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Abstract
Molecular signalling in living cells occurs at low copy numbers and is thereby
inherently limited by the noise imposed by thermal diffusion. The precision at
which biochemical receptors can count signalling molecules is intimately
related to the noise correlation time. In addition to passive thermal diffusion,
messenger RNA and vesicle-engulfed signalling molecules can transiently
bind to molecular motors and are actively transported across biological cells.
Active transport is most beneficial when trafficking occurs over large dis-
tances, for instance up to the order of 1 metre in neurons. Here we explain how
intermittent active transport allows for faster equilibration upon a change in
concentration triggered by biochemical stimuli. Moreover, we show how
intermittent active excursions induce qualitative changes in the noise in
effectively one-dimensional systems such as dendrites. Thereby they allow for
significantly improved signalling precision in the sense of a smaller relative
deviation in the concentration read-out by the receptor. On the basis of linear
response theory we derive the exact mean field precision limit for counting
actively transported molecules. We explain how intermittent active excursions
disrupt the recurrence in the molecular motion, thereby facilitating improved
signalling accuracy. Our results provide a deeper understanding of how
recurrence affects molecular signalling precision in biological cells and novel
medical-diagnostic devices.

Keywords: noise in biochemical signalling, Brownian motion, active transport,
linear response theory, fluctuation–dissipation theorem, generalised Langevin
equation, recurrence
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1. Introduction

In his seminal work on reaction-rate theory in the diffusion-controlled limit Smoluchowski
established a quantitative connection between thermal fluctuations in the form of molecular
diffusion and a macroscopically observable time evolution of the concentration of reactants
and products [1]. Some 60 years later Berg and Purcell [2] showed that thermal diffusion also
limits the accuracy of biochemical receptors and hence sets physical bounds to the precision
of cellular signalling. Namely, cellular signalling typically involves low copy numbers of
messenger molecules and is thereby inevitably subjected to appreciable fluctuations in the
count of molecular binding events at biochemical receptors [2–7]. In a similar way counting
noise limits the precision and sensitivity of modern microscopic diagnostic devices in
medicine technology [8]. State-of-the-art single particle tracking techniques indeed highlight
the inherent stochasticity of such molecular signalling events [10–13]. However, despite the
significant sample-to-sample fluctuations cellular signalling operates at remarkable precision
[14, 15]. Inside living cells some signalling molecules, typically entrapped in vesicles, do not
only move by thermal diffusion alone but may also be actively transported along cellular
filaments by molecular motors [16, 17] causing intermittent ballistic excursions [18]. Free
molecules, such as messenger RNA, may as well attach to motors [19], or proteins may move
in a directed fashion due to cytoplasmic drag [20]. Enhanced spreading may finally be
facilitated by cytoplasmic streaming [21, 22]. A practical way to incorporate active motion in
the stochastic dynamics of signalling molecules is the model of random intermittent search
[23, 24] which was recently used to analyse reaction kinetics in active media [27] and the
speed and precision of receptor signalling in three-dimensional media [6].

In a mean field picture of receptor signalling at equilibrium, developed by Bialek and
Setayeshgar [3], signalling molecules diffuse in space and reversibly bind to the receptor in a
Markovian fashion (figure 1). The central object of the theory is the so-called receptor-noise
correlation time tc [2–4, 6, 7]. Namely, in a setting where the receptor measures the con-
centration over a period tm—much longer than any correlation time in the system—the noise
in the receptor occupancy statistic will be Poissonian, and the concentration estimate will
improve with the number t tµNi m c of independent measurements. The correlation time is
set by the thermal noise in the binding to the receptor and the thermal diffusion of the
signalling molecules [2–4, 7] but can be altered by certain details of the transport, such as
intermittent sliding along DNA in the so-called facilitated diffusion model of gene regulation
[4] and intermittent active excursion by hitchhiking molecular motors [6]. In addition, tc

depends on the dimensionality of the cell or domain in which it occurs [4, 7]. Moreover, when
molecules explore their surrounding space in a compact manner—the motion is recurrent in

Figure 1. Model system: signalling particles (grey) perform passive thermal diffusion
(red phases) interrupted by active ballistic excursions with constant speed and random
direction (blue phases moving along the motor tracks). The duration of both phases is
distributed exponentially with mean times tp a, . When the particle reaches the receptor
(orange sphere) it binds/dissociates with rates kon and koff. Due to the specific geometry
the system is effectively one-dimensional.
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the sense of returning to already visited sites [25]—such as the one observed in one-
dimensional diffusion, the recurrences prolong tc and thus reduce Ni within a given fixed tm

[4]. Conversely, the interaction with a confining domain disrupts the positional correlations at
long times [26] and thereby truncates tc, causing an improvement of the sensing precision
especially in low dimensions [7].

It was shown in the case of chemical reactions coupled to active transport that the effect
of active excursions is most pronounced in low dimensions since they act by disrupting the
recurrence of one-dimensional Brownian motion [23, 24, 27]. Here we demonstrate that the
effect of intermittent active motion in one-dimensional diffusive systems is even stronger
when it comes to the sensing precision. We compute analytically the accuracy limit for
receptor mediated concentration measurements in dimension 1 and argue that active excur-
sions allow for enhanced precision of signalling in neurons.

2. Linear response theory of receptor noise coupled to active transport

We consider a signalling molecule (mRNA or protein) diffusing on the real line and randomly
switching between a passive diffusion phase p with diffusivity D and an active ballistic phase
a with velocity v, see figure 1 and [6, 24, 27]. The duration of active/passive phases is
exponentially distributed with mean ta p, . The concentrations of freely diffusing and motor-
bound signalling molecules are c x t,p ( ) and c x t,a ( ) and±denotes motor-bound signalling
molecules moving to the left/right, respectively. In addition, while passively diffusing the
signalling molecule can reversibly bind to a receptor at x0 in a Markov fashion. In a mean
field description the fractional receptor occupancy n(t) with on/off rates kon off evolves
according to the coupled equations
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where detailed balance is fulfilled for the binding =k c k F k Texpp Bon off⟨ ⟩ ( ) involving the
binding free energy F. Equations (1a)–(1c) describe the motion of a molecule randomly
switching between phases of passive diffusion and ballistic motion with rates t-p

1 and

t-a
1. Once the molecule locates the receptor at x0 while being in the passive phase, it can

bind to it. The total binding rate is proportional to the intrinsic rate kon, the probability
c x t,p 0( ) to find the molecule at x0 in the passive phase, and the probability - n t1 ( ) that
the receptor is unoccupied. Once being bound to the receptor the molecule unbinds with
a first order rate proportional to the intrinsic unbinding rate koff and the probability n(t)
to find the receptor occupied. Note that since cp has units of 1/length and n(t) is
dimensionless, the rates kon off have different units, i.e. kon has the units of length/time
and koff has units of 1/time.

To obtain a closed equation for the dynamics of n(t) close to equilibrium, we linearise
equations (1a)–(1c) around the respective equilibrium values n c, p⟨ ⟩ ⟨ ⟩, and ca⟨ ⟩ [3] to obtain,
in terms of small fluctuations, d= +n t n n t( ) ⟨ ⟩ ( ) and d= +c x t c c x t, ,p p p( ) ⟨ ⟩ ( ), and

d= +  c x t c c x t, ,a a a( ) ⟨ ⟩ ( ). Moreover, the detailed balance condition imposes the constraint
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d d d- =k k k k F k TBon on off off on the free energy fluctuations. By Fourier transforming in
time and in space,  òw = w¥

t te dt
t

0
iˆ ( )[·] (·) ,  ò =

-¥

¥ -x k xe dx
kxiˆ ( )[·] (·) , and solving

the resulting system of ordinary equations we arrive at an exact generalised Langevin
equation for the fluctuations around the equilibrium receptor occupancy within the linear
regime [6]
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Here tb denotes the correlation time of two-state Markov switching, t = - -k c kb pon off
1( ⟨ ⟩ ) ,

and the noise in the form of the free energy fluctuations dF t( ) has zero mean d =F t 0⟨ ( )⟩ and
obeys the fluctuation–dissipation theorem d d g¢ = - ¢F t F t k T k n t t2 B off
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The memory kernel g t( ) in terms of an inverse Fourier transform operator reads
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and the contribution due to the intermittent active excursions is
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The limit in equation (3) is to be understood as a finite receptor size taken to zero after the
integral is evaluated in order for the integral to converge. The memory term in the Langevin
equation (2) reflects the fact that it takes a finite time before the receptor feels the effect of
dF t( ) because the signalling molecule moves throughout space before (re)binding.

According to linear response theory [3, 28] we can write òd a d= ¢ - ¢ ¢n t t F t t td
t

0
( ) ( ) ( )

where the generalised susceptibility becomes
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theorem from the imaginary part of a w˜ ( ),
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Moreover, a change in concentration is equivalent to a change in F, d d=c c F k Tp p B⟨ ⟩ .
Using this one can also show that [3]
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and use this to relate the uncertainty in dn to the precision at which the receptor can
determine cp.
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3. Equilibration rate

We split the signalling process into an equilibration phase, during which the system equili-
brates to a new concentration, and the measurement phase, during which the receptor reads
out this equilibrium concentration. Moreover, we assume that the equilibration time corre-
sponds to the time during which the signalling molecules move a distance L of the order of the
size of the cell or a cellular compartment. The equilibration time ti is then defined implicitly
by the mean squared displacement via t =x Li

2 2⟨ ( ) ⟩ .
We here neglect the binding to the receptor given by equation (1a) and adopt a prob-

abilistic interpretation of equations (1b) and (1c), which we solve by Laplace transforming in
time and Fourier transforming in space. The mean squared displacement for a particle starting
at the origin in the passive phase is obtained from the Laplace transform

= -¶ + ++ -
=x s c k s c k s c k s, , ,k a a p k

2 2
0⟨ ( )⟩ [ ( ) ( ) ( )] and after Laplace inversion reads

⎪

⎪

⎧
⎨
⎩

⎫⎬⎭

/ /t
t

t t

t t
t t t

t t t t
t t

= -
+

+

+
+

+
+

- +

+

t t t t t-
-

- -
- +x t v

v D

v D
t

D v

2 e e

1

1 2

1
. 9

a
t p

a p

t

a p

p a p

p a p a

p a

2 2
2 1

1 1 2

2 2

2

a a p a p⟨ ( ) ⟩ ( )
( )

( )
( )

( ) ( )
( )

( )

( )

Equation (9) is a transcendental equation for ti and depends only on three parameters: the
typical distance covered in the active and passive phases, t=x va a and t=x Dp p , and the
dimensionless Péclet number = Lv DPe . Moreover, it states that over a period of duration
t t+a p the directional persistence in the active phase causes a nonlinear time dependence of
x t2⟨ ( )⟩. Upon this transient regime an effective diffusive regime ~x t D t2

eff⟨ ( )⟩ is
established with an effective diffusion coefficient t t t t= + +D D vp a p aeff

2( [ ] ) ( ). To
estimate the equilibration rate of active transport with respect to diffusion we compare ti with
the purely passive equilibration time t º L D20

2 ( ). Figures 2(a)–(c) show results for various
biologically relevant Péclet numbers.

From figure 2 we find that active transport is more efficient for larger Pe values. More
precisely, the required typical displacement in the active phase needed to enhance the
equilibration with respect to bare diffusion is smaller for larger Pe. In the biologically relevant
setting the molecular motor speed m~ -v 1 m s 1 is widely independent of the particle size

Figure 2. Ratio t ti0 of equilibration times for passive diffusion (subscript 0) and
intermittent active motion (subscript i) as a function of the typical lengths of active (xa)
and passive (xp) displacements for various Péclet numbers = Lv DPe . The yellow line
corresponds to t t = 1i0 . Whenever t t > 1i0 active motion leads to faster
equilibration.
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[15] and the values for the diffusion coefficients span a scale between  m- -D 10 m s2 2 1

corresponding to large cargo such as vesicles, and m~ -D 10 m s2 1 corresponding to smaller
proteins. Conversely, the dimension of effectively linear cells such as neurons or their sub-
structures (i.e. dendrites) falls between m10 m and 1 m, which means that  -Pe 10 100
values are in fact robustly expected. Therefore, according to figure 2 it is quite plausible that
intermittent active motion indeed enhances signalling speed in vivo.

The physical principle underlying the enhancement is rooted in the fundamental differ-
ence in the time scaling of diffusive and active motion,  t versus ; t2. For example,
comparing only purely passive and active motion we find that for >Pe 2 active motion is
more efficient. In the intermittent case the motion has a transient period of duration t t+a p,
which corresponds to a parameter dependent combination of both regimes. After this transient
period the effective diffusive regime is established with diffusivity Deff , which may or may
not be larger than the bare D. ti can therefore be smaller or larger than t0. Shuttling of large
cargo therefore almost universally profits from active motion, whereas active motion of
smaller proteins will only be more efficient over sufficiently large distances. The observed
features thus provide a simple explanation why experimentally active transport is observed
mostly in the trafficking of larger particles [14, 29]. Similarly, active diagnostics [8, 9] can
also be faster and hence could enable for a higher diagnostic throughput.

4. Signalling precision with thermal diffusion alone

We now address the signalling precision and focus first on the situation, where molecules
move in space by thermal diffusion alone. In this case L = 0k and the k-integral in
equation (3) is evaluated exactly, after taking the limit a 0 yielding

⎡
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Using equation (10) in equations (6)–(8) we arrive at the power spectrum of concentration
fluctuations experienced by the receptor
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where Arg denotes the principal value of the argument. Integrating over the frequency range
t t- - -,m m

1 1( ) we obtain the final result for the variance of the concentration measured by the
receptor
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where the first part describes the noise due to the two-state Markov switching (i.e. the binding
alone) and the second term stands for the noise due to diffusion. Note that for the recurrent
nature of one-dimensional diffusion and the fact that the receptor is point-like, we cannot
approximate the precision at which the receptor can determine cp with

ò w w w t~ 
t

t
d d-

S Sd 0c c m1

1

m

m

p p
( ) ( ) as in the three-dimensional case (see e.g. [3]). More

precisely, in contrast to the Lorentzian shape of w dS 0cp
( ) in the three-dimensional case,

wdS cp
( ) diverges as w  0. The integral over ω nevertheless converges and leads to

equation (12). Moreover, in contrast to the three-dimensional case where the squared
measurement error dcp

2 decreases as t1 m, for one-dimensional diffusion we find the much
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slower decay d tµc 1p m
2 . That is, tµN N 1i i m

1D 3D and the receptor measurement is
thus much less efficient in one-dimension.

5. Signalling precision with active motion

As we are interested in the signalling precision at equilibrium and hence consider tm values
which are much longer than any correlation time in the motion [3, 4, 6] such that t t t ,m a p,
we may take the limit in t t wL , ; 0k a p( ) as well as in equation (3). This way we recover,
after performing the integral over k in equation (3) and taking the limit a 0, an effective
white noise asymptotic on the slow time scale t tt ,a p,

⎡
⎣⎢

⎤
⎦⎥g d

t t t
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t t
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D D v
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1
, 13

p p a
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and correspondingly an effectively Lorentzian fluctuation spectrum wdS n ( ) at small
frequencies (see [6]). From equation (8) we obtain also the low frequency region of the
power spectrum concentration fluctuations
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for w t t t- - - , ,b a p
1 1 1, where we introduced the typical distance the signalling molecule

moves in the passive t=x Dp p and motor bound phases t=x va a. As before, the first term
in equation (14) corresponds to the two-state switching noise and the second term to the noise
due to spatially extended intermittent dynamics. Note that in contrast to the three-dimensional
setting, where the active excursions merely rescale the correlation time [6], we here find a
qualitative change in the properties of the noise, compare equations (11) and (14).

Using equation (14) we can now approximate the precision at which the receptor can

determine cp with ò w w w t~ 
t

t
d d-
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( ) ( ) and obtain our main result
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Here we are interested in the transport-controlled sensing [3, 4, 6]. Comparing the noise due
to the spatially extended motion for passive and active intermittent motion we find that that
active motion allows for more precise absolute concentration measurements as soon as the
inequality

t t
p

>
+ x x2 1

16m p
p a

2

2 3( ( ) )
( )

holds such that in the limit of long active excursions x xa p we end up with the condition

t t> p
m p 2

2

. Note that the right-hand side of this inequality is essentially the characteristic time
of the asymptotic exponential decay of the first passage time density of a one-dimensional
random walk in a domain of length L if we set t=L D p

2 [30]. In other words, for active
signalling to be more precise in one-dimension the receptor needs to measure long enough for
the particle to find the target in the passive phase, which is an intuitive result.

In order to be more concrete we compare the scaled variances of measurement errors for
active s d= c ci p i p i,

2
,

2⟨ ⟩ and passive s d= c cp p0 ,0
2

,0
2⟨ ⟩ motion. In the transport-controlled

regime we have t t~ +c c 1p i a p, tot⟨ ⟩ ( ) for intermittent active motion and ~c cp,0 tot⟨ ⟩ ,
where ctot denotes the total concentration of molecules. Note that here and throughout the
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entire paper we implicitly assume that the number of molecules exceeds the number of
receptors [3]. The relative precision ratio reads

* * *

* *

s
s

p
t t t

t t
=

+

+ Q2

1

1
, 17i p a p

p a0
2 3 2

( )
( [ ] )

( )

where we introduced dimensionless times *t t t=p p m and *t t t=a a m as well as
/ t=Q D v m

2( ), the dimensionless ratio between the squared typical lengths of passive
t=x Dp m m, versus active t=x va m m, displacements during the measurement time tm. The

results for various values of Q are presented in figure 3.
We find that the minimal value of ta that is required for improved sensing precision with

respect to bare diffusion (i.e. for s s < 1i 0 , which corresponds to the region to the left of the
yellow curve in figure 3) decreases with decreasing Q. In other words, for large particles with
a smaller D the active displacements can become arbitrarily short. Given that the typical
measurement times lie between 1 s and 1 min [3] the conditions for improved signalling
accuracy appear to be robustly satisfied.

To understand this we need to recall that, while larger ta monotonically leads to lower
absolute read-out errors (see equation (15)), it simultaneously decreases cp⟨ ⟩ and hence
renormalises si. The improved accuracy in figure 3 is thus a result of a trade-off between a
decreases of the absolute concentration fluctuations and a lower equilibrium probability to be
at the receptor site. This result is striking as it suggests that even the slightest active dis-
placements can disrupt the recurrence and improve the read-out precision as long as their
length is larger than the receptor size.

Physically, this observation is due to the fact that the receptor collects new information
only from statistically independent binding events. Correlations between consecutive mea-
surements arise due to a finite Markov binding time tb and due to the return and rebinding of a
previously bound molecule. Moreover, we assume that only freely diffusing molecules can
bind to the receptor. Therefore, the receptor necessarily experiences the binding of those
molecules, which are ballistically swept towards the binding site over a distance larger than
the receptor size, as statistically independent. In turn, molecules which are ballistically flushed

Figure 3. Precision ratio of scaled variances of s d= c ck p k p k,
2

,
2⟨ ⟩ with =k i0, for

active intermittent (subscript i) versus passive (subscript 0) transport as a function of
the relative duration of active (t ta m) and passive (t ta m) phases with respect to the
measurement time tm for various values of dimensionless ratio between the squared
typical length of passive t=x Dp m m,

2 versus active t=x va m m,
2 2( ) displacements during

the measurement time tm. Whenever s s < 1i 0 active motion leads to more precise
signalling. Note that t t 0.1a m and t t 0.1p m in order to assure equilibrium
sensing conditions.
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away from the receptor after unbinding will also contribute statistically independent binding
events, regardless of how they return to the receptor. The nonexistence of a lower-bound on ta

is thus an artefact of assuming a point-like receptor.
Note that in an alternative setting, in which we compare the precision to determe the

same concentration of passively moving molecules, which corresponds to a higher ctot in the
intermittent active case (i.e. c cp i, tot⟨ ⟩ [6]), the signalling precision would be improved
unconditionally. Therefore, in contrast to the three-dimensional case, where active motion
only improves sensing precision for certain values of parameters [6], active transport can
robustly and much more efficiently improve sensing accuracy in one-dimensional systems for
sufficiently long measurement times.

6. Conclusion

The degree of recurrence of spatial exploration is essential for random target search processes
[23, 24]. For example, in the facilitated diffusion model of gene regulation the topological
coupling of one- and three-dimensional diffusion allows for a more efficient search (e.g. [31]).
In a similar manner intermittent active excursions can significantly speed up random
search [23, 24].

In contrast, the topological coupling of one- and three-dimensional diffusion does not
appreciably improve the signalling precision [4]. In addition, we showed previously that in a
three-dimensional setting active motion only conditionally improves the signalling accuracy,
by decreasing the correlation time of the counting noise in a process called active focusing
[6]. Here we find, strikingly, that active excursions effect qualitative changes in the power
spectrum of concentration fluctuations experienced by the receptor in one-dimensional sys-
tems such as neurons. By adding the active component the power spectrum changes from

w1 for thermal diffusion alone to a Lorentzian shape with a finite plateau. This Lorentzian
shape is also observed for passive signalling in three-dimensions [3, 4, 6]. Therefore, active
excursions disrupt the recurrent nature of one-dimensional diffusion.

Existing studies provide insight into how receptor clustering [3] and cooperativity [32],
dimensionality [4], spatial confinement [7], receptor diffusion [33] and active transport [6]
affect the precision of receptor signalling. The overall dependence of the counting noise on
the manner the signalling molecules explore their surrounding space suggests that a hetero-
geneous diffusivity profile [26, 34] and spatial disorder [35] would alter the signalling pre-
cision as well. Both have been observed in experiments [36]. In addition, signalling molecules
or transport versicles often exhibit anomalous diffusion [37], both in the form of passive [38]
and active [22, 39] motion. It would therefore be interesting to investigate the impact of these
features on the sensing precision in the future.
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