is also referred
to the studies [189–194] for general consideration of membrane
electrostatics.
6.2. Rod-like particles on elastic substrates

From Langevin dynamics simulations the substrate mediated inter-
actions between rod-like particles adsorbed onto a responsive elastic
interface were investigated, using a discrete two-dimensional lattice-
based model [195]. The bead–spring network lattice shown in Fig. 18
is of size n with (n+1)2 beads, where n is varied in the range
15bnb25, to minimise boundary effects. Each bead of the network is
subject to fluctuations of the thermal bath. The entire film is anchored
at eight points forming a pre-stretched elastic sheet. This maintains
the shape of the sheet and prevents its collapse onto adsorbed attractive
particles. Such a basal tension in the membranous network is typically
non-zero for large membrane vesicles [151,182,196].

The overall binding energy EA of a rod-like particle to surrounding
network beads is supposed tomimic e.g. the interactions of filamentous
viruses with oppositely charged membranes [151]. In the simulations
the rods are represented by linear straight arrays of unit size spheres
with total length l (in terms of the lattice constant a). The strength εA
of the bead adhesion to each sphere is parametrised by the truncated
6–12 Lennard–Jones (LJ) potential [195,197]. The network beads inter-
act by the standard Weeks–Chandler–Andersen repulsive potential
[198,199].

We observe in Fig. 19 that the tip-to-tip configuration of the rods is
favoured for very elastic membranes when the particles only feel each
other over short distances. The absolute value of the interaction energy
grows with the rod–membrane attraction energy. For rigid membranes
and strong attraction the side-to-side contacts of rods become more
favourable due to longer range membrane deformations and a longer
overlap of deformed regions in this case. These results can be a testable
prediction for future experiments.
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Fig. 19. Rod–rodmembranemediated interaction energy Eint(β,d) in units of thermal energy versus the angle β of themutual rotation. Parameters: the rod length is l=5a and the centre-
to-centre distance is d=6a [200].
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Itwill remain an interesting question to determine the exact dynam-
ics of the pattern formation of the particles on amembrane. Concurrent-
ly, the effects on the diffusion of lipids close to the adsorbed particles
and their indentations on the membrane will have to be examined.

7. Discussion and conclusions

Lipid membranes are effectively two-dimensional bilayers assem-
bled from densely packed but still laterally highly mobile phospholipid
molecules. The diffusion coefficients for the long timemotion of lipids in
fluid membranes vary in the range 1–20 μm 2/s, depending on the lipid
type, ambient temperature, ionic strength of the buffer, and the lipid
composition—native membranes contain a large variety of different
lipid chemistries—[125,201]. Note that despite terming them as liquids
membranes are up to 100 times more viscous than water [202]. This
often gives rise to a collective motion of membrane proteins with a
dozen of surrounding lipids [203,204].

The lipid membrane in biologically relevant systems is often highly
crowded with membrane proteins, as shown in the computational
models in Figs. 1 and 12. The protein-to-lipid ratio often varies in the
range of 1:200–1:50 [96,141,96,142]. The specific level of crowding in
membranes by proteins is maintained by cells to ensure a tradeoff
with the optimal yield and kinetics of biochemical reactions on and
across the membrane [205]. The study of the physical and biochemical
pathways and assemblies of lipid molecules is often referred to as
lipidomics [131] in recognition of their high importance for biological
cells.

A substantial fraction of cell resident proteins is bound to outer cell
membranes. The average spacing between proteins on the membrane
is some 10 nm or less. The intrinsic heterogeneity of components, lipid
demixing and membrane compartmentalisation are fundamental
organisational principles of biomembranes, see Fig. 12. Membrane
heterogeneities provide a handle for a cell to tune the activity of its func-
tional components. Lipid microdomains affect the yield of membrane
associated proteins participating in signalling pathways. The formation
of suchdomains by electrostatic lipid–proteins interactionswas demon-
strated by simulations [206].

Such studies are intimately connected to the still elusive yet physio-
logically fundamental question concerning the formation as well as the
very existence of lipid rafts, formally defined asmicrodomains of size 10
to 200 nm. Such rafts are believed to serve as organising centres for the
assembly of signallingmolecules. Rafts influence themembrane fluidity
and thus impact on the trafficking of membrane proteins as well as reg-
ulating neurotransmission and receptor [207,208]. Lipid rafts are more
ordered and tightly packed than the surrounding bilayer, but may
float freely in the membrane bilayer [209]. The concept of lipid rafts
goes back to the pioneering works of Stier, Sackmann, and others
[210,211]. A more recent cornerstone towards the understanding of
lipid rafts is the work of Ikonen and Simons [220]. A slowing down of
lipid diffusion in crowdedmembranes as considered in this review like-
ly contributes to transport phenomena on cell membranes affecting the
overall dynamics, in particular, the formation of lipid rafts [97,125,130,
217–223] and membrane domains [224].

The motion of specific membrane embedded proteins is also be-
lieved to be intimately connected to other physiological functions. For
instance, the dynamics of so-called clathrin-mediated endocytosis
were recently shown to be mediated by the anomalous diffusion of
potassium channels in the cell membrane, giving rise to the highly het-
erogeneous distribution of lifetimes involved in the complex formation
[87]. All these questions pose the need for a better understanding of the
nature of a random, thermally driven motion of membrane lipids and
embedded proteins over a wide range of time scales.

We here provide an overview over recent experimental results
reporting anomalous diffusion of membrane embedded proteins in liv-
ing biological cells. Apart from the sublinear scaling in time of themean
squared displacement the motion of several investigated membrane
embedded proteins reveals the phenomenon of ageing, according to
which the mobility of the proteins is a decreasing function of time
[85]. This effects a population splitting into a fraction of proteins with
varying mobility and another, immobile fraction. By advanced experi-
mental techniques also the anomalous diffusion of membrane lipids
was shown. We mention, however, that recent FCS studies of model
membranes in the presence of membrane-bound actin cytoskeleton of
varying concentration showed that although a considerable reduction
of lipid and protein diffusivity was detected, no anomalous diffusion
was observed [225]. The observation of anomalous diffusion on the
intermediate and long time scales accessible to experiments therefore
appears to depend on the very setting of the system under consider-
ation. For a number of proteins embedded in the membranes of living
biological cells it was unambiguously shown that anomalous diffusion
persists over macroscopic time scales of the order of minutes [85,95].

The connection with cellular elements indeed adds another level of
complexity to the dynamics of lipids and membrane proteins. Thus,
the actin cytoskeleton adjacent to the membrane acts as constraining
fences leading to a splitting into a faster diffusionwithin a compartment
and a slower hop-like motion between the compartments [110,202],
the effect being particularly pronounced for trans-membrane proteins.
For plasmamembranes the size of the compartments and the transition
times between the compartments were measured in Ref. [226]. These
experimental results are consistent with Monte Carlo simulations on
plasma membranes [146]. For supported model lipid membranes
transient anomalous diffusion on time scales below20mswas observed
by single particle tracking and shown to be effected by oxide surface
nanostructures [227]. A partial lipid immobilisation by membrane
bound cytoskeletal filaments [212–214] has also been studied by simu-
lations [215].
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On much shorter time scales, we showed how massive computer
simulationsprovide insight into thedynamics, spatiotemporal organisa-
tion, and response behaviour of model lipid membranes. We demon-
strated the existence of anomalous diffusion of lipid molecules in
various settings such as pure lipid bilayers in the liquid and gel phases
as well as in the liquid phase in the presence of cholesterols. In all
these cases our detailed analysis in terms of themean squared displace-
ment, the displacement correlation function, moment ratios, and the
amplitude distribution function of the time averagedmean squared dis-
placement demonstrated that the anomalous dynamics are Gaussian in
nature and can be described in terms of a generalised Langevin equation
with power-law memory, driven by Gaussian noise with long-range
temporal correlations. Anomalous diffusion was also shown to exist in
protein-crowded lipid bilayers for both the lipids and the membrane
embedded proteins. Remarkably, however, it is found that the diffusion
of both lipids and proteins in crowded systems is no longer Gaussian but
in good agreement with stretched Gaussian shapes of the distribution
function [150].

In pure lipid bilayers anomalous diffusion only persists up to a
crossover time of around 10 ns, beyondwhich normal Brownianmotion
emerges. In the presence of cholesterol we saw that certain lipid chem-
istries still show normal diffusion beyond this crossover time whereas
persisting anomalous diffusion was found for other chemistries. In the
gel phase of a pure lipid bilayer the short time anomalous diffusion is
characterised by an extremely low anomalous diffusion exponent, and
anomalous diffusion also exists beyond the crossover time. In these
systems it was shown that the lipid motion corresponds to a concerted
dance of a whole neighbourhood, in contrast to the classical hop diffu-
sion picture. Differences between the long time diffusivities and the in-
termediate time anomalous diffusion in these simple systems is mainly
due to the detailed chemistry of the lipids and their available space in
the bilayer.

In contrast to this the lipid and protein motion is more complex in
crowded bilayer systems relevant to living biological cells. The exact
nature of the observed non-Gaussian anomalous diffusion process re-
mains elusive. At least for the lipid motion a very similar behaviour is
observed for the motion of finite sized particles in arrays of obstacles,
even at a relatively low obstacle density [150]. We may therefore
speculate whether some of the anomalous diffusion features observed
here in fact have a quite generic physical origin and are independent
of the complicated structural details of the involved proteins and
lipids. One of the greatest challenges in membrane biophysics is to un-
derstand the dynamics of membrane components and the response of
biomembranes to the binding of various macromolecules and proteins
[228–230]. Modern superresolution microscopy techniques and mas-
sive computer simulations open up an increasingly large window to
study these questions.

The high performance of supercomputer simulations—with the
enormous level of detail of lipids and membrane bound proteins, with
explicit water, and specific interactions between the component—often
surpasses analytical studies of model and simplified lipid membranes.
This renders computer simulations the main tool for the theoretical
understanding of the dynamics and functioning principles of biological
membranes. This is particularly true for multicomponent, intrinsically
heterogeneous and crowded, but still highly dynamic real cell mem-
branes, in particular, also in the presence of underlying cytoskeletal
structures.
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